残余应力检测方法概述
残余应力检测
残余应力检测方法主要包括盲孔法、磁测法和X射线法
盲孔法残余应力检测
盲孔法残余应力检测法就是在工件的被测部位贴上应变花(计),通过在应变花(计)中心打一个Φ2mm左右的小盲孔引起残余应力的释放,同时,由残余应力测试仪将这种释放量测出并通过计算得出该部位的残余应力大小和方向。
盲孔法残余应力检测的步骤如下:1、在工件上选定残余应力测量点,一般是选择工件上残余应力值最大的点或工件在使用过程中承力最大的点;2、将被测点表面打磨到粗糙度Ra0.8左右;3、用炳酮或酒精将打磨面清洗干净;4、用快凝胶将应变花(计)粘贴在被测点;5、快凝胶凝固后,将应变计上的应变片的引线与残余应力检测仪的测量线通过接线端子连接起来;6、将残余应力检测仪修正调零;7、用专用装置在应变花(计)中心打一个Φ2mm、深约2.5mm的盲孔;8、打完孔15分钟后,用检测仪测量打孔后释放的应变量,同时自动计算出残余应力值的大小和应力方向。
磁测法残余应力检测
磁测法残余应力检测法主要是通过磁测法来测定铁磁材料在内应力的作用下磁导率发生的变化确定残余应力的大小和方向。
众所周知,铁磁材料具有磁畴结构,其磁化方向为易磁化轴向方向,同时具有磁致伸缩性效应,且磁致伸缩系数是各向异性的,在磁场作用下,应力产生磁各向异性。
磁导率作为张量与应力张量相似。
本仪器通过精密传感器和高精度的测量电路,将磁导率变化转变为电信号,输出电流(或电压)值来反映应力值的变化,并通过装有特定残余应力计算机软件的计算机计算,得出残余应力的大小、方向和应力的变化趋势。
残余应力测试方法综述
工 业 技 术65科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 机械零部件中存在的残余应力近年来日益受到人们的关注,尤其是一些成形小的结构件中的残余应力在实际使用中会产生一些有害影响,如微机械、微机电系统中由于制备的原因,残余应力是结构件破坏的主要因素之一。
目前,比较成熟的残余应力检测和评价方法主要限于一些比较大的结构件中。
较大型的机械零部件在加工成形中由于需要较大的变形如挤压、焊接变形,从而容易形成残余应力。
例如:大型铸焊件在热处理或焊接过程中由于热影响而引起的残余变形所导致的残余应力尤为突出。
残余应力对工程构件,特别是对压力容器等焊接结构的危害是显而已见的;反之,也有采取某种特殊工艺措施,使零部件表面形成正压力(如喷丸、碾压等)以增强零部件的抗疲劳能力,提高其使用寿命。
随着断裂力学分析方法的不断发展,迫切要求定量了解或确定零部件内存在的残余应力大小。
由于产生残余应力的机理极其复杂,单纯采用理论分析以及计算方法求解,往往不能满足实际需要,同时现有的一些理论模型还不能完全反映实际情况从而达到寿命预测的目的,因此,实验仍是直接测试零部件的残余应力必不可少的工作方法。
1 残余应力的测量方法1.1物理式残余应力测试方法物理式残余应力测试方法主要有射线法、磁测法及超声法。
这种方法是无损式测量方法,其中射线法使用较多,而且比较成熟;但设备较复杂,携带到现场并在实物上测量有一定的困难,操作技术较复杂。
超声法和磁测法能够测量表面下的应力,是一种较新的测试方法。
1.2机械式残余应力测试方法机械式残余应力测试方法主要采用电阻应变测量技术,通过分段切割、套孔或钻小孔等方法,将残余应力全部或部分释放,获得零部件内的残余应力。
其中套孔法是在应变片周围切一环形槽(如图1(a)所示),将环槽中心工件部分完全孤立,释放孤立区域的残余应力(约释放90%以上),并由应变片检测出释放应变。
残余应力测试方法综述
残余应力测试方法综述作者:廖斌来源:《科技资讯》2014年第30期摘要:该文介绍了残余应力对结构件在实际使用中的有害影响及实验对于测量残余应力的必要性阐述了当前测量残余应力的两种主要方法,并对机械式残余应力测试方法分别从平面和三维条件下进行了详细的说明。
大部分残余应力的测试方法都没有达到实用阶段。
除了测试技术还存在问题,在力学原理上,主要是弹性力学与塑性力学还得不出钻孔这个力学模型的三维问题应力解。
关键词:残余应力小孔释放法应变主应力中图分类号:TU13 文献标识码:A 文章编号:1672-3791(2014)10(c)-0065-03机械零部件中存在的残余应力近年来日益受到人们的关注,尤其是一些成形小的结构件中的残余应力在实际使用中会产生一些有害影响,如微机械、微机电系统中由于制备的原因,残余应力是结构件破坏的主要因素之一。
目前,比较成熟的残余应力检测和评价方法主要限于一些比较大的结构件中。
较大型的机械零部件在加工成形中由于需要较大的变形如挤压、焊接变形,从而容易形成残余应力。
例如:大型铸焊件在热处理或焊接过程中由于热影响而引起的残余变形所导致的残余应力尤为突出。
残余应力对工程构件,特别是对压力容器等焊接结构的危害是显而已见的;反之,也有采取某种特殊工艺措施,使零部件表面形成正压力(如喷丸、碾压等)以增强零部件的抗疲劳能力,提高其使用寿命。
随着断裂力学分析方法的不断发展,迫切要求定量了解或确定零部件内存在的残余应力大小。
由于产生残余应力的机理极其复杂,单纯采用理论分析以及计算方法求解,往往不能满足实际需要,同时现有的一些理论模型还不能完全反映实际情况从而达到寿命预测的目的,因此,实验仍是直接测试零部件的残余应力必不可少的工作方法。
1 残余应力的测量方法1.1 物理式残余应力测试方法物理式残余应力测试方法主要有射线法、磁测法及超声法。
这种方法是无损式测量方法,其中射线法使用较多,而且比较成熟;但设备较复杂,携带到现场并在实物上测量有一定的困难,操作技术较复杂。
残余应力的测量方法
残余应力的测量方法由于工件经过振动时效处理以后其残余应力降低,所以测定工件振动时效前后残余应力的变化量也是判断振动时效效果的方法之一。
1. 盲孔法:它的原理是在平衡状态下的原始应力场上钻孔,以去除一部分具有应力的金属,而使圆孔附近部分金属内的应力得到松弛,钻孔破坏了原来的应力平衡状态而使应力重新分布,并呈现新的应力平衡,从而使圆孔附近的金属发生位移或应变,通过高灵敏度的应变仪,测量钻孔后的应变量,就可以计算原应力场的应力值。
测量仪器;应变仪.盲孔钻. 应变花。
2.X射线法:X射线应力测定方法是利用X射线衍射测定试样中晶格应变求出工件表面应力的方法。
但是由于χ光应力测定仪的测量精度较差.比较适合用于测定具有较大残余应力的工件,如普通纲件.焊接件 .淬火件等。
З.磁性法:磁性法测量残余应力是利用铁磁材料的压磁效应即在应力作用下.铁磁材料的各方向上的导磁率发生不同的变化,从而产生磁各向异性.通过对导磁率变化的测定来确定残余应力的方法。
此法目前尚处于试验或试用阶段,我所正在进行探讨采用此方法的可能性。
有关的数据处理方法在科学试验中,有着大量的测试数据,但是有时这些数据并不能使我们一目了然,而通过对这些数据进行科学的整理和分析,就可以帮助我们总结出许多现象和问提。
目前,这一问提已经引起越来越多的科技工作者的注意和重视,我们试验中每批试件尺寸精度保持性的数据都是几百个,甚至上千多个,因此初步尝试用一些简单的数理统计方法分析.整理了大批试验数据,取得了一定的成效。
4.测量误差分析:对大量的数据运用数理统计方法进行分析 .整理时,经常要用到算术平均值(X )及离差(s )其表达式为:一般用表示测量值的平均水平。
用8来衡量测量值的波动情况,S越大,表名测量值的波动越大,S小,则说明测量比较集中。
在计算.分析振动时效工件导轨精度变化量时,根据测量时重复读数的偏差大小,可以算出测量的离差值S,当变形量小于S时,就应该认为没有变形或变形不显著。
残余应力的测试标准
残余应力的测试标准残余应力是指在物体内部或表面存在的一种应力状态,它是在物体内部或表面上由于加工、焊接、热处理等工艺过程中产生的应力。
残余应力的存在会对材料的性能和使用寿命产生一定的影响,因此对残余应力进行测试是非常重要的。
下面将介绍残余应力的测试标准及相关内容。
1. 测试方法。
残余应力的测试方法有很多种,常见的包括X射线衍射法、光栅法、中子衍射法、电子衍射法等。
其中,X射线衍射法是应用最为广泛的一种方法。
通过X射线衍射仪器可以测定材料内部的应力状态,得到残余应力的大小和分布情况。
2. 测试标准。
在进行残余应力测试时,需要遵循一定的测试标准,以保证测试结果的准确性和可靠性。
国际上常用的残余应力测试标准有ASTM E837-13、ISO 2360:2003、GB/T 2970-2016等。
这些标准对于测试方法、设备精度、样品制备、测试程序、数据处理等方面都有详细的规定,使用者可以根据实际情况选择合适的标准进行测试。
3. 测试样品。
在进行残余应力测试时,选择合适的测试样品对于测试结果的准确性至关重要。
通常情况下,可以选择金属材料、焊接接头、热处理件等作为测试样品。
对于不同材料和工艺的测试样品,需要根据标准要求进行制备和处理,以保证测试的有效性。
4. 测试结果。
残余应力测试的结果通常以应力大小和分布图形式呈现。
通过对测试结果的分析,可以了解材料内部或表面的应力状态,为进一步的工艺改进和材料设计提供参考依据。
同时,测试结果也可以用于评估材料的质量和可靠性,对于产品的使用和维护具有重要意义。
5. 应用领域。
残余应力测试在航空航天、汽车制造、电子设备、建筑结构等领域都有着广泛的应用。
通过对材料残余应力的测试,可以有效地预防材料的疲劳破坏、断裂和变形,提高产品的使用寿命和安全性,对于保障工程质量和产品质量具有重要意义。
6. 结语。
残余应力的测试标准对于保证测试结果的准确性和可靠性至关重要。
通过遵循相关的测试标准和方法,可以得到准确的残余应力测试结果,为材料的设计和工艺改进提供科学依据。
残余应力测试
2.测试方法目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。
盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较;X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力;磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。
对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。
尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。
因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。
残余应力的测量方法残余应力的测量方法可以分为有损和无损两大类。
有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。
机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。
物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性法和超声法。
X射线衍射法依据X射线衍射原理,即布拉格定律。
布拉格定律把宏观上可以准确测定的衍射角同材料中的晶面间距建立确定的关系。
材料中的应力所对应的弹性应变必然表征为晶面间距的相对变化。
当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。
因此有可能通过测量衍射角2θ随晶面取向不同而发生的变化来求得应力σ。
从这里可以看出X射线衍射法测定应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件,包括大型工件的现场测量。
铸件残余应力测量方法
铸件残余应力测量方法铸件残余应力的测定方法可以分为机械测定法和物理测定法。
机械法测残余应力是采用机械机械加工的手段,对被测铸件进行部分加工或完全剥离,使被测构件上的残余应力部分释放或完全释放,使用电阻应变测量技术测出残余应力的方法,机械法最常见的是盲孔法。
其优点是测量精度以及准确性高,缺点是会对构件造成一定程度损伤。
物理测量法又叫非破坏无损伤测量方法,它无需对材料进行分割,可直接求得残余应力。
物理法最常见的是磁测法,对构件无损伤,但测量成本比较高。
目前较常用且适合铸件残余应力的分析测试技术主要就是盲孔法和磁测法。
盲孔法残余应力测量是在平衡状态下的原始应力场上钻孔,以去除一部分具有应力的金属,而使圆孔附近部分金属内的应力得到松弛,钻孔破坏了原来的应力平衡状态而使应力重新分布,并呈现新的应力平衡,从而使圆孔附近的金属发生位移或应变,通过高灵敏度的应变仪,测量钻孔后的应变量,就可以计算原应力场的应力值。
盲孔法是工程中最通用的的残余应力测定方法,准确性最高,技术较为成熟,并且具有相关国家标准。
磁测法残余应力测量主要是通过测定铁磁材料在内应力的作用下磁导率发生变化确定残余应力的大小和方向。
铁磁材料其磁化方向为易磁化轴向方向,同时具有磁致伸缩性效应,且磁致伸缩系数是各向异性的,在磁场作用下,应力产生磁各向异性。
磁导率作为张量与应力张量相似。
通过精密传感器和高精度的测量电路,将磁导率变化转变为电信号,输出电流(或电压)值来反映应力值的变化,并通过特定残余应力计算软件,得出残余应力的大小、方向和应力的变化趋势。
磁性法检测工件须具有铁磁性,否则此方法无效。
铸件残余应力的检测,针对不同铸件和不同的测试目的选择最佳的测定方案,主要考虑以下几个方面:允许结构受损伤的程度;测试的应力种类;铸件性能变化的影响;现场测试的适应性;费用和时间。
如果您对铸铁件残余应力测量还有其他疑问,可直接咨询南京聚航科技有限公司,我们很乐意为您答疑解惑。
表面残余应力测试方法汇总
表面残余应力测试方法由于X射线的穿透深度极浅,对于钛仟金仅为5pm,所以X射线法是一种二维平而残余应力测试方法。
现在暂泄选择钛靶,它与钛合金的晶面匹配较好。
(110)晶面一、试样的表面处理X射线法测左的是试件的表而应力,所以试件的表面状况对测量结果也有很大的影响。
试件表而不应有油污、氧化皮或锈蚀等;测试点附近不应被碰、擦、刮伤等。
(1)一般可以使用有机溶剂(汽油)洗去表而的油泥和脏污。
(2)去除氧化皮可以使用稀盐酸等化学试剂(根据试样选择合适浓度,如Q235钢用10% 的硝酸洒精溶液浸蚀5min)o(3)然后依据测试目的和测试点表而实际情况,正确进行下一步的表面处理。
如果测虽的是切削、磨削、喷丸、光整、化铳、激光冲击等工艺之后的表面应力,以及其它表而处理后引起的表而残余应力,则绝不应破坏原有表而不能进行任何处理,因上述处理会引起应力分布的变化,达不到测量的目的。
必须小心保护待测试样的原始表而,也不能进行任何磕碰、加工、电化学或化学腐蚀等影响萄师应力的操作°对于粗糙的表而层,因凸出部分释放应力,影响应力的准确测量,故对表而粗糙的试样,应用砂纸磨平,再用电解抛光去除加工层,然后才能测定。
(5)若被测件的表而过于粗糙,将使测得的应力值偏低。
为了提高试件的表而光洁度,又不产生附加产力,比较好的办法是电解抛光法。
该法还可用于去除表而加工层或进行试件表层剥除。
(6)若单纯为了进行表层剥除,亦可以用更为简单的化学腐蚀法,较好的腐蚀剂是浓度为40%的(90%H202+10%HF)的水溶液。
但化学腐蚀后的表而光洁度不如电解抛光。
为此可在每次腐蚀前用金相砂纸打磨试件表面,但必须注意打磨的影响层在以后的腐蚀过程中应全部除去。
二、确定测量材料的物相,选定衍射晶面。
被测量的衍射线的选择从所研究的材料的衍射线谱中选择哪一条(hkl)而干涉线以及相应地使用什么波长的X射线是应力测左时首先要决泄的。
当然事先要知道现有仪器提供的前提条件:一是仪器配置了哪几种靶材的x射线管,它决立了有哪几个波长的辐射可以选用;二是测角仪的28范围。
关于构件的残余应力检测(盲孔法检测)
关于构件的残余应力检测(盲孔法检测)一、前言(1)应力概念通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。
按照德国学者马赫劳赫提出的分类方法,内应力分为三类:第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。
当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。
第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。
第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。
在工程上通常所说的残余应力就是第Ⅰ类内应力。
到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。
除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。
(2)应力作用机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。
适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。
(3)应力的产生在机械制造中,各种工艺过程往往都会产生残余应力。
但是,如果从本质上讲,产生残余应力的原因可以归结为:1.不均匀的塑性变形;2.不均匀的温度变化;3.不均匀的相变(4)应力的调整针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。
残余应力检测标准
残余应力检测标准一、检测方法标准残余应力检测方法通常采用X射线衍射法和超声波法。
其中,X 射线衍射法是最常用的一种,其原理是利用X射线衍射图谱对材料内部的残余应力进行测定。
超声波法则是利用超声波在材料中的传播速度和方向变化来测定材料内部的残余应力。
在检测过程中,需要根据实际情况选择合适的检测方法,并遵循相应的操作规范和技术要求。
二、检测仪器标准残余应力检测仪器应符合国家有关标准和行业标准的要求,具备高精度、高稳定性和高可靠性的特点。
仪器的各项技术指标应经过法定计量部门的标定和校准,并取得相应的合格证书。
此外,仪器还应具备安全保护装置和防护设施,以确保检测过程的安全性和可靠性。
三、检测程序标准残余应力检测程序包括以下步骤:1. 试样制备:按照相关规定和标准制备试样,并确保试样的表面平整、光洁度和尺寸精度符合要求。
2. 仪器校准:对检测仪器进行校准,以确保其各项技术指标符合要求。
3. 试样安装:将试样安装在检测设备上,并确保安装位置和方向的正确性。
4. 数据采集:按照规定的操作程序和技术要求进行数据采集,包括X 射线衍射图谱或超声波传播速度和方向等。
5. 数据处理:对采集到的数据进行处理和分析,包括数据转换、拟合和计算等,以得出试样内部的残余应力分布和大小。
6. 报告编制:根据处理后的数据编制检测报告,包括试样残余应力分布图、数据统计表和结论等。
四、检测报告标准残余应力检测报告应包括以下内容:1. 试样信息:包括试样的名称、材质、尺寸和制备方法等。
2. 检测方法:说明所采用的残余应力检测方法及其原理和操作流程。
3. 仪器信息:包括检测仪器的型号、生产厂家和标定证书等。
4. 检测结果:包括试样内部的残余应力分布和大小等数据,以及相应的图表和统计表。
5. 结论评价:对试样的残余应力状况进行评价,指出可能存在的问题和改进建议。
6. 其他相关信息:如检测人员的资格证书、检测时间和地点等。
五、检测人员要求从事残余应力检测的人员应具备相关专业知识和技能,熟悉检测仪器的使用和维护方法,能够正确操作检测设备和处理数据。
sic晶片的残余应力检测方法
sic晶片的残余应力检测方法
对于碳化硅(SiC)晶片的残余应力检测,主要有以下几种方法:
1.光弹性法:这种方法基于晶体在外加应力作用下的双折射现象,通过检测偏振光偏振方向的变化,来计算材料中的残余应力。
与其他残余应力测量方法相比,光弹性法具有检测速度快、精度高、分辨率高、可重复性好等显著优势。
2.X射线衍射法:这是一种广泛应用于材料应力分析的非破坏性测试方法,可以测量材料中晶体的结晶度、晶胞参数、晶格畸变以及残余应力等信息。
3.Imura方法:这是一种用于测量材料残余应力和应力状态的试样旋转法。
它利用X射线衍射技术产生的X射线衍射图谱来完成测量,计算出材料的残余应力分量和应力状态。
其主要优点在于实时反求解,同时其测量结果可靠,而且准确性高。
但它的缺点在于试样旋转范围有限,这就需要更大的样品尺寸。
这些方法都可以用来检测SiC晶片的残余应力,具体使用哪种方法需要根据实际情况和需求来决定。
测试残余应力的方法
测试残余应力的方法
1. X射线衍射,这是一种常用的方法,通过测量材料中晶格的微小变化来确定残余应力的存在和大小。
X射线衍射技术可以提供非常精确的残余应力测量。
2. 中子衍射,类似于X射线衍射,中子衍射也可以用于测量材料中的残余应力。
中子衍射对于一些特定类型的材料有其独特的优势,例如对于氢含量较高的材料。
3. 光学方法,包括全息干涉法和光栅法等,这些方法利用光的干涉原理来测量材料中的残余应力。
4. 荧光法,通过在材料表面施加荧光材料,并观察其发光的变化来测量残余应力。
5. 超声波法,利用超声波在材料中传播的速度和衰减来推断材料中的残余应力。
6. 磁性方法,包括磁滞回线测量和磁致伸缩测量等,这些方法利用材料中的磁性特性来推断残余应力。
综合利用以上方法,可以全面、多角度地测量材料中的残余应力,从而更好地了解材料的性能和行为。
这些方法在工程、材料科学和制造业等领域都有广泛的应用。
残余应力检测方法
残余应力检测方法残余应力,又称剩余应力是指物体经过加工或者是热处理后,承受外力使其发生变形后,因内力不平衡,产生的残留在物体内部的一种应力。
它会影响物体的强度与精度,影响其使用寿命,甚至会引起结构破坏,因此,控制好残余应力,对提高零件质量至关重要。
残余应力检测是检测零件内部残余应力的重要手段,其目的是对零件的残余应力大小、分布及分布形式进行量化分析,以便能更加科学地控制零件性能。
首先,残余应力检测方法可分为有损检测方法和无损检测方法。
有损检测方法是指在检测过程中,将检测部份完全切割开来,用显微镜观察并用物理量计量等方法测定残余应力分布,又称“破坏测试法”,是一种古老而又常用的检测方法,但个别测量结果不能复用,并且检测结果受检测位置的影响较大,容易出现偏差;而无损检测方法是指在检测过程中,不会损坏检测部份,通常采用物理原理或化学原理测定残余应力值,由于检测过程不会损坏检测对象,所以可多次检测,且检测结果比较准确,也不受检测位置的影响。
其次,残余应力检测方法可以分为静恒检测方法和动态检测方法。
静恒检测方法指在检测过程中,检测对象经过加工后长期保持特定的温度,在温度不变的情况下,测定残余应力值,常用的有X射线测试、X射线衍射测试、热变形测试;而动态检测方法指在检测过程中,以时间为态变量,不断测定残余应力随着时间演变的规律,常用的有光栅方式、磁滞后追踪测试方法。
最后,残余应力检测方法也可以根据检测原理分为物理检测方法和化学检测方法。
物理检测方法是指利用某种物理原理进行残应力测试,如热变形检测、压电检测、X射线衍射检测等;而化学检测方法是指利用某种化学反应原理进行残应力测试,如分子压检测等。
残余应力检测方法是零件质量控制的重要方式之一,不仅对控制零件的质量有重要的意义,而且可以提供可靠的参数供智能加工系统控制零件制造过程中的参数。
在残余应力检测中,采用多种检测方法,可以检测出残余应力的种类、大小及分布特征,检测出的残余应力参数可以提供给后续制造过程,用于对针对性的处理方案设计。
残余应力的测试方法
残余应力的测试方法
残余应力的测试方法有多种,以下是其中一些常用的方法:
1. X射线衍射法:该方法通过测量材料中的晶格畸变来确定残余应力的大小。
X 射线经过材料时,会发生衍射现象,通过测量衍射角度的变化,可以得到材料的残余应力。
2. 中子衍射法:与X射线衍射法类似,中子衍射法也是通过测量材料中的晶格畸变来确定残余应力的大小。
中子的波长与晶格间距相近,因此能够更加准确地测量晶格畸变。
3. 应变计法:该方法通过在材料表面粘贴应变计,测量材料的应变变化来确定残余应力的大小。
应变计可以是金属薄片或电阻应变计等,当材料受到应力时,应变计会发生形变,通过测量形变的大小,可以计算出材料的残余应力。
4. 隔离层剥离法:该方法通过在材料表面涂覆一层隔离层,剥离隔离层后测量剩余材料的形状变化来确定残余应力的大小。
由于隔离层起到了保护材料表面的作用,剥离后的材料形状发生变化可以反映出残余应力的大小。
5. 孔隙法:该方法通过在材料中制作孔隙,并测量孔隙的尺寸变化来确定残余应力的大小。
材料中的孔隙会受到应力的影响而发生变化,通过测量孔隙的变化,可以计算出材料的残余应力。
这些测试方法各有优缺点,选择合适的方法应根据具体的材料和测试要求来确定。
残余应力测定方法(精)
残余应力测定方法(精)第二章残余应力测定方法残余应力的测定方法大致可分为机械测量法和物理测量法两类。
物理测量法包括X射线法、磁性法、和超声波法等。
它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。
它们是无损的测量方法。
其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。
磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。
物理法的测试设备复杂.昂贵.精度不高。
特别是应用于现场实测时,都有一定的局限性和困难。
机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。
残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。
从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。
因此两种方法测试的结果一般来说是有区别的。
一、分离法测量残余应力切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。
它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。
(一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。
在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。
然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。
切割后,再测应变计得到的释放应变。
它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。
释放后的残余应力计算方法如下:1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。
分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1)2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。
残余应力及检测方法
残余应力及检测方法一、残余应力简介及检测方法对比众所周知,工件在制造过程中,会受到各种因素的作用与影响。
当这些因素消失之后,若构件所受到的作用与影响不能完全消失,则会有部分作用与影响残留在构件内,这种残留的作用与影响,称作残余应力。
残余应力对工件有着很大的伤害,会使工件发生翘曲或扭曲变形,甚至开裂。
针对这一问题,在现在的科技环境下,产生了几种检测应力的方法,这几种方法都存在各自的优缺点,对比图如下:现阶段行业内主要使用以下几种方法检测残余应力:(1)盲孔法盲孔法的优点在于有较好精度,而缺点也比较明显,即检测过程中需要损坏材料的结构。
(2)X射线衍射法X射线衍射法经过了市场的检验,优点是技术较为成熟且稳定,缺点是检测仪器比较笨重,操作耗时且伴随着辐射。
(3)超声波应力检测法超声波应力检测法的优点在于操作简便、快速、不损伤材料,也不会对检测人员造成伤害。
而它的缺点就在于这是一项新的技术,虽然经过多家大型实验室的测验,但是市场检验度还不够高。
综合来看,超声波应力检测技术具有很大的现场适用性,下文对该技术进行详细介绍。
二、超声波应力检测技术1、超声波应力测试仪近些年国内超声波应力检测技术的研究进展较快,下图展示为我公司自主研发的一台超声波应力测试设备及配套软件,它是一款工业级高精度超声波应力测量设备,通过软件实现信号的激发和采集,根据声弹性理论进行残余应力的计算,可无损测定被测对象积聚的应力。
超声波应力测试设备(采集模块)超声波应力测试信号处理系统(显示操作模块)该设备符合国标GB/T 32073-2015《无损检测残余应力超声临界折射纵波检测方法》的要求,具备频率设置、滤波、超声激励、残余应力值计算等基本功能。
以下为该设备具有的优势和特点:•可同时测量应力、声时、壁厚、声速,实时显示超声波形,具有一定探伤功能;•配备高频数据采集卡,对上万次测量结果进行算法优化,测量结果更准确;•集成了温度传感器,通过温度补偿消除温度对检测结果的影响;•采集模块分体式设计,易于拆装,可无线连接显示操作模块,移动性强,易于现场使用;•设备可搭载锂电池独立供电,有效地解决了野外现场供电难的问题;•优良的抗干扰能力和可靠性,拥有出色的信噪比。
X射线残余应力测定方法的原理与应用
残余应力是第一类内应力的工程名称。
残余应力在工件中的分布一般是不均匀的,而且会对工件的静强度、疲劳强度、形状尺寸稳定性和耐蚀性等产生显著的影响。
因此,残余应力的测定非常重要。
残余应力测定方法可分为有损检测法和无损检测法。
有损检测法是通过机械加工的方式将被测工件的一部分去除,局部残余应力得到释放从而产生相应的应变和位移,根据相关力学原理推算工件的残余应力。
常用的有损检测方法有钻孔法与环芯法。
无损检测法是利用残余应力会引起材料中某一物理量(如晶面间距、超声波在材料中的传播速率或磁导率等)的变化,通过建立此物理量与残余应力之间的关系,测定相关物理量从而计算出残余应力。
常用的无损检测方法有X射线衍射法、中子衍射法、磁性法与超声法,其中,X射线衍射法因其原理较为成熟、方法较为完善,是目前在国内外应用最为广泛的方法,其测试设备也越来越完善,既有功能齐全的实验室仪器,也有适用于现场测量的便携式仪器,还有适于特殊场合的专用检测装置。
采用X射线衍射法测定残余应力,最早是由俄国学者在1929年提出,把材料的宏观应变等同于晶格应变。
1961年德国学者基于这个思路研究出sin2ψ法,使得X射线衍射测定残余应力逐渐成为成熟的、具有可操作性的测试技术。
X射线衍射测定残余应力技术经过60余年的发展,已开发出多种不同的测量方法,目前最主要的有sin2ψ法与cosα法两种。
1X射线衍射残余应力测定方法分类为了掌握X射线衍射残余应力测定技术,有必要对其方法进行归纳,具体如下:(1) X射线衍射残余应力测定方法可分为sin2ψ法、cosα法。
(2) sin2ψ法按照残余应力计算方法分类,可分为2θ法、d值法、应变法。
(3) sin2ψ法按ψ与2θ的几何关系分类,可分为同倾法、侧倾法。
(4) 按X射线管、计数管扫描方式可分为固定ψ0法,固定ψ法。
(5) 侧倾法又可分为标准的侧倾法、修改的侧倾法、侧倾固定ψ法。
(6) 测定剪切应力τφ采用的正负ψ测定法。
残余应力检测方法
残余应力检测方法关于构件的残余应力检测(盲孔法检测)一、前言(1)应力概念通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。
按照德国学者马赫劳赫提出的分类方法,内应力分为三类:第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。
当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。
第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。
第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。
在工程上通常所说的残余应力就是第Ⅰ类内应力。
到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。
除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。
(2)应力作用机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。
适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。
(3)应力的产生在机械制造中,各种工艺过程往往都会产生残余应力。
但是,如果从本质上讲,产生残余应力的原因可以归结为:1.不均匀的塑性变形;2.不均匀的温度变化;3.不均匀的相变(4)应力的调整针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
残余应力检测方法
残余应力检测方法残余应力是指在物体内部或表面存在的应力状态,它是在物体制造、变形或加工过程中产生的,但在外力作用消失后仍然存在的应力。
残余应力的存在对材料的力学性能、耐久性能和稳定性能都有着重要的影响,因此残余应力的检测方法显得尤为重要。
一、X射线法。
X射线法是一种常用的残余应力检测方法,它利用X射线对材料进行透射或衍射,通过分析X射线的衍射角度和强度来确定材料中的残余应力状态。
这种方法具有非破坏性、高精度和广泛适用性的特点,可以对各种材料的残余应力进行准确的检测和分析。
二、光弹法。
光弹法是一种利用光学原理来测定材料内部应力状态的方法,它通过在材料表面或内部施加一定的载荷,观察材料的变形情况,从而推断出材料的残余应力状态。
光弹法具有高灵敏度、高分辨率和实时性好的特点,适用于各种材料的残余应力检测。
三、超声波法。
超声波法是一种利用超声波在材料中传播的速度和衰减情况来测定材料内部应力状态的方法,它通过对超声波的传播特性进行分析,可以准确地测定材料中的残余应力状态。
超声波法具有高灵敏度、高分辨率和实时性好的特点,适用于各种材料的残余应力检测。
四、磁致伸缩法。
磁致伸缩法是一种利用材料在磁场中的应力-应变特性来测定材料内部应力状态的方法,它通过对材料在磁场中的磁致伸缩效应进行测量和分析,可以准确地测定材料中的残余应力状态。
磁致伸缩法具有高灵敏度、高分辨率和实时性好的特点,适用于各种材料的残余应力检测。
五、电子衍射法。
电子衍射法是一种利用电子束在材料中的散射情况来测定材料内部应力状态的方法,它通过对电子的散射角度和强度进行分析,可以准确地测定材料中的残余应力状态。
电子衍射法具有高精度、高分辨率和实时性好的特点,适用于各种材料的残余应力检测。
综上所述,残余应力检测是材料科学领域中的重要课题,不同的残余应力检测方法各有特点,可以根据具体的应用需求选择合适的方法进行检测和分析。
随着科学技术的不断发展,残余应力检测方法也在不断完善和创新,相信在未来会有更多更高效的残余应力检测方法出现,为材料科学研究和工程应用提供更多的支持和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1 页 共 2页
残余应力检测方法概述
目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏)和无损检测法(样品不被破坏)两类。
以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。
一、常见的残余应力检测方法: 1. 应力松弛法 (1) 盲孔法
该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。
由于这类设备操作起来非常简单,近年来被广泛使用。
(2) 切条法
Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。
在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。
(3) 剥层法
该方法是通过物理或化学的方法去除试件的
一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。
该方法常用于形状简单的试件,且测试过程快捷。
2. 无损检测方法 (1) X 射线衍射法
X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提出的sin2ψ方法。
日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。
(2) 中子衍射法。
中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。
但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。
(3) 超声波法。
该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。
试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。
二、最新的残余应力检测方法
cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。
日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n )。
第2 页 共 2页
1. 该设备的工作原理是:X 射线照射到样品后,全二维探测器收集到来自样品的360度全方位衍射信息,并在探测器上形成德拜环,无应力的德拜环是标准的圆形,受残余应力作用的样品所产生的德拜环是一个发生了变形的德拜环,通过德拜环的变化并采用 cos α方法就可计算出残余应力。
2. 图2是用该设备测试焊接残余应力时的现场照片:
图3是焊接件的残余应力测试数据,软件自动计算出的残余应力结果为: -240±7 MPa (负号表示压应力):
图2 测试图片,左下角是探测器上得到的德拜环
图1 设备图片
图3 焊接残余应力测试数据。