安徽省铜陵市义安区2019-2020学年九年级上学期期末数学试题(word无答案)
2019-2020年九年级第一学期期末考试数学试题.docx
2019-2020年九年级第一学期期末考试数学试题一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填涂在答题卡相应位置上).......1.已知一组数据: 5, 9, 13, 13, 5.下列说法正确的是(▲ ).平均数是 9.极差是 4.众数是 9.中位数是 13A B C D2.下列函数表达式中,一定为二次函数的是(▲ )..y ax 2bx c C.s 2t2D.y x21A y 3x﹣1B x3.一只不透明的袋子中装有 5 个黑球4 个白球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球,摸到白球的概率为(▲ )A.1B.1C.4D.4 94594.对于二次函数y x128 的图像,下列说法正确的是(▲ )A.开口向下B.对称轴是直线x1C.顶点坐标是(1,﹣8)D.可由y x2的图像平移得到5.下列各组图形一定相似的是(▲ )A.两个矩形B.两个等边三角形.各有一角是 80°的两个等腰三角形.各角都是 135°的两个八边形C D6.如图,在直角坐标系中,有两点A(6,3)、 B(6,0),以原点 O为位似中心,位似比为1,在第一像限内3把线段 AB缩小后得到线段CD,则点 C的坐标为(▲ )A.(2,1)B.(2,0)C.(3,3)D.(3,1)(第6题)7.如果关于x的一元二次方程( m-1) x2+2 x+1=0有两个不相等的实数根,那么m的取值范围是(▲ )A. m>2B. m<2C. m>2且 m≠1D.m<2且 m≠18.如图,一次函数y1x 5 与二次函数y2ax 2bx c 的图像相交于A、 B 两点,则y yy y yB函数 y ax 2 1 b x 5 c 的图像可能为(▲ )二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......9.若⊙O的半径为5cm,点A到圆心O的距离为 4cm,那么点A与⊙O的位置关系是:点A 在⊙ O▲.(填“上”、“内”、“外”)10.某小区 2014 年绿化面积为500 平方米,计划 2016 年绿化面积要达到720 平方米.如果每年绿化面积的增长率相同,那么这个增长率是▲.11.若圆锥的底面半径是2cm,母线长是9cm,则它的侧面展开图的面积是▲2 cm.12.将二次函数y x2的图像向右平移 3 个单位,再向上平移1个单位后,所得图像的函数表达式是▲.13.如图,⊙O的半径为2,C1是函数y=1 221x2x 的图像, C 是函数 y =的图像,则阴影部22分的面积是▲.14.若线段=2,点C 是线段的黄金分割点,且>,则的长是▲.AB AB AC BC ACC EODA B(第 13 题)(第15题)15.如图,⊙O中,∠AOB= 110°,点C、D是优弧AEB上任两点,则∠C+∠ D的度数是▲°.16.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心线,垂足为E、F、G,连接 EF.若 OG﹦2,则 EF=▲O 分别作.AB、BC、AC的垂17.如图,在正方形网格中,每个小正方形的边长均相等,点A、 B、 O 均在格点处,则cos AOB▲.18.如图,等腰△ABC中,AB AC 4 ,BC=m,点D是边AB的中点,点P是边BC上的动点,且不与B、C重合,DPQ B ,射线PQ交 AC于点 Q.当点 Q总在边 AC上..时, m 的最大值是▲.AGO A O C A QE D FB B(第 16 题)(第 17 题)B P(第18题)C三、解答题(本大题共有 10 小题,共96 分.请在答题卡指定区域内作答,解答时应写出必.......要的文字说明、证明过程或演算步骤)19.(本题满分 10 分)( 1)解方程:x22x 1 0 (用配方法);1( 2)计算:8 4 cos45o013.14220.(本题满分8 分)如图,在△ABC 中,已知∠ C=90°,∠ B=60°, BC=2.( 1)求边AB、AC的长;B( 2)求△ABC内切圆⊙O的半径r.CA21.(本题满分8 分)某班组织了一次经典诵读比赛,男女生各 5 人组成甲、乙两队参与比赛,成绩如下表(10 分制):甲队810999乙队1088109( 1)甲队成绩的平均数是▲分,乙队成绩的平均数是▲分;(2)分别计算两队成绩的方差;(3)根据( 1)、( 2)计算的结果,你认为那一队的成绩较好,并说明理由。
安徽省铜陵市九年级上学期数学期末考试试卷
安徽省铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程x2+2x-3=0的解是()A . x1=1,x2=3B . x1=1,x2=-3C . x1=-1,x2=3D . x1=-1,x2=-32. (2分)下列运算正确的是()A . +=B . 3x2y﹣x2y=3C . =a+bD . (a2b)3=a6b33. (2分) (2019九上·嘉定期末) 如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A . AD:DB=AE:ECB . DE:BC=AD:ABC . BD:AB=CE:ACD . AB:AC=AD:AE4. (2分)下列方程有实数根的是()A . x2-x-1=0B . x2+x+1=0C . x2-6x+10=0D . x2-x+1=05. (2分)(2017·西安模拟) 如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB 于点D,交AC于点E,连接CD,则CD=()A . 3B . 4C . 4.8D . 56. (2分)下列说法正确的是()A . 一个游戏中奖的概率是,则做500次这样的游戏一定会中奖B . 了解50发炮弹的杀伤半径,应采用普查的方式C . 一组数据1,2,3,2,3的众数和中位数都是2D . 数据:1,3,5,5,6的方差是3.27. (2分)已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,1)C . (2,1)D . (3,3)8. (2分) (2016九上·芜湖期中) 如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A . 30°B . 25°C . 22.5°D . 不能确定9. (2分) (2019九上·慈溪期中) 已知抛物线具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线上一动点,则△PMF周长的最小值是()A . 5B . 9C . 11D . 1310. (2分)已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点的坐标为()A . (1,)B . (4,2)C . (1,)或(-1,- )D . (4,2)或(-4,-2)二、填空题 (共5题;共5分)11. (1分)(2016·鸡西模拟) 函数y= 中,自变量x的取值范围是________.12. (1分)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是________.13. (1分) (2016九上·北京期中) “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.14. (1分) (2018八上·阜宁期末) 在中,,,AD是角平分线,则的面积为________cm2 .15. (1分)(2018·龙湖模拟) 如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点 .若 =1,则矩形的面积为________.三、解答题 (共8题;共97分)16. (5分)(2017·灌南模拟) 计算:()﹣1﹣(π﹣2)0+| ﹣2|+sin60°.17. (15分) (2017九上·海淀月考) 已知二次函数.(1)请你将函数解析式化成的形式,并在直角坐标系中画出的图像.(2)利用()中的图像结合图像变换表示出方程的根,要求保留画图痕迹,指出方程根的图形意义.18. (2分)(2018·岳阳模拟) 如图,有小岛A和小岛B,轮船以45km/h的速度由C向B航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A 在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)19. (15分)(2012·宜宾) 某市政府为落实“保障性住房政策”,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值.20. (15分) (2019九上·东台期中) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价x元,则平均每天销售数量为________件(用含x的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?21. (10分)(2018·安徽) 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M 为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.22. (10分) (2019八上·洪山期末) 如图1,△ABC中;(1)若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,求∠ACB的大小.(2)如图2,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE=α.①连接DC与BE,G、F分别是DC与BE的中点,求∠AFG的度数.________②如图3,DC、BE交于点M,连接AM,直接写出∠AMC与α的数量关系是________.23. (25分)(2017·徐汇模拟) 如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共97分)16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-2、。
2019-2020学年九年级数学上学期期末原创卷A卷(安徽)(参考答案)
2019-2020学年上学期期末原创卷A 卷九年级数学·参考答案12345678910BADC BACADA11.120︒12.1513.614.x 1=1,x 2=-315.【解析】原式=2122()1222-(4分)11142=-+-(6分)1642=-.(8分)16.【解析】设经过t s 后△PBQ ∽△ABC ,根据已知条件可得AP =t ,BQ =2t ,当△PBQ ∽△ABC 时,PB BQAB BC=,∴4248t t-=,∴t =2s .设经过t s 后△PBQ ∽△CBA ,当△PBQ ∽△CBA 时,PB BQBC AB=,∴4284t t-=,∴t =0.8s ,故经过0.8s 或2s 后,两三角形相似.(8分)17.【解析】如图,过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA ·tan ∠OAC (米),过点P 作PB ⊥OA ,垂足为B .由i =1∶2,设PB =x ,则AB =2x .∴PF =OB =100+2x ,CF -x .(4分)在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x x ,∴x =1003,即PB =1003-米.(8分)18.【解析】(1)设⊙O 半径为r ,则OA =OD =r ,OC =r -2,∵OD ⊥AB ,∴∠ACO =90°,AC =BC =12AB =4,(2分)在Rt △ACO 中,由勾股定理得:r 2=42+(r -2)2,r =5,∴OD =r =5.(4分)(2)连接BE ,如图,由(1)得:AE =2r =10,∵AE 为⊙O 的直径,∴∠ABE =90°,由勾股定理得:BE =6,(6分)在Rt △ECB 中,EC .(8分)19.【解析】(1)画树状图为:(3分)共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率=632010=.(5分)(2)设放入袋中的黑球的个数为x,根据题意得21=1252xx x+++,(7分)解得x=2,所以放入袋中的黑球的个数为2.(10分)20.【解析】(1)如图,连接BC,∵CE是⊙O的切线,∴∠B=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∴∠ACE+∠CAB=90°,(3分)∵AC平分∠FAB,∴∠CAE=∠CAB,∴∠ACE+∠CAE=90°,即∠CEA=90°,∴CE⊥DF.(5分)(2)∵∠CEA=90°,∴AC=∵∠ACB=∠CEA=90°,∠B=∠ACE,∴△ACB∽△AEC,(7分)∴AB ACAC AE=,即2=,解得AB=10,∴⊙O的半径为5.(10分)21.【解析】(1)列表如下:所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4).(4分)(2)其中点(x ,y )落在反比例函数6y x =的图象上的情况有:(2,3);(3,2)共2种,则P (点(x ,y )落在反比例函数6y x =的图象上)=216=18.(8分)(3)所确定的数x ,y 满足6y x<的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P (所确定的数x ,y 满足6y x <)=816=12.(12分)22.【解析】(1)由题意知,第二期盆景有(50)x +盆,花卉有(50)x -盆,∴1(50)(1602)W x x =+-22608000x x =-++,(3分)220(50)201000W x x =-=-+.(6分)(2)根据题意,得2122608000201000W W W x x x =+=-++-+22409000x x =-++22(10)9200x =--+.(9分)∵20-<开口向下,有最大值,∴当10x =时,W 取得最大值,最大值为9200.答:当10x =时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大利润是9200元.(12分)23.【解析】(1)PA 与⊙O 相切.理由:(2分)如图1,连接CD ,∵AD 为⊙O 的直径,∴∠ACD =90°,∴∠D +∠CAD =90°,A ∵∠B =∠D ,∠PAC =∠B ,∴∠PAC =∠D ,∴∠PAC +∠CAD =90°,即DA ⊥PA ,∵点A 在圆上,∴PA 与⊙O 相切.(5分)(2)如图2,连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴ AC AG ,∴∠AGF =∠ABG ,∵∠GAF =∠BAG ,∴△AGF ∽△ABG ,∴AG :AB =AF :AG ,∴AG 2=AF ·AB .(10分)(3)如图3,连接BD ,∵AD 是直径,∴∠ABD =90°,∵AG 2=AF ·AB ,AG =AC ,AB∴AF =2AG AB∵CG ⊥AD ,∴∠AEF =∠ABD =90°,∵∠EAF =∠BAD ,∴△AEF ∽△ABD ,(12分)∴AE AFAB AD=,10=,解得:AE =2,∴EF =1,∵EG =4,∴FG =EG –EF =4–1=3,∴S △AFG =12FG ·AE =12⨯3×3×2=3.(14分)。
2019-2020年九年级上学期期末考试数学试题.docx
2019-2020 年九年级上学期期末考试数学试题说明:1.本试卷分选择题和非选择题两部分, 共6 页.2.答题前,考生务必将本人的学校、班级、姓名、考试号填写在答题纸相应位置上.3.考生答题必须用0.5 毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有 6 小题,每小题 3 分,共 18 分)1. 一名射击爱好者 5 次射击的中靶环数如下:6,7,9,8,9,这 5 个数据的中位数是(▲).A.6B.7 2.掷一个骰子时,点数小于C. 8D2 的概率是(. 9▲) .A.1B. 1C.1D. 0 6323.下列说法中,正确的是(▲).A .长度相等的弧叫等弧 B.直角所对的弦是直径C .同弦所对的圆周角相等 D.等弧所对的弦相等第 4 题图4.如图,坡角为30的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为(▲).A.4m B. 3 m C.4 3m D .4 3 m 35.若两个相似多边形的面积之比为1:4,则它们的周长之比为(▲).A. 1 : 2 B . 1: 4 C .2: 1 D .4: 16. 如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为第 6 题图(▲).A .2B . 4C. 8D. 16二、填空题(本大题共10 小题,每小题 3 分,共 30 分,请把答案直接写在相应的位置上)7.在比例尺为 1:10000000的地图上,量得甲、乙两地的距离是 30厘米,则两地的实际距离是▲千米 .8.已知 x : y =2:3,则 (x+y) : y 的值为▲.9.一个不透明的袋中装有 2 枚白色棋子和 n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是▲枚.10.在△中,∠ =90°,=2,2,则边的长是▲.ABC C BC sin A3AC11.某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10 户居民家庭月使用塑料袋的数量,结果如下:(単位:只)65 70 85 74 86 78 74 92 8294根据统计情况,估计该小区这100 户家庭平均使用塑料袋▲只.12.在某一时刻,测得一根高为 1.8的竹竿的影长为 3 ,同时测得一根旗杆的影长为25 ,m m m 那么这根旗杆的高度为▲.m13.如图,抛物线的对称轴是直线x 1 ,与x轴交于A、B两点,若B点坐标是(3,0),则2A 点的坐标是▲.A BE EPC ODF B A C第 13 题图第 14 题图第 16 题图14.如图, PA、 PB分别与⊙ O相切于点 A、B,⊙ O的切线 EF分别交 PA、PB于点 E、 F,切点C 在⌒ 上,若PA长为 2,则△的周长是▲.AB PEF15.若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为 2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是▲m2.16.如图,△ ABC中,∠ ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点 E 以 1cm/s的速度从 A 点出发,沿着 A→B→A的方向运动,设 E 点的运动时间为t 秒( 0≤t < 15),连接 DE,当△ BDE是直角三角形时,t 的值为▲.三、解答题(本大题共有 1 0 小题,共102 分,解答时应写出必要的文字说明、证明过程或演算步骤)17. ( 12 分)( 1)计算: 3sin30 °- 2cos45 ° +tan 2600;( 2)在Rt△ABC中,∠C=90° ,c=20,∠ A=30°,解这个直角三角形.18. ( 8 分)甲、乙两人在相同的条件下各射靶10 次,每次命中的环数如下:甲: 9, 7,8, 9, 7, 6, 10,10, 6,8;乙: 7, 8, 8, 9, 7, 8, 9,8, 10, 6(1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.19.( 8 分)在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各 1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?20.( 8 分)某课题组为了解全市九年级学生对数学知识的掌握情况, 在一次数学检测中 , 从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查, 并将调查结果绘制成如下图表:分数段频数频率50x60200.1060x7028b70x80540.2780x90a0.2090x100240.12100x110180.09110x120160.08(1) 表中a 和b所表示的数分别为=,=;a b(2) 请在图中补全频数分布直方图;(3)如果把成绩在 70 分以上 ( 含 70 分 ) 定为合格 , 那么该市 20000 名九年级考生数学成绩为合格的考生约有多少名 ?21.(10分)如图,某居民小区有一朝向为正南方向的居民楼,?该居民楼的一楼是高 6 米的小区超市,超市以上是居民住房,在该楼的前面24 米处要盖一栋高20 米的新楼.当冬季正午的阳光与水平线的夹角为32 时.( 1)问超市以上的居民住房采光是否有影响,为什么?( 2 )若要使超市采光不受影响,两楼应相距多少米? (参考数据: sin 32 ≈53, cos 32 ≈ 106 , tan32 ≈5.)100 1258第 21 题图22. (10 分 ) 如图,已知二次函数= 2+ + 的图像过 ( 2,0), ( 0,﹣ 1)和 ( 4,5)y ax bx c A B C三点.( 1)求二次函数的解析式;( 2)设二次函数的图像与 x 轴的另一个交点为 D ,求点 D 的坐标;( 3)在同一坐标系中画出直线 y =x +1,并写出当 x 在什么范围内时,一次函数的值大于二次函数的值.第 22 题图23. (10 分)一块直角三角形木版的一条直角边 AB 为 3m ,面积为 6 m 2 ,要把它加工成一个面积最大的正方形桌面, 小明打算按图①进行加工, 小华准备按图②进行裁料,他们谁的加工方案符合要求?CE DBD EB F A A G F C图①图②第23 题图24.( 10 分))如图,在△ ABC 中, AB=AC,以 AB 为直径作半圆⊙ 0,交 BC 于点 D ,连接AD ,过点 D 作 DE ⊥ AC,垂足为点 E,交 AB 的延长线于点 F .(1)求证: EF 是⊙ 0 的切线 ;(2)如果⊙ 0 的半径为 9, sin∠ADE = 7,求 AE 的长.9第24 题图25. ( 12 分)如图所示, E 是正方形 ABCD 的边 AB 上的动点,正方形的边长为4, EF⊥DE 交 BC 于点 F.(1)求证:△ ADE ∽△ BEF ;(2) AE=x ,B F=y .当 x 取什么值时, y 有最大值 ? 并求出这个最大值 ;(3) 已知 D 、C 、F 、E 四点在同一个圆上, 连接 CE 、DF ,若 sin ∠ C EF = 3 ,求此圆直径.5D C DCFFAEBAEB第 25题图备用图26. ( 14 分)如图,二次函数 y2x 2 bx c 的图像交 x 轴于 A 、 C 两点,交 y 轴于 B3点,已知 A 点坐标是( 2, 0), B 点的纵坐标是 8.( 1)求这个二次函数的表达式及其图像的顶点坐标;( 2)作点 A 关于直线 BC 的对称点 A ’,求点 A ’的坐标;(3)在 y 轴上是否存在一点 ,M 的坐标,如不M ,使得∠ AMC = 30° 如存在,直接写出点 存在,请说明理由 .第 26 题图 备用图九年级数学试卷参考答案(下列答案仅供参考,如有其它解法 ,请参照标准给分 ,如有输入错误,请以正确答案给分 )........ ...... ....... ...... ........一.选择题 (本大题共有 6 小题,每小题 3 分,共 18 分) 1. C; 2.A; 3.D; 4.C; 5.A; 6.B.二、填空题 (本大 题共 10 小题,每小题 3 分,共 30 分)7. 3000; 8.5; 9. 8; 10.5 ; 11.80 ; 12. 15; 13. (1,0) ; 14. 4; 15. 15324 ;16. 5 或 8.2 或 11.8 (少一解扣 1分,多解不扣分)三、解答题 (本大题共有 10小题,共 102分)17. (12 分)( 1) 1.5 2 3 ( 3 分) = 4.52 (3 分);( 2)a=10(2 分), b=103(2 分),∠ B = 60°( 2 分)18. ( 8 分)( 1)甲、乙的平均数分别是 8, 8 ( 2 分) ; . 甲、乙的方差分别是2,1.2 ( 4分);(2)∵ S 2 甲 > S 2 乙,∴乙的射击水平高(2 分).19. ( 8 分)( 1 )树状图如下或列表如下: ( 4 分);1(2)乙摸到与甲相同颜色的球有三种情况,乙能取胜的概率为,所以甲在游戏中获胜的3可能性更大( 4 分)。
2019-2020学年九年级数学上学期期末原创卷A卷(安徽)(考试版)【测试范围:沪科版九上全册、九下全册】
数学试题第1页(共6页)数学试题第2页(共6页)绝密★启用前2019-2020学年上学期期末原创卷A 卷九年级数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:沪科版九上全册、九下全册。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =10,BC =6,则cos A 的值是A .45B .35C .43D .343.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于124.如图,⊙O 中,CD 是切线,切点是D ,直线CO 交⊙O 于B ,A ,∠A =20°,则∠C 的度数是A .25°B .65°C .50°D .75°5.一个不透明的盒子中装有5个红球,3个白球和2个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为A .12B .310C .15D .136.抛物线y =3x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是A .y =3(x -1)2-2B .y =3(x +1)2-2C .y =3(x +1)2+2D .y =3(x -1)2+27.如图,已知△ABC ,AB =6,AC =5,D 是边AB 的中点,E 是边AC 上一点,∠ADE =∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为A .23B .34C .35D .568.若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是A .1b <且0b ≠B .1b >C .01b <<D .1b <9.如图,在平面直角坐标系系中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y =2k x在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC =13,则k 2的值是A .-3B .1C .2D .3数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………10.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为A.2m2πB.2πm2C.2πm D.22πm第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.在ABC△中,1sin cos(90)2B C=︒-=,则A∠的大小是__________.12.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是__________.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2cmr=,扇形的圆心角120θ=︒,则该圆锥的母线长l为__________cm.14.抛物线y=-x2+bx+c的部分图象如图所示,则关于x的一元二次方程-x2+bx+c=0的解为__________.三、(本大题共2小题,每小题8分,满分16分)15.计算:2sin60sin30cos45tan60tan45cos30︒︒-︒⋅︒+-︒︒.16.在△ABC中,AB=4cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,经几秒后,点P、B、Q构成的三角形△PBQ与△ABC相似?四、(本大题共2小题,每小题8分,满分16分)17.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1∶2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)18.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结E C.若AB=8,CD=2.(1)求OD的长;(2)求EC的长.五、(本大题共2小题,每小题10分,满分20分)19.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是12,求放入袋中的黑球的个数.数学试题第5页(共6页)数学试题第6页(共6页)20.如图,AB是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上的一点,过⊙O 上一点C 作⊙O 的切线交DF 于点E ,AC 平分∠FAB .(1)求证:CE ⊥DF ;(2)若AE =2,CE =4,求⊙O 的半径.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x ,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y .(1)用列表法或画树状图法表示出(x ,y )的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x ,y )落在反比例函数6y x=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x ,y 满足6y x<的概率.七、(本题满分12分)22.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是20元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元)(1)用含x 的代数式分别表示1W ,2W .(2)当x 取何值时,第二期培植的盆录与花卉售完后获得的总利润W 最大,最大总利润是多少?八、(本题满分14分)23.如图,△ABC 的内接三角形,P 为BC 延长线上一点,∠PAC =∠B ,AD 为⊙O 的直径,过C 作CG ⊥AD 于E ,交AB 于F ,交⊙O 于G .(1)判断直线PA 与⊙O 的位置关系,并说明理由;(2)求证:AG 2=AF ·AB ;(3)求若⊙O 的直径为10,AC AB AFG 的面积.。
安徽省铜陵市2020年九年级上学期数学期末考试试卷(II)卷(新版)
安徽省铜陵市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有()①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.A . 1个B . 2个C . 3个D . 4个2. (2分)如图,E是正方形ABCD的边BC延长线上一点,且BC=CE,若CE=5cm,则CF的长为()A . cmB . 3cmC . cmD . 5cm3. (2分)抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是A .B .C .D .4. (2分)(2018·拱墅模拟) 当时,代数式的值是7,则当时,这个代数式的值是()A .B .C .D .5. (2分) (2019七下·奉贤期末) 在平面直角坐标系中,点的坐标,点的坐标,将线段平移,使得到达点,点到达点,则点的坐标是()A .B .C .D .6. (2分)已知二次函数y=−x2+x−,当自变量x取m时对应的值大于0,当自变量x分别取m-1、m+1时对应的函数值为y1、y2 ,则y1、y2必须满足()A . y1>0、y2>0B . y1<0、y2<0C . y1<0、y2>0D . y1>0、y2<07. (2分) (2019九上·邗江月考) 如图,点D在半圆O上,半径OB=2 ,AD=10,点C在弧BD上移动,连接AC,H是AC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A . 5B . 6C . 7D . 88. (2分) (2020八下·福绵期末) 如图所示,正方形ABCD的边长为4,点M在边DC上,且DM=1,点N是边AC上一动点,则线段DN+MN的最小值为()A . 4B . 4C . 2D . 59. (2分)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1 , 0)、(x2 , 0),且x1<x2 ,图象上有一点M(x0 , y0),在x轴下方,则下列判断正确的是()A . a(x0﹣x1)(x0﹣x2)<0B . a>0C . b2﹣4ac≥0D . x1<x0<x210. (2分)用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是()A . ①④⑤B . ①③⑤C . ①②③D . ①②⑤二、填空题 (共7题;共13分)11. (5分) (2017八下·磴口期中) 如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.12. (1分)(2018·徐汇模拟) sin60°•tan45°﹣cos60°•cot30°=________.13. (1分)(2020·营口模拟) 如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为________;14. (1分) (2020八下·英德期末) 如图,和都是边长为3的等边三角形,点,,在同一条直线上,连接,则的长为________.15. (1分)(2020·十堰) 如图,圆心角为的扇形内,以为直径作半圆,连接 .若阴影部分的面积为,则 ________.16. (3分)如果水的流速量a米/分(定量),那么每分钟的进水量Q(立方米)与所选择的水管直径D(米)之间的函数关系是________.其中自变量是________,常量是________.17. (1分) (2018八下·道里期末) 两边长分别为3和4的直角三角形,则直角三角形斜边上中线的长是________.三、计算题 (共1题;共5分)18. (5分)计算:cos60°﹣2﹣1+﹣(π﹣3)0 .四、解答题 (共11题;共100分)19. (10分)(2018·灌南模拟) 如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.20. (5分)如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB 边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?21. (5分) (2019九上·北碚期末) 有两个可以自由转动的均匀转盘A、B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A、B;②两个转盘停止后,观察两个指针所指份内的数字(若指针停在等分线上,那么重新转一次,直到指针指向某一份内为止).用列表法(或树状图)求出“两个指针所指的数字都是方程x2﹣3x+2=0的解”的概率.22. (10分)(2020·上海模拟) 已知:如图,在平行四边形中,对角线与相交于点,过点作的垂线交边于点,与的延长线交于点,且.求证:(1)四边形是矩形;(2).23. (10分)(2020·中山模拟) 如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2 时,求sin∠AED的值,求∠EAD的正切值.24. (5分)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?25. (10分) (2016八下·番禺期末) 如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.26. (10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C 的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB= ,BE=2,求BC的长.27. (15分)(2017·红桥模拟) 如图,直线y1=﹣ x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c (a≠0)经过点A,B,C,点A坐标为(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;(3)在抛物线上的对称轴上: 是否存在一点M,使|MA﹣MC|的值最大; 是否存在一点N,使△NCD是以CD为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.28. (10分)(2016·丹东) 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.29. (10分)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=3 ,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、计算题 (共1题;共5分)18-1、四、解答题 (共11题;共100分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、29-1、29-2、。
安徽省铜陵市2020年九年级上学期数学期末考试试卷(II)卷
安徽省铜陵市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·鄞州期末) 下列由等式的性质进行的变形,错误的是()A . 如果a=3,那么B . 如果a=3,那么a2=9C . 如果a=3,那么a2=3aD . 如果a2=3a,那么a=3.2. (2分) (2017七上·东湖期中) 如果水位升高5m时水位记作+5m,水位不升不降时水位记作0m,那么水位下降3m时水位变化记作()A . +3mB . ﹣3mC . ±3mD . ﹣ m3. (2分)桌上放着一个茶壶,4个同学从各自的方向观察,则小明看到的图形是()A .B .C .D .4. (2分)在平面直角坐标系中,点P(,-1)到原点的距离是()A . 1B .C . 4D . 25. (2分)(2020·成都模拟) 如图,正方形四个顶点都在上,点是在弧上的一点,则的度数是()A .B .C .D .6. (2分)(2011·杭州) 在平面直角坐标系xOy中,以点(﹣3,4)为圆心,4为半径的圆()A . 与x轴相交,与y轴相切B . 与x轴相离,与y轴相交C . 与x轴相切,与y轴相交D . 与x轴相切,与y轴相离7. (2分)将抛物线y=2x2的图象先向右平移4个单位,再向下平移3个单位所得的解析式为()A . y=2(x-3)2+4B . y=2(x+4)2-3C . y=2(x-4)2+3D . y=2(x-4)2-38. (2分)如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A ,DE∥BC 交GA于点E,则下列结论错误的是()A .B .C .D .9. (2分) (2018九上·上虞月考) 二次函数y=ax2+bx+c的图象如图,则下列结论正确的是()A . b>0,c>0,Δ>0B . b<0,c<0,Δ>0C . b>0,c<0,Δ<0D . b<0,c<0,Δ<010. (2分)如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A . 16﹣4πB . 32﹣8πC . 8π﹣16D . 无法确定|11. (2分)(2017·株洲) 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A . 正三角形B . 正方形C . 正五边形D . 正六边形12. (2分)(2020·乾县模拟) 如图,正方形ABCD和正方形DEFC的边长分别是5和3,且点E、C分别在AD、CD边上,H为BF的中点,连接HG,则HG的长为()A . 4B .C .D . 2二、填空题 (共6题;共6分)13. (1分)(2020·安顺) 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.14. (1分) (2020九下·盐都期中) 圆锥的底面半径为3,母线长为5,该圆锥的侧面积为________.15. (1分) (2018九上·台州期中) 如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△AB C的内心,连接AE并延长交⊙O于点D,则DE=________.16. (1分) (2019九上·随县期中) (定义[a,b,c]为函数的特征数,下面给出特征数为 [2m,1-m,-1-m]的函数的一些结论:①当m=-3时,函数图象的顶点坐标是( , );②当m>0时,函数图象截x轴所得的线段长度大于 ;③当m<0时,函数在时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有________.(只需填写序号)17. (1分) (2020八上·徐州期末) 如图,点A在线段BG上,正方形ABCD和正方形DEFG的面积分别为3和7,则△CDE的面积为________.18. (1分) (2019七上·香坊期末) 如图,在平面直角坐标系中,为坐标原点,点和点是坐标轴上两点,点为坐标轴上一点,若三角形的面积为,则点坐标为________.三、解答题 (共8题;共75分)19. (5分)(2020·朝阳模拟) 计算:.20. (10分) (2017·温州模拟) 中考前的模拟考试对于学生来说具有重大的指导意义,现抽取m名学生的数学一模成绩进行整理分组,形成如下表格(x代表成绩,规定x>140为优秀),并绘制出扇形统计图和频数分布直方图(横坐标表示成绩,单位:分).A组140<x≤150B组130<x≤140C组120<x≤130D组110<x≤120E组100<x≤110(1) m的值为________;扇形统计图中D组对应的圆心角是________°.(2)若要从成绩优秀的学生甲、乙、丙、丁中,随机选出2人介绍经验,求甲、乙两人中至少有1人被选中的概率(通过画树状图或列表法进行分析).21. (5分) (2019八下·吉安期末) △ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE =BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.22. (5分)(2018·淮南模拟) 在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B(﹣1,3),C(﹣4,3),求sinB的值.23. (10分)(2016·平房模拟) 在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B 点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,连接KB并延长交抛物线于点Q,求PQ的长.24. (10分)(2016·凉山) 如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.25. (15分) (2020九上·来安期末) 东坡商贸公司购进某种水果成本为20元/ ,经过市场调研发现,这种水果在未来48天的销售单价(元/ )与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020…日销售量()11811410810080…(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?26. (15分)(2017·平南模拟) 如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx 相交于A(1,3 ),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN ,求出的值,并求出此时点M的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
2025届安徽省铜陵义安区六校联考数学九上期末达标检测试题含解析
2025届安徽省铜陵义安区六校联考数学九上期末达标检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内O 上的一点,若DAB 25∠=,则OCD ∠的度数是( )A .45B .60C .65D .702.如图,AB 是O 的直径,四边形ABCD 内接于O ,若4BC CD DA ===,则O 的周长为( )A .4πB .6πC .8πD .9π3.抛物线22y x bx c =++经过点()13,A y -与()25,B y ,若12y y ≤,则b 的最小值为( )A .2B .2-C .4D .4-4.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( ) A .14 B .13 C .12 D .1 5.把抛物线()231y x =+先向左平移1个单位,再向上平移n 个单位后,得抛物线231214y x x =++,则n 的值是( )A.-2 B.2 C.8 D.146.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。
其中随机事件有()A.1个B.2个C.3个D.4个7.某商场举行投资促销活动,对于“抽到一等奖的概率为110”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽10次也可能没有抽到一等奖C.抽10次奖必有一次抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖8.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A.B.C.D.9.抛物线y=﹣(x+2)2+5的顶点坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(2,﹣5)10.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( ) A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位11.已有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎12.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A.12B.13C.14D.15二、填空题(每题4分,共24分)13.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分708090将创新能力,综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是__________分.14.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为4932cm2,则该圆的半径为________cm.15.若方程x2﹣2x﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.16.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.17.如果x:y=1:2,那么x yy=_____.18.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________三、解答题(共78分)19.(8分)“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为A、B、C、D).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.(1)班长在四种卡片中随机抽到标号为C的概率为______.(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.20.(8分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标. 21.(8分)已知:如图,在四边形ABCD 中,//AB DC ,AC BD ⊥,垂足为M ,过点A 作AE AC ⊥,交CD 的延长线于点E .(1)求证:四边形ABDE 是平行四边形(2)若12AC =,3cos 5ABD ∠=,求BD 的长 22.(10分)已知x 2+xy+y =12,y 2+xy+x =18,求代数式3x 2+3y 2﹣2xy+x+y 的值.23.(10分)已知:如图,在菱形ABCD 中,E 为BC 边上一点,∠AED=∠B .(1)求证:△ABE ∽△DEA ;(2)若AB=4,求AE•DE 的值.24.(10分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题: 环数6 7 8 9 人数 1 5 2 a(1)填空:a =_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.25.(12分)如图,一块直角三角板的直角顶点P 放在正方形ABCD 的边BC 上,并且使一条直角边经过点D .另一条直角边与AB 交于点Q .求证:BPQ CDP ∆∆∽.26.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC =10米,∠ABC =∠ACB =36°,改建后顶点D 在BA 的延长线上,且∠BDC =90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)(参考数据:sin 18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin36°≈0.2.cos36°≈0.81,tan36°≈0.73)参考答案一、选择题(每题4分,共48分)1、D【分析】根据圆周角定理求出DOB ∠,根据互余求出∠COD 的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD ,25DAB ∠=,250BOD DAB ∠∠∴==,905040COD ∠∴=-=,OC OD =, ()1180702OCD ODC COD ∠∠∠∴==-=. 故选D .【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.2、C【分析】如图,连接OD 、OC .根据圆心角、弧、弦的关系证得△AOD 是等边三角形,则⊙O 的半径长为BC=4cm ;然后由圆的周长公式进行计算.【详解】解:如图,连接OC 、OD .∵AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,BC=CD=DA=4,∴弧AD=弧CD=弧BC ,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD ,∴△AOD 是等边三角形,∴OA=AD=4,∴⊙O 的周长=2×4π=8π.故选:C .【点睛】本题考查了圆心角、弧、弦的关系,等边三角形的判定与性质.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等,即四者有一个相等,则其它三个都相等..3、D【分析】将点A 、B 的坐标代入解析式得到y 1与y 2,再根据12y y ≤,即可得到答案.【详解】将点A 、B 的坐标分别代入22y x bx c =++,得 212(3)3183y b c b c =⨯--+=-+,22255505y b c b c =⨯++=++,∵12y y ≤,∴183505b c b c -+≤++,得:b 4≥-,∴b 的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.4、A【分析】根据概率是指某件事发生的可能性为多少解答即可. 【详解】解:此事件发生的概率14 故选A .【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.5、B【分析】将231214y xx =++改写成顶点式,然后按照题意将()231y x =+进行平移,写出其平移后的解析式,从而求解.【详解】解:222312143(44)23(2)2y x x x x x =++=+++=++由题意可知抛物线()231y x =+先向左平移1个单位,再向上平移n 个单位∴()()()2223131132y x x n x n =+=+++=++∴n=2故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便.6、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A. “抽到一等奖的概率为110”,抽一次也可能抽到一等奖,故错误;B. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故正确;C. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故错误;D. “抽到一等奖的概率为110”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.8、D【解析】试题分析:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选D.考点:1、二次函数的图象;2、一次函数的图象9、B【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐.【详解】∵抛物线y=﹣(x+2)2+5,∴该抛物线的顶点坐标为(﹣2,5).故选:B.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,由函数的顶点式可以直接写出顶点坐标.10、C【解析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11、B【分析】分情况,依次推理可得.【详解】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查推理能力,关键在于假设法,推出矛盾是否即可判断对错.12、B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为21 63 ,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.二、填空题(每题4分,共24分)13、77【详解】解:5+3+2=10. 53270809077101010⨯+⨯+⨯=, 故答案为:77. 14、1【分析】设两个正六边形的中心为O ,连接OP,OB,过点O 作OG ⊥PM 于点G ,OH ⊥AB 于点H ,如图所示:很容易证出三角形PMN 是一个等边三角形,边长PM 的长,,而且面积等于小正六边形的面积的32, 故三角形PMN 的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG 的长,进而得出OG 的长,,在Rt △OPG 中,根据勾股定理得 OP 的长,设OB 为x ,,根据正六边形的性质及等腰三角形的三线和一可以得出BH ,OH 的长,进而得出PH 的长,在Rt △PHO 中,根据勾股定理得关于x 的方程,求解得出x 的值,从而得出答案. 【详解】解: 设两个正六边形的中心为O ,连接OP,OB,过点O 作OG ⊥PM 于点G ,OH ⊥AB 于点H ,如图所示:很容易证出三角形PMN 是一个等边三角形,边长PM=73而且面积等于小正六边形的面积的32, 故三角形PMN 14732, ∵OG ⊥PM ,且O 是正六边形的中心,∴PG=1273 ∴OG=72 在Rt △OPG 中,根据勾股定理得 :OP 2=OG 2+PG 2,即22773()2+=OP 2 ∴OP=7cm ,设OB 为x ,∵OH ⊥AB ,且O 是正六边形的中心,∴BH=12, ∴PH=5-12x ,在Rt △PHO 中,根据勾股定理得OP 2=PH 2+OH 2,即2221+5-x =72() 解得:x 1=1,x 2=-3(舍)故该圆的半径为1cm .故答案为1.【点睛】本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力.试题通过将快门的光圈变化这个动态的实际问题化为静态的数学问题,让每个学生都能参与到实际问题数学化的过程中,鼓励学生用数学的眼光观察世界;在运用数学知识解决问题的过程中,关注思想方法,侧重对问题的分析,将复杂的图形转化为三角形或四边形解决,引导学生用数学的语言表达世界,用数学的思维解决问题.15、1【分析】先利用一元二次方程根的定义得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【详解】解:方程x 2﹣2x ﹣1009=0有一个根是α,则α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.17、3 2【分析】根据合比性质,可得答案.【详解】解:1112xy+=+,即32x yy+=.故答案为32.【点睛】考查了比例的性质,利用了和比性质:a c a b c db d b d++=⇒=.18、4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可.【详解】解:因为两个三角形相似,∴较小三角形与较大三角形的面积比为(23)2=49,故答案为:4 9 .【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.三、解答题(共78分)19、(1)14;(2)34.【分析】(1)根据概率公式直接求解即可;(2)先画出树状图或列出表格,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(1)1÷4=14;(2)画出树状图如下:或列表如下: 小明小华 A B C DA(,)A A (,)B A (C,A) (,)D A B (,)A B(,)B B (,)C B (,)D B C (A,C)(,)B C (,)C C (,)D C D (,)A D (,)B D(,)C D (,)D D 由上可知小明和小华随机各抽取一次卡片,一共有16种等可能情况,其中标号不同即查找不同院士资料的情况有12种,即(,)B A ,(C,A),(,)D A ,(,)A B ,(,)C B ,(,)D B ,(A,C),(,)B C ,(,)D C ,(,)A D ,(,)B D ,(,)C D ∴(123164P ==小明和小华查找不同院士资料) 【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m 除以所有等可能发生的情况数n 即可.,即m P n=. 20、(1)y=x 2﹣2x ﹣1;(2)存在;M (1,﹣2);(1)(1+2,4)或(1﹣2 ,4)或(1,﹣4). 【解析】(1)由于抛物线y=x 2+bx+c 与x 轴交于A (-1,0),B (1,0)两点,那么可以得到方程x 2+bx+c=0的两根为x=-1或x=1,然后利用根与系数即可确定b 、c 的值;(2)点B 是点A 关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M ,要使MA+MC 的值最小,则点M 就是BC 与抛物线对称轴的交点,利用待定系数法求出直线BC 的解析式,把抛物线对称轴x=1代入即可得到点M 的坐标;(1)根据S △PAB =2,求得P 的纵坐标,把纵坐标代入抛物线的解析式即可求得P 点的坐标.【详解】(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (1,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=1,∴﹣1+1=﹣b ,﹣1×1=c ,∴b=﹣2,c=﹣1,∴二次函数解析式是y=x 2﹣2x ﹣1.(2)∵点A 、B 关于对称轴对称,∴点M 为BC 与对称轴的交点时,MA+MC 的值最小,设直线BC 的解析式为y=kx+t (k≠0), 则,解得:,∴直线AC 的解析式为y=x ﹣1,∵抛物线的对称轴为直线x=1,∴当x=1时,y=﹣2,∴抛物线对称轴上存在点M (1,﹣2)符合题意;(1)设P 的纵坐标为|y P |,∵S △PAB =2, ∴AB•|y P |=2,∵AB=1+1=4,∴|y P |=4,∴y P =±4, 把y P =4代入解析式得,4=x 2﹣2x ﹣1,解得,x=1±2,把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣1,解得,x=1,∴点P 在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S △PAB =2. 【点睛】此题主要考查了利用抛物线与x 轴的交点坐标确定函数解析式,二次函数的对称轴上点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.21、 (1)详见解析;(2)9【分析】(1)直接利用两组对边分别平行的四边形是平行四边形,进而得出答案;(2)利用锐角三角函数关系得35AE EC =,设3AE k =,5EC k =,再利用勾股定理得出AE 的长,进而求出答案. 【详解】(1)∵AC BD ⊥,AC AE ⊥,∴//BD AE ,∵//AB DC ,∴//AB DE ,∴四边形ABDE 是平行四边形;(2) ∵四边形ABDE 是平行四边形,∴ABD CDB E ∠=∠=∠,∵AC BD ⊥,AC AE ⊥,∴90EAC ∠=︒, ∴3cos cos 5AE ABD E EC ∠=∠==, 设3AE k =,5EC k =,∵12AC =,∴222AC AE EC +=,即()()2221235k k +=,解得:3k =,∴9AE =,∴9BD =.【点睛】 本题主要考查了平行四边形的判定以及锐角三角函数关系、勾股定理,正确得出35AE EC =是解题关键. 22、154249或692 【分析】分别将已知的两个等式相加和相减,得到(x+y )2+(x+y )=30,(x+y-1)(x ﹣y )=﹣6,即可求得x 、y 的值,再求代数式的值即可.【详解】解:由x 2+xy+y =12①,y 2+xy+x =18②,①+②,得(x+y )2+(x+y )=30③,①﹣②,得(x+y-1)(x ﹣y )=﹣6④,由③得(x+y+6)(x+y ﹣5)=0,∴x+y =﹣6或x+y =5⑤,∴将⑤分别代入④得,x ﹣y =67或x ﹣y =﹣32, ∴187247x y ⎧=-⎪⎪⎨⎪=-⎪⎩或74134x y ⎧=⎪⎪⎨⎪=⎪⎩当187247x y ⎧=-⎪⎪⎨⎪=-⎪⎩时, 22332x y xy x y +++﹣()()()()22381824368677154249x y xy x y =+-++--⎛⎫⎛⎫=⨯--⨯⨯+- ⎪ ⎪⎝⎭⎝⎭= 当74134x y ⎧=⎪⎪⎨⎪=⎪⎩时, 22332x y xy x y +++﹣()22=38()71335854491802692x y xy x y +-++=⨯-⨯⨯+=-= 故答案为: 154249或692 【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.23、(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B 即可证明两三角形都得相似.(2)根据(1)的结论可得出AE AB DA DE= ,进而代入可得出AE•DE 的值. 试题解析:(1)如图, ∵四边形ABCD 是菱形,∴AD ∥BC .∴∠1=∠2.又∵∠B=∠AED ,∴△ABE ∽△DEA .(2)∵△ABE∽△DEA,∴AE ABDA DE=.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.24、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)101522a=---=(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键.25、详见解析【分析】根据正方形性质得到角的关系,从而根据判定两三角形相似的方法证明△BPQ∽△CDP.【详解】证明:四边形ABCD是正方形,90B C∴∠=∠=︒.90QPD∠=︒,90QPB BQP∴∠+∠=︒,90QPB DPC∠+∠=︒,DPC PQB∴∠=∠,BPQ CDP∴∽.【点睛】此题重点考查学生对两三角形相似的判定的理解,熟练掌握两三角形相似的判定方法是解题的关键.26、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用。
最新-安徽省铜陵县九年级数学第一学期期末考试试卷人教新课标版精品
乡(镇)________________学校_________________班级______________姓名____________…………………………装…………………………………订……………………线………………_________________________________________________________________________-________安徽省铜陵县九年级数学第一学期期末考试试卷(考试时间120分钟,满分150分)一、精心选一选(本题有10小题,每小题4分,共40分)1、计算12183127的结果是()A 、1 B 、-1 C 、23 D 、322、小明把如图(1)所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认出被倒过来的那张扑克牌是()A 、方块 5B 、梅花 6C 、黑桃7D 、黑桃8 3、连掷两次骰子,它们的点数都是4的概率是()A 、61 B 、41 C 、161 D 、3614、如图2,在平行四边形ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a ,且a 是一元二次方程0322x x 的根,则平行四边形ABCD 的周长是()A 、224 B 、2612 C 、222 D 、261222或5、如图3,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A 、内含 B 、相交 C 、相切 D 、外离6、将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为()。
A 、60元 B 、80元 C 、60元或80元 D 、70元7、关于x 的一元二次方程01)1(22a x x a 的一个根是x=0,则a 的值是()A 、1 B 、-1 C 、1或-1 D 、218、如图4,⊙O 外接于△ABC ,AD 为⊙O 的直径,∠ABC=30°,则∠CAD=()A 、30°B 、40°C 、50°D 、60°9、已知二次函数k x y2)1(3的图象上有A ),2(1y ,B (2,y 2),C ),5(3y 三个点,则y 1、y 2、y 3的大小关系是()A 、y 1>y 2>y 3B 、y 2>y 1>y 3C 、y 3>y 1>y 2D 、y 3>y 2>y 110、抛物线342x xy 是由抛物线2x y平移而得,则下列平移正确的是()A 、先向左平移2个单位,再向上平移1处单位;B 、先向右平移2个单位,再向下平移1处单位;C 、先向左平移2个单位,再向下平移1处单位;D 、先向右平移2个单位,再向上平移1处单位;二、耐心填一填(本题有8小题,每小题5分,共40分)11、已知2<x<5,化简22)5()2(x x _____________。
安徽省铜陵市义安区2019届九年级上学期期末调研考试数学试题(含答案)
参考答案与试题解析一.选择题(共10小题)1.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.2.已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1 B.0 C.1 D.2【分析】由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是﹣1,然后将﹣1代入原方程,求a﹣b的值即可.【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.4.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【解答】解:A、通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B、抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C、明天会下雨,是随机事件,故C选项不符合题意;D、经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选:A.5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【分析】△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.7.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选:B.8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.9.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.10.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二.填空题(共5小题)11.把方程2x2﹣1=x(x+3)化成一般形式是x2﹣3x﹣1=0 .【分析】直接去括号,进而移项合并同类项进而得出答案.【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.12.一个多边形的每一个外角都是36°,则这个多边形的边数是10 .【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 2 .【分析】根据扇形的面积公式S=lr,其中l=r,求解即可.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.14.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=3.【分析】由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,∴PP′=3故答案为:3.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0,②2a+b =0,③a﹣b+c=0;④4ac﹣b2>0,⑤4a+2b+c>0,其中正确的结论序号是①②③⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:抛物线开口方向向下,则a<0,对称轴直线位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,abc<0,故①正确;②对称轴为x=﹣=1,b=﹣2a,故②正确;③由抛物线的对称性知,抛物线与x轴的另一个交点坐标为(﹣1,0),所以当x=﹣1时,y=a﹣b+c=0,即a﹣b+c=0,故③正确;④抛物线与x轴有两个不同的交点,则b2﹣4ac>0,所以4ac﹣b2<0,故④错误;⑤当x=2时,y=4a+2b+c>0,故⑤正确.故答案是:①②③⑤.三.解答题(共7小题)16.用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣10.(2)x2+5x﹣4=0.【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>0,则x=.17.为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【分析】(1)计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.(2)用总投篮次数乘以其概率即可求得投中次数.【解答】解:(1)估计这名球员投篮一次,投中的概率约是≈0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.18.如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°,得到△OA1B1.(1)线段A1B1的长是 6 ,∠AOA1的度数是90°;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【分析】(1)根据旋转的性质即可直接求解;(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?【分析】(1)根据题意可以列出相应的方程从而可以求得这两年我市推行绿色建筑面积的年平均增长率;(2)根据(1)中的增长率可以求得实际到2017年绿色建筑的面积,然后与计划的作比较,即可解答本题.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.20.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;方法2、判断出OP是CD的垂直平分线,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【分析】(1)根据题意得出关于a、b、c的方程组,求得a、b、c的值,即可得出抛物线的解析式,根据抛物线的对称性得出点B的坐标,再设出直线BC的解析式,把点B、C的坐标代入即可得出直线BC的解析式;(2)点A关于对称轴的对称点为点B,连接BC,设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小,再求得点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。
安徽省铜陵市九年级上学期数学期末考试试卷
安徽省铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:(每题4分,满分24分) (共6题;共24分)1. (4分) (2020九上·科尔沁左翼中旗期中) 下列函数中, y 关于 x 的二次函数是()A .B . y=2x(x+1)C .D . y=(x−2)2−x22. (4分)(2020·锦江模拟) 将抛物线y=x2+3先向左平移2个单位,再向下平移1个单位,所得新抛物线的解析式为()A . y=(x+2)2+2B . y=(x﹣1)2+5C . y=(x+2)2+4D . y=(x﹣2)2+23. (4分)(2019·香坊模拟) 在Rt△ABC中,∠C=90°,AB=4,AC=3,则cosB的值为()A .B .C .D .4. (4分)(2020·长宁模拟) 下列命题正确是()A . 如果| |=| |,那么=B . 如果、都是单位向量,那么=C . 如果=k (k≠0),那么∥D . 如果m=0或=,那么m =05. (4分) (2020九上·灌阳期中) 如图,在△ABC中,EF// BC,,则 =()A .B .C .D .6. (4分) (2018九上·浙江期中) 在△ABC中,已知AB=AC=8cm,BC=12cm,P是BC的中点,以P为圆心作一个6cm为半径的圆P,则A,B,C三点在圆P内的有()个A . 0B . 1C . 2D . 3二、填空题:(本大题共12题,每题4分,满分48分) (共12题;共48分)7. (4分) (2019九上·灌云月考) 请你写出一个开口向下,且与轴的交点坐标为的二次函数的解析式:________.8. (4分) (2019九上·黑龙江期末) 抛物线y=4x2-3x与y轴的交点坐标是________.9. (4分) (2019九上·吴兴期末) 抛物线y=(x-2)2+3的顶点坐标是________.10. (4分) (2019九上·银川月考) 如果,那么 =________.11. (4分) (2017八下·徐州期末) 若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈________cm.(精确到0.01cm)12. (4分)(2020·上海模拟) 已知向量与单位向量的方向相反,| |=3,那么向量用单位向量表示为________.13. (4分) (2018九上·青浦期末) 如果两个相似三角形周长的比是,那么它们面积的比是________.14. (4分) (2016九上·无锡期末) 在△ABC中,∠C=90°,sinA=,则tanB=________.15. (4分)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是________ m.16. (4分) (2017九上·襄城期末) 如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=6,则BE=________.17. (4分) (2019九上·江都月考) 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、关于原点对称,则的最小值为________.18. (4分)将一副三角板按图叠放,则△AOB与△DOC的面积之比等于________ .三、解答题:(本大题共7题,满分76分) (共7题;共76分)19. (10分)(2020·吴兴模拟) 计算:+()+cos30°.20. (10分)(2019·湖州模拟) 已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.21. (10分)(2018·官渡模拟) 甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.清你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率,并说明游戏是否公平.22. (10分) (2019九上·泰州月考) 如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C________、D________;②⊙D的半径=________(结果保留根号);③若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.________23. (12分) (2019九下·梁子湖期中) 如图,⊙O是△ABC的外接圆,AB为直径,∠CAB的平分线交⊙O于点D,过点D作BC的平行线分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)设AC=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BF=2,,求AD的长.24. (12分)(2018·阳信模拟) 在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;25. (12分)(2020·红河模拟) 如图1,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(D 不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.参考答案一、选择题:(每题4分,满分24分) (共6题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题:(本大题共12题,每题4分,满分48分) (共12题;共48分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题:(本大题共7题,满分76分) (共7题;共76分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
安徽省铜陵市九年级上学期期末数学试卷
安徽省铜陵市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共14题;共22分)1. (1分) (2020九上·潮南期末) 若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=________.2. (1分) (2019九上·江汉月考) 方程 2(x-1)2=8 的解是________.3. (1分)(2017·罗山模拟) 将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为________ cm2 .4. (1分) (2017九上·上城期中) 如图,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知厘米,则球的半径为________厘米.5. (1分)现有某种产品100件,其中5件次品,从中随意抽出1件,恰好抽到次品的概率是________。
6. (1分)(2018·北海模拟) 如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1 ,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2 ,以A2B2为边长继续作正方形A2B2C2A3 ,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=________.7. (2分) (2020七下·兖州期末) 如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A 点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A . A点B . B点C . C点D . D点8. (2分) (2014九上·宁波月考) 下列事件中,必然事件是()A . 掷一枚硬币,正面朝上B . a是实数,|a|≥0C . 某运动员跳高的最好成绩是20.1米D . 从车间刚生产的产品中任意抽取一个,是次品9. (2分) (2017九上·黑龙江开学考) 若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A . k≤﹣1且k≠0B . k<﹣1且k≠0C . k≥﹣1且k≠0D . k>﹣1且k≠010. (2分)如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A . 线段EFB . 线段DEC . 线段CED . 线段BE11. (2分) (2019九上·高邮期末) 如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A .B .C .D . 112. (2分)某商店专门销售有关08年北京奥运会吉祥物的玩具,已知一月份的营业额为2万元,三月份的营业额为2.88万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A . 10%B . 15%C . 20%D . 25%13. (2分) (2019九上·桐梓期中) 若点 M(m,n)(mn ¹ 0) 在二次函数 y = ax (a ¹ 0) 图象上,则下列坐标表示的点也在该抛物线图象上的是()A . (- m, n)B . (n, m )C . (m , n )D . (m,-n)14. (2分)已知等腰三角形两边长是8cm和4cm,那么它的周长是()A . 12cmB . 16cmC . 16cm或20cmD . 20cm二、解答题: (共9题;共89分)15. (10分) (2019九上·遵义月考) 关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若k是该方程的一个根,求的值.16. (5分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.17. (10分) (2018九上·灌南期末) 如图,Rt△ABC中,∠ABC=90°以AB为直径的⊙O交AB于点D,点E 为BC的中点,连接DE.(1)求证:DE是⊙O的切线.(2)若∠BAC=30°,DE=3,求AD的长.18. (15分)(2018·成都模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E 作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG= ,AH=3 ,求EM的值.19. (15分)(2016·随州) 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.20. (8分)(2017·桂林模拟) 某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱体育的有________人;(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(3)小李和小张在新闻、体育、动画三类电视节目中分别有一类是自己最喜爱的节目,请用树状图或列表法求两人恰好最喜爱同一类节目的概率.21. (5分) (2019九上·綦江月考) 一个两位数,十位上的数字比个位上的数字的平方少9.•如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,求原来的两位数.22. (10分)(2019·双牌模拟) 在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB、AC相交于点D、E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB、FD相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.23. (11分)(2018·南开模拟) 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1 ,将G1沿x=m翻折后得到的函数图象记为G2 ,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为________.参考答案一、选择题: (共14题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题: (共9题;共89分)15-1、15-2、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、。
安徽省铜陵市义安区2019-2020学年九年级上学期期末数学试题
安徽省铜陵市义安区2019-2020学年九年级上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 正十边形的外角和为()A.180°B.360°C.720°D.1440°2. 用配方法解方程2x2-x-2=0,变形正确的是( )A.B.=0 C.D.3. 在二次函数的图像中,若随的增大而增大,则的取值范围是A.B.C.D.4. 如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20°B.25°C.30°D.35°5. 已知抛物线y=﹣x2+bx+4经过(﹣2,﹣4),则b的值为()A.﹣2 B.﹣4 C.2 D.46. 如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是( )A.5cm B.10cm C.12cm D.13cm7. 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.8. 某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是()A.2(1+x)2=2.88 B.2x2=2.88C.2(1+x%)2=2.88D.2(1+x)+2(1+x)2=2.889. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正确的结论有( )A.4个B.3个C.2个D.1个10. 如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB 与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)二、填空题11. 点P(3,﹣4)关于原点对称的点的坐标是_____.12. 若是关于的一元二次方程,则________.13. 二次函数y=ax2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析式为____________.14. 小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.15. 如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.16. 如图,△ABC内接于⊙O,若∠A=α,则∠OBC=_____.17. 如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB 上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.18. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.三、解答题19. 小刚将一黑一白两双相同号码的袜子放进洗衣机里,洗好后一只一只拿出晾晒,当他随意从洗衣机里拿出两只袜子时,请用树状图或列表法求恰好成双的概率.20. 已知关于x的一元二次方程mx2-2x+1=0.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=,求m的值.21. 如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.22. 如图,二次函数的图象经过点与.求a,b的值;点C是该二次函数图象上A,B两点之间的一动点,横坐标为,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.23. 在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CA.(1)求证:AD=CD;(2)过点D作DE BA,垂足为E,作DF BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.。
安徽省铜陵市九年级上学期数学期末考试试卷
安徽省铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018七上·宿迁期末) 已知等式3a=2b+5,则下列等式中不成立的是()A . 3a-5=2bB . 3a+1=2b+6C . 3ac=2bc+5D . a= b+2. (2分) (2019七上·丰台期中) 下列各式中结果为负数的是().A .B .C .D .3. (2分)有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A .B .C .D .4. (2分) (2018九上·新洲月考) 如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=6,CD=2,则O的半径为()A . 5B .C . 4D .5. (2分) (2016九上·北区期中) 如图,四边形ABCD内接于⊙O,若∠A=62°,则∠BCE等于()A . 28°B . 31°C . 62°D . 118°6. (2分)已知直线l与半径为r的☉O相交,且点O到直线l的距离为6,则r的取值范围是()A . r<6B . r=6C . r>6D . r≥67. (2分) (2017九下·萧山开学考) 将抛物线y=x2﹣2向左平移1个单位后再向上平移1个单位所得抛物线的表达式为()A .B .C .D .8. (2分)如图,跷跷板AB的支柱OD经过它的中点O,且垂直与地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A . 25cmB . 50cmC . 75cmD . 100cm9. (2分) (2017九上·凉山期末) 根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点10. (2分)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A .B .C .D . 111. (2分) (2019八下·新田期中) 下列说法中,真命题的是()A . 平行四边形既是轴对称图形又是中心对称图形B . 平行四边形的邻边相等C . 矩形的对角线互相垂直D . 菱形的面积等于两条对角线长乘积的一半12. (2分) (2019八上·江山期中) 如图,等边△ABC的边长为2,AD是BC边上的中线,M是AD上的动点,E是边AC的中点,则EM+CM的最小值为()A . 1B . 1 2C . 3D .二、填空题 (共6题;共6分)13. (1分)(2019·安阳模拟) 瑞安某服装厂对一批服装质量抽检情况如下:抽检件数(件)101002005001000正品件数(件)1097194475950根据表格中的数据,从这批服装中任选一件是正品的概率约为________.14. (1分) (2019九上·东台月考) 圆锥的底面半径是,母线长为,则这个圆锥的侧面积是________ (结果保留)15. (1分) (2019九上·江阴期中) 如图,△ABC 中,已知AB=8,BC=5,AC=7,则它的内切圆的半径为 ________ .16. (1分) (2016九上·嵊州期中) 如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),点P 的坐标为________17. (1分)(2017·苏州模拟) 如图,已知点A(0,3),B(4,0),点C在第一象限,且AC=5 ,BC=10,则直线OC的函数表达式为________.18. (1分) (2020八上·天桥期末) 在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“ …”的路线运动,设第秒运动到点为正整数),则点的坐标是________.三、解答题 (共8题;共75分)19. (5分)(1)计算:﹣(2015﹣π)0﹣4cos45°+(﹣3)2 .(2)解方程组:.20. (10分)(2018·崇阳模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________ %,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.21. (5分) (2017七下·水城期末) 已知:如图△ABC是等边三角形,D,E分别是BC,AC上两点且BD=CE,以AD为边在AC一侧作等边△ADF.求证:EF∥BC.22. (5分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.23. (10分)(2017·南京) 已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A . 0B . 1C . 2D . 1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24. (10分) (2017九上·邗江期末) 如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=________,∠AGH=________°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.25. (15分) (2015九上·盘锦期末) 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?26. (15分)(2017·玄武模拟) 如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O 于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6 ,①求图中阴影部分的面积;参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、20-2、20-3、21-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
2019-2020安徽铜陵九年级第一学期数学期末模拟检测卷(Word,含答案)
2019-2020学年度第一学期九年级数学期末质量检测卷测试时间:120分钟 满分:150分 姓名:________ 成绩:_______温馨提示:道路千万条,学习第一条;现在不努力,考试两行泪.一、选择题((四个选项你都找不到对的选项,还想在十几亿的人中找到对的人,想得美...,本大题共10题,每小题4分,满分40分)1.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5且k ≠1C .k ≤5且k ≠1D .k >52.将二次函数y =x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -1)2+3B .y =(x +1)2+3C .y =(x -1)2-3D .y =(x +1)2-33.如图,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交⊙O 于点D ,点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45°第3题图 第6题图 第7题图4.关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是( )5.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( )A .抛物线开口向上B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛线物与x 轴的交点为(-1,0),(3,0)6.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,已知AP =3,则PP ′的长度是( )A .3B .3 2C .5 2D .47.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是 EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD8.设⊙O 的半径为2,圆心O 到直线的距离OP=m ,且m 使得关于x 的方程有实数根,则直线与⊙O 的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定9.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A.π-22B.π-24C.π-28D.π-216第9题图 第10题图10.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a +b <0;②-1≤a ≤-23;③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数为( )A .1B .2C .3D .4 二、填空题(确认过眼神,你是不是会做题的人...,本大题共4小题,每小题5分,满分20分)11.已知函数y =-x 2+2x +c 的图象经过点(1,-2),则c = .12.某小区2017年屋顶绿化面积为2 000平方米,计划2 019年屋顶绿化面积要达到2 880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是 %.13.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是_______. 14.如图,在平面直角坐标系xOy 中,平行四边形ABCO 的顶点A ,B 的坐标分别是A (3,0),B (0,2).动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为_____________.三、(套路不深,就两字“盘他”...,本大题共2小题,每小题8分,共16分)15.解一元二次方程:x 2-4x -8=0.16.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点. (1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A 1B 1(点A ,B 的对应点分别为A 1,B 1),画出线段A 1B 1;(2)将线段A 1B 1绕点B 1逆时针旋转90°得到线段A 2B 1,画出线段A 2B 1; (3)以A ,A 1,B 1,A 2为顶点的四边形AA 1B 1A 2的面积是 个平方单位.初高中真题试卷团队整理四、(一想到数学我就,Wu...,爱恨不能,总于苦解题...,本大题共2小题,每小题8分,满分16分)17.如图为二次函数y=-x2+bx+c图象的一部分,它与x轴的一个交点坐标为A(-1,0),与y轴的交点坐标为B(0,3).(1)求这个二次函数的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.18.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是______;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.五、(来,左边儿,跟我一起写个方程,在你右边儿画一道函数...,本大题共2小题,每小题10分,满分20分)19、关于x的方程04)2(2=+++kxkkx有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.20.明明童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?六、(哈哈哈,又到了大家最喜(tao)欢(yan)的圆了...,本大题满分12分)21.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°.(1)如图①,若D为AB︵的中点,连接BC,BD.求∠ABC和∠ABD的大小;(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,连接OC.若DP∥AC,求∠OCD的大小.七、(他来了,他来了,他带着圆又来了...,本大题满分12分)22.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使得△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.八、(还是原来的配方,还是熟悉的味道...,本大题满分14分)23.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大.求出此时P点坐标和△PBC的最大面积.2019-2020学年度第一学期九年级数学期末质量检测卷(答案)初高中真题试卷团队整理一.选择题(本大题共10小题,每小题4分,满分40分) 1. B 2.A 3.D 4.A 5.C 6.B 7.D 8.B 9.A 10.D 二.填空题(本大共4小题,每小题5分,满分20分)11.-3 12.20 13. 13 14.(0,0)或⎝ ⎛⎭⎪⎫23,1或⎝ ⎛⎭⎪⎫3-5,9-352 三.解答题(本大题共2小题,每小题8分,共16分)15.解:x 2-4x +4=4+8,(x -2)2=12,∴x -2=±23,∴x 1=2+23,x 2=2-2 3. 16.解:(1)如图所示,线段A 1B 1即为所求; (2)如图所示,线段A 2B 1即为所求; (3)由图可得,四边形AA 1B 1A 2为正方形, ∴四边形AA 1B 1A 2的面积是()2=()2=20.故答案为:20.四.解答题(本大题共2小题,每小题8分,满分16分) 17.解:(1)∵二次函数经过A (-1,0),B (0,3)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3. ∴二次函数的解析式为y =-x 2+2x +3.(2)∵y =-x 2+2x +3可化为y =-(x -1)2+4,∴抛物线y =-x 2+2x +3的顶点坐标为(1,4).又∵此抛物线向左平移3个单位,再向下平移1个单位, ∴平移后的抛物线的顶点坐标为(-2,3).∴平移后的抛物线的解析式为y =-(x +2)2+3=-x 2-4x -1. 18.(1) 14(2)解:列表得(a ,b ) 9 8 7 6 9 (9,9) (8,9) (7,9) (6,9) 8 (9,8) (8,8) (7,8) (6,8) 7 (9,7) (8,7) (7,7) (6,7) 6(9,6)(8,6)(7,6)(6,6)共有16种等可能结果,和为14可以到达点C ,有3种结果,所以棋子最终跳动到点C 处的概率为316.五.解答题(本大题共2小题,每小题10分,满分20分)19.(1)由△=(k+2)2-4k ·4k>0 ∴k >-1又∵k ≠0∴k 的取值范围是k >-1,且k ≠0 (2)不存在符合条件的实数k 理由:设方程kx 2+(k+2)x+4k=0的两根分别为x 1、x 2,由根与系数关系有: x 1+x 2=k k 2+-,x 1·x 2=41, 又01121=+x x =0 则 kk 2+-=0 ∴2-=k 由(1)知,2-=k 时,△<0,原方程无实解 ∴不存在符合条件的k 的值.20.解:(1)y =100+10(60-x )=-10x +700. (2)设每星期的销售利润为W 元,W =(x -30)(-10x +700)=-10(x -50)2+4 000. ∴当x =50时,W 最大=4 000.∴每件售价定为50元时,每星期的销售利润最大,最大利润为4 000元.(3)①由题意得-10(x -50)2+4 000=3 910,解得x =53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3 910元的利润.②由(1)知抛物线y =-10(x -50)2+4 000过点(53,3 910),(47,3 910),当y >3 910时,x 的取值范围为47≤x ≤53,∵y =-10x +700.∴170≤y ≤230,∴每星期至少要销售该款童装170件. 六.(本大题12分) 21.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.又∵∠BAC =38°,∴∠ABC =90°-38°=52°.由D 为AB ︵的中点,得AD ︵=BD ︵,∴∠ABD =∠BCD =12∠ACB =45°.(2)如图,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.由DP ∥AC ,又∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的外角,∴∠AOD =∠ODP +∠P =128°,∴∠ACD =12∠AOD =64°.又OA =OC ,得∠ACO =∠A =38°.∴∠OCD =∠ACD -∠ACO =64°-38°=26°. 七.(本大题12分) 22.(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)连结O ′D ,在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2 在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3 ∴∠3=∠2 ∴O ′D ∥AE , ∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. (3)不同意. 理由如下: ①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P 1和P 4两点初高中真题试卷团队整理过P 1点作P 1H ⊥OA 于点H ,P 1H=OC=3,∵AP 1=OA=5 ∴AH=4, ∴OH =1求得点P 1(1,3) 同理可得:P 4(9,3)②当OA=OP 时,同上可求得:P 2(4,3),P 3(4,3)因此,在直线BC 上,除了E 点外,既存在⊙O ′内的点P 1,又存在⊙O ′外的点P 2、P 3、P 4,它们分别使△AOP 为等腰三角形.八.(本大题14分)23.解:(1)由于抛物线与x 轴交于点A (-1,0),B (4,0),可设抛物线解析式为y =a (x +1)(x -4), 将点C (0,-4)代入得a (0+1)(0-4)=-4.解得a =1,所求抛物线解析式为y =(x +1)(x -4),即y =x 2-3x -4. (2)存在.如解图①,取OC 的中点D (0,-2),过D 作PD ⊥y 轴,交抛物线点P ,且点P 在第四象限,则点P 的纵坐标为-2,∴x 2-3x -4=-2,解得x =3±172(负值舍去), 满足条件的P 点的坐标为⎝⎛⎭⎪⎫3+172,-2;(3)∵点B (4,0),点C (0,-4), ∴直线BC 的解析式为y =x -4,设点P 的坐标为(t ,t 2-3t -4),如解图②,过P 作PQ ∥y 轴交BC 于Q ,则点Q 的坐标为(t ,t -4),∴|PQ |=t -4-(t 2-3t -4)=-t 2+4t =-(t -2)2+4, ∴当t =2时,PQ 取最大值,最大值为4,∵S △PBC =S △PCQ +S △PBQ =12PQ ·x B =PQ ·4=2PQ ,∴当PQ 最大时,S △PBC 最大,最大值为8. 此时点P 的坐标为(2,-6).。
安徽省铜陵市2020版九年级上学期数学期末考试试卷C卷
安徽省铜陵市2020版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共6分)1. (1分)(2019·昆明模拟) 在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A . 9.7,9.5B . 9.7,9.9C . 9.6,9.5D . 9.6,9.62. (1分)如果两个相似五边形的面积和等于65cm2 ,其中一组对应边的长分别为3cm和4.5cm,那么较大五边形的面积为()A . 26cm2B . 39cm2C . 20cm2D . 45cm23. (1分) (2019九上·绍兴期中) 在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A .B .C .D .4. (1分)已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在()A . 小圆内B . 大圆内C . 小圆外大圆内D . 大圆外5. (1分)(2015•随州)如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A .B .C .D .6. (1分) (2019九上·平房期末) 抛物线是由抛物线怎样平移得到的()A . 左移个单位上移个单位B . 右移个单位上移个单位C . 左移个单位下移个单位D . 右移个单位下移个单位二、填空题 (共10题;共10分)7. (1分)(2018·淮南模拟) 已知∠A是锐角,且tanA= ,则∠A=________.8. (1分)抛物线在y=x2﹣2x﹣3在x轴上截得的线段长度是________ .9. (1分) (2017九下·富顺期中) 数据5,-2,0,-1,3的方差是________;10. (1分) (2018九上·天河期末) 袋中装有六个黑球和n个白球,经过若干次试验发现,若从中任摸一个球,恰好是白球的概率为,白球个数大约是________11. (1分)(2018·河南模拟) 如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.12. (1分) (2017九上·婺源期末) 用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,这个圆锥底面半径为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省铜陵市义安区2019-2020学年九年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 正十边形的外角和为()
A.180°B.360°C.720°D.1440°
(★) 2 . 用配方法解方程2x 2-x-2=0,变形正确的是( )
A.B.=0C.D.
(★) 3 . 在二次函数的图像中,若随的增大而增大,则的取值范围是A.B.C.D.
(★) 4 . 如图所示,将Rt△ ABC绕其直角顶点 C按顺时针方向旋转90°后得到Rt△ DEC,连接AD,若∠ B=65°,则∠ ADE=()
A.20°B.25°C.30°D.35°
(★) 5 . 已知抛物线 y=﹣ x 2+ bx+4经过(﹣2,﹣4),则 b的值为()
A.﹣2B.﹣4C.2D.4
(★★) 6 . 如图,已知圆锥侧面展开图的扇形面积为65 cm2,
扇形的弧长为10 cm,则圆锥母线长是( )
A .5cm
B .10cm
C .12cm
D .13cm
(★★) 7 . 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A .
B .
C .
D .
(★★) 8 . 某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿
元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x ,下面所列方程正确的是( )
A .2(1+x )2=2.88
B .2x 2=2.88
C .2(1+x%)2=2.88
D .2(1+x )+2(1+x )2=2.88
(★★★★) 9 . 如图,在⊙O 中,AB 为直径,点M 为AB 延长线上的一点,MC 与⊙O 相切于
点C ,圆周上有另一点D 与点C 分居直径AB 两侧,且使得MC =MD =AC ,连接AD.现有下列结论:①MD 与⊙O 相切;②四边形ACMD 是菱形;③AB=MO ;④∠ADM=120°,其中正确的结论有( )
A .4个
B .3个
C .2个
D .1个
(★) 10 . 如图,在△ OAB 中,顶点 O (0,0)
, A (﹣3,4), B (3,4),将△ OAB 与正方形 ABCD 组成的图形绕点 O 逆时针旋转,每次旋转90°,则第2019次旋转结束时,点 D 的坐标为( )
A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)
二、填空题
(★) 11 . 点P(3,﹣4)关于原点对称的点的坐标是_____.
(★★) 12 . 若是关于的一元二次方程,则________.
(★) 13 . 二次函数y=ax 2+4ax+c的最大值为4,且图象过点(-3,0),则该二次函数的解析
式为____________.
(★) 14 . 小红在地上画了半径为2 m和3 m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.
(★★) 15 . 如果关于x的一元二次方程(k+2)x 2﹣3x+1=0有实数根,那么k的取值范围是
______ .
(★) 16 . 如图,△ ABC内接于⊙ O,若∠ A=α,则∠ OBC=_____.
(★) 17 . 如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一
动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,
则AP的长是________.
(★★) 18 . 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x﹣16,AB为半圆的直径,则
这个“果圆”被y轴截得的线段CD的长为_____.
三、解答题
(★) 19 . 小刚将一黑一白两双相同号码的袜子放进洗衣机里,洗好后一只一只拿出晾晒,当他
随意从洗衣机里拿出两只袜子时,请用树状图或列表法求恰好成双的概率.
(★★) 20 . 已知关于x的一元二次方程mx 2-2x+1=0.
(1)若方程有两个实数根,求m的取值范围;
(2)若方程的两个实数根为x 1,x 2,且x 1x 2-x 1-x 2=,求m的值.
(★) 21 . 如图,在△ ABC中, AB=5, AC=3, BC=4,将△ ABC绕点 A逆时针旋转30°后得到△ ADE,点 B经过的路线为弧 BD求图中阴影部分的面积.
(★★) 22 . 如图,二次函数的图象经过点与.
求 a, b的值;
点 C是该二次函数图象上 A, B两点之间的一动点,横坐标为,写出四边形OACB的面积 S关于点 C的横坐标 x的函数表达式,并求 S的最大
值.
(★★) 23 . 在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于 a( a为常数),到点O的距离等于 a的所有点组成图形G,的平分线交图形G于点D,连接AD,C
A.
(1)求证:AD=CD;
(2)过点D作DE BA,垂足为E,作DF BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.。