1.1.2 旋转体与简单组合体的结构特征
高一数学知识点总结_空间几何体的结构知识点
⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
简单组合体的结构特征
简单组合体的结构特征首先,简单组合体具有明确定义的几何形状。
每个简单物体的几何形状可以是基本的几何体,如立方体、圆柱体、圆锥体等,也可以是自定义的形状。
每个简单物体都具有确定的尺寸、表面形状和边界,这些几何参数决定了它们在组合体中的位置和相互之间的关系。
其次,简单组合体具有确定的组合关系。
多个简单物体可以通过连接、堆叠、平移、旋转等方式组合在一起,形成复杂的结构。
组合关系可以是紧密连接的,如接缝无缝衔接的构件;也可以是间接连接的,如通过螺栓、焊接等方式连接的构件;还可以是外部约束的,如支撑、固定、挂吊等。
组合关系决定了简单物体之间的相对位置和运动关系。
第三,简单组合体具有确定的材质和物性。
每个简单物体都由一种或多种材质构成,其物性如弹性、硬度、重量、导热性等对组合体的性能和功能有重要影响。
在实际应用中,选择合适的材料和物性参数可以满足结构的强度、刚度、耐久性、防腐蚀等要求。
第四,简单组合体具有确定的载荷和边界条件。
在现实应用中,组合体通常需要承受各种静力和动力载荷,如重力、风荷载、振动等。
此外,组合体还可能受到约束条件的限制,如支撑、固定、边界约束等。
载荷和边界条件的确定对于结构的安全性和合理性至关重要。
第五,简单组合体具有明确的功能和用途。
通过合理设计和组合,简单物体可以构成功能复杂的结构体,如建筑物、机械装置、航天器等。
其功能可以是承重、支撑、隔离、连接、导向等。
为了实现特定的功能,还需要考虑材料选型、结构形式、制造工艺等方面的因素。
总之,简单组合体的结构特征可以通过几何形状、组合关系、材质和物性、载荷和边界条件以及功能和用途等方面来描述。
通过合理的设计和组合,可以实现各种结构的要求,从而满足不同领域的应用需求。
1.1.2简单组合体的结构特征
4.如图,长方体被截去一部分,其中EH∥FG ∥ A′D′. 剩下的几何体是什么?截去的几何体是什 么?你能说出它们的名称吗?
D’
G
A’
F
H
D
E
C
A
B
探究:如图,长方体被截去一部分,其中
EH∥FG ∥ A′D′. 剩下的几何体是什么?你能说
出它们的名称吗?
D’
G
A’
F
E
A’
F
D A
A
D’
GB
HH
.
..
.
.
A. ①③
① B. ②④
② C. ①②③
③
④
D. ②③④
第
一 种
·
截
面
正
方
体
内 接
第
于
二
球
种
截
·
面
第
三 种
·
截
面
斜截面
探究:如图所示,一个正方体内接于一个球, 过球 心作一截面,则截面的可能图形是 ( )
.
.
.
.
.
A. ①③
① B. ②④
② C. ①②③
③
④
D. ②③④
7.探究:正方体和球还能组成哪些特殊的组 合体?
探索新知 例4 下面这个几何体是由 哪些简单几何体构成的?
这个零件的外观是一 个大圆柱挖掉了一个小圆 柱.
例5 下面这个几何体是由 探索新知 哪些简单几何体构成的?
这个几何体的外观是一个大棱柱 挖掉了一个小棱柱.
合作探究
探究1:下列几何体是由哪些简单几何体组合而成 的?
(1)
四棱锥和长方体 拼接而成
第一章 1.1 第2课时 旋转体与简单组合体的结构特征
第2课时 旋转体与简单组合体的结构特征学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.知识点一 圆柱的结构特征思考 圆柱的轴截面有无穷多个,它们全等(填“全等”或“相似”),圆柱的母线有无穷多条,它们与圆柱的高相等. 知识点二 圆锥的结构特征思考 圆锥的轴截面有多少个?母线有多少条?圆锥顶点和底面圆周上任意一点的连线都是母线吗?答案圆锥的轴截面有无穷多个,母线有无穷多条,圆锥顶点和底面圆周上任意一点的连线都是母线.知识点三圆台的结构特征知识点四球的结构特征知识点五简单组合体的结构特征(1)概念:由简单几何体组合而成的,这些几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组合而成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.1.直角三角形绕一边所在直线旋转得到的旋转体是圆锥.(×)2.圆锥截去一个小圆锥后剩余部分是圆台.(√)3.夹在圆柱的两个平行截面间的几何体是一圆柱.(×)4.半圆绕其直径所在直线旋转一周形成球.(×)题型一旋转体的结构特征例1下列说法正确的是________.(填序号)①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆;③以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;④半圆面绕其直径所在直线旋转一周形成球;⑤用一个平面去截球,得到的截面是一个圆面.考点空间几何体题点空间几何体结构应用答案③④⑤解析①以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;②它们的底面为圆面;③④⑤正确.反思感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列说法,正确的是()①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.A.①②B.②③C.①③D.②④考点空间几何体题点空间几何体结构应用答案 D解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.题型二简单组合体的结构特征例2(1)请描述如图所示的几何体是如何形成的.解①是由一个圆锥和一个圆台拼接而成的组合体;②是由一个长方体截去一个三棱锥后得到的几何体;③是由一个圆柱挖去一个三棱锥后得到的几何体.(2)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.解如图所示,旋转所得的几何体可看成由一个圆柱挖去两个圆锥后剩余部分而成的组合体.反思感悟(1)解决简单组合体的结构特征相关问题,首先要熟练掌握各类几何体的特征,其次要有一定的空间想象能力.(2)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.跟踪训练2(1)如图所示的简单组合体的组成是()A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱答案 B(2)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆柱、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥考点简单组合体的结构特征题点与旋转有关的组合体答案 D解析图1是一个等腰梯形,CD为较长的底边,以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图2,包括一个圆柱、两个圆锥.题型三旋转体的有关计算例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.考点圆台的结构特征题点与圆台有关的运算解(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O1A=2 cm,OB=5 cm.又由题意知腰长为12 cm,所以高AM =122-(5-2)2 =315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S , 设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO ,可得l -12l =25, 解得l =20(cm).即截得此圆台的圆锥的母线长为20 cm.反思感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪训练3 如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA .所以33+l =r 4r =14.解得l =9,即圆台的母线长为9 cm.圆柱侧面展开图的应用典例如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AA′为底面圆的周长,∴AA′=2π×1=2π.又AB=A′B′=2,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.[素养评析](1)求几何体表面上两点间的最小距离的步骤①将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图;②将所求曲线问题转化为平面上的线段问题;③结合已知条件求得结果.(2)解决此类问题需要将空间图形转化为平面图形,也就是借助空间形式认识事物的位置关系、形态、变化等,同时,要理解运算对象,探究运算思路,所以本题体现了直观想象与数学运算的核心数学素养.1.下列几何体是台体的是()考点圆台的结构特征题点圆台的概念的应用答案 D解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.2.下列选项中的三角形绕直线l旋转一周,能得到如图1中的几何体的是()图1考点简单组合体的结构特征题点与旋转有关的组合体答案 B解析由题意知,所得几何体是组合体,上、下各一圆锥,故B正确.3.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台考点棱台的结构特征题点棱台的概念的应用答案 D解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.4.如图是一个几何体的表面展开图形,则这个几何体是________.答案圆柱5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.考点圆锥的结构特征题点与圆锥有关的运算答案 2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.故圆锥的母线长为2.1.圆柱、圆锥、圆台的关系如图所示.2.球面、球体的区别和联系3.处理台体问题常采用还台为锥的补体思想.4.处理组合体问题常采用分割思想.5.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.一、选择题1.下列几何体中不是旋转体的是()考点简单组合体的结构特征题点与旋转有关的组合体答案 D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的答案 A3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体考点简单组合体的结构特征题点与旋转有关的组合体答案 B解析圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱. 故选B.4.如图所示的几何体是由下面哪一个平面图形旋转而形成的( )考点 简单组合体的结构特征题点 与旋转有关的组合体答案 A解析 此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成,是由A 中的平面图形旋转而形成的.5.一个圆锥的母线长为20 cm ,母线与轴的夹角为30°,则圆锥的高为( ) A.10 3 cm B.20 3 cm C.20 cmD.10 cm考点 圆锥的结构特征题点 与圆锥有关的运算答案 A解析 如图所示,在Rt △ABO 中,AB =20 cm ,∠A =30°,所以AO =AB ·cos 30°=20×32=103(cm). 6.下列命题:①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台中所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.其中正确的是()A.①②③B.②③④C.①④D.①③④答案 D7.一个底面半径为2的圆锥被过高的中点且平行于底面的平面所截,则截得的截面圆的面积为()A.πB.2πC.3πD.4π答案 A8.下列结论正确的是()A.用一个平面去截圆锥,得到一个圆锥和一个圆台B.经过球面上不同的两点只能作一个最大的圆C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 D解析需用平行于圆锥底面的平面截才能得到圆锥和圆台,故A错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.二、填空题9.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.考点简单组合体的结构特征题点与旋转有关的组合体答案两个同底的圆锥组合体解析由圆锥的定义知是两个同底的圆锥形成的组合体.10.如图中的组合体的结构特征有以下几种说法:①由一个长方体割去一个四棱柱构成;②由一个长方体与两个四棱柱组合而成;③由一个长方体挖去一个四棱台构成;④由一个长方体与两个四棱台组合而成.其中说法正确的序号是________.考点 简单组合体的结构特征题点 与拼接、切割有关的组合体答案 ①②11.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.考点 圆锥的结构特征题点 与圆锥有关的运算答案 3解析 由题意知一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl 2,所以母线长为l =2,又半圆的弧长为2π,圆锥的底面的周长为2πr =2π,所以底面圆半径为r =1,所以该圆锥的高为h =l 2-r 2=22-12= 3.12.边长为5的正方形EFGH 是圆柱的轴截面,则从点E 沿圆柱的侧面到相对顶点G 的最短距离为________.答案 52π2+4 解析 如图,矩形E 1F 1GH 是圆柱沿着其母线EF 剪开半个侧面展开而得到的,由题意可知GH =5,GF 1=5π2,GE 1=254π2+25=52π2+4. 所以从点E 沿圆柱的侧面到相对顶点G 的最短距离是52π2+4. 三、解答题13.一个圆锥的高为2 cm ,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积. 解 如图轴截面SAB ,圆锥SO 的底面直径为AB ,SO 为高,SA 为母线,则∠ASO =30°.在Rt △SOA 中,AO =SO ·tan 30°=233(cm). SA =SO cos 30°=232=433(cm). 所以S △ASB =12SO ·2AO =433(cm 2). 所以圆锥的母线长为433 cm ,圆锥的轴截面的面积为433cm 2.14.如图,各棱长都相等的三棱锥内接于一个球,则经过球心的一个截面图形可能是( )A.①③B.①②C.②④D.②③答案 A15.圆台的上、下底面半径分别为5 cm,10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到点A ,求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.考点 圆台的结构特征题点 与圆台有关的运算 解 (1)如图所示,将侧面展开,绳子的最短距离为侧面展开图中AM 的长度,设OB =l ,则θ·l =2π×5,θ·(l +20)=2π×10,解得θ=π2,l =20 cm. ∴OA =40 cm ,OM =30 cm.∴AM =OA 2+OM 2=50 cm.即绳子最短长度为50 cm.(2)作OQ ⊥AM 于点Q ,交弧BB ′于点P ,则PQ 为所求的最短距离.∵OA ·OM =AM ·OQ ,∴OQ =24 cm.故PQ =OQ -OP =24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.。
1.1.2旋转体和简单组合体的结构特征
不完整的 环形
延长后交 于一点 与底面是 半径不相 等的圆
不是平面图 形
没有 圆
与两个底 平行于底 面是全等 面的截面 的圆
轴截面
矩形
等腰三角形
等腰梯形
圆
简单组合体的结构特征:1.由简单几何体拼接而成 2.由简单几何体截去或挖去一部分而成
作业: 画圆柱、圆锥、圆台和球各一个,并命名。
球:
以半圆的直径所在直线为旋 转轴,半圆面旋转一周形成 的几何体叫做球体,简称球
O
球
半径
球的轴截面是一个圆
球心
由简单几何体组合而成的几何体叫简单组合体。
基本形式:
1.由简单几何体 拼接而成 2.由简单几何体 截去或挖去一部 分而成
练习: 1.边长为a的正方体,内有内切球,求内切球 的半径r。
1 r= a 2
A
O B
底面
圆台:
用平行于圆锥底面的平面去截圆锥,底面与截面之间 的部分叫做圆台。
轴
侧面
O'
母线
底面
O
圆台除了可以用圆锥截得,还 可以怎么得到?
A D
圆台的结构特征:
(1)侧面展开图是 不完整的环形
(2)母线 延长 后相交于 顶点 (3)平行于底面的截面是 与底面平 行且半径不相等的圆
B C
(4)轴截面是等腰梯形 。
与底面平行且半径相等的圆 ;
A
母线
O
侧面
B
(3)轴截面是一个矩形 ;
圆锥:
以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形 成的旋转体叫做圆锥。
圆锥的结构特征:
圆锥
顶点
第一章1.1-1.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征
第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A 中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为( )解析:截面图形应为图C 所示的圆环面.答案:C5.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( )A .8 B.8π C.4π D.2π解析:若矩形的长为圆柱底面周长,则2πR =4.所以2R =4 π. 因此圆柱轴截面面积S 1=2R ·2=8 π. 若矩形的宽为圆柱底面周长,则2πr =2.所以2r=2π,则圆柱轴截面面积S2=2r·4=8π.综上可知,圆柱的轴截面面积为8π.答案:B二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.指出如图①②所示的图形是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体. 图②是由一个圆锥和一个四棱柱拼接而成的简单组合体.10.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm 和5 cm ,圆台的母线长是12 cm ,求圆锥SO 的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。
1.1.2简单组合体的结构特征1.2空间几何体的三视图
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么? 由柱、锥、台、球组成了一些简单的组合体.认 识它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
D
A B a b C D A B C
d
c a b
d
c
投射线与投影面 相倾斜的平行投 影法 -----斜投影法
平行投影法
投射线与投影面相互垂 直的平行投影法 ----------正投影法。
中心投影形成的直观图能非常逼真地反映原来的物 体,主要运用于绘画领域。
平行投影形成的直观图则能比较精确地反映原来物体 的形状和特征。因此更多应用于工程制图或技术图样
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据视 图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体
一个几何体的三视图如下,你能说出它是 什么立体图形吗?
四棱锥
回忆初中已经学过的正方体、长方体、圆 柱、圆锥、球的三视图.
正方体的三视图
俯
左
长方体的三视图
俯
左
长方体
圆柱的三视图
俯
左
圆柱
圆锥的三视图
俯
左
圆锥
球的三视图
俯
左
球体
小节三视图有关概念
“视图”是将物体按正投影法向投影面投射 时所得到的投影图. 光线自物体的前面向后投影所得的投影图 称为“正视图” ,自左向右投影所得的投影图 称为“侧视图”,自上向下投影所得的投影图 称为“俯视图”.
1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征
④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是 A.①② ( B.②③ ) C.①③ D.②④
【解题探究】1.典例1中圆锥的轴截面及圆台平行于底面的截面分别 是什么图形? 提示:圆锥的轴截面是等腰三角形,圆台平行于底面的截面是圆面. 2.典例2中圆柱、圆锥、圆台的母线各指什么? 提示:圆柱的轴截面与侧面的交线即为圆柱的母线 ,圆锥的顶点与底面 圆周上任一点的连线即为圆锥的母线,圆台的轴截面与圆台侧面连线 即为圆台的母线.
2.圆锥的母线条数为 A.1条 C.3条
(
) B.2条 D.无数条
【解析】选D.由圆锥的结构特征知圆锥的母线有无数条.
3.下列图形中是圆柱的序号为
.
【解析】根据圆柱的概念可知只有②是圆柱. 答案:②
4.下列给出的图形中,绕给出的轴旋转一周(如图所示),能形成圆台的 是 (填序号).
【解析】根据定义,①形成的是圆台,②形成的是球,③形成的是圆柱, ④形成的是圆锥. 答案:①
答案:(1)(2)
易错案例
柱体、锥体、台体的判断
【典例】如图所示,它们是不是棱锥、棱台、圆柱、圆锥等几何体?
【解析】1.选C.由圆锥的概念知,直角三角形绕它的一条直角边所在 直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角 边,即旋转轴为直角三角形的一条直角边所在的直线 ,因而C错. 2.选D.由圆柱、圆锥、圆台的定义及母线的性质可知②④正确 ,①③ 错误.
【方法技巧】 1.简单旋转体判断问题的解题策略 (1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决 此类概念问题的关键. (2)解题时要注意明确两点: ①明确由哪个平面图形旋转而成. ②明确旋转轴是哪条直线.
2.旋转后的图形草图分别如图1,2所示.
高中数学 1.1.2《台、球体及简单几何体的结构特征》教案 新人教A版必修2
课题:台、球体及简单几何体的结构特征课型:新授课教学目标:通过实物模型,观察大量的空间图形,认识台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出台体、球体及简单几何体的结构特征。
教学难点:台、球体及简单几何体的结构特征的概括.教学过程:一、复习准备:1. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示。
2. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?二、讲授新课:1. 棱台与圆台的结构特征:(1)思考:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?(2)定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.列举生活中的实例,并找出图1.1-1中哪些物体是棱台和圆台?(3)结合课本图1.1-6认识:棱台的上、下底面、侧面、侧棱、顶点.结合课本图1.1-9认识:圆台的上、下底面、侧面、母线、轴。
(4)棱台的分类及表示:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等;棱台用表示底面各顶点的字母表示,例如图1.1-6中的棱台表示为棱台ABCD-A’B’C’D’. (5) 圆台的表示:圆台用表示它的轴的字母表示,例如图1.1-9的圆台表示为圆台O’O.(6)讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.棱台与圆台统称为台体。
2.球体的结构特征:(1)定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体,简称球.列举生活中的实例,并找出图1.1-1中哪些物体是球体?(2)结合课本图1.1-10认识:球心、半径、直径.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
旋转体与简单组合体的结构特征课件
o
旋转体与简单组合体的结构特征
12
七、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转
轴,半圆面旋转一周形成的旋转体叫做球体,
简称球。
(1)半圆的半径叫做球的半径。
(2)半圆的圆心叫做球心。
A
(3)半圆的直径叫做球的直径。
球半径
O
直径
2、球的表示: 用表示球心的字
球心 母表示,如球O
B
旋转体与简单组合体的结构特征
26
由圆锥和圆柱组成 由球和圆柱组成 由圆柱和圆 柱组成
由棱锥和棱柱组成
由圆柱、圆锥、
圆柱、圆台组成
旋转体与简单组合体的结构特征
27
6.下列表达不正确的是 ( B ) A. 以矩形的一边所在直线为旋转轴,其余三边旋转
形成的曲面所围成的几何体叫圆柱 B. 以直角三角形的一条边所在直线为旋转轴,其余
线
侧 成的曲面 叫做圆柱的侧面。
面
(4)无论旋转到什么位置,不垂
A
O
底面 直于轴的边都叫做圆柱的母线。
B
旋转体与简单组合体的结构特征
2
2、表示:用表示它的轴的字母表示,如 圆柱OO1。
O 3、圆柱 与棱柱统 称为柱体。
O1
侧面
底面 轴
旋转体与简单组合体的结构特征
母线
3
思考:平行于圆柱底面的截面,经过圆柱任意两 条母线的截面分别是什么图形?
13
我们已经学过这些几何体了。
棱柱
圆柱
球体
旋转体与简单组合体的结构特征
14
棱锥
圆柱
棱台
圆台
旋转体与简单组合体的结构特征
15
这些几何体又是什么呢?
必修二1.1.2简单组合体的结构特征1
一、知识预览
1.简单组合体的定义:由一些简单的几何体组合而成的几何体.
2.简单组合体的构成有两种基本形式:
一是由简单几何体拼接而成;
二是由简单的几何体截去或挖去一部分而成.
二、赛场练兵
3.下图是由选项中哪个平面图形旋转得到的(
)
4.用一个平面去截一个几何体,得到的截面是一个圆面,这 个几何体可能是( A.圆锥 ) B.圆柱
哪些简单几何体组成的?
图4
类型三:旋转体与旋转体组合的结构特征
[例3] 图5绕虚线旋转一周后所形成的立体图形是由哪些
简单几何体构成的.
图5
迁移变式3 一直角梯形ABCD如图6所示,分别以AB、BC, CD,DA为轴旋转,试说明所得几何体的大致形状.
图6
类型四:截面问题
[例4] 一个正方体内接于一个球,过球心作一截面,如图13 所示,则截面的可能图形是( )
图2
迁移变式1 说出下列组合体的几何结构特征(如图3).
图3
类型二:多面体与旋转体组合的结构特征
[例2] 圆锥的底面半径为4,高为3,一正方体的一个面在
圆锥的底面内,它所对的面的四个顶点都在圆锥的侧面上, 求正方体的棱长.
迁移变式2
2010年数学奥林匹克竞赛中,若你获得第一名,被
授予如图4所示的奖杯,那么,请你介绍一下你所得的奖杯是由
C.球体
D.以上都可能
5.如图1,组合体是由____________构成的空间几何体.
图1
三、能力提升
类型一:多面体与多面体组合的结构特征
[例1] 如图2①,已知三棱台ABC—A′B′C′,上底长是下底长 的一半. (1)把它分成一个三棱柱和另一个多面体,并用字母表示;
旋转体与简单组合体的结构特征课件
圆柱 【问题导思】
观察下面的旋转体,你能说出它们是什么平面图形通 过怎样的旋转得到的吗?
【提示】 以矩形的一边所在的直线为轴,其余三边旋 转形成的面所围成的旋转体.
圆柱的结构特征 圆柱
定义:以 矩形一边 所在直线为旋转 轴,其余三边旋转形成的面所围成的 旋转体叫做圆柱
(3)类比棱台的定义圆台还可以如下得到: 用平行于圆锥底面的平面去截圆锥,底面和截面之间的 部分叫做圆台.
圆台的结构特征
圆台 定义:用 平行于圆锥底面 的平面去截圆 锥, 底面和截面 之间的部分叫做圆台 旋转法定义:以直角梯形中 垂直于底边
的腰 所在直线为旋转轴,将直角梯形经 旋转轴旋转一周而形成的旋转体叫做圆台
组合体是由简单几何体拼接、截去或挖去一部分而成 的,因此,要仔细观察组合体的组成,结合柱、锥、台、球 的几何结构特征,对原组合体进行分割.
有关几何体的计算问题 如图1-1-14所示,用一个平行于圆锥SO底面
的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶ 16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.
图1-1-14
【思路探究】 过圆锥的轴作截面,利用三角形相似来 解决.
【自主解答】 设圆台的母线长为l,由截得圆台上、 下底面面积之比为1∶16,可设截得圆台的上、下底面的半 径分别为r,4r.
过轴SO作截面,如图所示.
则△SO′A′∽△SOA,SA′=3 cm. ∴SSAA′=O′OAA′. ∴3+3 l=4rr=14. 解得l=9(cm), 即圆台的母线长为9 cm.
【提示】 以半圆的直径所在的直线为旋转轴,半圆面 旋转一周形成的旋转体即为球.
球的结构特征
球
定义:以 半圆的直径所在直线为旋 转轴, 半圆面 旋转一周形成的旋转 体叫做球体,简称球
第1章 1.1.2 简单组合体的结构特征
1.1.2简单组合体的结构特征【课时目标】1.正确认识由柱、锥、台、球组成的简单几何体的结构特征.2.能运用这些结构特征描述现实生活中简单物体的结构.1.定义:由____________________组合而成的几何体叫做简单组合体.2.组合形式一、选择题1.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2.右图所示的几何体是由哪个平面图形通过旋转得到的()3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是由() A.一个圆台、两个圆锥构成B.两个圆台、一个圆锥构成C.两个圆柱、一个圆锥构成D.一个圆柱、两个圆锥构成5.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥组合体D.不能确定6.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)二、填空题7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示为一空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是__________________.9.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.三、解答题10.如图是一个数学奥林匹克竞赛的奖杯,请指出它是由哪些简单几何体组合而成的.11.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()13.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.组合体的结构特征有两种组成:(1)是由简单几何体拼接而成;(2)是由简单几何体截去一部分构成.要仔细观察组合体的组成,柱、锥、台、球是最基本的几何体.1.1.2简单组合体的结构特征答案知识梳理1.简单几何体2.截去或挖去一部分作业设计1.A2.A3.D4.D5.A6.D[一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.]7.①②③④ 8.圆台和圆柱(或棱台和棱柱) 9.球体10.解 将该几何体分解成简单几何体可知,它是由一个球、一个四棱柱和一个四棱台组合而成.11.解 先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:12.B 13.解 如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x .因为△V A 1C 1∽△VMN ,解得2x 2r =h -x h,所以2hx =2rh -2rx ,解得x =2rh2r +2h.即圆锥内接正方体的棱长为2rh2r +2h.。
旋转体与简单组合体的结构特征 PPT
图中圆锥表示 为圆锥SO
知识点三 圆台
思考 下图中的物体叫做圆台,也是旋转体,它是什么图形通过怎样 的旋转得到的呢?除了旋转得到以外,对比棱台、圆台还可以怎样得 到呢?
圆台的结构特征
圆台
图形及表示
定义:用 平行于圆锥底面 的平面去截圆锥,底面和截面
之间的部分叫做圆台
旋转法定义:以直角梯形中 垂直于底边的腰 所在直线
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案 这两个几何体都不是单纯的柱、锥、台、球体,而是由柱、 锥、台、球体中的两种或三种组合而成的几何体.
简单组合体 (1)概念:由 简单几何体 组合而成的几何体叫做简单组合体.常见的 简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组 成的. (2)基本形式:一种是由简单几何体 拼接 而成,另一种是由简单几何 体 截去 或 挖去 一部分而成.
跟踪训练2 圆台的两底面面积分别为1,49,平行于底面的截面面积的2
倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.
解 将圆台还原为圆锥,如图所示.
O2,O1,O分别是圆台上底面、截面和下底面的圆心, V是圆锥的顶点,
令VO2=h,O2O1=h1,O1O=h2,
49+1
则 h+hh1= h+hh1+h2=
旋转体与简单组合体的结构特征
新人教A版必修高中数学第一章空间几何体《简单组合体的结构特征》
②四棱锥的四个侧面都可以是直角三角形
③有两个面互相平行,其余各面都是梯形的多面体是棱台
④四面体都是三棱锥.
(A)②④
(B)①②
(C)①②③
(D)②③④
解析:(1)①错误;反例:将两个相同的斜平行六面体叠放;②正确,在长方 体中可以截出;③错误,侧棱可能无法聚成一点;④正确.故选A.
(2)下列叙述正确的是( ) (A)直角三角形围绕一边旋转而成的几何体是圆锥 (B)用一个平面截圆柱,截面一定是圆面 (C)圆锥截去一个小圆锥后,剩下的是一个圆台 (D)通过圆台侧面上一点有无数条母线
叫做棱锥.这个多边形面叫
做棱锥的底面或底;有公共
顶点的各个_____三__角__形叫面做
棱锥的侧面;各侧面的
叫的做公棱共锥顶的顶点点;相邻侧面
叫做棱锥的侧棱.
公共边
图形
表示法
用顶点和底面各顶 点的字母表示,如 左图中棱锥可表示
为S棱-A锥BC_D________
一条
以直角三角形的______
__直__角___边___所在直线为旋
1.空间几何体的分类
自主学习
知识探究
多面体
由若干个 平面多边形围成
的几何体
旋转体
由一个平面图形绕 它所在平面内的一条 定直线旋转所形成的______封__闭___几__何体
面:围成多面体的各个 多边形 . 棱:相邻两个面的 公共边 . 顶点: 棱与棱 的公共点.
轴:形成旋转体旋转所绕
的_____定__直__线
探究2:(教师备用) 如图所示,将一个直角三角形绕其一边旋转,得到的几 何体是什么?
答案:如图所示.
绕任一直角边旋转,都将得到一个圆锥,但是底面半径不同,分别是BC,AB, 母线长都是斜边AC. 绕其斜边AC旋转,得到的是一个组合体,由两个同底面的圆锥组成.
1.1.2简单组合体的结构特征
1. 实践探究
问题1:观察下列物体,尝试归纳简单组合体的定义. 答:由柱、锥、台、球等简单几何体组合而成的几何 体叫简单组合体.
问题2:观察书本图1.1-11以及如下所示简单组合 体,尝试总结简单组合体的基本形式.(小组讨论)
去掉
问题3:简单组合体的基本形式:
一种是由简单几何体 拼接 而成,另一种是由简单
棱台
2. 简单旋转体
圆柱
圆锥
圆台
球
3. 圆柱、圆台、圆锥之间的关系
4. 棱柱、棱台、棱锥之间的关系
二. 触发与尝试
问题情境:意大利的比萨斜塔、希腊爱琴海特色建筑都是著名景点.在我们的生活周围,有不少有 特色的建筑物,它们有丰富多彩的结构. 例如:美丽的教学楼建筑是由什么几何体组成?它具有什么结构特征? 本节我们就来学习简单组合体的相关知识.
答:奖杯最上部是球体,中间是四棱柱,最下部是四棱 台共三部分拼接而成的.
四. 实践与提升
例2 直角梯形ABCD如图所示,分别以CD,DA所 在直线为轴旋转,试说明所得几何体的形状.(小组 讨论)
解 以CD为轴:旋转可得一个圆台,下底挖去一个 小圆锥,上底增加一个较大的圆锥;
以AD为轴:旋转可得一个圆柱,上面挖去一个圆锥.
几何体截去 或挖去
一部分而成.
三. 比较与发现
2. 类比探究
例1 观察下图中的几何体,分析它们是由哪些基本几何体 组成的.
解 图①是由一个四棱柱挖去一个三棱柱组成的几何体; 图②是由一个四棱柱和一个底面与四棱柱上底面重合的四棱锥组合而成的几 何体; 图③是由一个圆台和挖去一个和圆台的上底面相同的圆锥组合而成的几何体.
பைடு நூலகம்
问题5: 例2中直角梯形若分别以AB、BC所在直线为轴旋 转,试说明所得几何体的形状.(小组讨论)
旋转体与简单组合体的结构特征 课件
圆 用平行于_圆__锥__底__面__的平面去截圆 台 锥,底面与截面之间的部分锥,左图可表示为 _圆__锥__S_O_ 我们用表示圆台 轴的字母表示圆 台,左图可表示为 _圆__台__O_O__′
以半圆的直径所在直线为旋转轴, _半__圆__面__旋转一周形成的旋转体叫 球 做球体,简称球.半圆的圆心叫做 球的_球__心__,半圆的半径叫做球的半 径,半圆的直径叫做球的直径
转而成的曲面叫做圆柱的侧面;无
论旋转到什么位置,不__垂__直__于轴的
边都叫做圆柱侧面的母线
图形
表示
我们用表示 圆柱轴的字 母表示圆 柱,左图可 表示为_圆__柱_ _O_O__′
以_直__角__三__角__形__的__一__条__直__角__边__所在直 圆
线为旋转轴,其余两边旋转形成的面 锥
旋转体的结构特征
下列命题中正确的是( ) A.直角三角形绕一条边所在直线旋转得到的旋转体是圆锥 B.夹在圆柱的两个平行截面间的几何体还是一个旋转体 C.圆锥截去一个小圆锥后剩余部分是圆台 D.通过圆台侧面上一点,有无数条母线 【精彩点拨】 根据圆柱、圆锥、圆台的定义及结构特征进行判断.
【自主解答】 A错误,应为直角三角形绕其一条直角边所在直线旋转得 到的旋转体是圆锥;若绕其斜边所在直线旋转得到的是两个圆锥构成的一个组 合体.B错误,没有说明这两个平行截面与底面的位置关系,当这两个平行截 面与底面平行时正确,其他情况则是错误的.D错误,通过圆台侧面上一点, 只有一条母线,故选C.
探究1 圆柱、圆锥、圆台平行于底面的截面是什么样的图形? 【提示】 圆面. 探究2 圆柱、圆锥、圆台过轴的截面是什么样的图形? 【提示】 分别为矩形、等腰三角形、等腰梯形. 探究3 经过圆台的任意两条母线作截面,截面是什么图形? 【提示】 因为圆台可以看成是圆锥被平行于底面的平面所截得到的几何
1.1.2--旋转体与简单组合体的结构特征
有两种基本形式
一种由简单几何体拼接而成。
一种是简单几何体截去或挖去一部分而成。
课堂练习
1.说出下列图形绕虚线旋转一周,可以形成怎样的几何体?
简单组合体的构成有两种基本形式:一种由简单几何体拼接而成,一种是简单几何体截去或挖去一部分而成。
上图由一个圆柱和一个长方体组成。
上图由一个长方体截去一个三棱锥得到。
下面这些几何体是那种构成形式呢?组合而成呢?还是由什么简单几何体截小结
(2)半圆的圆心叫做球心。
(3)半圆的直径叫做球的直径。
2、球的表示:用表示球心的字母表示,如球O
直径
我们已经学过这些几何体了。
棱柱
圆柱
球体
棱锥
圆柱
棱台
圆台
这些几何体又是什么呢?
现实世界中的物体表示的几何体,除柱、锥、台、球等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体。
五、圆锥的结构特征
直角三角形
S
A
O
(4)无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。
(3)不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。
(2) 垂直于轴的边旋转而成的圆面叫做圆锥的底面。
(1)旋转轴叫做圆锥的轴。
1、定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转而成的面所围成的旋转体叫做圆锥。
o
o′
动动脑:设圆台的上、下底面圆圆心分别为O′、O,过线段OO′的中点作平行于底面的截面称为圆台的中截面,那么圆台的上、下底面和中截面的面积有什么关系?
简单组合体的结构特征_1-课件
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、暖 瓶、洗洁精等的主要几何结构特征是什么?
由柱、锥、台、球组成了一些简单的组合体.认识 它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特征 是什么?
简单组合体
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5
•
15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 9:11:50 AM
•
11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021
旋转体
你能想象这条曲线绕轴旋转而成的几何图形吗?
这顶可爱的草帽又是由什么样的曲线旋转而成的 呢?这个轮胎呢?
生活与数学
数学在生活中无处不在,培养在生活中不断的用数 学的眼光看问题,会逐渐激发学数学的兴趣,增强数 学地分析问题、解决问题的能力.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、圆柱的结构特征
1、定义:以矩形的一边所在直线为 旋转轴,其余三边旋转形成的曲面所围成 的旋转体叫做圆柱。 (1)旋转轴叫做圆柱的轴。 (2) 垂直于轴的边旋转而 成的圆面叫做圆柱的底面。
B’ 轴 侧 面
矩 形
O
zxxkw
A’
O’
母 线
(3)平行于轴的边旋转而 成的曲面 叫做圆柱的侧面。
A
O B
六、圆台的结构特征
1、定义:用一个平行于圆锥底面的平面去 截圆锥,底面与截面之间的部分,这样的 几何体叫做圆台。
2、圆台的表示:用表示它的轴的字母表 示,如圆台OO′
3、圆台与棱台统称为台体。
O'
底面 轴 侧面 母线 底面
O
探究
圆柱可以由矩形旋转得到,圆锥可 以由直角三角形旋转得到,圆台可以由 什么平面图形旋转得到? 如何旋转?
球半径
O
直径 球心
2、球的表示: 用表示球心的字 母表示,如球O
B
我们已经学过这些几何体了。
棱柱
圆柱
球体
棱锥
圆柱
棱台
圆台
这些几何体又是什么呢?
现实世界中的物体表示的几何体,除柱、 锥、台、球等简单几何体外,还有大量的几何 体是由简单几何体组合而成的,这些几何体叫 做简单组合体。
简单组合体的构成有两种基本形式:一 种由简单几何体拼接而成,一种是简单几何 体截去或挖去一部分而成。
(4)无论旋转到什么位置,不垂 直于轴的边都叫做圆柱的母线。 底面
2、表示:用表示它的轴的字母表示,如 圆柱OO1。 O 3、圆柱 与棱柱统 称为柱体。 O1
侧面 轴 底面 母线
思考:平行于圆柱底面的截面,经过圆柱任意两 条母线的截面分别是什么图形?
思考:经过圆柱的轴的截面称为轴截面,你能说 出圆柱的轴截面有哪些基本特征吗?
的封闭曲面所围成的几何体是圆柱 ____。 4. 一个等腰三角形绕着底边上的高所在的直 线旋转180度形成的封闭曲面所围成的几何体是 圆锥 。 ______
5. 下列简单组合体各是由什么简单几何体组 合而成的?
由圆锥和圆柱组成
由球和圆柱组成
由圆柱和圆 柱组成
由棱锥和棱柱组成
由圆柱、圆锥、 圆柱、圆台组成
A
(4)无论旋转到什么位置,不垂直 于轴的边都叫做圆锥的母线。
2、圆锥的表示
用表示它 的轴的字母表 示,如圆锥SO。 S
轴
侧面 母线
O
3、圆锥与 棱锥统称为 锥体。
B
A 底面
思考?
经过圆锥任意两条母线的截面是什么图形?
知识递进:经过圆锥的轴的截面称为轴截面,你 能说出圆锥的轴截面有哪些基本特征吗?
6.下列表达不正确的是 ( B )
A. 以矩形的一边所在直线为旋转轴,其余三边旋转
形成的曲面所围成的几何体叫圆柱 B. 以直角三角形的一条边所在直线为旋转轴,其余 两边旋转形成的曲面围成的几何体叫圆锥 C. 以直角三角形的一条直角边所在直线为旋转轴,
其余两边旋转形成的曲面围成的几何体叫圆锥
D. 以等腰三角形的底边上的高所在直线为旋转轴,
直角梯形
绕梯形的高所在直线旋转
思考:经过圆台任意两条母线的截面是什么图 形?轴截面有哪些基本特征?
动动脑:设圆台的上、下底面圆圆心分别为O′、O,过 线段OO′的中点作平行于底面的截面称为圆台的中截面, 那么圆台的上、下底面和中截面的面积有什么关系? o′
o
七、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转 轴,半圆面旋转一周形成的旋转体叫做球体, 简称球。 (1)半圆的半径叫做球的半径。 (2)半圆的圆心叫做球心。 A (3)半圆的直径叫做球的直径。
S
五、圆锥的结构特征
1、定义:以直角三角形的一条直角边 所在直线为旋转轴,其余两边旋转而 直角三角形 成的面所围成的旋转体叫做圆锥。
B
O
S 母 线
A
顶点
(1)旋转轴叫做圆锥的轴。
(2) 垂直于轴的边旋转而成的 圆面叫做圆锥的底面。 (3)不垂直于轴的边旋转而成 的曲面叫做圆锥的侧面。一个圆柱和 一个长方体组成。
上图由一个长方体截 去一个三棱锥得到。
思考
下面这些几何体是那种构成形式呢?组合而成呢? 还是由什么简单几何体截去或挖去一部分而成?
去掉
去掉
课堂小结
现实世界中,我们看到的物体大多由具有柱、 锥、台、球等几何结构的物体组合而成。有两种 基本形式:一种由简单几何体拼接而成,一种是 简单几何体截去或挖去一部分而成。
有两种基本形式
一种由简单几何体拼接而成。 一种是简单几何体截去或挖去一部分而成。
课堂练习
1.说出下列图形绕虚线旋转一周,可以形成怎样
的几何体?
(1) 圆台
(2) 圆锥
(3) 球
(4)
圆柱
2. 一个等腰梯形绕着两底边中点的连线所在
的直线旋转180度形成的封闭曲面所围成的几何体 圆台 是______. 3. 一个矩形绕着一边的中垂线旋转180度形成
其余各边旋转形成的曲面围成的几何体叫圆锥
7. 下列关于简单几何体的说法中: (1)斜棱柱的侧面中不可能有矩形。 (2)有两个面互相平行,其余各面都是平行四边形 的多面体是棱柱。 (3)侧面是等腰三角形的棱锥是正棱锥。 (4)圆台也可看成是圆锥被平行于底面的平面所截 得截面与底面之间的部分。 其中正确的是__________ 。 (4)