七年级数学《展开与折叠》知识点整合-学习文档
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)
展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
七年级数学展开与折叠
在机械制造中,经常需要将零件展开成平面图形进行加工和制造。这样可以提高加工精度 和效率,也可以减少材料浪费和降低成本。同时,在机械装配过程中,也需要将零件按照 一定规律进行折叠和组装。
02
平面图形展开与折叠
正方形和长方形展开
正方形展开
正方形可以沿着对角线或者中垂线展开成一个直线 段或者两个相等的直角三角形。
物理理论的数学化
许多物理理论最终需要转化为数学 模型以便进行更深入的分析和研究, 如量子力学和广义相对论等。
数学在化学中的应用
化学计量学
数学在化学计量学中有着广泛应 用,如化学方程式的配平、摩尔
质量的计算等。
化学反应动力学
数学方法可以帮助研究化学反应 的速率和机理,如反应速率常数
的确定、反应机理的推导等。
圆形和扇形展开后,其各边长度和角 度关系可能会发生变化。同时,圆形 和扇形的面积和周长也会发生变化。
扇形展开
扇形是圆的一部分,可以沿着半径或者圆弧 展开,得到一个平面图形。根据展开方式的 不同,可以得到不同的形状,如三角形、梯 形等。
03
立体图形展开与折叠
正方体和长方体展开
正方体展开
正方体有6个面,12条棱,8个顶 点,可以展开成6个相连的正方形 。展开后,相对的面不相邻。
实现变废为宝
利用废旧纸张、布料等材 料进行展开与折叠的手工 制作,可以实现资源的再 利用,具有环保意义。
05
拓展内容:数学在其他领域的应用
数学在物理中的应用
描述物理现象
数学语言可以精确描述物理现象, 例如牛顿第二定律 F=ma 就用数 学表达式阐明了力和加速度之间
的关系。
解决物理问题
数学方法如微积分、常微分方程等 被广泛应用于解决物理问题,如求 解运动方程、分析电磁场等。
(完整版)展开与折叠知识点归纳
展开与折叠
知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:
1、一线不过四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和
一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)
组成,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长。
北师大版七年级数学上册展开与折叠知识讲解-2022年学习资料
棱锥特点:-1n棱推有n顶点,棱-有n介面,侧面的形状都是三角形-边形-2哪些面的形状与大小一定完全相-同 -不一定存在-3哪些棱的长度一定相等?-注:此题中n为不小于3的正整数.
问题1-你能马上说出十棱柱的顶点数、棱-数、面数吗?-顶点:20-棱:30-面:12-问题2-你能马上说出 棱柱的顶点数、棱数、-顶点:2n-棱:3n-面:n+2
北师大版七年级数学上册-第一章丰的图形世鳏-层与折叠-第二课时
想一想,做一做-把一个正方体的表面沿某些棱剪开,展成-一个平面图形,你能得到下面的些平面图-形吗?
下图经过折叠能否围成一个正方形?
·将一个正方体的表面沿某些棱剪开,能能-得到哪些平面图形?小组合作探索-正方体的11种不-同的展开图
底面-侧面-◆侧棱-2这个棱柱有几个侧面?侧面的形-状是什么图形?-答:棱柱有5个侧面,每个侧面都是长方形 -棱柱侧面的形状都是长方形,
底面-1-侧面-一侧棱-3侧面的个数与底面图形的边数有-什么关系?-答:侧面的个数与地面图形的边数相等。柱侧面的个数和底面图形的边数相等
底面-侧面-◆侧棱-4这个棱柱有几条侧棱?它们的长-度之间有什么关系?-答:棱柱有5条侧棱,每条侧棱的长度 等。-棱柱所有侧棱长都相等.
知识技能:-1、一个六棱柱模型如图所示。它的底-面边长都是5厘米,侧棱长4厘米。观-察这个模型,回答下列问 -2这个六棱柱一共有-多少条棱?它们的长度-分别是多少?-解:18条棱,6条侧棱的-长度彼此相等,均为4厘 -围成底面的所有棱长都相-等,均为5厘米-第1题
课堂小结:-·本节课我们学习了立体图形与平面图形之-间的关系:-展开-折叠
一、观察思考-1.冰淇淋筒-展开
2.长方形纸-折叠-044
交流归纳:-有些立体图形-展开-平面图形-折叠-有些平面图形
初中数学七年级上册《展开与折叠》知识点解读
初中数学七年级上册
《展开与折叠》知识点解读
知识点1正方体的展开与折叠
正方体的平面展开的11种情况:
“一四一”型
“二三一”型:
“三三”型:
“二二二”型:
①数:小正方形的个数(6个)
②看:小正方形的排列方式(一四一式二三一式三三式二二二式)
③想一想:在心里折一折,发展学生的空间观念。
例1骰子是一种特别的数字立方体(如图所示),它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是()
分析:正方体相对两面需间隔一个面,因此只有C符合条件。
解:C
知识点2棱柱、圆柱和圆锥的展开与折叠(重点)
1、棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成,沿棱柱表面不同的棱剪开,可得到不同组合方式的平面展开图。
2、圆柱的表面展开图
圆柱的表面展开图是由两个相同的圆形和一个长方形组成的。
3、圆锥的表面展开图
圆锥的表面展开图是由一个圆形和一个扇形组成的。
例2如图所示,甲图经过折叠后能否形成乙图的棱柱?如果不能形成,简要说明理由;如果能形成,回答下列问题:
(1)这个棱柱有几个侧面?侧面个数与底面边数有什么关系?
(2)哪些面的形状与大小一定完全相同?
分析:
解:只需将甲图中上、下两个六边形折叠到所在长方形的后方,然后将长方形向后一一折去,就会围成乙图中的六棱柱。
(1)六棱柱有6个侧面,其个数与底面六边形的边数相同。
(2)六棱柱的上、下两个底面的形状与大小一定完全相同,其侧面都是长方形,但不一定完全相同。
(3)
(4)
(5)。
七年级数学辅导: 立体图形的展开与折叠
几何(一)立体图形的展开与折叠【知识要点】1、 折叠:将一个平面图形折叠起来,就得到一个立体图形;即平面图形立体化.2、展开:将一个立体图形的表面展开,就得到一个平面图形;即立体图形平面化.3、欧拉公式:顶点数+面数-边数=2【典型例题】例1 观察图1-1中平面展开图的折叠过程,并回答1号面、2号面、3号面的对面分别是几号面。
例2 如图1-2,可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小的是_____________.例3 如图1-3所示,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘)这个多面体的面数,顶点数和棱数总和是多少?图1-3图1-2图1-1例4请问出正方体的展开图有多少种?请分别画出。
例5 下图(图1-4)是一个正方体,四边形APQC 表示用平面截正方体的截面,其中P,Q 分别是EF,FG 的中点,请在右下方的展开图中画出四边形APQC 四条边.例6 如图1-5所示,在正方体两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛,蜘蛛可以从哪条最短的路径爬到苍蝇处?说明你的理由。
例7 在五彩缤纷的世界里,其中有各种各样的立体图形,已知一个十二面体如图1-6所示,试求该十二面体的顶点数和棱数。
图1-6十二面体图1-5C B AD GQF P E H 图1-4 A B F E H D CG G C C DD H例8 如图1-7,将三个同样的正方体重叠放在不透明的桌面上,每个正方体的六个面上分别写有1,2,3,4,5,6,并且相对的两个面上的数字之和是7,现在有5个面上的数字不论从哪个角度都看不到,这5个看不到的面上的数字的乘积是_________________.【练习与拓展】一、选择题:1.图1-8中的长方形折叠后能围成一个三棱柱,这个三棱柱的底面一定是( )A .三角形B .等边三角形C .等腰三角形D .直角三角形2.六个立方体A 、B 、C 、D 、E 、F 的可见部分如图1-9,下边是其中一个立体__________的侧面展开图。
展开与折叠知识点总结
展开与折叠知识点总结
前言:
嘿,朋友们!今天咱要来好好聊聊“展开与折叠”这个超有趣的知识点!这可不是啥枯燥的东西哦,相信我,等你看完就知道它有多好玩啦!比如说,一张纸能变成各种神奇的形状,这多有意思呀!
正文:
咱先说说展开吧,就好比你有个纸盒子,你把它拆开,这就是展开呀!你想想,一个方方正正的盒子,展开后居然变成了一大张纸,上面有着各种线条和图案,多神奇啊!就像我小时候玩折纸,把一张纸展开后,能看到之前折痕留下的痕迹,这就是展开的魅力呀!那反过来,折叠呢,就是把那张纸又变回盒子呀,这不是很有趣吗?比如把一张平面的纸通过折叠变成一只小船,哇,太酷了吧!而且哦,在生活中我们也经常能看到展开与折叠的例子呢。
像那些可以收起来的帐篷,展开的时候可以给我们遮阳挡雨,折叠起来就小小的不占地方,多实用!这展开与折叠不就像我们的人生嘛,有时候要展开自己去探索,有时候又要懂得折叠起来保存实力。
对吧?
结尾:
怎么样,是不是觉得展开与折叠真的很有意思呀!所以呀,大家可别小瞧了这个知识点哦,它用处大着呢!以后看到什么东西,都可以想想它是怎么展开和折叠的,嘿嘿。
七年级展开与折叠的知识点
七年级展开与折叠的知识点随着时代的发展,人们对于空间方面的需求也越来越大。
但在现实中造型丰富、结构复杂的物体并不是一件容易的事情。
因此,属于七年级内容范畴的展开与折叠知识点就成了一种较好地触及这方面问题的教育资源。
1. 折痕的类型折痕类型取决于所折纸张的边角。
分别有直边、锐角、钝角、对折线这四种情况。
直边折痕的意义是把直线向两侧折叠;相似地,锐角和钝角折痕分别为了折叠一个角度非直的边角和边角度数超过实际需求一次以上的边角。
至于对折线折痕,它需要折成一个对称形状,因此很多时候可以被理解为特殊的类型。
值得注意的是,锐角和直边折痕被使用得较为普遍。
2. 折痕精度的重要性在实现某些空间模型时,折痕的精度决定了这个构造是否正常工作。
因此,在保证折痕样式正确的前提下,精度范围是十分重要的。
在七年级展开和折痕教材中,我们常常会使用约为1或2毫米的折矩,精度范围则在这个基础上进行微调。
精度受到材料特性、技术难度等因素影响。
3. 裁切的重要性除了折痕制作以外,正确的裁切同样对构造和展开有很重要的意义。
对于有对称多边形的展开图,相同的边长和角度是建立这种复制结构的关键。
当然,在设计的时候需要考虑实际可行性与定制性的问题。
4. 展开方法的种类不同的形状由于其自身特点的不同,需要不同的展开方法。
在七年级展开折痕教程中,常见的方法包括普通组合、对称展开、切角、切线、扣卡等等。
针对不同的形状,采用合适的方法是制作非常重要的步骤。
当然,方法灵活运用也是一个制作好展品的重要手段。
综上所述,学习展开与折叠的知识点是现代教育体系下的重要组成部分,也是我们切实提高空间建模能力所必须掌握的技术。
通过了解不同类型、精度、策略和展开方法的知识点,我们可以更好地完成具体的空间建模任务,并在实际应用场景中获得一定的好处。
七年级展开与折叠知识点
七年级展开与折叠知识点在我们的生活中,展开与折叠是极其常见的动作,无论是纸张、衣物、草稿、家具等等,而这些物品的展开与折叠都有其固定的规律和方法。
在七年级学生的数学课程中,也有许多展开与折叠的知识点,下面我们一一来了解。
1. 立体图形的展开立体图形的展开即是将一个三维的立体图形展开成一个平面图形,在展开的过程中,需要知道每个面之间的连接方式以及正确的摆放位置。
这一知识点在计算表面积和体积时尤为重要。
以正方体为例,正方体由六个正方形构成,我们可以将它们一一展开拼接起来,得到一个十字形的平面图形,这就是正方体的展开图形。
同样的,我们也可以将任意一个立体图形按照其构成面的组合关系展开成一个平面图形。
2. 折纸构图折纸构图是以折纸为工具,通过折叠和展开的方式构造图形。
这一知识点不仅能锻炼学生的空间想象能力,还能培养学生的耐心和动手能力。
以折纸构造长方形为例,将一张正方形的纸沿着对角线对折,再将其中一条边向内折叠即可得到一个长方形。
又如,若想构造一个正五边形,则需要将一张正方形的纸折成四个等分,再进行特定的折叠,最终得到正五边形。
3. 平面图形的折叠平面图形的折叠一般是指将一个平面图形折叠成另一个平面图形的过程,在折叠的过程中,也需要根据平面图形之间的连接方式进行正确的折叠。
这一知识点在计算平面几何问题时很有用,例如对称图形的判定等问题。
以正方形为例,我们可以将它沿着中心折成两个半正方形,再将其中一个半正方形沿着中心对称折叠,就能构造出一个正方形的对称图形。
综上所述,展开与折叠作为一种重要的数学思维工具,应在教育中得到重视。
熟练掌握这些知识点,不仅可以提高学生的计算能力,还可以培养学生的空间想象能力和动手能力,为今后的学习和生活打下坚实的基础。
七年级数学举一反三28:图形的展开与折叠
七年级数学举一反三28:图形的展开与折叠在数学的学习中,图形的展开与折叠是一个非常重要的概念。
它不仅可以帮助我们更好地理解几何图形的结构和性质,还可以帮助我们解决一些实际问题。
在本篇文章中,我们将深入探讨图形的展开与折叠。
一、图形的展开图形的展开是指将一个三维的立体图形展开成一个二维的平面图形。
这个过程可以帮助我们更好地观察图形的结构和性质,并且可以方便我们进行计算。
例如,我们可以将一个正方体展开成一个由六个正方形组成的平面图形。
在展开的过程中,我们需要注意每个面的位置和方向,以确保展开后的图形与原来的图形相同。
二、图形的折叠图形的折叠是指将一个平面图形折叠成一个三维的立体图形。
这个过程可以帮助我们更好地理解图形的结构和性质,并且可以方便我们进行实际操作。
例如,我们可以将一个正方形折叠成一个正方体。
在折叠的过程中,我们需要注意每个面的位置和方向,以确保折叠后的图形与原来的图形相同。
三、应用举例图形的展开与折叠在实际生活中有很多应用。
下面我们以几个例子来说明。
1、纸箱的制作在制作纸箱的过程中,我们需要将一张平面的纸板折叠成一个立体的纸箱。
这个过程中,我们需要根据纸箱的形状和尺寸来确定纸板的大小和折叠的方式,以确保纸箱的结构牢固。
2、地图的制作在地图的制作中,我们需要将三维的地球表面展开成一个平面的地图。
这个过程中,我们需要根据地球的形状和尺寸来确定地图的大小和比例,以确保地图的准确性和可读性。
3、建筑模型的制作在建筑模型的制作中,我们需要根据建筑的设计图纸来制作一个立体的模型。
这个过程中,我们需要将设计图纸中的平面图形展开成一个三维的模型,以便更好地观察建筑的结构和细节。
四、总结图形的展开与折叠是数学中一个非常重要的概念。
它不仅可以帮助我们更好地理解几何图形的结构和性质,还可以帮助我们解决一些实际问题。
在学习这个概念时,我们需要注意每个面的位置和方向,以确保展开或折叠后的图形与原来的图形相同。
新北师大版七上数学 第一章 几何体的展开与折叠知识点系统归纳总结
第一章几何体的展开与折叠一、知识点睛1、几何体可分为四类:_______、_______、_______、_______.棱柱与圆柱的异同:相同点:____________________________________________.不同点:①________________________;②_________________________.棱柱与棱锥的区别:①________________ ___;②__________ ________.2、n棱柱有_______个面________个顶点_______条棱.n棱锥有_______个面________个顶点_______条棱.3、图形是由_______、_______、_______构成的,面与面相交得到_______,线与线相交得到_______.点动成_______,线动成_______,面动成_______.4、正方体的表面展开图,分成四大类共11种.5、一个正方体截面可能是______________________________ _________;一个三棱柱的截面可能是;一个n棱柱的截面最多可能是边形,至少是边形;一个n棱锥的截面可以是用一个平面去截一个圆柱截面可能是用一个平面去截一个圆锥截面可能是用一个平面去截一个球截面可能是6、n边形的内角和为________________.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形.7、物体的三视图:主视图,左视图,俯视图(通过图形画物体的三视图,通过三视图求图形的个数)二、习题精练:1.圆锥是由_____个面围成,其中_____个平面,_____个曲面.2.六棱柱有______个顶点,_____个面;七棱锥有_____个顶点,_____个面.3.______棱锥有20条棱;______棱柱有48条棱;______棱柱有8个面;______棱锥有10个面.4.流星划过天空,形成了一道美丽的弧线,这说明了_______________;汽车的雨刷刷过玻璃时,形成了一个扇形,这说明了______________;薄薄的硬币在桌面上转动时,看上去像球,这说明了___________________.5.把一块学生用的三角板以一条直角边为轴旋转一周形成的几何体是______.6.如图,上排的平面图形绕轴旋转一周,可以得到下排的几何体,那么与甲、乙、丙、丁各平面图形顺序对应的几何体的编号应为()甲丁丙乙①②③④A.③④①②B.①②③④C.③②④①D.④③②①7.指出下列平面图形是什么几何体的表面展开图:①______________;②_____________;③_____________;④______________;⑤_____________.8.下列图形是正方体的表面展开图的是()A. B.C.D.9.下列各图经过折叠后不能围成正方体的是()A.B.C.D.10.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5个有阴影的正方形折成一个正方体,不同的选法有()A.3种B.4种C.5种D.6种123x y享众41211.图中表面展开图折叠成正方体后,相对面上两个数之和为6,则x=____________,y=____________.12.图中表面展开图折叠成正方体后,相对面上两个数之和相同,则“众”代表的数字是______,“享”代表的数字是______.13.小丽制作了一个如下图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.14.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A.B.C.D.15.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.16.一个小立方块的六个面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,请说出A,B,E对面分别是_____,_____,______.ADECEBBAF17.如果正方体的六个面上分别标有:团、结、就、是、力、量.从三个不同的方向看到的情形如下,则团、结、力对面的字分别是()A.量,就,是B.就,是,量C.量,是,就D.就,量,是力是团力就结结团量1.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形2.从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成_____个三角形.3.一个多边形的内角和为1800°,则它是_____________边形.4.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为_________,这个多边形的内角和为___________.5.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆6.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.7.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.421328.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.3112119.如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有()A.4个B.5个C.6个D.7个左视图主视图10. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( )A .4个B .5个C .6个D .7个11. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_____个立方块,最少要_____个立方块.俯视图主视图12. 如图是一个由若干个相同的小立方块组成的几何体的主视图和俯视图,则能组成这个几何体的小立方块的个数最多是________个,最少是________个.俯视图主视图13. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图14. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图左视图主视图俯视图15. 如图是由大小相同的小立方块组成的简单几何体的主视图和左视图,那么组成这个几何体的小立方块最多为________个.左视图主视图16.17. 示,则组成这个几何体需要的小立方块的个数最多是________块.18. 已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图; (3)若主视图的长为8 cm ,俯视图中圆的半径为3 cm ,求这个几何体的表面积和体积.俯视图:圆左视图:长方形主视图:长方形19.如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2 014个三角形,那么此多边形的边数为__________.。
展开与折叠知识点总结
展开与折叠知识点总结引言在学习和工作中,我们经常会遇到大量的信息和知识点,为了更好地组织和理解这些信息,我们需要学会使用展开与折叠的技巧。
展开与折叠是一种有效的组织和整理信息的方法,通过将复杂的信息分解为小块,并将其组织成层次结构,可以使我们更清晰地理解和管理知识点。
本文将介绍展开与折叠的基本概念、使用方法和实际应用,帮助读者更好地利用这一技巧。
一、展开与折叠的基本概念1. 展开与折叠的定义展开与折叠是一种将信息和知识点按照层次结构进行整理和组织的方法。
通过将复杂的信息分解为多个小块,并将其组织成层次结构,可以使读者更清晰地理解和管理知识点。
展开与折叠的基本思想是通过分层次地组织信息,使得读者可以根据需要展开或折叠某一层次的信息,以便更深入地了解或更简洁地呈现信息。
2. 展开与折叠的特点展开与折叠的主要特点包括:(1)层次性:信息和知识点按照层次结构进行整理和组织,可以清晰地展现信息的层次关系和逻辑结构。
(2)灵活性:读者可以根据需要展开或折叠某一层次的信息,以便更深入地了解或更简洁地呈现信息。
(3)简洁性:通过将复杂的信息分解为多个小块,并将其组织成层次结构,可以使得信息更加简洁、清晰。
二、展开与折叠的使用方法1. 如何展开与折叠展开与折叠通常通过使用文本编辑器或专门的软件工具来进行。
在文本编辑器中,可以使用空格、制表符或其他符号来表示不同层次的信息,从而实现展开与折叠的效果。
对于专门的软件工具,通常会提供展开与折叠的功能按钮或快捷键,方便读者进行操作。
2. 如何进行层次结构的设计在使用展开与折叠的方法时,需要根据信息的逻辑结构和层次关系进行设计。
一般来说,可以按照以下步骤进行层次结构的设计:(1)确定主题和分支:首先确定信息的主题,然后根据主题确定各个分支的内容。
(2)划分层次:根据各个分支的内容,确定各个层次之间的层次关系,将信息层次化。
(3)展开与折叠:根据层次结构设计,在文本编辑器或软件工具中进行展开与折叠操作,使得信息更加清晰和易于理解。
七年级数学上册专题第1讲图形的展开与折叠重点、考点知识总结及练习
第1讲图形的展开与折叠⎧⎪⎨⎪⎩几何体的展开图展开与折叠展开图折叠成几何体相对的面知识点1:几何体的展开图常见的几何体的展开图有圆柱、圆锥、棱柱、正方体、棱锥。
特殊:球没有展开图 圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面)。
圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)正方体的表面展开图一共有11种可能。
【典例】1.如图所示的正方体的展开图是( )A. B. C. D.【方法总结】1.判断特定正方体的展开图首先判断是否是正确的展开图模型,其次通过相邻面的位置、方向来确定正确的展开图.2.解决几何体的展开图的相关问题只需要记清楚不同立体图形的展开图的模型。
【随堂练习】1.(2018•武汉模拟)如图所示的正方体的展开图是()A. B. C. D.2.(2018•平谷区二模)如图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是()A.B.C.D.3.(2017秋•诸城市期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.4.(2017秋•阜宁县期末)如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C.D.知识点2 展开图折叠成几何体【典例】1.将下面的纸片沿虚线折叠,不能折成长方体盒子的是()A. B. C. D.【方法总结】展开图折叠成几何体是将几何体展开的对应的操作,解决这类型题首先能够找到正确的几何体展开图,其次找出相邻、相对的面。
【随堂练习】1.(2018•河北二模)如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中①、②、③、④中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.①B.②C.③D.④2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.3.(2017秋•彭泽县期中)将如图所示的平面图形折成立方体后可能是()A.B.C.D.知识点3:正方体的相对两个面正方体展开图找相对面的方法:(1)中间隔“一”是对面:中间相隔一个正方形的两个正方形是相对面;(2)“Z”字两端是对面:呈“Z”字形排列的四个正方形首尾两个正方形是相对面;(3)间二、拐角邻面知:中间隔两个正方形的两个正方形是相邻面,呈拐角形状的三个小正方形,只有一个相邻正方形的两个正方形是相邻面。
七年级数学第一章 第二节 展开与折叠 第2课时Microsoft Word 文档
七年级数学第一章第二节展开与折叠第2课时教学目标:1.通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;能认识棱柱的某些特性;能根据展开图判断和制作简单的立体模型.2.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;培养学生的观察与比较、类比与联想、分析与归纳的逻辑思维能力,培养学生动手操作能力.3.初步获得动手制作的乐趣及制作成功后的成就感;在制作实践的过程中学会与人合作,学会交流自己的思维与方法,感受生活中立体图形的美.教学重点:在具体情境中让学生动手实践,让学生在实践中理解棱柱、圆柱、圆锥的展开与折叠.了解棱柱、圆柱、圆锥的侧面展开图,能在操作实践中认识棱柱的某些性质.教学难点:发展学生空间观念,培养观察能力和动手能力.教法学法:对于教师来说,上好本节课的关键是弱化概念,重视操作实践.发挥多媒体的声、像、动画功能,动态展示展开与折叠的全过程,直观而形象的反映棱柱等的性质,从而突破难点.对于学生来说,上好这节课要求“仔细观察、大胆探索、勇于发现、善于概括.”教学准备:教师准备:1.棱柱、圆柱、圆锥实物、展开图的模板图形.2.多媒体课件.学生准备:1.收集一些实际生活中棱柱、圆柱、圆锥的例子.2.剪刀、直尺及硬纸板,用于做实际的模型.教学过程:一、创设情境,导入课题教师:让学生观看生活中常见的棱柱、圆柱、圆锥图片.并问:同学们你们认识这些几何体吗?学生:棱柱、圆柱、圆锥(踊跃回答).教师:同学们上一节课我们学习了正方体的展开与折叠,这节课我们共同学习棱柱、圆柱、圆锥的展开与折叠.引出本节课题《1.2展开与折叠(2)》并在黑板上板书.二、动手操作,探究新知活动一:教师:将下图中的棱柱沿某条棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上并编号(重复的不再贴),可以得出棱柱不同的展开图:如:三棱柱:……四棱柱:……五棱柱:……教师:如果你剪出的平面图形与其它同学的不一样,你可以验证其他同学的平面图形,看他们的剪出的平面图形是否可以折叠成对应的棱柱.学生:开始验证.在教师的指导下每个学习小组动手折叠,粘贴成棱柱.学生展示自己制作的棱柱,教师将折好的棱柱贴在黑板上.活动二:教师:按照如图所示的方法把圆柱、圆锥的侧面展开,会得到什么图形?先想一想,再试一试.学生先思考,再进行裁剪,教师巡视.把学生剪好的圆柱、圆锥的侧面展开图贴在黑板上.教师:下面我将圆柱、圆锥的侧面展开的过程展示给同学们看.(用几何画板进行演示)学生:认真观察演示.圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形.三、巩固训练,应用新知内容:(教师用多媒体展示)1.如图,哪些图形经过折叠可以围成一个棱柱?先想一想再折一折.一部分学生马上说出了答案(1)、(3)不能,还有一部分学生还在思索.教师:同学们再动手试一试,检验一下自己猜想是否正确.学生动手折叠.教师:现在能说出哪几个能折成棱柱,哪几个不能吗?学生:(1)、(3)不能;(2)、(4)能.教师:为什么(1)、(3)不能学生:把1图围起来还差1个侧面.学生:3图围起有一个底面没有,另一个底面有2个底面重合了.教师:同学们能不能把(1)、(3)图修改一下,使它能围成棱柱?(学生踊跃举手)学生:将(1)图改为了教师:同学们看一看这样修改对不对,经他这样一改,可以围成什么?学生:围成三棱柱.教师:真不错,这种方法连老教师都没想到.教师:下面同学还有其他改法吗?你来试一试.学生:改为教师:这位同学这样改对吗?教师:这时能围成什么?教师:图(3)该怎样修改一下呢?学生上黑板改成教师:这位同学这样修改后可以围成棱柱吗?教师:其他的同学都做好了吗?交给你的同伴看一看.(学生交换自己的修改图,有的互相指出问题.)教师:通过我们的修改、折叠,现在黑板上的平面图形都能折叠成棱柱.同学们观察一下这些图形具有什么特征,从中你能发现什么样的图形折叠后能围成棱柱,同学们分小组讨论一下.(学生热烈讨论交流,教师巡视指导.)学生:(指着自己展开图形的上、下底面)我们发现要折成棱柱,这两部分应分别位于这部分的两侧,不能在同一侧,中间这部分是几个长方形,可以围成棱柱的侧面.学生:我们发现图形要围成棱柱要分三部分,中间是由几个长方形组成的可围成棱柱的侧面,上、下两部分位于长方形的两侧,可以围成底面,这两个底面形状大小要相同.教师:很好,还有其他特点吗?学生:我们还发现了,上、下两个部分有几条边,中间就应有几个长方形,比如(指着四棱柱的展开图),这个图上、下两个面是长方形有4条边,中间就有4个长方形.(指着三棱柱展开图)这个图形上、下底面是三角形,有三条边,中间是三个长方形……教师:同学们观察得很仔细,归纳得很全面,利用同学们刚才发现的特征你能否设计一个四棱柱的展开图,涂上你喜欢的颜色.(学生动手设计,教师巡视作个别指导,将先画好的设计图贴在黑板上.)教师:现在我们来判断一下,黑板上这些同学设计的图形能围成四棱柱吗?教师:你们都设计好了吗?我们不能一一来检查,请把你的设计图给你的同伴互相验证一下,如果不能,请帮助他修改一下.(学生开始互相检查、折叠,有的指出问题,进行修改.)教师:现在告诉老师,你设计的图形能围成四棱柱吗?学生:能(自豪地举起手中五颜六色的棱柱).教师:真棒,同学们设计的真好,请同学们看这里.2、教师把一个涂有黄色的四棱锥开图贴在黑板上,同学们猜一猜,这个图形能围成什么?(学生七嘴八舌,有的学生答圆锥,有学生答四棱柱,有学生答四棱锥.)教师:同学们动手试一试.能折成什么?学生:四棱锥.教师:生活中同学们见到过这种物体吗?学生:见过,如金字塔.学生:不对,金字塔是三棱锥.学生分成两派一边喊是三棱锥,一边喊是四棱锥.教师:这样吧,同学们下去查一查金字塔有关资料,看一看金字塔到底是四棱锥还是三棱锥.教师:将五角星贴到黑板上,猜一猜这个漂亮的五角星能折成什么?(部分学生大声说出五棱锥,有的学生还在思索.)教师:这个问题就留给同学们下去折一折,看一看能折成什么?四、课堂小结,升华认知教师:通过一节课的学习,同学们一定有许多感想与收获,能把自己的感想与收获说出来与大家分享一下吗?学生:我知道了什么样的图形能折成棱柱.学生:我学会了怎样设计一个展开图折成棱柱,通过这节课,提高了我的想象力.……教师:同学们一定还有其他的感受不能一一说出来,就请同们把你的感受与收获写到你的数学日记中.五、达标检测,应用反馈必做题:1.哪种几何体的表面能展开成下面的平面图形?(1)(2)(3)(4)2.图中的两个图形经过折叠能否围成棱柱?(1)(2)选做题:3.如图所示图是长方体的表面展开图,折叠成一个长方体,那么与字母 J重合的点是哪几个?六、布置作业必做题:习题1.4第2题选做题:习题1.4第3题七、板书设计教学反思:本节课通过生活中的立体图形自然地引入本课课题,让学生感受数学知识在活中的应用,激发学生学习兴趣.让学生自己动手对几何体进行的展开成平面图形,将学生发现的结论提到应用的高度来解决实际问题,使学生的空间想象力得到发展,同时培养了学生的创造精神及动手能力.整个教学活动突出了课标的基本理念,充分让学生动手操作,自主探索,合作交流,以积累有关图形的经验和数学活动经验.在开放式教学过程中,注重学生动手实践,在实际的操作过程中去体验探索;注重让学生充分合作交流,让学生在合作中互相实现信息与资源的整合,不断扩充和完善自我认识,学会参与,学会倾听;注重引导学生主动探索,敢于实践,善于发现的科学精神.教学中,教师是合作学习的组织者、引导者、参与者,学生是活动的主人、主体.教师深入到学生中认真倾听,通过指导,排除障碍,充分尊重学生,鼓励学生从不同角度认识、感受、体验、交流自己想法,学生的参与程度高,学生活动多,教师的展示行为、引导语言和激励语言,起到了突出重点、突破难点、和谐课堂气氛等积极作用,课堂气氛活跃,学生学习兴趣浓厚.。
数学七年级上册《正方体的展开与折叠》专题复习
解:(1)由正方体表面展开图可知“x”与“M”是相对的面, “-2”与“-3”是相对的面, “4x”与“2x+3”是相对的面, 又因为标注了字母 M 的是正方体的前面,标注了-2 的是正方体的底面, 所以标注了字母 x 的是正方体的后面,标注了-3 的是正方体的上面, 因此标注“2x+3”与“4x”是左面和右面, 又因为正方体的左面与右面标注的式子的和为 21, 所以 2x+3+4x=21,解得 x=3.
( C)
类型 2:找正方体的相对面 在通过正方体展开图形找相对面时,首先在同层中隔一面寻找,再在异 层中隔两面寻找,剩下的两面自然相对.
5.(大庆中考)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,
则原正方体中与数字 5 所在的面相对的面上标的数字为
( B)
A.1 B.2 C.3 D.4
6.(达州中考)下列正方体的展开图上每个面上都有一个汉字.其中,
“手”的对面是“口”的是
( B)
7.(历下区期末)如图是一个正方体的展开图,把展开图折叠成正方体后, 与“山”字相对面上的字是__绣__.
8.(合阳县期末)如图是一个正方体的平面展开图,标注了字母 M 的是正 方体的前面,标注了-2 的是正方体的底面,正方体的左面与右面标注的 式子的和为 21. (1)求 x 的值; (2)求正方体的上面和后面的数字的积.
知能素养小专题(五) 正方体的展开与 折叠
类型 1:判断正方体的展开图 正方体的展开图有以下几种类型:141 型(分 3 行,中间 4 个,上下各 1 个,共 6 种情况),132 型(分 3 行,中间 3 个,上行 1 个,下行 2 个连在 一起,共 3 种情况),222 型(每行 2 个,首尾相连,1 种情况),33 型(每 行 3 个,下一行跟末尾一个相连,1 种情况).
七年级上册-第二课(展开与折叠)
第二讲展开与折叠一、正方体的展开与折叠下面图形中,都能围成一个正方体?a b c有些立体图形————→平面图形有些平面图形————→立体图形1.展开是将某些立体图形展成一个平面图形,同时这个平面图形可以折叠成相应的立体图形.展开和折叠是过程.2.正方体是一个特殊的四棱柱,它的所有棱长都相等,所有面都是正方形且大小相等,将正方体的表面沿某些棱剪开,展成一个平面图形,其展开图共有11种形式.一四一型二三一型二二二型三三型要点精析:(1)图形的展开与折叠是立体图形与平面图形之间的转化过程;(2)判断一个平面图形能否折叠成立体图形的方法:一看面数够不够;二看各面的位置是否合适,尤其是底面的位置;三看对边的长度是否相等.(3)为了更好地记忆展开图和展开图中相对的面,请同学们熟记口诀“一线不过四,凹、田应弃之,相间、‘Z’的两端是对面”.例1图中能折叠成正方体的是()练1.将一个无底无盖的正方体沿一条棱剪开得到的平面图形为()A.长方形B.正方形C.三角形D.五边形练2.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一个边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.4练 3.如图,它需再添一个小正方形,折叠后才能围成一个正方体,图中的灰色小正方形分别由四位同学补画,其中正确的是( )二、正方体与其表面展开图间的对应关系图中的图形可以折成一个正方体形的盒子.折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确.例2把正方体的表面沿某些棱剪开展成一个平面图形(如图(1)),请根据各面上的图案判断这个正方体是图(2)中的()图1图2例3如图,一个立体图形的展开图中,用每个面内的大写字母表示该面,用小正方形边上所标注的小写字母表示该边.(1)说出这个立体图形的名称;(2)写出所有相对的面;练1.如图,有一个正方体纸巾盒,它的平面展开图是()练2.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()练3.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美三、柱体的展开与折叠想一想(1)如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.(2)将图中不能围成棱柱的图形作适当修改使所得图形能围成一个棱柱.1. 棱柱的表面展开图是由两个相同的和一些组成的.2. 棱柱的表面展开图不止一种,沿其不同的棱剪开,可得到不同的表面展开图.3. 圆柱的表面展开图是由两个大小相同的和组成的,其中侧面展开图的一边长是圆柱的,另一边长是底面圆的.例4如图所示的平面图形经过折叠可以围成棱柱的有()A.(1)(2)(4)B.(1)(2)(4)(5)C.(4)(5)D.(2)(4)例5 如图,圆柱的表面展开后得到的平面图形是图中的()练1如图是一个长方体包装盒,则它的平面展开图是( )四、锥体的展开与折叠圆锥的表面展开图是由一个和一个组成的,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长.例3如图所示的平面图形不可能围成圆锥的是()练1将图①的正四棱锥ABCDE沿着其中的四个边剪开后,形成的展开图为图②,判断下列哪一个选项中的四个边可为此四个边?()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC小结:正方体、棱锥、棱柱展开图的基本条件:一般地,如果某立体图形的表面展开图由6个正方形组合而成,那么立体图形是正方体;如果是由3个及3个以上的三角形与1个多边形组成的,那么立体图形为棱锥;如果是由3个及3个以上的长方形与两个形状、大小都相同的多边形组合而成的,那么立体图形为棱柱.五、当堂检测1.下列图形中,可以是正方体表面展开图的是()2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()3.如图,可以折叠成一个无盖正方体盒子的是()A.①B.①②C.②③D.①③4.图(1)和图(2)中所有的正方形大小都一样,将图(1)的正方形放在图(2)中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③ D.④5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是() A.中B.考C.顺D.利6。
七年级上展开与折叠知识点
七年级上展开与折叠知识点在初中数学学习过程中,展开与折叠是一个比较基础的知识点,它们是我们学习面积和体积等相关知识的必备内容。
本文将分为三大部分,分别介绍展开与折叠的定义、应用以及相关练习题。
一、什么是展开与折叠?在数学上,我们把将一个三维物体沿着一些特定的线形状(比如直线、折线)剪开使其变成一个平面图形的过程称为“展开”。
相对的,我们把将一个平面图形按照特定模式叠折起来变成一个三维物体的过程称为“折叠”。
比如:一个盒子的展开图就是一个长方形,而将这个长方形沿着特定的线剪开并打平展开,就得到了这个盒子的展开图。
另一个例子,将一张矩形纸张按照特定模式叠折,可以得到一个立体的长方体。
二、展开与折叠的应用了解展开与折叠不仅有助于我们理解几何形体的各种性质,在日常生活中也有着广泛的应用。
比如说,公司生产各种纸盒产品时,需要对这些产品的展开图进行计算,以确定量身定制的原材料的数量。
在包装生产中,展开图成为了设计师的基础和生产成本的首要考量。
另外,展开与折叠也在其他领域有着广泛应用。
在制造复杂机器设备的过程中,设计师们也需要首先设计出设备的展开图,并在此基础上制造出完整的机器。
展开与折叠的理论在计算机图像学等领域中也扮演着重要的角色。
三、练习题1.对于一个侧棱长分别为3cm、4cm和5cm的直角三棱锥,它的侧壁是一个三角形,高度为5cm。
请画出这个三棱锥的展开图。
2.一个矩形房间的长度为6.5米,宽度为4.2米,屋顶是一个等腰直角三角形,两条直角边的长度为5米,请画出这个房间的展开图。
3.一个生产纸盒的公司,想要生产一个底面积为40平方厘米,高度为30厘米的长方体盒子。
请计算这个盒子需要的纸张面积。
总结:展开与折叠是初中数学必须要掌握的基础知识点,我们在学习面积、体积等相关知识时都需要用到这些知识点。
展开与折叠在日常生活中也有着广泛的应用,比如纸盒包装、机器制造、图形制作等领域都需要用到展开与折叠的理论知识。
初中数学知识点精讲精析 展开与折叠
1.2 展开与折叠学习目标1.体会从古至今数学始终伴随着人类的进步与发展,增进学习数学的兴趣。
2.通过具体实例体会数学的存在及数学的美,发展应用意识。
知识详解1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的,沿棱柱表面不同的棱剪开就可以得到不同的表面展开图,如图是棱柱的一种展开图。
棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面)。
2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示。
如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱。
(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面)。
3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程。
我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体。
根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数。
②棱柱的两个底面要分别在侧面展开图的两侧。
(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形。
(3)圆锥的表面展开图一定是一个圆形和一个扇形。
(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形。
②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个。
③以其中1个为底面,前、后、左、右、上面都有,且不重叠。
4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解。
正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面。
七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版
图1-2-5
答案 A 由题图中几何体的特征知含有数字4、6、8的三个面两两相 邻,故折叠后三个面一定相交于一点.只有A选开图,若将其围成正方体,则与点P重合的两 点应该是 ( )
图1-2-6 A.S和Z B.T和Y C.U和Y D.T和V 答案 D 结合图形知,围成立体图形后Q与S重合,P与T重合,很显然P 又与V重合,故选D.(也可以动手操作一下)
解析 如图1-2-3所示.
图1-2-3
题型一 观察猜想题 例1 在下列四个正方体中,只有一个是用图1-2-4所示的纸片折叠而成 的,那么这个正方体是 ( )
解析 选项A、B的正方体展开后,黑点所在的面分别在小三角形所在 面的上面和右边,与所给纸片不符,所以可排除A和B;对于C,小圆圈的上 面和右边是空白的,同样与所给纸片不符,也可排除.故选D. 答案 D 点拨 根据展开后的平面图形确定立体图形,需分清有标记的面与其他 面之间的位置关系.
1.(2013浙江宁波中考)下列四张正方形硬纸片,剪去阴影部分后,如果沿 虚线折叠,可以围成一个封闭的长方体包装盒的是 ( )
答案 C A剪去阴影部分后,可围成无盖的正方体,故此选项不合题意; B剪去阴影部分后,无法围成长方体,故此选项不合题意;C剪去阴影部分 后,能围成长方体,故此选项正确;D剪去阴影部分后,显然不能围成长方 体,故此选项不合题意.故选C.
知识点一 正方体的展开与折叠 1.图1-2-1是一个正方体,它的表面展开图可以是 ( )
图1-2-1
答案 B B选项是“一四一”型,故选B.
2.(2015山东济宁中考)一个正方体的每个面都有一个汉字,其平面展开 图如图1-2-2所示,那么在该正方体中和“值”字相对的字是 ( )
图1-2-2 A.记 B.观 C.心 D.间 答案 A 可以自己动手折一下.
几何体的展开与折叠知识点总结
几何体的展开与折叠知识点总结几何体的展开与折叠是几何学中重要的概念和技巧。
通过将三维几何体展开成二维平面图形,我们可以更好地理解和分析几何体的性质、结构和关系。
本文将对几何体的展开与折叠进行系统的总结与讲解。
I. 展开与折叠的概念1. 展开:几何体的展开指将一个三维几何体通过剪开、展开的方式转化为一个平面图形。
在展开后,几何体的各个面会被连续地拼接在一起,形成一个平面图形,称之为展开图。
2. 折叠:几何体的折叠是指根据展开图,将平面图形按照一定的顺序、方向进行折叠,最终恢复成原来的三维几何体。
II. 几何体的展开与折叠方法1. 立方体:立方体是最简单的几何体之一,它的展开图是一个由六个正方形组成的平面图形。
展开后的正方形分别代表立方体的六个面,通过正确的折叠方式,可以将展开图还原为一个完整的立方体。
2. 正方体的展开与折叠方法:a. 首先,确定正方体的展开图形,并根据展开图形上的边界关系进行适当的标记和编号。
b. 将展开图形剪开,并根据编号将各个部分正确地组装在一起。
c. 按照标记和编号的顺序,依次将展开图的各个面按照折叠方向进行折叠,直到最终还原为一个完整的正方体。
3. 圆柱体:圆柱体是由两个圆盘和一个侧面组成的几何体。
圆柱体的展开图形是由一个长方形和两个圆形组成的平面图形。
根据展开图,我们可以通过适当的折叠方式将平面图形还原为一个完整的圆柱体。
4. 锥体:锥体是由一个圆锥和一个底面组成的几何体。
锥体的展开图形是由一个圆形和一个扇形组成的平面图形。
类似于圆柱体,我们可以通过相应的折叠步骤将展开图形还原为一个完整的锥体。
III. 几何体的展开与折叠的应用几何体的展开与折叠不仅仅是一种学习几何学的方法,还具有广泛的应用价值。
1. 工程设计:在工程设计中,几何体的展开与折叠被广泛应用于模型制作、结构设计等方面。
通过展开与折叠的技巧,可以更好地理解和分析各种结构体系的组成与关系。
2. 包装设计:在包装设计领域,几何体的展开与折叠是不可或缺的技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学《展开与折叠》知识点整合
想要更好的学习数学首先要做的就是理解运用课本中的知识,因此为同学们整理了七年级数学展开与折叠知识点,希望大家可以更快更好的提高成绩。
知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:
1、一线不过四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)组成,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长光有七年级数学展开与折叠知识点的整理是不够的,还要结合练习题的运用,总结之后来检测一下吧!。