九年级上册几何模型压轴题专题练习(解析版)
九年级上册几何模型压轴题单元练习(Word版 含答案)
九年级上册几何模型压轴题单元练习(Word版含答案)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF 922= 当点F 在AC 延长线上时,CE 有最小值,图形如下:同理,CE=EF -CF 322=【点睛】 本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.3.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D'''△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEB D AA D CD'''''∠==''',682CE∴=,32CE cm∴=,()28634522222A B CE A B D CEDS S S cm''''''⨯∴==-⨯÷=-;(2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭, 解得:6695x -=秒,(6695x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.4.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌. ∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆, 其中点D 与点B 重合,且点F '在直线BQ 上, 则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE , 则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =, ∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+, 2222x =--(舍去). 当222x =-+时,QFCE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.5.如图,在直角坐标系中,已知点A (-1,0)、B (0,2),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)点C 的坐标为( , ); (2)若二次函数的图象经过点C . ①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y 对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P (点C 除外),使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1) ∴点C 的坐标为(-3,1) . (2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF =OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.6.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值2,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.7.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为222+,此时315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA ⊥OD , ∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°, ∵OA ⊥OD,OA ⊥AG′, ∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘, 即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时, 同理可求∠BOG′=30°, ∴α=180°−30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=2,∵OG=2OD,∴OG′=OG=2,∴OF′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.8.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学圆易错题压轴题(难)9.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.10.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒5AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= ,故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形, 则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
几何模型压轴题章末练习卷(Word版 含解析)
几何模型压轴题章末练习卷(Word版含解析)一、初三数学旋转易错题压轴题(难)1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)7 7【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴3293∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=12AC=t,CD33,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t=377(负值舍去),∴AC=2t 67.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.2.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.3.如图,在矩形ABCD中,6AB cm=,8AD cm=,连接BD,将ABD△绕B点作顺时针方向旋转得到A B D'''△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.(1)求矩形ABCD与A B D'''△重叠部分(如图1中阴影部分A B CE'')的面积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D'''△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm =,8AD cm =,10BD cm ∴=,根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,tan A B CE B D A A D CD '''''∠==''', 682CE ∴=, 32CE cm ∴=, ()28634522222A B CE A B D CED S S S cm ''''''⨯∴==-⨯÷=-; (2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭,解得:x =秒,(x =舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒.综上所述:使得AA B''△成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.4.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(15;(23;(3)存在,63【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=,∴42226nm nm-=⋅,∴m4﹣m2n2=6n4,∴2424 16n nm m-=•,∴33nm=(负根已舍去).(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;由(2)可知,3 BE nBG m==,∵四边形BEFG是矩形,∴33 FGFE=,∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE,∵DF⊥PF,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME,∴△FDG∽△FME,∴33FGFFM FED==,∵∠DFM=90°,tan3FDFMDFM∠==,∴∠FDM=60°,∠FMD=30°,∴3FM DM=;在矩形ABCD中,有33 ADAB=即333=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴3323FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.5.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 的中点,连接CF ,DF .(1)如图1,当点D 在AB 上,点E 在AC 上时①证明:△BFC 是等腰三角形;②请判断线段CF ,DF 的关系?并说明理由;(2)如图2,将图1中的△ADE 绕点A 旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF 且CF ⊥DF .理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF ,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.6.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级上册数学 几何模型压轴题单元练习(Word版 含答案)
九年级上册数学 几何模型压轴题单元练习(Word 版 含答案)一、初三数学 旋转易错题压轴题(难)1.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌.∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =,∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+, 2222x =--(舍去).当222x =-+时,QF CE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.2.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1, MN 是过点A 的直线,点C 为直线MN 外一点,连接AC ,作∠ACD=60°,使AC=DC ,在MN 上取一点B ,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB 、DB 、CB 之间满足的数量关系是 ;(2)希望小组认真思考后提出一种证明方法:将CB 所在的直线以点C 为旋转中心,逆时针旋转60°,与直线MN 交于点E ,即可证明(1)中的结论. 请你在图1中作出线段CE ,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C 绕点A 逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.4.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120 的等腰三角形DAC和等边三角形GEB纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________; 数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB=,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=,又AD BN CD ==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF 和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD=,AD NB=,CD NB∴=.又GEB是等边三角形,CE BE∴=.()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠-∠=∠-∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.5.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG ≌△AEF ; (2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG ≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,NF=DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF ≌△ABG ,则DF=BG ,再证明△AEG ≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,, ∴△AGE ≌△AFE (SAS );(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∴∠ACD=∠BCE,在△ACD和△BCE中AC BCACD BCECE CD⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD ⊥BE ,∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG ,即FH=FG ,FH ⊥FG ,结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______;()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ;②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】【分析】 ()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题;()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE 1S PE BM 2=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题;【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==, Rt ACD ∴≌()Rt CAE HL ; ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==,PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤+,BM22∴≤+,BM∴的最大值为22+,PBE∴的面积的最大值为21+.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.二、初三数学圆易错题压轴题(难)9.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.10.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==11.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB 于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.12.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=,∵B B ∠=∠, ∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC =, 在Rt △CDF 中,∠DCF=60°,CD=4,∴DF=CD •sin60°=23CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.13.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.14.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大15.(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=13,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是81313+,最小值是81313-.【解析】【分析】(1)连接线段OP交⊙C于A,点A即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,。
九年级上册数学 几何模型压轴题单元测试卷(解析版)
九年级上册数学几何模型压轴题单元测试卷(解析版)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B ′C ′.当α+β=180°时,请问△AB ′C ′边B ′C ′上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD = BC ;②如图3,当∠BAC =90°,BC =8时,则AD 长为 .猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.3.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.5.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB=,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=,又AD BN CD ==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF 和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD=,AD NB=,CD NB∴=.又GEB是等边三角形,CE BE∴=.()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠-∠=∠-∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.6.已知,如图:正方形ABCD ,将Rt △EFG 斜边EG 的中点与点A 重合,直角顶点F 落在正方形的AB 边上,Rt △EFG 的两直角边分别交AB 、AD 边于P 、Q 两点,(点P 与点F 重合),如图1所示:(1)求证:EP 2+GQ 2=PQ 2;(2)若将Rt △EFG 绕着点A 逆时针旋转α(0°<α≤90°),两直角边分别交AB 、AD 边于P 、Q 两点,如图2所示:判断四条线段EP 、PF 、FQ 、QG 之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt △EFG 绕着点A 逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA 、AD 两边延长线于P 、Q 两点,并判断四条线段EP 、PF 、FQ 、QG 之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF 2+FQ 2=EP 2+GQ 2;(3)四条线段EP 、PF 、FQ 、QG 之间的关系为PF 2+GQ 2=PE 2+FQ 2.【解析】【分析】(1)过点E 作EH ∥FG ,由此可证△EAH ≌△GAQ ,然后根据全等三角形的性质得到EH =QG ,又PQ =PH ,在Rt △EPH 中,EP 2+EH 2=PH 2,由此可以得到EP 2+GQ 2=PQ 2; (2)过点E 作EH ∥FG ,交DA 的延长线于点H ,连接PQ 、PH ,由此可证△EAH ≌△GAQ ,然后根据全等三角形的性质得到EH =QG ,又PH =PQ ,在Rt △EPH 中,EP 2+EH 2=PH 2,即EP 2+GQ 2=PH 2,在Rt △PFQ 中,PF 2+FQ 2=PQ 2,故PF 2+FQ 2=EP 2+GQ 2; (3)四条线段EP 、PF 、FQ 、QG 之间的关系为PE 2+GQ 2=PF 2+FQ 2,证明方法同上.【详解】(1)过点E 作EH ∥FG ,连接AH 、FH ,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴2,∴22,∴P(22).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.8.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.二、初三数学圆易错题压轴题(难)9.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.10.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)18105.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m =2,过点N 作NS ⊥DP 于S ,连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R ,通过构造直角三角形,应用解直角三角形方法球得DK .【详解】解:(1)证明:∵DE ⊥AB∴∠BED =90°∴∠A +∠ADE =90°∵∠ADC =90°∴∠GDF +∠ADE =90°∴∠A =∠GDF∵BD BD =∴∠A =∠GFD∴∠GDF =∠GFD∴GD =GF(2)连接OD 、OF∵OD =OF ,GD =GF∴OG ⊥DF ,PD =PF在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS )∴∠FBP =∠DHP =90°∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90°∴∠GDF =∠DFG =45°∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12∴PH =PB =6∵∠HDP =∠HPD =45°∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45°∴EF =BE∵∠DAE =∠ADE =45°∴DE =AE∴DF =AB =∵四边形ABCD 内接于⊙O∴∠DAB +∠BCD =180°∴∠BCD =135°∴∠BCG =45°=∠CBG∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP∴△GCP ≌△GBP (SAS )∴∠PCG =∠PBG =90°∴∠PCD =∠CDH =∠DHP =90°∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90°令CN =m ,则PN =6﹣m ,MN =m +3在Rt △PMN 中,∵PM 2+PN 2=MN 2∴32+(6﹣m )2=(m +3)2,解得m =2∴PN =4过点N 作NS ⊥DP 于S ,在Rt △PSN 中,PS =SN =DS =﹣=SN 1tanDS 2SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12∴AQ =18﹣12=6∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O ,∴∠DAF +∠DKF =180°∴∠DAF =180°﹣∠DKF =∠FKR在Rt △DFR 中,∵DF =1tan 2FDR ∠=∴FR DR ==在Rt △FKR 中,∵FR tan ∠FKR =2∴KR =5∴DK =DR ﹣KR =555=-=.【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.11.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N 在第二象限与点N在第一象限去分析求解即可求解; 试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4, 设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2, 则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB ∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR , ∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t =; 若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
数学九年级上册 几何模型压轴题单元测试卷(含答案解析)
数学九年级上册 几何模型压轴题单元测试卷(含答案解析)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(,,G 2,F 2,) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。
九年级数学几何模型压轴题专题练习(解析版)
九年级数学几何模型压轴题专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.如图 1,在 Rt∆ΛSC 中,Z4 = 90o, AB=AC f点 D, E 分别在边 AB, AC 上,AD=AE f连接DC,点M, P, N分别为DE, DC, BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是_,位置关系是_;(2〉探究证明:把AADF绕点A逆时针方向旋转到图2的位置,连接BD, CE,判断APMN的形状,并说明理由;(3)拓展延伸:把AADF绕点A在平面内自由旋转,若AD=4, AB=IO f请直接写出APMN面积的最人值.【答案】(I)PM=PΛ∕, PM丄PN;(2) APMN是等腰直角三角形.理由见解析;(3)49 S A.PMN⅜⅛大=.【解析】【分析】(1)由已知易得加=C利用三角形的中位线得出PM = ;CE , PN = ;BD,即可2 2得出数量关系,再利用三角形的中位线得出PM//CE得出ZDPM = ZDc4,最后用互余即可得出位置关系;(2)先判断出MBQ三AACE,得出皮) = CE,同(1)的方法得出PM=-BD i2PN = LBD t即可得出PM = PN,同(1)的方法由2ZMPN = ZDCE+ ZDCB+ ZDBC= ZACB+ ZABC ,即可得出结论;(3〉方法1:先判断出MN最人时,APMN的面积最大,进而求出AN, AM,即可得出MN最)<=AM + AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,WMN的面积最大,而Br)最人是AB + AD = 14,即可得出结论.【详解】解:(1)•••点P, N是BC, CD的中点,.∙.PN□BD, PN = -BD,2•••点P, M是CD,DE的中点,..PM//CE9 PM=丄CE ,2∙.∙AB=AC, AD=AE^:.BD = CE ,:.PM = PN,-PN//BD f.∙. ZDPN = ZADC,':PMIlCE.:.ZDPM = ZDCA,∙.∙ ZfiAC = 90。
九年级数学上册几何模型压轴题专题练习(解析版)
九年级数学上册几何模型压轴题专题练习(解析版)一S初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正方形,AAEF为等腰直角三角形,ZAEF=90° ,连接FC, G 为FC的中点,连接GD, ED.(1)如图①,E在AB上,直接写出ED, GD的数量关系.(2)将图①中的AAEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB = 5, AE = I t将图①中的ZkAEF绕点A逆时针旋转一周,当E, F, C三点共线囹①图②【答案】(I)DE=JjDG: (2)成立,理由见解析;(3) DE的长为4血或3 √2 •【解析】【分析】(1)根据题意结论:DE= J∑ DG,如图1中,连接EG,延长EG交BC的延长线于连接 DM.证明△CMG^∆FEG (AAS),推出 EF=CM, GM=GE.再证明△DCM^∆DAE(SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到IVh使得GM=GE.连接CM, DM,延长 EF交CD 于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E, F, C共线时.②如图3-3中,当E, F, C 共线时,分别求解即可.【详解】解:(I)结论:DE=JJ DG.M l连接DM.≡1四边形ABCD是正方形,・•・AD = CD, Z B = Z ADC=Z DAE=Z DCB=Z DCM = 90∖T Z AEF = Z B = 90°,・•・ EFIl CM t・•・ Z CMG = Z FEG,T Z CGM=ZEGF, GC = GF,・•・△ CMG竺心 FEG (AAS),.β. EF=CM t GM = GE fT AE = EF,・•・ AE = CM,・•・△ DCM竺△ DAE (SAS),・•・ DE = DM, ZADE=ZCD M,・•・Z EDM = Z ADC=90∖/. DG丄EM, DG = GE=GlvL.∙. △ EGD是等腰直角三角形,••・DE=√2 DG.(2)如图2中,结论成立.SzTEG=GM, FG=GC, Z EGF = Z CGM, ・•・△ CGM雯Δ FGE (SAS), ・•・ CM = EF, ZCMG=Z GEF, ・•・ CMIl ER,・•・ Z DCM = Z ERC,T Z AER+Z ADR=I80%・・・ Z EAD+Z ERD=I80\ ••• Z ERD+Z ERC = I80°,・•・ Z DCM = Z EAD,T AE = EF,••・ AE = CM,・•・△ DAE竺厶 DCM (SAS), /. DE = DM, Z ADE = Z CDM, ••・Z EDM = Z ADC=90∖•・・ EG=GM t・•・ DG = EG = GlVL・・・△ EDG是等腰直角三角形,,延长EF交CD于R.使得GM = GE,连接CW・•・ DE=JJ DG.(3)①如图3-1中,当E, F, C共线时,在Rt∆ AEC 中,EC= √AC2^AE2= √(5√2)2-l2 =7>•・ CF = CE - EF = 6,1•・ CG=-CF = 3,2・• Z DGC = 90% •・DG= √CD2 -CG2= √52 -32 =4•・DE=√2 DG=4√2 ・F, C共线时,同法可得DE = 3√2・综上所述,DE的长为4血或3√2・【点睛】本题属于四边形综合题,考査正方形的性质,全等三角形的判左和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.已知:如图①,在矩形ABCD中,AB = yAD = 4.AE丄BD,垂足是E∙点F是点E关于A3的对称点,连接AF. BF・(2)若将△初F 沿着射线BD 方向平移,设平移的距离为山(平移距簡指点3沿BD 方向 所经过的线段长度)•当点F 分别平移到线段AB 、AD 上时,直接写岀相应的加的值.(3)如图②,将A ABF 绕点B 顺时针旋转一个角tz (0o <r∕<180o ),记旋转中为 △AH 在旋转过程中,设∕ΓF'所在的直线与直线AD 交于点P,与宜线3D 交于点0・是否存在这样的戶、0两点,使ADPO 为等腰三角形?若存在,求出此时D0的 长:若不存在,请说明理由・【答案】(I )AF = M,3F=三:(2) m =-或加=聲:(3)存在4组符合条件的点5 5 5 525 9P 、点Q ,使ADPO 为等腰三角形:DO 的长度分别为2或亍或=Ji3-5或8 5【解析】【分析】(1) 利用矩形性质、勾股左理及三角形而积公式求解:(2) 依题意画出图形,如图①√L 所示.利用平移性质,确定图形中的等腰三角形,分别 求出m 的值:(3) 在旋转过程中,等腰ADPQ 有4种情形,分别画出图形,对于各种情形分別进行汁 算即可.【详解】(1) •••四边形ABCD 是矩形,ΛZBAD=90o ,在 RtA ABD 中,AB =3, AD =4,由勾股定理得:BD=⅛+A Z )-=^TT^ = 5.VS∆ABD= BD∙AE=丄 AB∙AD,2 2ABAD 3x412 AAE= ------------ = -------- =—, BD 55 T 点F 是点E 关于AB 的对称点, 12 AAF=AE = -, BF=BE t(1)求AF 和8E 的长;B图②督用囹5 VAE 丄 BD,∙∙∙ ZAEB=90o ,12在 RtZkABE 中,AB=3, AE=-5(2)设平移中的三角形为△ A8F.如图①4所示:Q 由平移性质可知,AB√A x BS Z4=Z1, BF=BF=—,5 ① 当点尸落在AB 上时,•••AB 〃A8,ΛZ3=Z4.根据平移的性质知:Z1=Z4,ΛZ3=Z2,9 πn 9ABB z =B f R=-,即 HI =-: 5 5② 当点F 落在AD 上时,VAB√A ,BS AB±AD,ΛZ6=Z2, A8丄AD,VZI=Z2t Z5=Z1,ΛZ5=Z6.又知A8丄AD,•••△BFD 为等腰三角形,9 ∙∙∙ B Z D=B r r=-,5. I 9 16 ππ 16ABB r =BD-B ,D=5-τ = 一,即 m=-;5 5 5(3)存在.理由如下: 由勾股左理得:BE =√AB 2-AE 2•••四边形ABCD是矩形,ΛZBAD=90∖VAE ± BD,∙∙∙ ZAEB=90o tZ2+ZABD=90o , ZBAE+ZABD=90o ,ΛZ2=ZBAE tT 点F 是点E 关于AB 的对称点,AZl=ZBAE tΛZ1=Z2,在旋转过程中,等腰ADPQ 依次有以下4种情形:①如图③√L 所示,点Q 落在BD 延长线上,且PD=DQ,图③∙1则 ZQ=ZDPQlΛZ2=ZQ+ZDPQ=2ZQ.VZI=Z3+ZQ> Z1=Z2,ΛZ3=ZQ,∙∙∙AQ 二 A'B=3,12 27 ∙∙∙ F r Q=F Z A z +A z Q= —+ 3 = — t5 5Λ DQ=BQ -BD=^lθ-5 5②如图③《2所示,点Q 落在BD 上,且PQ=DQ,在RtΔBFQ 中,由勾股龙理得: BQ =√BF 2+FQ 2 9√10图③-2则 Z2=ZP,VZI=Z2,Λ Zl=ZP,∙∙∙ BA 力 PD,则此时点A,落在BC边上.VZ3=Z2,ΛZ3=Z1,∙∙∙ BQ=AQ12AF r Q=FW-A z Q=--BQ,5在RtΔBQF f中,由勾股左理得:BH+FQ2=BQ2, 即」黑咅-对吨,解得:BQ = -,8.∖ DQ= BD-BQ=5 ---- =——:8 8则 Z3=Z4.VZ2+Z3+Z4=180% Z3=Z4.Λ Z4=90O-4 Z2.2VZI=Z2tΛ Z4=90o-1 Zl,2Λ ZAQB=Z 4=90。
人教版数学九年级上册 几何模型压轴题单元测试卷(解析版)
人教版数学九年级上册几何模型压轴题单元测试卷(解析版)一、初三数学旋转易错题压轴题(难)1.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠A EB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.2.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.3.综合与实践 问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度; 操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论. 探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥ 【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥. 【详解】 (1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点, //,//HF AD FG BE ∴, AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒, 又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==,FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥.连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形, ∴F 是ED 中点, 又∵H 是AE 中点, ∴AD ∥HF , ∵HF ⊥ED , ∴AD BE ⊥. 【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.4.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________; 数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由; 类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DF EF ;(2)3EF DF =,DFEF ,理由见解析;(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】 【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.【详解】解:(1)3EF DF =,DFEF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴.MF NC NB ∴==,CF CN FN AM +==. 设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a ==, 333MF NE b==, 又90DMF FNE ∠=∠=︒, DMF FNE ∴∽.MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒. 90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DFEF .理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=. 又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒. GEB 为等边三角形, 60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF===∠; (3)①3EF DF =,DF EF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩, ()SAS ADF BNF ∴≅. AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.120NOC ADC ∴∠=∠=︒. 60BOJ ∴∠=︒,60JEC ∠=︒. 又OJB EJC ∠=∠, OBE ECJ ∴∠=∠.AD CD =,AD NB =, CD NB ∴=. 又GEB 是等边三角形, CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠, 即60NED BEC ∠=∠=︒. DEN ∴是等边三角形. 又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan E E F DF FD ∴∠=⋅=.②旋转过程中EF =,DF EF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.5.如图,△ABC 和△DEC 都是等腰三角形,点C 为它们的公共直角顶点,连接AD 、BE ,F 为线段AD 的中点,连接CF .(1)如图1,当D 点在BC 上时,BE 与CF 的数量关系是__________;(2)如图2,把△DEC 绕C 点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC 绕C 点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.6.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC ,又∵BG=ED ,DE=DA ,∴BG=AD ,又∵BC=AC , ∴△BCG ≌△ACD (SAS ),∴GC=DC ,∠BCG=∠ACD , ∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG 是等腰直角三角形,又∵F 是DG 的中点,∴CF ⊥DF 且CF=DF .点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.7.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3.【解析】 【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m<∴满足条件的m 的取值范围为2<m< (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.8.两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB=∠DCE=90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.二、初三数学 圆易错题压轴题(难)9.在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、 AD 、BD .已知圆O 的半径长为5,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC=x ,ACO OBDS S=y ,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.【答案】(1)2;(2)2825x x x -+(0<x <8);(3)AD=145或6.【解析】 【分析】(1)根据垂径定理和勾股定理可求出OC 的长.(2)分别作OH ⊥AB ,DG ⊥AB ,用含x 的代数式表示△ACO 和△BOD 的面积,便可得出函数解析式.(3)分OB ∥AD 和OA ∥BD 两种情况讨论. 【详解】解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8, ∴OD ⊥AB ,AC=12AB=4, 在Rt △AOC 中,∵∠ACO=90°,AO=5, ∴22AO AC -,∴OD=5, ∴CD=OD ﹣OC=2;(2)如图2,过点O 作OH ⊥AB ,垂足为点H , 则由(1)可得AH=4,OH=3, ∵AC=x , ∴CH=|x ﹣4|,在Rt △HOC 中,∵∠CHO=90°,AO=5,∴22HO HC +223|x 4|+-2825x x -+ ∴CD=OD ﹣OC=52825x x -+ 过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG ,∴OH OCDG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x )∴y=ACO OBDS S=()323582x x -=()58x -(0<x <8)(3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°,∴综上得AD=145或6.故答案为(1)2;(2)y=()282558x x xx-+-(0<x<8);(3)AD=145或6.【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.10.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2)①1825;②当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得: 当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445; (3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB ∥CD .∴∠ABD =∠BDC ,∵∠ABD =∠ECG ,∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°,∵∠EFC =∠CBD .∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE ②Ⅰ、当EG =CG 时,∠GEC =∠GCE =∠ABD =∠BDC .∴E 与D 重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.11.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP⋅,解得m=42或﹣42(舍弃),∴DE=2m=82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.12.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的O过点E.(1)求证:四边形ABCD是菱形.(2)若CD的延长线与圆相切于点F,已知直径AB=4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π-【解析】试题分析:(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF,过点D作DP,AB P E EQ AB⊥⊥于过点作于Q,分别求出扇形BOE、△AOE、半圆O的面积,即可得出答案.试题解析:(1)AE=EC,BE=ED∴ABCD四边形为平行四边形∵90AB AEB∠∴=︒是直径∴ABCD平行四边形是菱形(2)连接OF,过点D作DP,AB P E EQ AB⊥⊥于过点作于QCF切O于点F∴90OFC ∠=︒∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒∴3090EOB EQO ∠∠=︒=︒ ∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.13.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(-2,0),(8,0),(0,-4); ①求此抛物线的函数解析式;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b 取何值,点D 的坐标均不改变.【答案】(1)①y=x 2-x-4;②△BDM 的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M 作ME ∥y 轴,交BD 于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题14.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x ≤90和0≤x ≤180时,线段O 2A 所在的直线与⊙O 1相交 考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大15.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得。
九年级上册数学 几何模型压轴题中考真题汇编[解析版]
九年级上册数学几何模型压轴题中考真题汇编[解析版]一、初三数学旋转易错题压轴题(难)1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)7 7【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴3293∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=12AC=t,CD33,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t=377(负值舍去),∴AC=2t 67.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.2.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OB D′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.3.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.4.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,5.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值2, ∴22,即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x=-+;(2)2<m<223)m=6或m17﹣3.【解析】【分析】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax=+,把A(220)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为()21242y x m=--,由()221421242y xy x m⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y得到222280x mx m-+-=,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有()222(2)428020280m mmm⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax =+,把A (22,0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22.(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ), 把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.8.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′.(1)如图1,当α=30°时,求证:B ′C=DE ;(2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值;(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 .【答案】(1)证明见解析(2)45°或22.5°(3)2-22+2【解析】【分析】(1)先由正方形的性质得到直角三角形AOE ,再经过简单计算求出角,判断出△ADE ≌△AB′C 即可;(2)先判断出△AEB′≌△AE′D ,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q 的位置,PQ 最小时和最大时的位置,进行计算即可.【详解】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB-∠E=45°-30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,''AD ABDAE CABAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,''''AE AEAD ABDB DE=⎧⎪=⎨⎪=⎩,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴122,连接AC交BD于O,∴OA⊥BD,OA=12AC=122在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',∴AQ=OA=12BD(全等三角形对应边上的高相等),∴PQ=AQ-AP=122-2在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴2,∴2+2,故答案为2-2+2..二、初三数学 圆易错题压轴题(难)9.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F .(1)若⊙O 半径为2,求线段CE 的长;(2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r -= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE切⊙O于E,∴∠OEC=90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关10.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似12.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(3)70【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN =∠MCD ,且∠FND =∠CMD =90°,DF =DC , ∴△FDN ≌△DCM (AAS ) ∴FN =DM ,CM =DN , ∵EG =GH =5,∴∠GEH =∠GHE ,且∠GHE =∠DHC ,∠GEH =∠GDC , ∴∠HDC =∠CHD , ∴CH =CD ,且CM ⊥DH , ∴DM =MH =FN , ∵S △DFG =9, ∴12DG×FN =9, ∴12×(5+2FN )×FN =9, ∴FN =2,∴DM =2,DH =4,∵∠GEC =∠GDC ,∠EGC =∠DMC , ∴△EGC ∽△DMC , ∴52EC EG CDDM, ∴EC =52CD ,且HC =CD , ∴EH =32CD ,∵∠EGD =∠ECD ,∠GEC =∠GDC , ∴△GEH ∽△CHD , ∴EG EHCHDH, ∴3524CDCD, ∴2403CD , ∵EC 2﹣CD 2=DE 2, ∴222254CD CD DE ,∴2214043DE ,∴DE∴BC 【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.13.(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=13,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是81313+,最小值是81313-.【解析】【分析】(1)连接线段OP交⊙C于A,点A即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ', ∴CO +PQ ≤CQ '+P 'Q ', 又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短. 在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴684.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2. (3)△ACF 的面积有最大和最小值. 如图3,取AB 的中点G ,连接FG ,DE . ∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB , ∴AC =GB =3, 又∵AD =9, ∴3193AG AD ==, ∴DAF AE AGA = ∵∠BAD =∠B =∠EAF =90°, ∴∠FAG =∠EAD , ∴△FAG ~△EAD , ∴13FG AF DE AE ==, ∵DE =3, ∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值, 在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 313BC BAC AC ∠===在Rt △ACH 中,313913sin 3GH AG BAC =•∠==∴119131F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯-=; ∴四边形ADCF 面积最小值是:27313813132722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形, ∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°, ∴PG >PN , 又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM , ∴F 2H 是△ACF 的边AC 上的最大高, ∴面积有最大值, ∵229131F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22AC F H +•=⨯+=; ∴四边形ADCF 面积最大值是27313813132722+++=综上所述,四边形ADCF 面积最大值是813132+,最小值是813132-. 【点睛】 本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.14.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切? (3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE︒=⋅,故当E点与C点重合,PE取得最大值时,FG有最大值,解之即可.②明显以E点与C点重合前后为节点,点F的运动轨迹分两部分,第一部分为从P开始运动到E点与C点重合,即图中的12F F,根据1212F F AC AF CF=--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cosONBOB==即32282mm=-解得32348m=-(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒, ∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553102AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭,所以点F所经过的路径长是1153762+. 【点睛】 本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.15.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)1855AB =. 【解析】【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出OCD ODC ∠=∠,从而得证;(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2b a =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP 是角平分线利用角平分线定理得出BCP EBP S DP BD S PE BE∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出HO OF GO OK=,从而计算AB . 【详解】(1)连接OC ,CD因为AC AD =,所以COA DOA ∠=∠OC OD=,,OA CD CD AB∴⊥∴⊥;(2)连接BC,,BC BD BA CD=⊥所以AB平分CBD∠,设ABD ABCα∠=∠=2CBDα∴∠=CD CE∴=2CBE CBDα∴∠=∠=,3EBAα∴∠=3EBA ABD∴∠=∠.(3) 2,90EBC BPE PEBαα︒∠=∠=∠=-设,5BE BP a DB a===作,CM DB CN BE⊥⊥,可证:CDM CEN∆≅∆,DM EN=,再证:,CMB CNB BM BN∆≅∆=设,5,2DM EN b a b a b b a==+=-∴=在CBM∆中勾股4CM a=在CDM∆中勾股25CD a=得CPD∆为等腰三角形25DP DC a==因为BP为角平分线,过点P作,PT BE PS BD⊥⊥可证:5BCPEBPS DP BDS PE BE∆===2525,PE DE∴==14tan ,tan 223αα== 2555,32BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,1655OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.16.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,AC AB ⊥,90CAN BAM ∴∠+∠=︒,ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆,2(3)1CN AM ∴==---=,3(5)2BM AN ==---=,(2,2)B ∴--,(5,1)C --,点B ,C 在抛物线上,∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽,∴AM BM BM DM =, ∴122DM=, 4DM ∴=,2()2D ∴,,5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,5AE ∴==,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②,联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。
九年级上册几何模型压轴题章末训练(Word版 含解析)
九年级上册几何模型压轴题章末训练(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(-8,33-4+),G 2(8,-8),F 2(218,-4) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。
【详解】解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5∴a+2b=10∴a 和b 之间的数量关系是a+2b=10(2)①设直线AD 的解析式为y=kx+c∵直线AD 与y 轴交于(0,-7),A (2,5)∴2k c 5{c -7+==解得k 6{c -7==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2y ax +bx-3a-5{y 6x-7== 消去y 得ax 2+(b-6)x-3a+2=0∵抛物线与直线AD 有两个交点∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2a+∵A (2,5)∴x A =2即x D =2a -22a +∵x D =b -2a =a-104a ∴2a -22a +=a-104a 解得a=2∴b=10-a 2= 4 ∴此时抛物线的解析式为y= 2x 2+4x-11②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t )∵A (2,5),∴AI=2,BJ=5-t∵AB 绕点B 顺时针旋转90°,得到线段BH∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90°∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180°∴∠IBA+∠JBH=90°即∠IAB=∠JBH∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t∴H (5-t ,t-2)∵D (-1,-13)∴y B -y D =t+13同理可得:C (t+13,t-1)设DH 的解析式为y=k 1x+b 1∴1111-k b -13{5-t k b t-2+=+=()解得11t 11k 6-t {t 11b -13-t-6+=+= 即直线AD 的解析式为t 1111y x-13-66t t t ++=-- ∵D 、H 、C 三点共线∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111t-1t 13-13-66t t t ++=+--()整理得2t 2+31t+82=0解得131305t -4+=,231-305t -4= 由图可知:①当131305t -+=如图1所示: 此时H (51305+,39305-+) ,C (305-21-,35305-+) ∵点G 为DH 中点,点F 为BC 中点∴G 1(47305+,91305-+) ,F 1(305-21-,33305-+) 由图可知:当231-305t -=如图2所示: 此时H (51-305,39-305-) ,C (30521+,35-305-) ∵点G 为DH 中点,点F 为BC 中点∴G 2(47-305,91-305-) ,F 2(30521+,33-305-) (14分) ∴综上所述:G 1(47305+,91305-+) ,F 1(305-21-,33305-+) G 2(47-3058,91-305-8) ,F 2(305218+,33-305-4)。
上海数学几何模型压轴题单元测试卷(解析版)
上海数学几何模型压轴题单元测试卷(解析版)一、初三数学旋转易错题压轴题(难)1.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)56;(2)33;(3)存在,63【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=推出16A CEC=A126nm,推出BH=A126nm,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴33n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,33BE n BG m ==, ∵四边形BEFG 是矩形, ∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME , ∴3FG F FM FE D ==, ∵∠DFM=90°,tan 33FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°, ∴3FM DM =; 在矩形ABCD 中,有33AD AB = 333=3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴332322FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.2.如图1,矩形ABCD 中,E 是AD 的中点,以点E 直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,∠F=30°.(1)求证:BE =CE(2)将△EFG 绕点E 按顺时针方向旋转,当旋转到EF 与AD 重合时停止转动.若EF ,EG 分别与AB ,BC 相交于点M ,N.(如图2)①求证:△BEM≌△CEN;②若AB =2,求△BMN 面积的最大值;③当旋转停止时,点B 恰好在FG 上(如图3),求sin∠EBG 的值.【答案】(1)详见解析;(262+ 【解析】【分析】(1)只要证明△BAE ≌△CDE 即可; (2)①利用(1)可知△EBC 是等腰直角三角形,根据ASA 即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH ⊥BG 于H .设NG=m ,则BG=2m ,3m ,6m .利用面积法求出EH ,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,3.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为2 2+315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴OF′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.5.(1)发现如图,点A为线段BC外一动点,且BC a=,AB b=.填空:当点A位于____________时,线段AC的长取得最大值,且最大值为_________.(用含a,b的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b ,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EABAC AE⎧⎪∠∠⎨⎪⎩===,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵22,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.6.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.7.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC ,∴ED=EF ,∵AB=AC ,BC=AC ,∴△ABC 是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF ,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF ;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC ,又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC ,∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,二、初三数学 圆易错题压轴题(难)9.如图,以A (0x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式;(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)234333y x x =++3)⊙M 与⊙A 外切【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==,∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0),点C 与点F (-1,0)都在抛物线上.设()()13y a x x =++,用(03A ,代入得 ()()30103a =++, ∴33a =. ∴)()313y x x =++,即2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下:∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠,∴MED MDE ∠=∠.∴ME MD =.∵MA MD AD ME AD =+=+,∴⊙M 与⊙A 外切.10.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC 于D 点,过D 作⊙O 的切线交BC 于E.(1)若O 为AB 的中点(如图1),则ED 与EC 的大小关系为:ED EC (填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O 过BC 中点时(如图3),求CE 长.【答案】(1)ED=EC ;(2)成立;(3)3【解析】 试题分析:(1)连接OD ,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO ,即可得到∠CDE=∠C ,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ;(2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.12.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大13.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,∴12EA2+12CF2=12EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴12S△ABC=12S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形CHMO=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG :BH =9:8, 设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =32,∴CF =2(k+3),EF =2(8k ﹣3),∵EA 2+CF 2=EF 2,∴222(32)[2(3)][2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =22AB =62, ∴⊙O 的半径为62.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.14.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,610PQ OQ +=,求CF 的长. 【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r ∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r ∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.15.如图,在ABC∆中,90C∠=︒,30CAB∠=︒,10AB=,点D在线段AB上,2AD=.点P从D点出发,沿DB方向运动,以DP为直径作O,当P运动到点B时停止运动,设DP m=.(1)AO=___________,BP=___________.(用m的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】 (1)2222DP m AO =+=+,8BP AB AP m =-=- (2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒ ∴2AO OH =∴22m m +=解得4m =情况2:与BC相切时,Rt BON ∆中,∵60B ∠=︒ ∴3cos 2ON B OB ==即32282mm =- 解得32348m =-(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒,∴3cos30cos30FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553102AC BC EP AB ⨯===.在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF .在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762 【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.16.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,。
九年级上册数学 几何模型压轴题章末训练(Word版 含解析)
九年级上册数学 几何模型压轴题章末训练(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.已知:如图①,在矩形ABCD 中,AB =5,203AD =,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,求出相应的m 的值; (3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的ABF 为A BF '',在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q ,若△DPQ 为等腰三角形,请直接写出此时DQ 的长.【答案】(1)4;3 (2)3或163 (3)2512525310103243-、、103 【解析】【分析】(1)由矩形的性质,利用勾股定理求解BD 的长,由等面积法求解AE ,由勾股定理求解BE 即可,(2)利用对称与平移的性质得到:AB ∥A′B′,∠4=∠1,BF =B′F′=3.当点F′落在AB 上时,证明BB′=B′F′即可得到答案,当点F′落在AD 上时,证明△B′F′D 为等腰三角形,从而可得答案,(3)分4种情况讨论:①如答图3﹣1所示,点Q 落在BD 延长线上,证明A′Q =A′B ,利用勾股定理求解',,F Q BQ 从而求解DQ ,②如答图3﹣2所示,点Q 落在BD 上,证明点A′落在BC 边上,利用勾股定理求解,BQ 从而可得答案,③如答图3﹣3所示,点Q 落在BD 上,证明∠A′QB =∠A′BQ ,利用勾股定理求解,BQ ,从而可得答案,④如答图3﹣4所示,点Q 落在BD 上,证明BQ =BA′,从而可得答案. 【详解】解:(1)在Rt △ABD 中,AB =5,203AD =, 由勾股定理得:222025533BD ⎛⎫=+= ⎪⎝⎭. 11,22ABD S BD AE AB AD =⋅=⋅.2532053 4.AB ADAEBD⨯⋅∴===在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称的性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,,AB AD⊥∴A′B′⊥AD,'''',B F D B DF∴∠=∠∴△B′F′D为等腰三角形,∴B′D=B′F′=3,2516333BB BD B D''∴=-=-=,即163m=.(3)DQ的长度分别为2512525310103243、、或103.在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,∴∠2=2∠Q,∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A′Q =A′B =5,∴F′Q =F′A′+A′Q =4+5=9.在Rt △BF′Q 中,由勾股定理得:222293310BQ F Q F B ''=+=+=.253103DQ BQ BD ∴=-=-; ②如答图3﹣2所示,点Q 落在BD 上,且PQ =DQ ,∴∠2=∠P ,∵∠1=∠2,∴∠1=∠P ,∴BA′∥PD ,∵PD ∥BC ,∴此时点A′落在BC 边上.∵∠3=∠2,∴∠3=∠1,∴BQ =A′Q ,∴F′Q =F′A′﹣A′Q =4﹣BQ .在Rt △BQF′中,由勾股定理得:'2'22,BF F Q BQ +=即:2223(4),BQ BQ +-= 解得:258BQ =, 25251253824DQ BD BQ ∴=-=-=; ③如答图3﹣3所示,点Q 落在BD 上,且PD =DQ ,∴ ∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,149022∴∠︒∠=﹣. ∵∠1=∠2,149012∴∠=︒-∠. 149012A QB ∴∠'∠︒∠==﹣, 118019012A BQ A QB ∴∠'︒∠'∠︒∠=﹣﹣=﹣, ∴∠A′QB =∠A′BQ ,∴A′Q =A′B =5,∴F′Q =A′Q ﹣A′F′=5﹣4=1.在Rt △BF′Q 中,由勾股定理得:223110BQ =+=,25103DQ BD BQ ∴=-=-; ④如答图3﹣4所示,点Q 落在BD 上,且PQ =PD ,∴ ∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ =BA′=5,2510533DQ BD BQ ∴=-=-=. 综上所述,DQ 的长度分别为2512525310103243--、、或103.【点睛】本题是几何变换压轴题,涉及旋转与平移变换、矩形、勾股定理、等腰三角形等知识点.第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论;在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明; (3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF交CB于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922=当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322 =【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.3.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+3+3m,在Rt△EBH中,sin∠EBH=3+36226EHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC-=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+34)=30334+.综上所述,30334-≤S≤30334+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2,图3-2中,当P 、E 、B 共线时,BE 最大,最大值2,∴22,即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D 作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF 90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB EFAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.7.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).【解析】试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,∠OCH=∠DCH.于是∠GCH为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,,∴△CDG≌△CBG(HL);(2)解:∵△CDG≌△CBG,∴∠DCG=∠BCG,DG=BG.在Rt△CHO和Rt△CHD中,∵,∴△CHO≌△CHD(HL),∴∠OCH=∠DCH,OH=DH,∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,∴HG=HD+DG=HO+BG;(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.∵DG=BG,∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∴当G点为AB中点时,四边形AEBD为矩形.∵四边形DAEB为矩形,∴AG=EG=BG=DG.∵AB=6,∴AG=BG=3.设H点的坐标为(x,0),则HO=x∵OH=DH,BG=DG,∴HD=x,DG=3.在Rt△HGA中,∵HG=x+3,GA=3,HA=6﹣x,∴(x+3)2=32+(6﹣x)2,解得x=2.∴H点的坐标为(2,0).考点:几何变换综合题.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ), ∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,二、初三数学 圆易错题压轴题(难)9.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = ,∴∠ADE=∠AFE=45°,∵∠ABD=45°, ∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD ,∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°,∵42AB = ,∴BF=42cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8, ∵BE 2=EF 2+BF 2, 82<BE ≤413 , ∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.10.如图①,一个Rt △DEF 直角边DE 落在AB 上,点D 与点B 重合,过A 点作二射线AC 与斜边EF 平行,己知AB=12,DE=4,DF=3,点P 从A 点出发,沿射线AC 方向以每秒2个单位的速度运动,Q 为AP 中点,设运动时间为t 秒(t >0)•(1)当t=5时,连接QE ,PF ,判断四边形PQEF 的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.11.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=2时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2)①1825;②当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC =sin∠CBD,得出35CE CDCF BD==,根据勾股定理得到CF=62CE1825;②分三种情况讨论求得:当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD=∠BDC,从而证得E、D重合,即可得到BE=BD=10;当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH=245,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE=395;当CG=CE时,过点E作EM⊥CG于点M,由tan∠ECM=43EMCM=.设EM=4k,则CM =3k,CG=CE=5k.得出GM=2k,tan∠GEM=2142GM kEM k==,即可得到tan∠GCH=GHCH=12.求得HE=GH=125,即可得到BE=BH+HE=445;(3)连接OE、EF、AE、EF,先根据切线的性质和垂直平分线的性质得出EF=CE,进而证得四边形ABCD是正方形,进一步证得△ADE≌△CDE,通过证得△EHP∽△FBC,得出EH=16BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=106,根据勾股定理求得PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB∥CD.∴∠ABD=∠BDC,∵∠ABD=∠ECG,∴∠ECG=∠BDC.(2)解:①∵AB=CD=6,AD=BC=8,∴BD=10,如图1,连结EF,则∠CEF=∠BCD=90°,∵∠EFC=∠CBD.∴sin∠EFC=sin∠CBD,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF=22BF BC+=10,∴PE=16FC=53,∴PH=224PE EH3-=,∴PD=47133+=,∴12773824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.12.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒5AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= ,故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形, 则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
九年级数学上册几何模型压轴题(培优篇)(Word版 含解析)
九年级数学上册几何模型压轴题(培优篇)(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直; (2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.2.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M ,OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=,90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H ,∴1403x -+=, 解得,x =12,∴(12,0)H , ∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.3.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=3FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DE DEEDG EDMDG DM⎧⎪∠∠⎨⎪⎩===,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.5.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE ,AB =AC ,AD =AE ,则BD =CE , (1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB =BC ,∠ABC =∠BDC =60°,求证:AD+CD =BD ;(3)如图3,在△ABC 中,AB =AC ,∠BAC =m°,点E 为△ABC 外一点,点D 为BC 中点,∠EBC =∠ACF ,ED ⊥FD ,求∠EAF 的度数(用含有m 的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12m°. 【解析】分析:(1)如图1中,欲证明BD=EC ,只要证明△DAB ≌△EAC 即可;(2)如图2中,延长DC 到E ,使得DB=DE .首先证明△BDE 是等边三角形,再证明△ABD ≌△CBE 即可解决问题;(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .想办法证明△AFE ≌△AFG ,可得∠EAF=∠FAG=12m°. 详(1)证明:如图1中,∵∠BAC=∠DAE , ∴∠DAB=∠EAC , 在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.6.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.7.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学圆易错题压轴题(难)9.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.10.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2182当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得: 当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445; (3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB ∥CD .∴∠ABD =∠BDC ,∵∠ABD =∠ECG ,∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°,∵∠EFC =∠CBD .∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE ②Ⅰ、当EG =CG 时,∠GEC =∠GCE =∠ABD =∠BDC .∴E 与D 重合,∴BE =BD =10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.11.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB 于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P 是半圆O 上的点,P 在y 轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC 是正方形,∴正方形的面积是4,又∵BD ⊥AB ,BD=6,∴梯形OPDB 的面积=()(26)2822OP DB OB +⨯+⨯==, ∴点P 的关联图形的面积是12.(2)判断△OCD 是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P , ∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=2∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+考点:圆的综合题.12.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,3602BOH HOC ∆阴影扇形(3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为18629322x -==-(秒). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,3602BOH HOC ∆阴影扇形(3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为1862932x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.13.如图,AB 为⊙O 的直径,CD ⊥AB 于点G ,E 是CD 上一点,且BE =DE ,延长EB 至点P ,连接CP ,使PC =PE ,延长BE 与⊙O 交于点F ,连结BD ,FD .(1)连结BC ,求证:△BCD ≌△DFB ;(2)求证:PC 是⊙O 的切线;(3)若tan F =23,AG ﹣BG =533,求ED 的值.【答案】(1)详见解析;(2)详见解析;(3)DE 133 【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=533求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,所以∠COB=∠PEC,因为PE=PC,所以∠PEC=∠PCE,所以∠PCE=∠COB,因为AB⊥CD于G,所以∠COB+∠OCG=90°,所以∠OCG+∠PEC=90°,即∠OCP=90°,所以OC⊥PC,所以PC是圆O的切线.(3)因为直径AB⊥弦CD于G,所以BC=BD,CG=DG,所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG, 设BG =2x ,则CG =3x .连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG ,所以2392x x -=,解得x ,所以BG =2x CG =3x =所以BC =,所以BD =BC , 因为∠EBD =∠EDB =∠BCD ,所以△DEB ∽△DBC , 所以BDB DC DE D =,因为CD =2CG =所以DE =2DB CD =. 【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .14.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,。
数学九年级上册 几何模型压轴题(篇)(Word版 含解析)
数学九年级上册几何模型压轴题(篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE =2DG .(3)①如图3﹣1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌.∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =,∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+ 2222x =--(舍去).当222x =-+QF CE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.3.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H 是AE 中点,∴AD ∥HF ,∵HF ⊥ED ,∴AD BE ⊥.【点睛】 本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.4.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程. 【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABCDBE 90∠∠∴+=, A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E , AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=,BCD 的面积为21a 4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.5.在平面直角坐标系中,O 为原点,点A (8,0),点B (0,6),把△ABO 绕点B 逆时针旋转得△A′B′O′,点A 、O 旋转后的对应点为A′、O′,记旋转角为α. (1)如图1,若α=90°,则AB= ,并求AA′的长; (2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102 ;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H ⊥y 轴于H ,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt △BHO′中利用含30度的直角三角形三边的关系可计算出BH 和O′H 的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP ,作B 点关于x 轴的对称点C ,连结O′C 交x 轴于P 点,如图②,易得O′P+BP=O′C ,利用两点之间线段最短可判断此时O′P+BP 的值最小,接着利用待定系数法求出直线O′C 的解析式为y=x ﹣3,从而得到P (,0),则O′P′=OP=,作P′D ⊥O′H 于D ,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①, ∵点A (4,0),点B (0,3), ∴OA=4,OB=3, ∴AB==5,∵△ABO 绕点B 逆时针旋转90°,得△A′BO′, ∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题6.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN ∥AE ,MN=12AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=12AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
几何模型压轴题单元测试与练习(word解析版)
几何模型压轴题单元测试与练习(word解析版)一、初三数学旋转易错题压轴题(难)1.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.2.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222=(3)6DN PD++=39.【点睛】本题考查四边形综合题.3.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12BC3∴tan∠CDF=CFCD=363,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD +∠CDF =90°,∠PCF +∠CPF =90°,∴∠CPF =∠CDF =60°,在△FCP 和△CFD 中,CPF CDF PCF CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP ≌△CFD (AAS ),∴CD =PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP =90°,∴∠ADP =∠ADC ﹣∠CDP =60°,∴△ADP 是等边三角形,∴∠APD =60°,∵∠BPF =∠CPF =90°﹣30°=60°,∴∠BPC =120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.4.(特例发现)如图1,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q .求证:EP=FQ .(延伸拓展)如图2,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作Rt △ABE 和Rt △ACF ,射线GA 交EF 于点H .若AB=kAE ,AC=kAF ,请思考HE 与HF 之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC 中,G 是BC 边上任意一点,以A 为顶点,向△ABC 外作任意△ABE 和△ACF ,射线GA 交EF 于点H .若∠EAB=∠AGB ,∠FAC=∠AGC ,AB=kAE ,AC=kAF ,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ 分别与△AEF 的两边AE 、AF 分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN .∵∠AEF=∠AFE ,∴△HEM ∽△HFN ,∴,∵EH=FH ,∴,且∠MHN=∠HFN=60°,∴△MHN ∽△HFN ,∴△MHN ∽△HFN ∽△MEH ,在△HMN 中,∠MHN=60°,根据三角形中大边对大角,∴要MN 最小,只有△HMN 是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN ∴MN ∥EF ,∵△AEF 为等边三角形,∴MN 为△AEF 的中位线,∴MN min =EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.5.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H是AE中点,∴AD∥HF,∵HF⊥ED,∴AD BE.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.6.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH3.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBOOD OBEOD BOF∠∠⎧⎪⎨⎪∠∠⎩===,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=3FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DE DEEDG EDMDG DM⎧⎪∠∠⎨⎪⎩===,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.7.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值=PB-PE=5-32, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值=PB+PE=5+32, ∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.8.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题; ()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE12SPE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,22DE 213=-=CE 23∴=,故答案为23.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC 1==,AG EF 1==,G F 90∠∠==, PA PE 2∴==PBE12SPE BM BM 22∴=⋅⋅=, ∴当BM 的值最大时,PBE 的面积最大,BM PB ≤,PB AB PA ≤+,PB 22∴≤,BM 22∴≤BM ∴的最大值为22+ PBE ∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.二、初三数学圆易错题压轴题(难)9.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值,要使点P 的关联图形的面积最大,就要使△PCD 的面积最小, ∵CD 为定长,∴P 到CD 的距离就要最小, 连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-, ∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==,∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.10.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos302FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===,3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-43212m ∴+= 3103m ∴=-综上所述,当m =1或4或4310O 与△ABC 的边相切。
人教版数学九年级上册 几何模型压轴题(篇)(Word版 含解析)
人教版数学九年级上册几何模型压轴题(篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.2.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.3.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(17;(25【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.(17(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′2;连接PP′,在Rt△BP′P中,∵BP=BP′2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP=5,∵222+=,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=5;∴∠BPC=135°,正方形边长为5.点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.4.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△B OD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.5.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题6.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BCACD BCECDCE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级数学上册 几何模型压轴题单元测试卷附答案
九年级数学上册几何模型压轴题单元测试卷附答案一、初三数学旋转易错题压轴题(难)1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题3.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE.∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD22AD AC-,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AASBC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=, 在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级上册数学 几何模型压轴题单元测试卷(解析版)
九年级上册数学几何模型压轴题单元测试卷(解析版)一、初三数学旋转易错题压轴题(难)1.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.2.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】【分析】 (1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD , 延长BD 交AC 于E ,证明∠AEB=90︒,从而得到BD AC ⊥.(2) 如图3中,设AC=x ,在Rt △ABC 中,利用勾股定理求出x ,再根据sinα=sin ∠ABC=AC AB即可解决问题【详解】 ()1证明:如图2中,延长BD 交OA 于G ,交AC 于E .∵90AOB COD ∠=∠=,∴AOC DOB∠=∠,在AOC和BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD、CD在同一直线上,BD AC⊥,∴ABC是直角三角形,∴222AC BC AB+=,∴222(17)25x x++=,解得7x=,∵45ODC DBOα∠=∠+∠=,45ABC DBO∠+∠=,∴ABCα∠=∠,∴7sin sin25ACABCABα=∠==.【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.3.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,DA DC=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC 和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明; ②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB=,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=,又AD BN CD ==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF 和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD=,AD NB=,CD NB∴=.又GEB是等边三角形,CE BE∴=.()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠-∠=∠-∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.4.如图1,矩形ABCD 中,E 是AD 的中点,以点E 直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,∠F=30°.(1)求证:BE =CE(2)将△EFG 绕点E 按顺时针方向旋转,当旋转到EF 与AD 重合时停止转动.若EF ,EG 分别与AB ,BC 相交于点M ,N.(如图2)①求证:△BEM≌△CEN;②若AB =2,求△BMN 面积的最大值;③当旋转停止时,点B 恰好在FG 上(如图3),求sin∠EBG 的值.【答案】(1)详见解析;(262+ 【解析】【分析】(1)只要证明△BAE ≌△CDE 即可; (2)①利用(1)可知△EBC 是等腰直角三角形,根据ASA 即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH ⊥BG 于H .设NG=m ,则BG=2m ,3m ,6m .利用面积法求出EH ,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,5.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,2;(2)(339);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴D H=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)612;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.7.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2)①见解析;②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.8.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学圆易错题压轴题(难)9.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.10.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙c os30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x 4-=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.11.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,推出3cos30cos302FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos302FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯=== 3tan30(2)EP AP m =⋅=+ 533(2)23m ∴=+⋅ ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
九年级数学上册几何模型压轴题单元测试卷(解析版)
九年级数学上册几何模型压轴题单元测试卷(解析版)一、初三数学 旋转易错题压轴题(难)1.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角形OCN,作∠CJN的角平分线,与直线OP相交与点D,然后由所学的性质,求出点D的坐标即可.【详解】解:(1)如图,过点P作PC⊥OA,垂足为C,连接OP,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3 );(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN,∠CJD=∠NJD,JP=JP,∴△CJD≌△NJD(SAS),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND;过点D作DI∥x轴,连接DJ,∵∠DJN=∠COJ=60°,∴OI∥JD,∴四边形OJDI是平行四边形,∴ID=OJ=JN=OC=6,在Rt△JDN中,∠JDN=30°,∴JD=2JN=12;∴点D的斜坐标为(6,12);综合上述,点D的斜坐标为:(32,3)或(6,12).【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.2.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF ,∠FCQ=∠ECQ ,∴CQ ⊥EF ,∠AQF=90°,∴PQ=AF=AP=PF ,∴PD=PQ=AP=PF ,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.3.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =. 又点F 为AB 的中点,AF BF ∴=. ()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =, 120ADC ∠=︒,DA DC =, 3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b ==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =.90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 3DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=.又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2. 【解析】 【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题. (2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题. 【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形, ∴AD ∥BC ,OB =OD , ∴∠EDO =∠FBO , 在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF , ∴EO =OF ,∵OB =OD , ∴四边形EBFD 是平行四边形, ∵EF ⊥BD ,OB =OD , ∴EB =ED ,∴四边形EBFD 是菱形. ②∵BE 平分∠ABD , ∴∠ABE =∠EBD , ∵EB =ED , ∴∠EBD =∠EDB , ∴∠ABD =2∠ADB , ∵∠ABD +∠ADB =90°, ∴∠ADB =30°,∠ABD =60°, ∴∠ABE =∠EBO =∠OBF =30°, ∴∠EBF =60°. (2)结论:IH 3.理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°, ∴EB =BF =ED ,DE ∥BF , ∴∠JDH =∠FGH , 在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF , ∴DJ =FG ,JH =HF , ∴EJ =BG =EM =BI , ∴BE =IM =BF , ∵∠MEJ =∠B =60°, ∴△MEJ 是等边三角形, ∴MJ =EM =NI ,∠M =∠B =60° 在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===, ∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF , ∴IH ⊥JF ,∵∠BFI +∠BIF =120°, ∴∠MIJ +∠BIF =120°, ∴∠JIF =60°, ∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°, ∴∠FIH =30°, ∴IH 3.(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°, ∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°, ∴∠ADF +∠EDC =45°, ∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG , 在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM , ∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM , ∴∠ECM =90° ∴EC 2+CM 2=EM 2, ∵EG =EM ,AG =CM , ∴GE 2=AG 2+CE 2. 【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.(1)问题发现如图1,△ACB 和△DCE 均为等腰直角三角形,∠ACB=90°,B,C,D 在一条直线上. 填空:线段AD,BE 之间的关系为 . (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE 的关系,并说明理由. (3)解决问题如图3,线段PA=3,点B 是线段PA 外一点,PB=5,连接AB,将AB 绕点A 逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值2,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题; ()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE12SPE BM 2=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,22DE 213=-=,CE 23∴=-,故答案为23-.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC 1==,AG EF 1==,G F 90∠∠==, PA PE 2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤+,BM22∴≤+,BM∴的最大值为22+,PBE∴的面积的最大值为21+.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.7.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A 、O 、在一条直线上时,的长最大,正方形ABCD 的边长为1,,,, ,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.8.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果) (2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论; (3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+ 【解析】 【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答. 【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形, 故答案为等边三角形; (2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=, 60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=, 在ABD ∆和ACE ∆中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=, 当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=, ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==,当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=, 30AEC ∴∠︒=, ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=, 28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===, 当CE 最小时,DEC ∆的周长最小, ADE ∆为等边三角形, DE AD ∴=,AD 的最小值为23,DEC ∴∆的周长的最小值为423+.【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.二、初三数学 圆易错题压轴题(难)9.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P 在抛物线上运动,以P 为圆心的⊙P 经过定点A (0,2), (1)求的值;(2)求证:点P 在运动过程中,⊙P 始终与轴相交; (3)设⊙P 与轴相交于M,N(<)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P 的纵坐标为0或4+2或4﹣2. 【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a ,b ,c 的值即可;(2)设P (x ,y ),表示出⊙P 的半径r ,进而与x 2比较得出答案即可;(3)分别表示出AM ,AN 的长,进而分别利用当AM=AN 时,当AM=MN 时,当AN=MN时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a 2=4﹣2; 综上所述,P 的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.10.已知:图1 图2 图3 (1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值.(3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】 【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BNPC BP=,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===, ∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅, ∴BN BPBP BC=, ∵B B ∠=∠, ∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BCPBG PBC BG PB =∠=∠, ∴PBG CBP ∆∆∽, ∴12PG BG PC PB ==, ∴12PG PC =,∴12PD PC DP PG+=+;∵DP PG DG+≥,∴当D、P、G共线时,12PD PC+的值最小,∴最小值为:22435DG=+=;(3)如图,在BC上取一点G,使得BG=1,作DF⊥BC于F,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.11.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似12.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===,3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6,∴2+m =6,∴m =4.如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON == 4310AO ∴=-4312AP ∴=- 43212m ∴+= 3103m ∴=- 综上所述,当m =1或4或4310O 与△ABC 的边相切。
数学九年级上册 压轴解答题专题练习(解析版)
数学九年级上册压轴解答题专题练习(解析版)一、压轴题1.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.2.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.3.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.4.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 5.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.6.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.8.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.9.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.10.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.11.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E(3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.12.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析.【解析】 【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可. (2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证. 【详解】 解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=, o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ , 在☉0中,AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C 在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴ 【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠= ∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4. 【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.3.(1)CD 2+BD 2=2AD 2,见解析;(2)BD 2=CD 2+2AD 2,见解析;(3)①2,②最大值为4414,半径为4【解析】 【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =,再将AD+BD =14,CD =代入AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC , ∴∠BAD =∠CAE , ∵AB =AC ,∴△ABD ≌△ACE (SAS ), ∴BD =CE ,∠B =∠ACE , 在Rt △ABC 中,AB =AC , ∴∠B =∠ACB =45°, ∴∠ACE =45°,∴∠DCE =∠ACB+∠ACE =90°,根据勾股定理得,DE 2=CD 2+CE 2=CD 2+BD 2, 在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2, ∴CD 2+BD 2=2AD 2; (2)BD 2=CD 2+2AD 2, 理由:如图2,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE , 同(1)的方法得,ABD ≌△ACE (SAS ), ∴BD =CE ,在Rt △ADE 中,AD =AE , ∴∠ADE =45°, ∴DE 2=2AD 2, ∵∠ADC =45°,∴∠CDE =∠ADC+∠ADE =90°,根据勾股定理得,CE 2=CD 2+DE 2=CD 2+2AD 2, 即:BD 2=CD 2+2AD 2;(3)如图3,过点C 作CE ⊥CD 交DA 的延长线于E , ∴∠DCE =90°, ∵∠ADC =45°,∴∠E =90°﹣∠ADC =45°=∠ADC , ∴CD =CE ,根据勾股定理得,DE 2=CD 2+CE 2=2CD 2, 连接AC ,BC , ∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°, ∵∠ADC =45°, ∴∠BDC =45°=∠ADC , ∴AC =BC ,∵∠DCE =∠ACB =90°, ∴∠ACE =∠BCD , ∴△ACE ≌△BCD (SAS ), ∴AE =BD , ①AD =6,BD =8, ∴DE =AD+AE =AD+BD =14, ∴2CD 2=142,∴CD =故答案为; ②∵AD+BD =14,∴CD =∴2AD BD ⎛⎫⋅+ ⎪ ⎪⎝⎭=AD•(BD+2)=AD•(BD+7) =AD•BD+7AD =AD (14﹣AD )+7AD =﹣AD 2+21AD =﹣(AD ﹣212)2+4414,∴当AD =212时,AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭的最大值为4414, ∵AD+BD =14, ∴BD =14﹣212=72,在Rt △ABD 中,根据勾股定理得,AB =∴⊙O 的半径为OA =12AB .【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.4.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME ∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM ====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.5.(1)AP+PQ的最小值为4;(2)存在,M点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90︒,可知B、C、D、E四点共圆,由等腰直角△ABC 可知∠CBD=45︒,同弧所对圆周角相等可知∠CED=45︒,所以∠OEF=45︒,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成45︒可知∠AMN=45︒,由直线AC解析式可设M点坐标为(x,122x+),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B 、C 、D 、E 四点共圆,∵CD CD =,∠CBA =45︒,∴∠CED =45︒,∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K .∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE ,∴OE =4,∴AP +PQ ≥4,∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4),设直线AC 解析式为:y =kx+b 把(0,2),(4,4)代入得244b k b =⎧⎨=+⎩解得122k b ⎧=⎪⎨⎪=⎩∴直线AC 解析式为:y =122x +, 设M 点坐标为(x ,122x +),N 坐标为(0,y ).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.6.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即,∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.7.(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m =【解析】【分析】 (1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可.(2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可.【详解】(1)矩形OABC ,∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3,∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E ,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小,设直线解析式为:y =kx +b ,将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+.2y x 2x 3=-++=2(1)4x -+-,∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD 解析式为:y =kx +b ,C(0,3),D(1,4),∴43k b b +=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线CD 解析式为:y =x +3,同理求出射线BD 的解析式为:y =-x +5(x ≤2),设平移后的顶点坐标为(m ,m +3),则抛物线解析式为:y =-(x -m )2+m +3,①如图,当抛物线经过点B 时,-(2-m )2+m +3=3,解得m =1或4,∴当1<m ≤4时, 平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5,即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-,解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.8.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)317或41;(3)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:317或41;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC 和Q ′C 的方程分别为:y =x ﹣3和y =x +9…②,将①、②联立,解得:x =﹣1或x =3或x =﹣4,∴Q 点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.10.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.11.(1)点D 的坐标为12),抛物线的解析式为24 ?1?3y x =-+;(2)①13n m =+;②23124S m m =-+,S 的最大值为16 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 3m =,过N 作NQ ⊥EA ,得到NQ=12NA=32,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,=ABO=60︒,∴点A 的坐标为0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,3CH=CD+DH=32, ∴点D 的坐标为(32,12),点C 的坐标为(32,32), 将A 30) , C 的坐标为(32,32)代入抛物线的解析式y = ax 2 + bx + 1, 得:3310333142a b a ⎧+=⎪⎨+=⎪⎩, 解得:433a b ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为24 3?1?3y x x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,3FA=2AB=4, ∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合, ∴3m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合, ∴23m =3n FD ==,代入n km b =+,得:23323k b k b⎧=+⎪⎨=+⎪⎩,解得:1k b ⎧=⎪⎨⎪=⎩∴此一次函数解析式为:13n m =+; ②NA=FA-FN=4- 3n =, 过N 作NQ ⊥EA ,则NQ=12NA=326m -,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当312m ==⎝⎭0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1) 见解析;(2) 2,2 ;(3)0或2或2x <<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册几何模型压轴题专题练习(解析版)一、初三数学 旋转易错题压轴题(难)1.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(-8,33-4+),G 2(8,-8),F 2(218,-4) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。
【详解】解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5∴a+2b=10∴a 和b 之间的数量关系是a+2b=10(2)①设直线AD 的解析式为y=kx+c∵直线AD 与y 轴交于(0,-7),A (2,5)∴2k c 5{c -7+==解得k 6{c -7==即直线AD 的解析式为y=6x-7 联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2y ax +bx-3a-5{y 6x-7== 消去y 得ax 2+(b-6)x-3a+2=0∵抛物线与直线AD 有两个交点∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2a+∵A (2,5)∴x A =2即x D =2a -22a +∵x D =b -2a =a-104a ∴2a -22a +=a-104a 解得a=2∴b=10-a 2= 4 ∴此时抛物线的解析式为y= 2x 2+4x-11②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t )∵A (2,5),∴AI=2,BJ=5-t∵AB 绕点B 顺时针旋转90°,得到线段BH∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90°∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180°∴∠IBA+∠JBH=90°即∠IAB=∠JBH∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t∴H (5-t ,t-2)∵D (-1,-13)∴y B -y D =t+13同理可得:C (t+13,t-1)设DH 的解析式为y=k 1x+b 1∴1111-k b -13{5-t k b t-2+=+=()解得11t 11k 6-t {t 11b -13-t-6+=+= 即直线AD 的解析式为t 1111y x-13-66t t t ++=-- ∵D 、H 、C 三点共线∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111t-1t 13-13-66t t t ++=+--()整理得2t 2+31t+82=0解得131305t -4+=,231-305t -4= 由图可知:①当131305t -+=如图1所示: 此时H (51305+,39305-+) ,C (305-21-,35305-+) ∵点G 为DH 中点,点F 为BC 中点∴G 1(47305+,91305-+) ,F 1(305-21-,33305-+) 由图可知:当231-305t -=如图2所示: 此时H (51-305,39-305-) ,C (30521+,35-305-) ∵点G 为DH 中点,点F 为BC 中点∴G 2(47-305,91-305-) ,F 2(30521+,33-305-) (14分) ∴综上所述:G 1(47305+,91305-+) ,F 1(305-21-,33305-+) G 2(47-3058,91-305-8) ,F 2(305218+,33-305-4)。
【点睛】本题为含参数的二次函数问题,综合性强,难度较大,解题关键在于根据旋转性质,用含参数式子分别表示点的坐标,函数关系式,结合韦达定理,分类讨论求解。
2.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF =∠EAF =∠BAE ,∠BAC =45°,∴∠CAF =∠EAF =∠BAE =15°,∴∠EAC =30°,则此时,CM +NM 的值最小,且最小值=DN ,∵点C 和点D 关于AF 对称,∴AD =AC =6,∵∠AND =90°,∴DN =12AD =12⨯6=3, ∴CM +NM 最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.3.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m=,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(15;(23;(3)存在,63【解析】 【分析】 (1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.解直角三角形,求出∠ABA 1,得到旋转角即可解决问题;(2)由△BCE ∽△BA 2D 2,推出222A D CE n CB A B m ==,可得CE=2n m ,由161A E EC =-推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=,∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴33FG F FM FE D ==, ∵∠DFM=90°,tan 3FD FMD FM ∠==,∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有AD AB ==3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.4.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,ACB DCE AC CD ︒∠=∠===观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =-;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥,90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=,31BD BF DF ∴=-=-,G 是BD 的中点,312DG -∴=, 31BD BF DF ∴=-=-;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H 是AE 中点,∴AD ∥HF ,∵HF ⊥ED ,∴AD BE ⊥.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.5.如图,在直角坐标系中,已知点A (-1,0)、B (0,2),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)点C 的坐标为( , );(2)若二次函数的图象经过点C . ①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y 对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P (点C 除外),使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C 点坐标;(2)①把C 点代入求得二次函数的解析式;②利用二次函数的图象得出y 的取值范围;③分二种情况进行讨论.6.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,333DM FN a ==, 333MF NE b ==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DF EF .(2)3EF DF =,DFEF .理由如下: 如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 3DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD =,AD NB =,CD NB ∴=.又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.7.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=;()2BCD 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD 1S BC DE 2=⋅, 2BCD 1S a 2∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB EFAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。