结构动力特性试验
结构动力特性测试

T
n周
T= t / n
二:强迫振动法
' — —
1.激振方法:可变周期(变频)振动荷载、离心电机、电磁激励荷载 (荷载幅值不变) 2.测试方法:测量记录下结振幅——频率关系 A
振幅
ω1
ω2
ω3 ω4
ω
7.2.2 结构阻尼的测量
△
阻尼来源:结构内部、外部、支座 阻尼对振动影响: 共振时 1 抗震中:大好 p=ql 隔振中:小好
4. 检测方法 自由激振法
人工激振法
强迫激振法 环境随机振动法
7.2 人工激振法测量结构动力特性 7.2.1 人工激振测量自振频率
一:自由振动法 1.激振方法:人工施加初位移、初速度、突加荷 2.测试方法:测量记录下结构振幅(加速度或速度)—— 时间关系
A
振幅(位移、速度、加速度)
t 时间
Hale Waihona Puke TTt第七章 结构动力特性试验
7.1 概述 1.动力特性参数(或模态参数) 自振频率(周期)、阻尼参数、振型 是结构固有特性与外荷载无关 2.要求:动力试验的基本内容 结构动力计算和试验所必需的基本参数 3.作用:(1)抗震设计中 地震作用力大小—结构自振周期 动力计算模型——结构动力特性 (2)防共振、隔振、减振 (3)检测、诊断结构健康状态
xn+2 xn+k
1 xn λ =2 ln x n+k k
1 μ (θ )
p
百分表
c
p
ql/2 ql/2
拉
介绍:主要方法、振型的概念
7.2.3 振型测量
l/4 l/2 l/4
m
1
1
0.5
0.3
单自由度
结构动力特性试验

OFS
LPFG
FBG
EFPI
四、试验过程
1、熟悉传感器和测量仪器,并连线。 2、打开设备电源,预热10min。 3、启动DHDAS_5920动态信号采集分析软件,
熟悉界面。
4、测量参数设置 (1)分析参数设置 z 采样频率:1k~2kHz; z 采样方式:连续
其余不用设置。
OFS
LPFG
FBG
EFPI
OFS
应变片
m
Z 0(t)
LPFG
FBGZ1 ( t )
EFPI
(2)压电式加速度传感器
¾ 振动时质量块产
生的惯性力,使压
电元件产生变形,
从而产生与加速度
成正比的电荷,经
m
后级电荷放大器后
得到与加速度成正
比的电压值。
3
优点:
引出线
¾(1)体积小,重量轻,对被测体的影响小。
¾(2)频率范围宽、动态范围大、测量灵敏 度高。
25
EFPI
灵敏度的选择
(1)土木工程和超大型机械结构的振动 在1~100ms-2左右,可选300~30pC/ms-2 的加速度传感器。
(2)特殊的土木结构(如桩基)和机械 设备的振动在100~1000ms-2,可选择 20~2pC/ms-2 的加速度传感器。
(3)碰撞、冲击测量一般10k~1Mms-2, 可选则0.2~0.002pC/ms-2 的加速度传感 器。
OFS
LPFG
FBG
EFPI
频率选择
选择加速度传感器的频率范围应高于被 测试件的振动频率。有倍频分析要求的 加速度传感器频率响应应更高。
土木工程一般是低频振动,加速度传感 器频率响应范围可选择0.2~1kHz
3结构动载试验

3.4.4 结构疲劳试验
一、疲劳试验的目的和内容
疲劳试验机由控制系统(脉动负荷的上下限、脉动频率和 疲劳次数的设定与控制)、液压脉动器(产生正弦脉动油 压)和液压脉动加载器(施加脉动负荷)三部分组成。目 前国内一般情况下只能做单向(拉或压)应力疲劳试验, 如附有蓄力器系统,还可以进行拉压交变应力的疲劳试验。
结构疲劳试验机
结构疲劳试验机脉动器原理
炸药量和离距爆心的距离:按要求模拟的地震烈 度,考虑实际场地条件的特点,由要求的地面质 点运动的最大速度,确定炸药量和爆心至试验结 构的距离。一般来说,要使人工爆炸接近于天然 地震波,要求炸药量大,试验对象离爆心距离远。
3、人激振加载
利用人在结构物上的有规律的活动,即人的身体 作与结构自振周期同步的前后运动,使其产生足 够大的惯性力,对结构激振加载。适合于自振频 率比较低的大型结构。例如:利用这种方法曾在 一座15层的钢筋混凝土建筑上取得了振动记录。
两个频率相差两倍的简谐 振源引起的合成振动图形
三个简谐振源引起的复杂 的合成振动波形
拍振:当两个频率接近的简谐 振源共同作用时,将会引起拍振
随机振动波形
2、频率分析:根据结构强迫振动的频率和作用力的 频率相同的原则来确定主振源。对于简谐振动可以 直接在振动记录图上量出振动频率,而对于复杂的 合成振动则需将振动信号进行频谱分析(FFT变 换),幅值最大的频率就是主振源的频率。
地 震 模 拟 振 动 台 组 成
三向地震模拟振动台
五、其他加载方法
1、反冲激振器加载(火箭激振) 它适用于现场结构试验,但小冲量的也可用于实验室。目
前使用的反冲激振器的反冲力为 0.1~0.8 kN 和1~8kN。
2、人工爆炸加载--人工地震
工程结构实验与检测第3章 结构动力试验

使用时要定期标定。 压电式加速度计原理
四、测振配套仪器
1、放大器 微积分放大器:与位移、速度传感器相配。 电荷放大器:与压电式拾振器相配。 2、动态电阻应变仪 主要用于测动应变,还可以测位移、速度、 加速度、振幅等参数的变化过程。 3、记录仪器
常用的有数据采集仪。
5、仪器配套
磁电式 拾振器
微积分 放大器
其特点是运动具有周期性,作用的 大小和频率按一定规律变化,使结构产 生强迫振动。
离心力加载 :机械式激振器
机械式激振器
使一对偏心块按相反方向运转,便由离心力产 生一定方向的加振力。改变质量或调整带动偏心质 量运转的电机的转速,可调整激振力的大小。
使用时将激振器底座固定在被测结构物上, 由底座把激振力传递给结构,致使结构受到简谐变 化激励作用。
2 1 2
1 2
振型:用共振法测建筑物振型
3、脉动法
脉动法:是通过测量建筑物由于外界环境脉 动(如地面脉动、气流脉动等)而产生的微幅振 动,来确定建筑物的动力特性。
脉动记录的分析方法有:主谐量法;频谱分析法。 主谐量法:脉动信号的主要成分是基频谐量,
在脉动记录里常常出现酷似“拍”的现象,在波形 光滑之处“拍”的现象最显著,振幅最大。凡有这 种现象之处,振动周期大多相同。这一周期往往即 是结构的基本周期。
时间标志
2i c2h2i
c1, c2 正负应变的标定常数
动应变频率: f
L0 L
f0
二、动位移测定
要全面了 解结构在动力 荷载作用下的 振动状态,可 以设置多个测 点进行动态变 位测量,以作 出振动变位图。
注意:振动变位与振型的区别。
三、动力系数测定
结构动力系数定义为:在移动荷载作用下,结构 的动挠度和静挠度的比值。
钢框架动力特性实验报告

钢框架模型动力特性试验报告前言建筑结构动力特性是反映结构本身所固有的动力性能。
它的主要内容包括结构的自振频率、振型、阻尼系数等一些基本参数。
这些特性是由结构形式、质量分布、结构刚度、材料性质、构造连接等因素决定,但与外荷载无关,它反应了体系的固有特性。
建筑结构动力特性试验量测结构动力特性参数是结构动力试验的基本内容,在研究建筑结构的抗震、抗风或抵御其他动力荷载的性能时,都必须要进行结构动力特性试验,了解结构的自振特性。
由于它可在小振幅试验下求得,不会使结构出现过大的振动和损坏,因此经常在现场进行结构的实物试验,主要分为人工激振法和环境随机振动法。
建筑物周围大地环境引起结构物振动的地脉动和风称为环境激振。
自然地脉动是由海浪、风、交通、机械等自然和人为活动所引起,其位移幅值从千分之几微米到几微米,频带从0.1Hz 到100Hz。
通过拾振器测得建筑物脉动反应后,对随机的脉动信号进行数据处理,可得到结构的基频率或较低几阶的频率。
可推导出脉动的功率谱峰值,这些峰值对应的频率即为结构的自振频率,而根据计算软件的精度不同,能得出较为精确的前几阶频率的数目也不同。
一.试验目的1. 了解脉动测试法的基本原理,掌握用脉动法测试结构的固有频率、阻尼及振型的方法;2. 熟悉常用结构动力特性测试系统的组成和相关仪器的使用方法;3. 熟悉建(构)筑物动力特性现场实测的基本方法和一些应该注意的问题;二.工程概况1. 结构如图1所示:试验结构为一个7层多自由度钢框架,平面内框架尺寸为400mm×105mm,模型板超出框架柱范围,尺寸为500mm×300mm×15mm,每层层高为300mm,每层各有八块95mm×90mm×10mm的铁质的配重。
结构材料为Q235钢,节点处通过连接板和螺栓进行连接,4个框架柱为 8的Q235钢。
图1 模型简图三.测试仪器2. 仪器(1)加速度传感器本次试验使用丹麦产4381V型加速度传感器。
建筑结构试验名词解释

建筑结构试验一、名词解释1、结构动力特性试验:指结构受动力荷载鼓励时,在结构自由振动或强迫振动情况下量测结构自身所固有的动力性能的试验。
一八 10 082、结构动力反响试验:指结构在动力荷载作用下,量测结构或特定部位动力性能参数和动态反响的试验。
3、结构劳累试验:指结构构件在等幅稳定、屡次重复荷载的作用下,为测试结构劳累性能而进行的动力试验。
二七八4、地震模拟振动台试验:指在地震模拟振动台上进行的结构抗震动力试验。
5、短期荷载试验:指结构试验时限与试验条件、试验时间或其它各种因素和基于及时解决问题的需要,经常对实际承受长期荷载作用的结构构件,在试验时将荷载从零开始到最后结构破坏或某个阶段进行卸载,整个试验的过程和时间总和仅在一个较短时间段内完成的结构试验。
一八6、长期荷载试验:指结构在长期荷载作用下研究结构变形随时间变化规律的试验。
七7、现场试验:指在生产或施工现场进行的实际结构的试验。
8、相似模型试验:按照相似理论进行模型设计、制作与试验。
十9、缩尺模型:原型结构缩小几何比例尺寸的试验代表物。
07 09原型相似:对象是实际结构〔实物〕或者是实际的结构构件模型相似:是仿照〔真实结构〕并按肯定比例关系复制而成的试验代表物,它具有实际结构的全部或局部特征,但大局部结构模型是尺寸比原型小得多的缩尺结构。
结构抗震试验:是在地震或模拟地震荷载作用下研究结构构件抗震性能和抗震能力的特意试验。
拟动力试验:是利用计算机和电液伺服加载器联机系统进行结构抗震试验的一种试验方法。
地震模拟震动台试验:是指在地震模拟振动台上进行的结构抗震动力试验。
低周反复加载静力试验:是一种以操纵结构变形或操纵施加荷载,由小到大对结构构件进行屡次低周期反复作用的结构抗震尽力试验。
短期荷载试验:是指结构试验时限与试验条件、试验时间或其他各种因素和基于及时解决问题的需要,经常对实际承受长期何在作用的结构构件,在试验时将荷载从零开始到最后机构破坏或某个阶段进行卸载,整个试验的过程和时间总和仅在一个较短时间段内〔如几天、几小时、甚至几分钟〕完成的结构试验长期荷载试验:是指结构在长期何在作用下研究结构变形随时间变化规律的试验。
结构动力特性试验及损伤鉴定

c =[ 2
其中 —— 第一个脚标 i 表示位置符号 , 第二个脚
其中[ : ] 表示广义质量矩阵 , [ 群 ] 表示广义刚 度矩 阵.
将( 2 ) 式代人 ( 1 ) 式再左乘 , 可得
[ ] Q ( t )+[ 2
=
] 0 ( t )+[ ] Q ( t )
( 4 )
R ( ) = E [ ( ) Y A t + r ) ]=∑。 ∑
r X( t ) =2( t )
LL Q ( r 1 ) ( r 1 ) ( . r + 7 - 1 一 . r 2 ) d 1 d 丁 z
( 1 2 )
结 构 的激励 X( t )与响 应 y ( t )之 间的 自功 率 谱 密度 函数矩 阵 之 间的关 系 : S H( 吐 , )=
其 中
式中, h o 1 ( r ) , 。 m ( 丁 。 ) —— 表示脉冲响应函数.
环境激励主要来 自地面运动和风振. 输出信号
即为结构 对 于环境 激励 的 响应 . 环 境激励 本身 是随 机 的, 而 且产 生原 因 多样 , 实 际上 没有 测量 的必 要 ,
应后 , 对脉动信号进行数据处理 , 可得到结构的基 频率或较低阶的频率 , 从而得出脉动的功率谱峰值 和结构的自 振频率. 近年来 , 地震 等 自然 灾害 事件 频发 , 地震后 , 建
筑物倒 塌 、 破 坏严重 , 需要 检测 、 鉴定 的建筑物 量 巨 大. 本文所述 方法 可 以方 便 的在地震 后 的现场进 行
检测 、 鉴定应 用 , 并且 可 以为结 构加 固 、 维修等 提供
在分析中只考虑结构的响应. 将高层建筑结构简化 为多 自由度系统 , 多 自由度系统的随机运动方程可
结构动力实验报告

结构动力实验报告结构动力实验报告一、引言结构动力学是研究结构在外力作用下的振动特性和响应规律的学科。
通过实验研究结构的动力响应,可以了解结构的固有频率、振型、阻尼特性等重要参数,为结构设计和抗震设计提供依据。
本实验旨在通过一系列测试,探索结构的动力响应特性。
二、实验目的1. 测定结构的固有频率和振型。
2. 分析结构在不同外力激励下的动力响应特性。
3. 探究结构的阻尼特性。
三、实验装置与方法1. 实验装置:使用一台振动台和一根悬臂梁作为实验结构。
2. 实验方法:a. 测定固有频率和振型:在不同频率下,通过改变振动台的频率控制结构的激励频率,使用加速度传感器测定结构的振动响应,并记录下振动台的频率。
b. 测定动力响应特性:通过改变振动台的振幅,分析结构在不同外力激励下的振动响应,并记录下响应的幅值和相位。
c. 测定阻尼特性:在结构上添加不同阻尼装置,测定结构在不同阻尼条件下的振动响应,并记录下响应的幅值和相位。
四、实验结果与分析1. 测定固有频率和振型:根据实验数据,绘制结构的频率-振型曲线,确定结构的固有频率和振型。
分析不同频率下的振动响应,可以推测结构的模态分布情况。
2. 分析动力响应特性:对于不同外力激励下的振动响应,绘制振动幅值和相位的频率响应曲线,分析结构的频率响应特性,如共振频率、共振幅值等。
通过对比不同外力激励下的响应曲线,可以研究结构的非线性特性和耦合效应。
3. 探究阻尼特性:通过添加不同阻尼装置,测定结构在不同阻尼条件下的振动响应。
分析阻尼对结构响应的影响,可以评估结构的耗能能力和抗震性能。
五、实验结论1. 结构的固有频率和振型是结构动力学研究的重要参数,通过实验测定可以了解结构的模态分布情况。
2. 结构的动力响应特性与外力激励频率和振幅密切相关,通过分析响应曲线可以评估结构的共振情况和非线性特性。
3. 阻尼对结构的动力响应有重要影响,适当的阻尼装置可以提高结构的耗能能力和抗震性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 结构动力特性试验
6.3.1 概述
结构动力特性试验的方法
人工振动法 自由振动 强迫振动 2. 环境随机振动法
6.5 结构疲劳试验
6.5.2 疲劳试验的加载程序 一种是为了求得疲劳极限而对构件从头到尾施加重复荷载;另 一种是静荷载与疲劳荷载交替施加。 疲劳试验过程中要进行三种形式的试验 (1)静载试验:静载试验先做2~3次加载、卸载循环的静载试 验,加载值为最大荷载的20% ,分4级加载。
(2)疲劳试验:
6.2 结构动力荷载特性试验
6.2.2 主振源特性的试验测定
1.
直接测定法 间接测定法
比较测定法
通过测定动荷载本身的参数以确定其特性。
2.
把动力荷载安装在专用的,有足够变形的弹性结构上,上下是刚性支座
3.
比较振源的承载结构在已知动力荷载作用下的振动情况,得出荷载的特 性数据
6.3 结构动力特性试验
确定开裂荷载; 裂缝的宽度、间距、分布形态及其随荷载重复次数的变化; 最大挠度及其变化; 测定破坏荷载、疲劳寿命及破坏特征。
研究性疲劳试验一般包括以下内容:
6.5 结构疲劳试验
疲劳试验的加载设计 1. 疲劳试验荷载 (一)疲劳试验荷载取值:
6.5.2
疲劳试验的上限荷载Qmax是根据构件在标准荷载最大最 不利组合下产生的弯矩计算而得
位移(振幅)、速度、加速度、动应力。动力系数等
6.2 结构动力荷载特性试验
动力荷载的特性
作用力的大小、方向、频率及其作用规律
6.2 结构动力荷载特性试验
主振源的探测 主振源的频率:幅值最大的频率
6.2.1
下列是撞击荷载引起的 振动?
(a) (d)
(b)
(e)
(c)
(f)
图6-1 几种典型振动记录波图形
荷载下限根据疲劳试验设备的要求而定。
6.5 结构疲劳试验
疲劳试验的加载设计 2. 试验荷载频率
6.5.2
荷载频率不应使构件和荷载架发生共振,同时应使 构件在试验时与实际工作时的受力状态一致,为此 荷载频率与构件固有频率应满足一定条件:
0.8或1.3
结构疲劳试验的方法
1、疲劳试验荷载
6.3.2
6.3 结构动力特性试验
6.3.3
脉动 明显反映出建筑物的固有频率和自振特性。
环境随即振动法测量结构动力特性
随 机振动过程是一个复杂的过程,每重复一次所取 得的每一个样本都是不同的,所以,一般随机振 动特性应从全部事件的统计特性的研究中得出, 并且必须认为这种随机过程是各态历经的平稳过 程。
1.
6.3 结构动力特性试验
人工振动法测量结构动力特性 1、自由振动法 定义:在试验中采用初位移或初速度的突卸 或突加荷载的方法,使结构受一冲击荷载作 用而产生自由振动。 结构自振频率测量 阻尼比测量 振型测量
6.3.2
6.3 结构动力特性试验
人工振动法测量结构动力特性 2 强迫振动法 强迫振动法也称共振法。一般都采用惯 性式机械离心激振器对结构施加周期性的简 谐振动,在模型试验时可采用电磁激振器激 振,使结构和模型产生强迫振动。由结构动 力学可知,当干扰力的频率与结构自振频率 相等时,结构产生共振。 利用激振器可以连续改变激振频率的特 点,当结构产生共振时振幅出现极大值,这 时激振器的频率是结构的自振频率。
6.5 结构疲劳试验
6.5.1 概述 疲劳试验分类 等幅值疲劳试验、变幅变频疲劳和随机疲劳
中级工作制吊车梁: 200万次疲劳 高级工作制吊车梁: 400万次疲劳
6.5 结构疲劳试验
概述 生产性疲劳试验一般包括以下内容:
6.5.1
抗裂性能; 开裂荷载、裂缝宽度及开展情况; 最大挠度及变化幅度和疲劳极限强度。
6.4 结构动力反应试验
结构动态参数的测量 结构在动力荷载作用下特定部位的动态参数 振幅、频率,速度、加速度、动应变 传播系数:各点测得的振幅与振源处的振幅 之比(特定结构与特定振源)
6.4.1
6.4 结构动力反应试验
结构振动形态的测量 多个测点振动变形图 振动形态与振型的区别(P165)
荷载取值:上限值根据构件在荷载标准值 最不利组合下产生的弯距计算求得;下限值 根据疲劳试验机的设备性能而定。 疲劳机的频率 频率选择:依据疲劳试验机的性能而定。 0 . 8 1 .3 通常为: 构件固有频率 控制次数: 6 中级工作制吊车梁: n 2 10次; 6 n 4 10 重级工作制吊车梁: 次。
6.4.2
6.4 结构动力反应试验
结构动力系数的测量 动力系数 动挠度和静挠度的比值称为动力系数。
6.4.3
y概述 疲劳(定义)(P166):
6.5.1
结构在等幅等频或变幅等频的多次重复和反复荷载 作用下,由于结构某一部分局部损伤的递增和积累 ,导致裂纹形成并逐步发展,材料的强度降低,以 致结构低于相同静力荷载情况被破坏。 结构疲劳试验的目的就是要了解在重复或反复荷载 作用下结构的性能和其变化规律,确定结构疲劳破 坏时的强度值和荷载重复作用的次数,即确定疲劳 强度和疲劳寿命。
(3)破坏试验阶段:
疲劳试验加载程序
两种:静荷载和疲劳试验。
变 更 荷 载 上 限 的 加 载 程 序
等幅疲劳加载方案
等 幅 疲 劳 加 载 程 序
6.1 概述
6.1.1 结构动力荷载的类型 1. 地震作用 2. 机械设备振动和冲击荷载 3. 高层建筑和高耸建筑的风振 4. 环境振动 5. 爆炸引起的振动
6.1 概述
6.1.2 结构动力试验的内容
1. 测定结构动力荷载或振源的特性,即测定引起 振动的作用力的大小、方向、作用频率及其规律。 2. 测定结构的动力特性,包括结构的自振频率、 阻尼和振型。 3. 测定结构在动力荷载作用下的反应