硬质合金铰刀的设计及其切削实验研究

硬质合金铰刀的设计及其切削实验研究
硬质合金铰刀的设计及其切削实验研究

铰孔工艺

6.6 铰孔工艺、编程 材料: 45#钢,正火处理 图6-6-1圆周均布孔加工零件 6.6.1 铰孔加工工艺 1.铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9~IT7级,表面粗糙度一般达Ra1.6~0.8μm。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6×φ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径0.05~0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和位

切削用量三要素—7

课题切削用量三要素 教学目标1、了解切削用量三要素。 2、掌握切削用量计算公式。 教材分析重点削用量三要素、切削用量计算公式、切削用量的初步选择难点切削速度及其计算公式 教学方法讲授法教学用具 教学过程 切削用量是指背吃刀量p a qqqqc(或切削深度)、进给量f (或进给速度v f )、切削速度c v三者的总称,也称为切削用量三要素。它是调整刀具与工件间相对运动速度和相对位置所需的工艺参数。 一、背吃刀量(p a )(或切削深度) 背吃刀量是指切削时已加工表面与待加工表面之间的垂直距离,用符号ap 表示,单位为mm。 思考题:现有Φ30的毛坯,一次走刀加工成Φ26,试问背吃刀量是多少? p a =(30-26)/2=2mm 背吃刀量的选择: 余量不大,一次走刀切除多余的材料,只留下精加工余量。 1、粗加工 余量太大,可分多次切削,但第一次的背吃刀量尽可能大。 2、精加工粗加工后留下的余量,精加工时应一次进给切削完成。 2 m w p d d a - = w d:待加工表面直径mm m d:已加工表面直径mm

c v 教 学 过 程 二、进给量(f )(或进给速度 v f ) 进给量是指刀具在进给方向上相对工件的位移量,即工件每转一圈,车刀沿进给方向移动的距离,用符号 f 表示,单位为 mm/r ,如图所示。 进给量的选择: 1、为了缩短加工时间,提高效率: 粗加工时应选用较大的进给量。 2、为了保证表面质量及加工精度: 精加工时应选用较小的进给量。 三、切削速度(c v ) 切削速度是指切削刃上选定点相对于工件主运动的瞬时速度,用符号c v 表示,单位为m/min 。当主运动是旋转运动时,切削速度是指圆周运动的线速度,即: ——切削速度,m/min n ——主轴转速,r/min d ——工件待加工表面直径,mm π ——圆周率, 3.14 例1:车削直径为50mm 的工件,若选主轴转速为600r/min ,求切削速度的大小? 解:由公式得: 练习: 车削直径为300mm 的铸铁带轮外圆,若切削速度为60m/min ,求车床主轴转速? 解:由公式 得: d v n c π1000=min /2.94min /1000 5014.36001000m m d n V c =??==πmin /69.63min /300 14.36010001000r r d v n c =??==π

铰刀的结构及其工艺特点

铰刀的结构及其工艺特点铰刀一般由高速钢和硬质合金制造。 铰刀的精度等级分为H7、H8、H9三级,其公差由铰刀专用公差确定,分别适用于铰削H7、H8、H9公差等级的孔。多数铰刀又分为A、B两种类型,A型为直槽铰刀,B型为螺旋槽铰刀。螺旋槽铰刀切削平稳,适用于加工断续表面。 如图7-42为一般机用硬质合金铰刀的结构,它由工作部分、颈部和柄部组成。工作部分包括引导锥、切削部和校准部。为了使铰刀易于引入预制孔,在铰刀前端制出引导锥。校准部由圆柱部分和倒锥部分组成。圆柱部分用来校准孔的直径尺寸并提高孔的表面质量,以及在切削时增强导向作用;倒锥部分用来减小摩擦。铰刀的主要设计内容是确定工作部分的参数。 1.铰刀直径及其公差的确定 铰刀直径公差直接影响被加工孔的尺寸精度、铰刀制造成本和使用寿命。铰孔时,由于刀齿径向跳动以及铰削用量和切削液等因素会使孔径大于铰刀直径,称为铰孔“扩张”;而由于刀刃钝圆半径挤压孔壁,则会使孔产生恢复而缩小,称为铰孔“收缩”。一般“扩张”和“收缩”的因素同时存在,最后结果应由实验决定。经验表明:用高速钢铰刀铰孔一般发生扩张,用硬质合金铰刀铰孔一般发生收缩,铰 削薄壁孔时,也常发生收缩。 铰刀的公称直径等于孔的公称直径。铰刀的上下偏差则要考虑扩张量、收缩量,并留出必要的磨损公差。 图7-43所示为铰刀直径及其公差。

dω—工件直径; do—新铰刀直径; —工件孔公差; P—扩张量 Pa—收缩量; G—铰刀制造公差; N—铰刀磨损公差 若铰孔发生扩张现象,则设计及制造铰刀的最大、最小极限尺寸分别为: domax=dωmax-Pmax(6-1) domin=domax-G(6-2) 若铰孔发生收缩现象,则设计及制造铰刀的最大、最小极限尺寸分别为: domax=dωmax+Pamin(6-3) domin=domax-G(6-4) 国家标准规定:铰刀制造公差G=0.35()。根据一般经验数据,高速钢铰刀可取Pmax=0.1 5();硬质合金铰刀铰孔后的收缩量往往因工件材料不同而不同,故常取Pamin=0,或取Pami n=0.1()。Pmax及Pamin的可靠确定办法是由实验测定。 2.铰刀的齿数及齿槽 铰刀的齿数影响铰孔精度、表面粗糙度、容屑空间和刀齿强度。其值一般按铰刀直径和工件材料确定。铰刀直径较大时,可取较多齿数;加工韧性材料时,齿数应取少些;加工脆性材料时,齿数可

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

数控车床切削三要素对表面粗糙度的影响说课稿

课题:切削三要素对表面粗糙度的影响 (说课稿) 教学内容:科学出版社《数控加工工艺基础》第二章第三节切削要素 适用年级:数控专业二年级年级(下期) 课型:新授课 计划用时:90分钟 总体设计思路:本次课将采用实验验证法,通过让学生在做中探索、分析、解决实际问题。从而达到培养学生的分析问题,解决问题的能力,另一方面还能培养学生的安全意识,全程分理论和实作验证两部分进行。 设计理念:以突出对学生学习方法和衍生实践技能的培养,体现“做中学、做中教” 的职业教育特点,让学生养成动手动脑的习惯。 一、专业分析 数控加工业是一个国家的基础行业,近些年来,世界制造加工业中心逐渐向中国转移,这使得我国的数控加工产业获得了飞速的发展,至此人才的需求急剧增加。 数控加工过程就是获得零件的形状,尺寸和表面质量,而这些东西就需要合理选择切削三要素来保证,其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响,在保证质量的前提下,获得高的生产率和低的加工成本对于一个企业来讲至关重要,所以说学生掌握了切削三要素的合理选择就掌握了在今后工作当中的主动性。, 二、教材分析: 本课程是数控加工专业的核心课程之一,是一门综合性很强的课程,主要培养学生数控加工的能力,重视实践能力培养,突出职业技术教育特色,根据数控类专业毕业生从事职业的实际需求,合理确定学生应具备的能力结构与知识结构,加强实践性教育内容,以满足企业对技能型人才的需求。从而为毕业后从事数控专业工作做好知识与能力的准备。 本节内容在教材中理论性太强,过于抽象学生不容易理解和掌握,因此在设计本节课时,我做了如下处理:基本理论讲解后让学生在实践验证中去理解合理选择三要素对工件粗糙度的影响。 【知识与能力目标】 知识目标: 1、让学生正确理解切削三要素的概念及合理选用的原则。 2、让学生掌握切削用量计算公式 能力目标: 让学生能根据本节课所学内容,在实践加工过程中合理的选择三要素。 【情感、态度、价值观目标】 培养学生具有良好的社会责任感与团队合作精神;具有良好的职业道德与操守。 三、学情分析: 心理特征分析:本次课授课对象为二年级数控3班学生,该班学生思维较活跃,学习氛围较浓,但中专班的学生普遍存在对学习理论兴趣不大,学习中遇到困难不愿意动脑去思考

铰刀设计

《金属切削原理与刀具》课程设计 铰 刀 的 设 计 组别 姓名 学号

目录 题目 (1) 第一章材料的选择 (2) 第二章铰刀的结构参数 (3) 1、几何角度 (3) 2、铰刀的直径与公差 (4) 3、齿数Z及分布 (6) 4、铰刀齿槽与尺寸 (7) 5、工作部分尺寸 (8) 6、非工作部分结构 (9) 第三章机用铰刀技术条件 (10) 零件图 (12)

题目 设计被铰孔的直径为Ф10H7mm,深度10mm,材料为A3钢,确定预置孔的直径为Ф8mm。 毛坯图:

第一章材料的选择 A3钢属于低碳钢,硬度低,塑性高,故切削变形大,切削温度高,易产生粘削和积削瘤,断削困难,不易达到小的粗糙度,切削低碳钢应选用较大前角和后角,应使切削刃锋利,提高切削速度。对于A3钢的切削,可以选用高速钢。高速钢是综合性能较好,应用范围最广的一种刀具材料。热处理后硬度达62-66HRC,抗弯强度约3.3GPa,耐热性约600℃,此外还具有热处理变形小,能锻造,易磨出较锋利的刃口等优点。具体工作部分可选择W9Mo3Cr4V,其高温热塑性好,淬火过热,脱碳敏感性小,有良好的切削性能。刀柄部分用45号钢。

第二章铰刀的结构参数 1、几何角度(见表1) 表1机用铰刀几何参数 导锥角ψψ=45° 刃倾角λs一般λs=0°;加工韧性较大材料时λs=15°~20° 前角γp一般γp=0°;粗铰韧性较大材料时γp=5°~10° 螺旋角β一般β=0°(直齿);加工深孔或断续表面时可用螺旋齿铰刀,加工盲孔取右旋,加工通孔取左旋、加工灰铸铁、淬硬钢β=7°~8 °,可锻铸铁、钢12°~20°,铝和轻金属35°~45° 主偏角κr 加工铸铁等脆性材料κr=3°~5°加工钢等塑性材料κr=12°~15°加工盲孔时κr=45° 后角αp与刃带b a1直径 d0/mm 1~3 >3~10 >10~18 >18~30 >30~50 >50~80 后角αp14~18°10~14°8~12°6~10°6~10°6~10°刃带b a10.05~0.1 0.1~0.15 0.15~0.25 0.2~0.3 0.25~0.4 0.3~0.5 倒锥d01<d0直径<2.8 >2.8~6 >6~18 >18~32 >32~50 >50~80 倒锥量0.005~0.02 0.02~0.04 0.03~0.05 0.04~0.06 0.05~0.07 0.06~0.08 d02d02=d0-(1.3~1.4)2A(A为铰孔单边余量) 所以,由表一得:铰刀的倒锥角ψ=0,刃倾角λs=0,前角γp=0°,螺旋角β=0,主偏角κr=12°,后角αp =10°,刃带b a1=0.15mm。倒锥量为0.04。

硬质合金铰刀及其标准化

硬质合金铰刀及其标准化 硬质合金铰刀作为一种高效切削工具问世以来,已越来越广泛地被采用。在ISO的硬质合金P, M和K类基础上,我国发展生产了碳化钨、碳化钻、碳化钛、碳化钽和钴等硬质合金材料,突破了高效铰削这一难关。 但是,对硬质合金铰刀如何正确设计、加工,特别是硬质合金铰刀各参数如何达到合理安排,使其标准化、优选化和系列化,并获得满意的经济效果,还是一个值得重视的课题。 1确定切削刃、校正刃、过渡刃刃带 铰刀的要害部位之一就是刃带,不同的被加工材料,不同的工件铰削余量及不同的工件与铰刀的相对转速决定着不同的刃带宽度。 生产中使用的铰刀常出现以下情况: 铰刀使用寿命短,刃带迅速磨损而报废; 铰刀表面粗糙度差,导致被加工工件孔的表面粗糙度更差; 工件经铰削加工后的孔变形,因而孔的圆度超差,往往造成产品报废。 分析现场使用后的硬质合金铰刀,发现所有报废的铰刀磨损量并不大,除靠近切削刃和过渡刃1~2mm处有磨损痕迹外,其余切削刃完好,因此得出结论:除了不断提高铰刀切削刃外圆的表面粗糙度要求外,还必须对硬质合金铰刀刃带宽度进行优化。经过多次生产实践和试验,找出了铰刀刃带宽度的最佳尺寸范围,见表1。 表1碳钢用硬质合金铰刀刃带宽度推荐值(mm) 表2硬质合金铰刀铰削不同硬度

图一 图二 2掌握材料变形规律,合理确定硬质合金铰刀公差 由于硬质合金铰刀与高速钢铰刀的切削状态不同,前者是切削加挤削,因此发热量大大超过了高速钢铰刀。用硬质合金铰刀进行高速铰削时,最高发热量可达800℃,工件由热变冷时,工件内孔收缩量大,铰刀不立即取出还会有被咬死现象。铰削中材料的硬度、单位切削力和铰削所产生的热量见表2。 不同的材料硬度和孔径,由于发热量变化,其变化规律如图1。 3正确制定企业标准,扩大硬质合金铰刀的使用范围 从以上分析中可以看出,我们在制定硬质合金铰刀标准时不能硬套上级标准,在采用国际标准和国家标准普遍原则的前提下,还要注意制定企业内控标准。针对不同特点制定的硬质合金铰刀公差原则已经被实践所证实,而且被广泛认可采纳。公差带如图2所示。 从图2可以看出,根据实际情况可设计多种位置不同的公差带。由于材料硬度变化,铰孔后材料收缩量也随之而改变,其铰刀的制造公差应随材料的膨胀或收缩值浮动,并且也可以超越产品公差带。

铰刀的结构及其工艺特点.doc

铰刀的结构及其工艺特点 铰刀一般由高速钢和硬质合金制造。 铰刀的精度等级分为H7、H8、H9三级,其公差由铰刀专用公差确定,分别适用于铰削H7、H8、H9公差等级的孔。多数铰刀又分为A、B两种类型,A型为直槽铰刀,B型为螺旋槽铰刀。螺旋槽铰刀切削平稳,适用于加工断续表面。 如图7-42为一般机用硬质合金铰刀的结构,它由工作部分、颈部和柄部组成。工作部分包括引导锥、切削部和校准部。为了使铰刀易于引入预制孔,在铰刀前端制出引导锥。校准部由圆柱部分和倒锥部分组成。圆柱部分用来校准孔的直径尺寸并提高孔的表面质量,以及在切削时增强导向作用;倒锥部分用来减小摩擦。铰刀的主要设计内容是确定工作部分的参数。 1.铰刀直径及其公差的确定 铰刀直径公差直接影响被加工孔的尺寸精度、铰刀制造成本和使用寿命。铰孔时,由于刀齿径向跳动以及铰削用量和切削液等因素会使孔径大于铰刀直径,称为铰孔“扩张”;而由于刀刃钝圆半径挤压孔壁,则会使孔产生恢复而缩小,称为铰孔“收缩”。一般“扩张”和“收缩”的因素同时存在,最后结果应由实验决定。经验表明:用高速钢铰刀铰孔一般发生扩张,用硬质合金铰刀铰孔一般发生收缩,铰削薄壁孔时,也常发生收缩。 铰刀的公称直径等于孔的公称直径。铰刀的上下偏差则要考虑扩张量、收缩量,并留出必要的磨损公差。 图7-43所示为铰刀直径及其公差。 dω—工件直径; do—新铰刀直径; —工件孔公差; P—扩张量 Pa—收缩量; G—铰刀制造公差; N—铰刀磨损公差 若铰孔发生扩张现象,则设计及制造铰刀的最大、最小极限尺寸分别为: domax=dωmax-Pmax(6-1) domin=domax-G(6-2) 若铰孔发生收缩现象,则设计及制造铰刀的最大、最小极限尺寸分别为: domax=dωmax+Pamin(6-3) domin=domax-G(6-4) 国家标准规定:铰刀制造公差G=0.35()。根据一般经验数据,高速钢铰刀可取Pmax=0.15();硬质合金铰刀铰孔后的收缩量往往因工件材料不同而不同,故常取Pamin=0,或取Pamin=0.1()。Pmax及Pamin的可靠确定办法是由实验测定。 2.铰刀的齿数及齿槽 铰刀的齿数影响铰孔精度、表面粗糙度、容屑空间和刀齿强度。其值一般按铰刀直径和工件材料确定。铰刀直径较大时,可取较多齿数;加工韧性材料时,齿数应取少些;加工脆性材料时,齿数可取多些。为了便于测量铰刀直径,齿数应取偶数。在常用直径do=8~40mm范围内,一般取齿数=4~8个。

刀具的切削三要素与加工效率

刀具的切削三要素与加工效率 众说周知,提高加工效率时,提高切削三要素(切削线速度,吃刀深度,进给量)是最简单、最直接的方法。但刀具切削三要素的提高,一般会受到现有机床设别条件的限制。所以最廉价的办法就是选好刀具材质。 在切削三要素的确定法则:依次确定吃刀深度,进给量以及切削线速度。吃刀深度一般根据加工余量确定,粗加工进给量根据机床功率确定,精加工进给量根据表面粗糙度确定;切削线速度根据刀具材质和机床主轴转速确定。 从提高加工效率的角度来考虑,增加切深恐怕是非常值得考虑的一个方法。其重要原因之一,是实验表明,切削深度一旦等于进给的10倍,再增加切深对刀具耐用度的影响将极小。而如果是提高切削速度,改变切削速度会使刀具耐用度以近两倍的速度变化;如果改变进给,也可使刀具耐用度有大致相等的改变。因此,在我们大批量生产模式的毛坯还不能实现所谓“净尺寸化”的时候,提高切深是既能实现高效率的生产节拍,又不致使刀具费用大幅度上升的一个两全其美的选择。 立方氮化硼刀具的切削参数误区,大家一致认为立方氮化硼刀具只局限于高速切削,只能精加工。立方氮化硼刀具应用于粗加工领域的案例如下: 1,加工灰铸铁 BN-S20牌号立方氮化硼刀具在粗加工灰铸铁时遇到夹砂,白口不崩刃!吃刀深度为2-3.5mm(根据实际加工余量),寿命是日本某品牌硬质合金刀具的15倍,效率提高1倍!

3,高锰钢,高铬铸铁,冷硬铸铁等难加工铸件。 铸件表面夹砂、气孔较多,原来 用硬质合金刀具加工,容易崩刃造成 刀具损耗严重加工成本高且效率低 下。 用BN-S20牌号整体式CBN刀具 加工,参数如下: 吃到深ap=2-3.5mm;走刀量 Fr=0.25mm/r;线速度v=85m/min 。 刀具耐用度:3小时/刃口。 随着立方氮化硼刀具方面的研究进展和加工中的实际需要,从原来的高速精加工,发展到可断续,可粗加工半精加工,亦可在普通机床中应用;使用成本也更经济实惠。

刀具角度及切削三要素习题

切削原理、刀具角度练习题 一、是非题 1、计算车外圆的切削速度时,应按照已加工表面的直径数值进行计算。() 2、铣床的主运动是间歇运动而刨床的主运动是连续运动。() 3、刀具前角的大小,可以是正值,也可以是负值,而后角不能是负值。() 4、刀具的主偏角具有影响切削力、刀尖强度、刀具散热及主切削刃平均负荷的作用。() 5、车槽时的切削深度(背吃刀量)等于所切槽的宽度。() 6、金属的切削过程也是形成切屑和已加工表面的过程。() 7、精加工相对于粗加工而言,刀具应选择较大的前角和较小的后角。() 8、积屑瘤对切削加工总是有害的,应尽量避免。() 9、刃倾角的作用是控制切屑的流动方向并影响刀头的强度,所以粗加工应选负值。() 10、切削加工中,常见机床的主运动一般只有一个。() 11、工艺系统刚性较差时(如车削细长轴),刀具应选用较大的主偏角。() 二、选择题 1、扩孔钻扩孔时的背吃刀量(切削深度)等于() A扩孔前孔的直径 B扩孔钻直径的1/2 C扩孔钻直径 D扩孔钻直径与扩孔前孔径之差的1/2 2、在切削平面内测量的角度有() A前角和后角 B主偏角和副偏角 C刃倾角 D工作角度 3、切削用量中对切削热影响最大的是() A切削速度 B进给量 C切削深度 D三者都一样 4、影响切削层公称厚度的主要因素是() A切削速度和进给量 B切削深度和进给量 C进给量和主偏角 D进给量和刃倾角 5、通过切削刃选定点的基面是() A垂直于主运动速度方向的平面 B与切削速度平行的平面 C与加工表面相切的平面 D工件在加工位置向下的投影面 6、刀具磨钝的标准是规定控制() A刀尖磨损量 B后刀面磨损高度 C前刀面月牙凹的深度 D后刀面磨损宽度 7、金属切削过程中的剪切滑移区是() A第Ⅰ变形区 B第Ⅱ变形区 C第Ⅲ变形区 D第Ⅳ变形区 8、确定刀具标注角度的参考系选用的三个主要基准平面是() A切削表面、已加工表面和待加工表面 B前刀面、后刀面和副后刀面 B基面、切削平面和正交平面 D水平面、切向面和轴向面 9、刀具上能减小工件已加工表面粗糙度值的几何要素是() A增大前角 B增大刃倾角 C减小后角 D减小副偏角 10、当刀具产生了积屑瘤时,会使刀具的() A前角减小 B前角增大 C后角减小 D后角增大 11、有色金属外圆精加工适合采用() A磨削 B车削 C铣削 D镗削 12、车刀刀尖高于工件旋转中心时,刀具的工作角度() A前角增大,后角减小 B前角减小、后角增大

铰刀设计原则及铰孔失效模式分析

铰刀设计原则及铰孔失效模式分析 在机械加工中,铰孔是用铰刀从工件切除微量金属层,以提高孔的尺寸精度和表面质量的加工方法,是普遍应用的孔的精加工方法之一。因为铰刀的齿数较多,导向性能好,心部的直径大,刀具的刚性好,加工余量小,可以获得IT9-IT7级直径尺寸精度,内孔表面粗糙度可控制在Ra1.6~0.8mm之间甚至更好。下面简述一下铰刀的基础知识: 一、铰刀直径及公差的确定原则: 在铰孔加工中,铰刀的直径与公差直接影响到被加工孔的尺寸精度、铰刀的制造成本与使用寿命。确定铰刀的直径公差应考虑被加工孔的公差Δ、铰孔时的扩张量P或收缩量P1、铰刀使用所需的磨损备磨量H和铰刀本身的制造公差G,见下图所示。 以上计算方法可为按被加工孔的尺寸精度来设计或研磨铰刀提供参考。为满足工艺要求,一般要先试铰,根据试铰情况来修正计算出的公差带,再确定铰刀实际尺寸及公差,投入使用。 但铰孔时还受机床主轴径向跳动、铰刀的安装偏差、铰刀各刀齿的径向跳动、冷却液、切削用量等因素的影响,使铰出孔的直径往往会“扩张”现象,此时铰刀的直径按下式确定:

domax=dwmax-Pmax (1);domin=dwmax-Pmax-G (2);dof=dwmin-Pmin (3). 公式中do---铰刀直径(mm);dw---工件孔径(mm) ;dof---铰刀报废尺寸(mm); P---铰刀扩张量,一般选取0.003~0.02mm;G---铰刀的制造公差。 在铰削时,也会发生铰出的孔径小于铰刀校准部分实际直径,即产生孔的“收缩”现象,例如用很小的切削锥的铰刀加工薄壁的韧性材料或用硬质合金铰刀高速铰孔时,铰后孔因弹性恢复而缩小。此时铰刀直径应按下式确定: domax=dwmax+P1min (4);domin=dwmax-G (5);dof=dwmin+P1max (6). 公式中P1---孔径收缩量,一般选取0.005~0.02mm。 铰刀磨损储备量H按下式确定: 铰孔后有扩张时H=domin-dof=domin-dwmin-Pmin (7); 铰孔后有收缩时H=domin-dof=domin-dwmin-P1max (8)。 二、影响铰刀铰孔质量的主要因素: (一)铰刀几何参数。铰孔质量的好坏取决于铰刀本身的精度和表面粗糙度。因此,铰刀几何参数的合理选择,决定了被铰孔加工质量的好坏。 1--是铰刀直径。它是根据被加工孔的公称尺寸和公差以及在铰削过程中被加工孔的扩张量或收缩量决定的。 2--是铰刀的齿数。一般,铰刀的齿数愈多,铰孔的精度就越高,表面粗糙度值就越低,同时,分布在每个切削刃上的负荷也就小,有利于减少铰刀的磨损。但齿数增多后却降低了刀齿强度,减小了容屑槽。在切削时,切屑就不容易排出。特别是铰深孔和切削余量大时,因容屑槽被切屑堵塞,切削液流不进去,致使铰刀和工件因产生热量而变形,影响加工质量。铰刀的齿数一般都选用偶数。 3--是切削锥角。它主要是根据不同的加工材料和铰刀的类型来加以选择。

数控车切削加工三要素

数控车切削加工三要素 不少数控车床的操作者,对车床的切削原理知道得很少,常常不知道如何正确选择主轴转速S、进刀量F,以及进刀的深度,大牛数控,在数控行业一直不断地在探索,希望这篇文章能对大家有所帮助。 主轴转速S、进刀量F,进刀的深度,在切削原理课程中称为切削加工三要素,如何正确选择这三个要素是金属切削原理课程的一个主要内容,我这里想尽可能简单地介绍一下选择这三个要素的基本原则: 一、切削速度(线速度、园周速度)V(米/分) 要选择主轴每分钟转数,必须首先知道切削线速度V应该取多少。 V的选择:取决于刀具材料、工件材料、加工条件等。 刀具材料: 硬质合金,V可以取得较高,一般可取100米/分以上,一般购置刀片时都提供了技术参数:加工什么材料时可选择多少大的线速度。 高速钢:V只能取得较低,一般不超过70米/分,多数情况下取20~30米/分以下。 陶瓷分几个大类,每个大类又分为若干小类,再按成分组

分比例、添加物、金相结构、表面处理等,可分出无数具体牌号,加工对象又千变万化,很难在一个较小的范围给到楼主:大致的线速度可以认为在200~1200m/min的范围之内。 工件材料: 硬度高,V取低;铸铁,V取低,刀具材料为硬质合金时可取70~80米/分;低碳钢,V可取100米/分以上,有色金属,V可取更高些(100~200米/分).淬火钢、不锈钢,V 应取低一些。 加工条件: 粗加工,V取低一些;精加工,V取高些。机床、工件、刀具的刚性系统差,V取低。 如果数控程序使用的S是每分钟主轴转数,那么应根据工件直径,及切削线速度V计算出S: S(主轴每分钟转数)=V(切削线速度)*1000/(3.1416*工件直径) 如果数控程序使用了恒线速,那么S可直接使用切削线速度V(米/分) 二、进刀量(走刀量)F 主要取决于工件加工表面粗糙度要求。精加工时,表面要求高,走刀量取小:0.06~0.12mm/主轴每转。 粗加工时,可取大一些。主要决定于刀具强度,一般可取0.3以上,刀具主后角较大时刀具强度差,进刀量不能太

YG8硬质合金工艺设计(终)

YG8硬质合金工艺设计 一、Y G8硬质合金简介 硬质合金:硬质合金是以难熔金属硬质化合物(硬质相或陶瓷相)为基以金属为粘结剂(金属相),以粉末冶金的方法制出高硬度、高耐磨性材料,也称金属陶瓷材料。常用的硬质相是碳化物、氮化物、硼化物和硅化物。硬质合金广泛用作切削刀具、冲击工具、耐磨耐蚀零部件等,在切削加工、地质勘探、矿藏开采、石油钻井、模具制造等方面发挥重要作用。 释义:其牌号(YG8)是由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量的百分数组成。YG8,表示平均W(Co)=8%,其余为碳化钨的钨钴类硬质合金。 YG8是钨钴类材料,主要成分是碳化钨(WC)和粘结剂钴(Co)。耐磨性良好,是应力很大条件下的拉深模,适于拉制直径<50mm的钢、非铁金属丝及其合金线材或棒材,也用于尺寸较小工作载荷不大的冲压模和铆钉顶锻模。YG8是高级制模材料,不经热处理,内、外硬度均匀一致。适用于标准件、轴承等制作用的冷镦、冷冲、冷压模具的制作。 二、原料制备 1、WC粉的制备

钨粉的碳化工艺中总反应式为: W+C=WC 可分为通氢气和不通氢气两种情况。通氢气时,C+2H2=CH4,生成的CH4在高温不稳定,发生分解,此时的炭活性高,沉积在钨粉上,并向钨粉颗粒内部扩散,H2又与炭黑反应生成甲烷,如此往复循环。 碳化设备: ?石墨管电炉。优点是结构简单,升温速度快,工作温度高(可达2500℃);缺点电阻小,需配备低电压高电流变压器,炉管寿命短。 ?感应碳化炉。生产中炉料受热均匀,生产中炉子升温快降温快,使用寿命比石墨管电炉长,但只能间断作业,设备消耗功率大。 ?全自动钼丝碳化炉。炉体采用自动进出料,送料机构和炉门边锁

硬质合金项目简介

一、硬质合金(hardmetal;cemented carbide ) :由作为主要组元的难熔金属碳化物和起相黏结作用的金属组成的烧结材料,具有高强度和高耐磨性。它由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料。硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。硬质合金广泛用作刀具材料,如车刀、铣刀、刨刀、钻头、镗刀等,用于切削铸铁、有色金属、塑料、化纤、石墨、玻璃、石材和普通钢材,也可以用来切削耐热钢、不锈钢、高锰钢、工具钢等难加工的材料。现在新型硬质合金刀具的切削速度等于碳素钢的数百倍。 精密硬质合金刀具是一种以硬质合金为材料的用于金属切削加工(含钻、镗、铣等)的工具,在汽车、船舶、飞机、电机、电子器件、超大规模集成电路、精密雷达、导弹火控系统以及精密机床仪器等关键成套装备和先进技术装备的零部件加工中扮演着及其重要的角色,被工业界誉为“机械工业的牙齿”,对振兴装备制造业、发展先进制造技术具有支撑性作用。 二、硬质合金刀具的现状与未来:随着当代科学技术的发展,特别是机械制造、电子通讯、航空航天、精密模具加工、机电、汽车制造等行业的飞速发展,作为他们的基础行业机械零件加工工具、精密仪器、模具等行业也需要提供更高技术及更新的产品。特别是目前,国内的这些行业正处于迅猛的发展时期,在高精密、高效率机械加工中对硬质合金精密切削工具的需求也在迅速增加,市场潜力十分巨大。 同时我国是钨资源大国,每年向国际市场提供了约3万吨钨制品,但多为初级半成品及少量硬质合金,而高附加值的深加工制品极少。高新技术产业的迅猛发展对硬质合金制品提出更苛刻的要求。在我国汽车工业和信息产业成为国家支柱产业后,各种高档次硬质合金制品及其深加工工具供需矛盾进一步加深。国内硬质合金制品主要是常规低中档产品,缺乏众多高档产品,因而外国高新技术产品大量涌入中国市场。仅汽车行业和机械电子行业每年需进口各种高档刀具花费高达3.5亿美元之巨,国内硬质合金高新产品市场,已逐渐被国外产品所垄断,中低档产品市场也将会受到冲击。这种状况与钨资源大国的地位极不相称。为此,国内各硬质合金厂家都在竭尽全力发展深加工钨制品,以振兴钨业、增强国力。 温州德普科技有限公司的精密硬质合金切削工具生产线项目,定位于“中高档产品”,瞄准国内外市场的新增长点,走自己的发展之路。近年来,国内硬质合金行业自身产品结构调整正向高挡次、高附加值产品转化,但步伐缓慢。特别是整体硬质合金刀具和非标异型精品等高附加值产品占合金总量的比例还很小。抓住这些新增长点,不仅有利于开拓国内外市场,替代进口、扩大出口,同时可以获得较高的收益。 据统计,我国硬质合金产品市场销售价远远低于世界市场价,中低档产品每吨售价仅相当于日本、瑞典产品售价的十五分之一。这表明产品质量档次的差距和价格增长的潜力很大。挤压型材和异型产品毛坯售价每吨大约在25-40万元,而精密加工刀具和非标精加工品每吨售价猛增至100-150万元,其附加值提高约2-5倍。但是这种具有竞争力的高附加值产品是以先进的生产工艺技术、质量控制手段和技术装备水平为前提,必须使项目的硬件设施与软件技术相匹配。本项目力争以多种形式采用国内外高精度高效能关键设备和先进的工艺质量控制技术与生产诀窍,需要选择以少投入、多收益的良性发展道路来发展高附加值产品。当代电子、通讯、能源、机械、汽车制造及航空航天等工业正在迅速地发展,各

铰刀及铰孔加工

铰刀按使用方式分为手用铰刀和机用铰刀;按铰孔形状分为圆柱铰刀和圆锥铰刀,(标准锥铰刀有1:50锥度销子铰刀和莫氏锥度铰刀两种类型).铰刀的容屑槽方向,有直槽和螺旋槽.常用的材质为高速钢.硬质合金镶片. 一.手工铰孔一般注意事项:1.工件要夹正.2.铰削过程中,两手用力要平衡.3.铰刀退出时,不能反转,因铰刀有后角,铰刀反转会使切屑塞在铰刀刀齿后面和孔壁之间,将孔壁划伤;同时,铰刀易磨损.4.铰刀使用完毕,要清擦干净,涂上机油,装盒以免碰伤刃口. 二.机铰时注意铰削速度和走刀量(查金属切削手册) 三.铰削中,必须采用合理的冷却润滑液. 在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。 问题产生的原因 孔径增大,误差大 铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。 孔径缩小

铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合格。 铰出的内孔不圆 铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。 孔的内表面有明显的棱面 铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工件表面有气孔、砂眼;主轴摆差过大。 内孔表面粗糙度值高 切削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太小,局部表面未铰到;铰刀切削部分摆差超差、刃口不锋利,表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损;铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料关系,不适用于零度前角或负前角铰刀。 铰刀的使用寿命低 铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。

硬质合金模具的设计与制造

龙源期刊网 https://www.360docs.net/doc/145329853.html, 硬质合金模具的设计与制造 作者:王海霞 来源:《西部论丛》2019年第03期 摘要:硬质合模具是一种较为耐磨的工具,在生产过程中能够大大提高生产效率,减少 生产损耗,降低生产成本,是目前工业零件生产制造中运用较多的一种工具。本文主要对硬质合金模具的设计与制造进行了分析。 关键词:硬质合金模具;设计与制造;经验和方法 1.1模架 模架的设计和制造关系着冲压设备的生产质量,因此在进行模架设计时,要保证模架兼具有强度和刚度,要防止在冲压过程中刃口相啃及固定硬质合金的支持部分弯曲变形,减少因冲压设备而导致的零件生产问题。 在进行上下模架的设计时要保证硬度在25HRC到30HRC之间,平行度在0.01,保证模架的硬度和厚度都在合理的范围内;在进行导向装置的设计时,要保证硬质合金模具在工作中始终保持导向精准,一般来说会采用准确度高,耐磨,精准度强的过盈滚珠式导向;在模柄设计的过程中,一般采用的是浮动式模柄结构,这种结构的好处是能够减少设备误差对模具的影响,为生产质量提供保障。 在进行模架设计的过程中,还需要注意以下问题:首先是穆家制造的精准度一定要够高,以保证滚珠导柱模架的平行度;其次是要注意滚珠导柱模架的使用范围,一般来说间隙小,材料薄的零件生产更适合用滚珠导柱模架,而间隙大,质量要求不高的则采用一般模架更为经济合理。 1.2硬质合金材料选择 影响模具硬质合金材料选择的因素很多,主要参考条件是零件冲压的材料,工件的形状,工件的厚薄程度,工件的质量要求等,目前采用比较多的是钨钴类合金。 1.3模具间隙 硬质合金冲模冲裁的间隙和普通冲模冲裁的间隙差距是比较大的的,因为硬质合金模具的刃口部分磨损相较于普通冲模冲裁来说更大,在出事间隙为0.05mm,同样冲压100万次的情况下,硬质合金的间隙值会增加到0.25mm,而普通沖裁则不超过0.04mm。 1.4硬质合金上、下模的固定

机械加工如何选用铰刀

如何选用铰刀 1.概述 机械加工生产的铰刀是用于孔的精加工和半精加工的刀具。由于是精加工,故加工余量一般很小约0.1-0.2mm,这就要求铰刀的齿数多,修光刃长,为此其加工精度及表面粗糙度精度都必须较高,才能适合加工的需要。 铰刀普遍用来加工圆柱形孔,有时也可用来加工锥形孔,加工锥形孔的铰刀是锥形铰刀。按其使用情况可分为手用铰刀和机用铰刀,机用铰刀又可分为直柄铰刀和锥柄铰刀。 铰刀的规格型号以其加工工作部分直径划分,手用较刀为Φ2.8~22mm,直柄机用铰刀为Φ2.8~20mm,锥柄机用铰刀为Φ10~23mm。 铰刀由工作部分、颈部及柄部三部分组成。工作部分主要有切削部分和校准部分,校准部分由圆柱部分与倒锥部分组成。 2.检验标准 铰刀按不同的用途可分许多种,所以铰刀的标准很多,常用的有以下一些标准:GB1131-84《手用铰刀》,GB1132-84《直柄机用铰刀》,GB1133-84《锥柄机用铰刀》,GB4245-84《机用铰刀技术条件》,GB4246-84《铰刀专用公差》,GB1139-84《直柄莫氏圆锥铰刀》,GB1140-84《锥柄莫氏圆锥和公制圆锥铰刀》,GB4250-84《圆锥铰刀技术条件》,GB4251-84《硬质合金直柄机用铰刀》,GB4252-84《硬质合金锥柄机用铰刀》,GB4253-84《硬质合金铰刀技术条件》,GB4254-84《硬质合金可调节浮动铰刀》等。 3.机用铰刀的检验 (1)外观:铰刀表面不得有裂纹、划痕、锈迹以及磨削烧伤等影响使用性能的缺陷。 (3)铰刀校准部分直径应有倒锥度。 (4)材料:铰刀用W18CR4V、W6Mo5Cr4V2或其他牌号高速钢制造。焊接铰刀柄部用45号钢或同等以上性能的其他牌号钢材制造。 (5)硬度:铰刀的工作部分硬度应为63-66HRC。柄部或扁尾硬度:整体铰刀,直径d<3mm时,不低于40HRC,直径d≥3mm时为40~55HRC;焊接铰刀为30~45HRC。

硬质合金模具设计-1

硬质合金模具设计----其对钢丝质量的影响 作者:汤玛斯.麦斯维尔 美国奎鹏模具公司 炼钢,以及金属制造这两门学科至今只有六十年的历史,然而制造钢丝这门技术却可以追溯到六千年前。正是因为这门技术的发展以及人们的不断钻研,使得我们在钢丝制造业中达到了这样一个水平:一个没有任何可动零件的小部件变成了钢丝制造业的核心部件。当你在思考钢丝制造流程的时候,你会发现每一个你所使用的设备,每一台拉丝机,每一台开卷机,每一个棒成型操作,每一个清洁操作,不论是用酸洗还是用机械的方法去除水垢,都是为了一个目的,那就是让这块金属通过一个圆锥形的洞-------人类所知道的构造最为简单机械之一。 尽 管无论核心模具冶金性质还是制造碳化钨的方法自从1965年钢丝绳制造手册卷1出版以来一直没有大的变化。在模具规格,整理程序,机械设备等地方还是有许多重要进展。直到最近,标准拉丝机模具可以被手工精确修整,提升了他们尺寸精确性上的变化。随着拉丝规格的不断精确化,模具所需要的精确性和坚固性也不断上升。机械模具精整设备的早期发展集中于粗糙打孔以及初步打磨步骤。剩余的最终抛光打磨步骤都被留下待手工完成。然而,今天的钢丝工业转向了那些可以用更低的成本提供更优异质量产品的生产方法。随着机械除水垢法和更高的中轧速度的广泛应用,工业上对碳合金模具的要求也在相应地逐步提高;对模具轮廓和规格做一些改动也变得十分必然。这些改变带来了新的全自动整套机械和新的训练技术的发展。这些机械和设备可以使操作员用预先设定好的进给调节参数和高效的切割率完整地制备模具。它可以制备出更高精度和坚固性的模具,因此增加了模具的性能,同时延长了模具的寿命。 碳合金模具 拉丝模具被描述为人们控制的设备中最为杰出的设备,因为它代表了一种简洁和高效的完美结合。

硬质合金刀具基础知识

硬质合金刀具材料基础知识浏览: 文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和

相关文档
最新文档