人教版九年级数学上册《弧长和扇形面积》第一课时参考教案

合集下载

九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计

九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计
1.教师通过直观的教具和多媒体演示,向学生讲解弧长和扇形面积的概念,以及它们的计算公式。
"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字

九年级数学上册《弧长和扇形面积》教案、教学设计

九年级数学上册《弧长和扇形面积》教案、教学设计
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,能够理解并运用基本的几何概念和公式。在《弧长和扇形面积》这一章节中,学生将通过之前的学习,对圆的相关性质有了一定的了解,这为学习弧长和扇形面积打下了基础。然而,由于弧长和扇形面积的计算涉及圆心角、半径等多个变量,学生可能在综合运用这些知识解决实际问题时遇到困难。因此,在教学过程中,教师应关注以下几点:
3.能够通过实际操作,如使用量角器、圆规等工具,测量并计算出具体物体的弧长和扇形面积。
4.掌握弧长和扇形面积单位换算,能够灵活地在不同场景下应用。
(二)过程与方法
在教学过程中,教师将采用以下方法,帮助学生达成学习目标:
1.引导学生通过观察、探索、实践等活动,发现弧长和扇形面积的规律,培养学生的观察能力和探究精神。
-创设问题情境,鼓励学生提出问题、分析问题、解决问题,培养学生的批判性思维和创新意识。
-实施分层教学,为不同水平的学生提供不同难度的任务,确保每个学生都能在自身基础上得到提升。
-引入项目式学习,让学生在完成具体项目任务的过程中,将所学知识综合运用,提高解决实际问题的能力。
3.教学评价的设想:
-采用多元化的评价方式,包括课堂问答、小组讨论表现、课后作业、项目报告等,全面评估学生的学习效果。
-设计一些简单的实际应用题,如计算某段弧的长度、给定半径和圆心角的扇形面积,让学生运用公式进行解答。
2.提高拓展题:
-布置一些综合性的题目,如计算由多个扇形或不规则图形组成的总面积,要求学生结合所学知识,分析问题并给出解题步骤。
-鼓励学生尝试运用弧长和扇形面积的知识解决生活中的实际问题,如园林设计、建筑布局等。
-探究阶段:组织学生进行小组合作,利用教具和信息技术工具,探索圆心角、半径与弧长、扇形面积的关系,引导学生发现并理解计算公式。

24.4 弧长和扇形面积第1课时教案

24.4 弧长和扇形面积第1课时教案

24.4弧长和扇形面积教案一、【教材分析】二、【教学流程】自 主 探 究问题2、你还记得圆面积的计算公式吗?圆面积可以看作多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n 的圆心角呢?设:已知⊙O 半径为R ,求n 的圆 心角所对的扇形面积. 比较扇形面积公式和弧长公式,看看它们之间有什么关系?2R =360n S π扇形 1=2S lR 扇形其中,l 是扇形的弧长,R 为半径. 学生认真思考,由中等学生回答:圆周长为2R π,可看作是360°的圆心角所对的弧长;教师关注学生对公式的理解程度.教师引导学生类比弧长公式的推导过程,推导出扇形面积公式. 经过观察,学生能够看出:类比的方法研究问题.来源于生活服务于生活,强化应用意识O DC B A 补 偿 提 高1、 如图2,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m ,求截面上有水部分的面积(精确到0.01 m 2)2、三角形ABC 的外接圆半径为2,60=∠BAC °,则∠BAC 所对的弧BC 的长为教师出示例题后,引导学生分析已知条件,教师要关注学生对题目中的有关概念是否清楚,如水面高指的是什么? 经过分析,学生知道了水面高即弧AB 的中点到弦AB的距离. 因此想到做辅助线的方法:连接OA 、AB ,过O 作OC ⊥AB 于点D ,交弧AB 于点C .垂径定理的应用.加强学生对本节课内容的认识与联系三、【板书设计】四、【教后反思】。

人教版数学九年级上册24.4 弧长和扇形面积(1) 教案

人教版数学九年级上册24.4 弧长和扇形面积(1) 教案

O半径为当圆心角为180弧长是当圆心角为90;当圆心角为60;当圆心角为30分钟〕 分析:要求管道的展直长度,即求AB 的长,根根弧长公式l =180n Rπ可求得AB 的长,其中n 为圆心角,R 为半径. 解:R =40mm ,n =110.∴AB 的长=180n πR =110180×40π≈76.8mm .因此,管道的展直长度约为76.8mm .例2、如图,水平放置的一个圆柱形排水管道的横截面半径为,其中水高,求截面上有水局部的面积〔结果准确到2〕.分析:要求图中阴影〔弓形〕面积,没有直接的公式,需要转化为图形组合的和差问题,即扇形面积与三角形面积的差。

容易想到做辅助线利用垂径定理,先根据公式分别求出扇形和三角形面积,问题得到解决。

解:连接OA ,OB ,作弦AB 的垂线OC ,垂足为D,连接AC,那么AD=BD. ∵OC=0.6,CD=0.3, ∴OD=OC -CD=0.3, ∴OD= CD∵AD ⊥DC,∴AD 是线段OC 的垂直平分线,∴AC=AO=OC.∴∠AOD=60°,从而∠AOB=120°S 扇形OAB =21200.60.12360ππ⨯= 在Rt ⊿AOD 中∵ ∴3,∴3,S ⊿OAB =10.630.30.0932⨯⨯=∴S= S 扇形OAB - S ⊿OAB ≈0.22〔m 2〕所以截面上有水局部的面积约为2。

两个公式,并学习标准的书写步骤。

对课本例题书写过程加以改良,使学生精准掌握例题。

3、课堂提升〔10分钟〕1、假设扇形的圆心角为120°,弧长为cm 10π,那么扇形半径为_____________,扇形面积为____________________。

2、如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为____________。

3、扇形的周长为28cm ,面积为49cm 2,那么它的半径为____________cm 。

24.4 弧长和扇形面积(第1课时教案)

24.4 弧长和扇形面积(第1课时教案)

24.4 弧长和扇形面积(第1课时)教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重难点、关键1.重点:n °的圆心角所对的弧长L=180n Rπ,扇形面积S 扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教具、学具准备小黑板、圆规、直尺、量角器、纸板. 教学过程 一、引入问题:制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm ,精确到10mm)二、探索新知(老师口问,学生口答)请同学们回答下列问题.1.半径为R 的圆,周长是多少? 2.圆的周长可以看作是多少度的圆心角所对的弧?3.1°圆心角所对弧长是多少? 2°的圆心角所对的弧长是_______. 4°的圆心角所对的弧长是_______. ……n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到:n °的圆心角所对的弧长为180Rn l π=(幻灯片5).c针对练习题1.已知一个圆的半径为12,则圆心角为150°所对的弧长为( ) A .5π B .6π C .8π D .10π2.一个圆的半径为8cm ,则弧长为π316cm 所对的圆心角为( )A .60°B .120°C .150°D .180°3.若长为12π的弧所对的圆心角120°,则这条弧所在圆的半径为() A .6 B .9 C .18 D .36问题、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即»AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求»AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴»AB 的长=180n R π=11040180π⨯≈76.8(mm )因此,管道的展直长度约为76.8mm .练习题: 有一段弯道是圆弧形的,道长是12m ,弧所对的圆心角是段圆弧的半径R(精确0.1m)扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形.1)半径为R 的圆,面积是多少?圆的面积可以看作是多少度的圆心角所对的扇形? 1°圆心角所对扇形面积是多少?2°的圆心角所对的扇形面积S 扇形=_______.设圆半径为R ,n °的圆心角所对的扇形面积S 扇形=_______. 因此:在半径为R 的圆中,圆心角n °的扇形针对练习题1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S 扇=_ .已知扇形面积为π34 ,圆心角为120°,则这个扇形的半径R=已知半径为2cm 的扇形,其弧长为π34 ,则这个扇形的面积,S 扇=例题:如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m 。

人教版九年级数学上册24.4弧长和扇形面积教案

人教版九年级数学上册24.4弧长和扇形面积教案
3.重点难点解析:在讲授过程中,我会特别强调弧长和扇形面积的计算公式这两个重点。对于难点部分,如弧度的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个扇形,测量并计算其面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、计算公式以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上两点间的弧与半径的对应圆心角的比值;扇形面积是由圆心、圆上两点和这两点间的弧所围成的图形。它们在工程、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个半圆的弧长和面积,通过这个案例,我们可以了解弧长和扇形面积在实际中的应用,以及它们如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《弧长和扇形面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过需要计算圆的一部分长度或面积的情况?”比如,设计一个扇形花园,我们该如何计算它的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索弧长和扇形面积的奥秘。

24.4《弧长和扇形面积》(第1课时)教案

24.4《弧长和扇形面积》(第1课时)教案

24.4《弧长和扇形面积》(第1课时)教案学习目标:【知识与技能】1、理解并掌握弧长及扇形面积的计算公式2、会利用弧长、扇形面积计算公式计算简单组合图形的周长【过程与方法】1、认识扇形,会计算弧长和扇形的面积2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力【情感、态度与价值观】1、通过对弧长及扇形的面积公式的推导,理解整体和局部2、通过图形的转化,体会转化在数学解题中的妙用【重点】弧长和扇形面积公式,准确计算弧长和扇形的面积【难点】运用弧长和扇形的面积公式计算比较复杂图形的面积学习过程:一、自主学习(一)复习巩固1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一部分,那么弧长、扇形面积应怎样计算呢?(二)自主探究1、如图,某传送带的一个转动轮的半径为10cm1)转动轮转一周,传送带上的物品A被传送多少厘米?2)转动轮转1°,传送带上的物品A被传送多少厘米?3)转动轮转n°,传送带上的物品A被传送多少厘米?OB O B A ABO A B O A B O2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即AB 的长(结果精确到0.1mm).3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢?请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。

因此弧长的计算公式为l =__________________________4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形的面积为S = ___ .因此扇形面积的计算公式:S=————————或S=——————————(三)、归纳总结: 1、 叫扇形2、弧长的计算公式是 扇形面积的计算公式是 (四)自我尝试:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

数学人教九年级上册(2014年新编)24-4 弧长与扇形面积(第一课时)(教学设计)

数学人教九年级上册(2014年新编)24-4 弧长与扇形面积(第一课时)(教学设计)

24.4 弧长与扇形面积(第一课时)所以他的起跑位置越靠前。

教授新课师:本节课我们学习如何计算弯道的“展直长度”。

师:如何将⊙O的圆周分为360等份?【师生互动】通过多媒体演示等分过程,通过小结加深理解。

师:圆心角的度数与它所对的弧的度数相等。

师:假设圆的半径为R,当圆心角为360°时,所对的圆弧长度等于圆的周长,那么1°圆心角所对的圆弧长度是多少呢?n°呢?生:1°圆心角所对的圆弧长度为2πR360=πR180,n°圆心角所对的圆弧长度为πnR180师:在半径为R的圆中,n°的圆心角所对弧长的计算公式为:师:需要注意的是1)n没有单位,弧长和半径单位一致。

2)弧长的大小与圆心角大小和半径的长度有关。

3)弧长公式通过变,R、n、l三个量,已知两个可求另一个。

4)扇形周长公式=2R+l=2R+πnR180师:尝试回答下面问题。

[多媒体展示]例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(结果取整数)变式1-2 若扇形的圆心角为90°,半径为6 cm,则该扇形的弧长为__________ cm.变式1-3 已知一弧长为10π cm,此弧所对的圆心角为120°,则此弧所在圆的半径为_________ cm.【师生互动】先让学生做题,然后教师通过多媒体展示结果和解题思路,加深理解。

师:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。

师:已知圆心角与半径长度如何求扇形面积呢?假设圆的半径为R,当圆心角为360°时,所对的扇形面积等于圆的面积,那么1°圆心角所对的扇形面积是多少呢?n°呢?通过等分圆周的过程,让学生理解圆心角的度数与它所对的弧的度数相等,进而推导出n°圆心角所对弧长的计算公式。

通过配套例题,举一反三,进而消化本节课所学内容类比推导弧长公式的计算方法,尝试推导扇形面生:1°圆心角所对的扇形面积为πR 2360,n °圆心角所对的圆弧长度为nπR 2360师:扇形的面积公式:半径为R ,圆心角为n °的扇形的面积是36036022R n R n S ππ=•=扇形师:需要注意的是扇形面积公式中的“n”和弧长公式中的“n”一样,表示“1°”的圆心角的倍数,参与计算时不带单位。

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时,主要介绍了弧长和扇形面积的计算方法。

这部分内容是圆的知识的重要组成部分,也是中考的热点。

通过本节课的学习,让学生掌握弧长和扇形面积的计算公式,理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。

二. 学情分析九年级的学生已经学习了平面几何、代数等基础知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于弧长和扇形面积的计算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解概念,掌握计算方法。

三. 说教学目标1.知识与技能目标:让学生掌握弧长和扇形面积的计算公式,能够正确计算弧长和扇形面积。

2.过程与方法目标:通过观察、实验、推理等方法,让学生理解弧长和扇形面积的概念,培养学生的空间想象能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够主动探索数学问题。

四. 说教学重难点1.教学重点:弧长和扇形面积的计算公式。

2.教学难点:理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的创新能力。

2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣。

六. 说教学过程1.导入:通过展示生活中的实例,引发学生对弧长和扇形面积的思考,激发学生的学习兴趣。

2.新课导入:介绍弧长和扇形面积的概念,引导学生理解弧长和扇形面积的计算公式。

3.实例讲解:通过具体的例子,讲解弧长和扇形面积的计算方法,让学生加深理解。

4.练习巩固:设计相关的练习题,让学生运用所学的知识进行计算,巩固学习成果。

5.拓展提高:引导学生思考实际问题,运用弧长和扇形面积的知识解决问题,提高学生的应用能力。

《弧长和扇形面积》(第一课时)说课稿

《弧长和扇形面积》(第一课时)说课稿

《弧长和扇形面积》(第一课时)说课稿各位评委、各位老师:大家好!我说课的课题是《弧长和扇形面积》第一课时,以下我将从背景分析、教学目标设计与教学过程设计等六个方面对本节课的教学设计进行说明。

一、背景分析1.学习任务分析本节课的教学内容是人教版九年级上册教材《第二十四章圆》中的“弧长和扇形面积”第一课时,这节课是学生在前阶段学完了“圆”、“点、直线、圆和圆的位置关系”、“正多边形和圆”的基础上进行的拓展,也是后一节课学习圆锥的预备知识。

这节课由特殊到一般探索弧长和扇形面积公式,并运用公式解决一些具体问题,为学生能更好地运用数学作准备。

因此我确定本节课的重点是:探索和运用“弧长和扇形面积公式”。

在探索弧长和扇形面积公式的过程中,注重了知识的形成过程,以及数学方法的渗透。

2.学生情况分析知识方面:要进行本节课的学习学生应该具备圆的相关性质、勾股定理等知识储备。

这些知识学生都已较好的掌握了,只是在运用知识过程中需要用到转化的数学思想方法,这是学生的薄弱处。

能力方面:在前面的学习中,学生已经积累了一定的数学活动经验,具备了较强的推理能力和说理能力,但自主探究能力和归纳概括能力较弱。

情感态度方面:学生对生活中的例子较为感兴趣,但在探究过程中克服困难的毅力不够。

根据学生的这些特点,我确定本节课:教法:启发式教学学法:自主学习、合作学习、探究学习相结合。

由此我还确定本节课的教学难点:运用扇形面积公式计算阴影部分面积。

而对于难点的突破,关键在于教学活动中创设具有启发性、探索性的问题情境,让学生在思维积极的状态中进行自主探究学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、教学目标设计根据课标要求,数学的教学不仅要使得学生“知其然”,还应该让他们“知其所以然”,要注重学生在学习中所表现出来的情感态度,帮助学生认识自我,建立信心。

根据本节课的内容和学生的特点,我制定了如下教学目标:知识技能:认识扇形,会计算弧长和扇形面积、圆心角、半径以及阴影部分面积。

人教版九年级数学上册教师备课教案24.4弧长和扇形面积 第1课时

人教版九年级数学上册教师备课教案24.4弧长和扇形面积  第1课时

第1课时教学内容24.4弧长和扇形面积(1).教学目标1.理解弧长和扇形面积公式,并会计算弧长和扇形的面积.2.经历探索弧长及扇形面积计算公式的过程,感受转化、类比的数学思想,培养学生的探索能力.3.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系. 教学重点1.推导弧长及扇形面积计算公式的过程.2.掌握弧长及扇形面积计算公式,会用公式解决问题.教学难点推导弧长及扇形面积计算公式的过程.教学过程一、导入新课复习圆的周长和面积公式,导入新课的教学.二、新课教学1.弧长的计算公式.思考:我们知道,弧是圆的一部分,弧长就是圆周长的一部分.想一想,如何计算圆周长?圆的周长可以看作是多少度的圆心角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n °的圆心角呢?在半径为R 的圆中,因为360°的圆心角所对的弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是3602R π,即180R π.于是n °的圆心角所对的弧长为180R n l π=. 2.扇形面积的计算公式.如图,由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.可以发现,扇形的面积除了与圆的半径有关外还与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大.怎样计算圆半径为R ,圆心角为n °的扇形面积呢?思考:由扇形的定义可知,扇形面积就是圆面积的一部分.想一想,如何计算圆的面积?圆面积可以看作是多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n °的圆心角呢?在半径为R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S =πR 2,所以1°的扇形面积是3602R π,于是圆心角为n °的扇形面积是S 扇形=3602R n π. 3.实例探究.例1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算下图所示的管道的展直长度L (结果取整数).解:由弧长公式,得的长180900100π⨯⨯=l =500π≈1 570(mm ). 因此所要求的展直长度L =2×700+1 570=2 970(mm ).例2 如下左图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3 m .求截面上有水部分的面积(结果保留小数点后两位).解:如上右图,连接OA ,OB ,作弦AB 的垂直平分线,垂足为D ,交于点C ,连接AC .∵ OC =0.6 m ,DC =0.3 m , ∴ OD =OC -DC =0.3(m ). ∴ OD =DC .又 AD ⊥DC ,∴ AD 是线段OC 的垂直平分线. ∴ AC =AO =OC .从而 ∠AOD =60°,∠AOB =120°. 有水部分的面积S =S 扇形OAB -S △OAB =360120 ×0.62-21AB ·OD =0.12π-21×0.63×0.3 ≈0.22(m 2).三、巩固练习教材第113页练习.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题24.4 第1、2题.。

人教版九年级数学上册《弧长和扇形面积》第一课时参考教案

人教版九年级数学上册《弧长和扇形面积》第一课时参考教案

义务教育基础课程初中教学资料24.4 弧长和扇形面积第一课时教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重难点、关键1.重点:n °的圆心角所对的弧长L=180n Rπ,扇形面积S 扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.教具、学具准备小黑板、圆规、直尺、量角器、纸板. 教学过程 一、复习引入(幻灯片2—幻灯片4)二、探索新知(老师口问,学生口答)请同学们回答下列问题. 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?老师点评:(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分.(小黑板)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到:n °的圆心角所对的弧长为180Rn l π=(幻灯片5) 例1、已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

(幻灯片6)说明:没有特别要求,结果保留π。

例2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即»AB 的长(结果精确到0.1mm )(幻灯片7)分析:要求»AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴»AB 的长=180n R π=11040180π⨯≈76.8(mm )因此,管道的展直长度约为76.8mm .例3:如图,把Rt △ABC 的斜边放在直线 l 上,按顺时针方向转动一次,使它转到△A /BC / 的位置。

人教版九年级数学上册24.4弧长和扇形面积 教案

人教版九年级数学上册24.4弧长和扇形面积 教案

24.4弧长和扇形面积(1)教学设计一、教学目标:1、让学生通过自主探索来认识扇形,掌握弧长和扇形面积的计算公式,并学会运用弧长和扇形面积公式解决一些实际问题。

2、让学生经历弧长和扇形面积公式的推导过程,培养学生自主探索的能力;在利用弧长和扇形面积公式解题中,培养学生应用知识的能力,空间想象能力和动手画图能力,体会由一般到特殊的数学思想。

3、通过视频的欣赏,让学生感受到生活离不开数学,激发学生学习数学的兴趣;通过对弧长和扇形面积公式的自主探究,让学生获得亲自参与研究探索的情感体验;通过同桌的讨论、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观。

二、教学重难点:重点:让学生经历弧长和扇形面积公式的推导,通过计算弧长和扇形面积来突出重点。

难点:弧长和扇形面积公式的应用,通过利用弧长和扇形面积解答实际问题来突破难点。

三、教具学具:教具准备:PPT,短绳,长条。

学具准备:圆规,铅笔,直尺。

四、教学设计:本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。

在教学过程中,我采用自主探究、多媒体辅助教学的模式,我在其中只起穿针引线的作用,注重对学生的启发和引导,鼓励学生们大胆的猜想推导和应用,最后引导学生用学到的新知识解决一些实际问题。

其基本过程如下:创设情境提出问题(激励想象)自主探究讨论交流(训练思维)总结归纳巩固实践(构建知识体系)灵活应用创新发展(强化方法)五、教学过程:教学环节教学过程学生活动设计理念设置问题情境1、利用幻灯片出示视频欣赏问题1:通过视频的观看,如图在运动会的200米比赛中,为什么8位参赛选手的起跑线不在同一处?因为要保证这些弯道的“展直长度”是一样的.问题2:怎样来计算弯道的“展直长度”?学生阅读生活中的实际问题,自觉的提出弧长的计算让学生观看视频,感受数学就在我们的身边,进而出示一个实际生活中的问题,引发学生的思考与分析,激励学生自主的提出要研究的问题即求弧长的问题,这样,学生带着问题开始新知识的探索。

2022年人教版九年级数学上册第二十四章 圆教案 弧长和扇形面积 (第1课时)

2022年人教版九年级数学上册第二十四章 圆教案  弧长和扇形面积 (第1课时)

24.4 弧长和扇形的面积第1课时一、教学目标【知识与技能】经历探索弧长计算公式的过程,培养学生的探索能力.了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力.【过程与方法】通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.【情感态度与价值观】通过对弧长和扇形面积公式的推导,理解整体和局部的关系.通过图形的转化,体会转化在数学解题中的妙用.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】弧长和扇形面积公式,准确计算弧长和扇形的面积.【教学难点】运用弧长和扇形面积公式计算比较复杂图形的面积.五、课前准备课件、图片、直尺、圆规等. 六、教学过程 (一)导入新课教师问:如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?(出示课件2)学生答:因为要保证这些弯道的“展直长度”是一样的. 教师问:怎样来计算弯道的“展直长度”?(板书课题) (二)探索新知探究一 弧长计算公式及相关的计算教师问:半径为R 的圆,周长是多少?(出示课件4)学生答:=2C R .教师问:①360°的圆心角所对的弧长是多少?②1°的圆心角所对的弧长是多少?③n °的圆心角所对的弧长是多少?学生答:①360°的圆心角所对的弧长是圆的周长;②1°的圆心角所对的弧长是圆的周长的1360;③n °的圆心角所对的弧长是圆的周长的360n . 教师问:下图中各圆心角所对的弧长分别是圆周长的几分之几?弧长是多少?(出示课件5)学生观察,计算,交流,教师抽查学生分别口答.教师归纳:(出示课件6) 弧长公式:2360180n n R l R ππ=•= 用弧长公式进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.算一算:已知弧所对的圆心角为60°,半径是4,则弧长为____.学生代入公式进行计算:43π出示课件7:例 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)学生观察思考后,师生共同解答. 解:由弧长公式,可得弧AB 的长:1009005001570(mm),180⨯⨯π==π≈l因此所要求的展直长度l=2×700+1570=2970(mm ).答:管道的展直长度为2970mm . 巩固练习:(出示课件8)一滑轮起重机装置(如图),滑轮的半径r=10cm,当重物上升15.7cm 时,滑轮的一条半径OA 绕轴心O 逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,π取3.14)?学生自主思考后,独立解答,一生板演.解:设半径OA 绕轴心O 逆时针方向旋转的度数为n °.15.7,180n Rπ=解得n ≈90°.因此,滑轮旋转的角度约为90°.探究二 扇形面积计算公式及相关的计算出示定义:圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.(出示课件9)判一判:下列图形是扇形吗?(出示课件10)学生观察后口答:×;×;√;×;√.教师问:半径为r的圆,面积是多少?(出示课件11)学生答:2 =S r.教师问:①360°的圆心角所对扇形的面积是多少?②1°的圆心角所对扇形的面积是多少?③n°的圆心角所对扇形的面积是多少?学生答:①360°的圆心角所对扇形的面积是圆的面积;②1°的圆心角所对扇形的面积是圆的面积的1.360③n°的圆心角所对扇形的面积是圆的面积的360n.教师问:图中各扇形面积分别是圆面积的几分之几,具体是多少呢?(出示课件12)学生观察计算并填表.出示课件13:教师归纳:扇形面积公式:半径为r 的圆中,圆心角为n °的扇形的面积为2=.360n r S π扇形教师强调:①公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).教师问:扇形的面积与哪些因素有关?(出示课件14)学生答1:圆心角大小不变时,对应的扇形面积与半径有关,半径越长,面积越大.学生答2:圆的半径不变时,扇形面积与圆心角有关,圆心角越大,面积越大. 教师总结:扇形的面积与圆心角、半径有关.教师问:扇形的弧长公式与面积公式有联系吗?(出示课件15) 学生板演:11.180221802n r r n r S r lr ππ=⋅=⋅⋅=扇形 教师问:扇形的面积公式与什么公式类似? 学生答:1.2S ah ∆=出示课件16:例1 如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm 2和0.01cm )学生独立思考后师生共同解答. 解:∵n=60,r=10cm, ∴扇形的面积为扇形的周长为巩固练习:(出示课件17)1.已知半径为2cm 的扇形,其弧长为43π,则这个扇形的面积S 扇= .2.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇= .学生独立思考后口答:1.24cm 3π;2.43π.出示课件18,19:例2 如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm )教师问:(1)截面上有水部分的面积是指图上哪一部分? 学生答:阴影部分.教师问:(2)水面高0.3m 是指哪一条线段的长?这条线段应该怎样画出来? 学生答:线段DC.过点O 作OD 垂直于AB 并交圆O 于C. 教师问:(3)要求图中阴影部分面积,应该怎么办? 学生答:阴影部分面积=扇形OAB 的面积-△OAB 的面积. 师生共同解答如下:(出示课件20)解:如图(3),连接OA,OB,过点O 作弦AB 的垂线,垂足为D,交AB 于点C,连接AC.∵OC =0.6,DC =0.3, ∴OD =OC-DC =0.3, ∴OD =DC. 又AD ⊥DC,∴AD 是线段OC 的垂直平分线, ∴AC =AO =OC.从而∠AOD =60˚,∠AOB=120˚. 有水部分的面积: S =S 扇形OAB -S ΔOAB22120π10.6360210.12π0.22(m 0.32)=⨯-•=-⨯≈AB OD 出示课件21:弓形的面积公式:教师归纳:弓形的面积=扇形的面积±三角形的面积. 巩固练习:(出示课件22)如图,扇形OAB 的圆心角为60°,半径为6cm,C,D 是弧AB 的三等分点,则图中阴影部分的面积和是_____.学生独立思考后解答:阴影部分的面积就是扇形OAC 的面积,由题意得: ∠AOC=60°÷3=20°.S 扇形OAC =⨯220π6360=2π.(三)课堂练习(出示课件23-29)1.如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则 的长为( )A .23π B .43π C .2π D .83π 2.如图,在平行四边形ABCD 中,∠B=60°,⊙C 的半径为3,则图中阴影部分的面积是( )A .πB .2πC .3πD .6π 3.已知弧所对的圆心角为90°,半径是4,则弧长_____.4.如图,Rt△ABC中,∠C=90°, ∠A=30°,BC=2,O、H分别为AB、AC的中点,将△ABC顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()5.如图,☉A、☉B、☉C、☉D两两不相交,且半径都是2cm,则图中阴影部分的面积是_____.6.如图,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为________(结果用含π的式子表示).7.如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.8.如图,一个边长为10cm的等边三角形模板ABC在水平桌面上绕顶点C按顺时针方向旋转到△A′B′C的位置,求顶点A从开始到结束所经过的路程为多少.参考答案:1.D2.C3.2π4.C5.212πcm6.(4+π7.解:=OAB S S S +△弓形扇形224010.60.30.63602π=⨯+⨯⨯0.24π=+()20.91cm .≈8.解:由图可知,由于∠A ′CB ′=60°,则等边三角形木板绕点C 按顺时针方向旋转了120°,即∠ACA ′ =120°,这说明顶点A 经过的路程长等于弧AA ′的长.∵等边三角形ABC 的边长为10cm,∴弧AA ′ 所在圆的半径为10cm.∴l 弧AA ′1201020(cm).1803ππ⨯⨯== 答:顶点A 从开始到结束时所经过的路程为20cm.3π (四)课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?(五)课前预习预习下节课(24.4第2课时)的相关内容.七、课后作业1.教材113页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,再由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.。

人教版弧长和扇形面积公式优质教案(共两篇)

人教版弧长和扇形面积公式优质教案(共两篇)

人教版弧长和扇形面积公式优质教案(共两篇)第1课时教学内容24.4弧长和扇形面积(1).教学目标1.理解弧长和扇形面积公式,并会计算弧长和扇形的面积.2.经历探索弧长及扇形面积计算公式的过程,感受转化、类比的数学思想,培养学生的探索能力.3.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系.教学重点1.推导弧长及扇形面积计算公式的过程.2.掌握弧长及扇形面积计算公式,会用公式解决问题.教学难点推导弧长及扇形面积计算公式的过程.教学过程一、导入新课复习圆的周长和面积公式,导入新课的教学.二、新课教学1.弧长的计算公式.思考:我们知道,弧是圆的一部分,弧长就是圆周长的一部分.想一想,如何计算圆周长?圆的周长可以看作是多少度的圆心角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角呢?在半径为R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2πR,所以1°的圆心角所对的弧长是,即.于是n°的圆心角所对的弧长为.2.扇形面积的计算公式.如图,由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.可以发现,扇形的面积除了与圆的半径有关外还与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大.怎样计算圆半径为R,圆心角为n°的扇形面积呢?思考:由扇形的定义可知,扇形面积就是圆面积的一部分.想一想,如何计算圆的面积?圆面积可以看作是多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n°的圆心角呢?在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR2,所以1°的扇形面积是,于是圆心角为n°的扇形面积是S扇形=.3.实例探究.例 1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算下图所示的管道的展直长度L(结果取整数).解:由弧长公式,得的长=500π≈1 570(mm).因此所要求的展直长度L=2×700+1 570=2 970(mm).例2 如下左图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3 m.求截面上有水部分的面积(结果保留小数点后两位).解:如上右图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交于点C,连接AC.∵ OC=0.6 m,DC=0.3 m,∴ OD=OC-DC=0.3(m).∴ OD=DC.又 AD⊥DC,∴ AD是线段OC的垂直平分线.∴ AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形OAB-S△OAB=×0.62-AB·OD=0.12π-×0.6×0.3≈0.22(m2).三、巩固练习教材第113页练习.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题24.4 第1、2题.一、基础知识1.使学生理解弧长和扇形的定义,明白弧长和扇形面积的推导过程,并熟记弧长和扇形面积公式。

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计

人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。

这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。

教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。

但是,对于弧长和扇形面积的计算,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。

三. 教学目标1.理解弧长和扇形面积的概念。

2.掌握弧长和扇形面积的计算公式。

3.能够运用弧长和扇形面积的知识解决实际问题。

四. 教学重难点1.重点:弧长和扇形面积的计算公式。

2.难点:弧长和扇形面积公式的推导过程。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。

2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。

3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。

六. 教学准备1.准备相关的教学课件、几何画板软件。

2.准备一些实际的例子,用于引导学生探究。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。

提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。

2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。

通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。

3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。

人教版九年级数学上册《弧长和扇形面积(第1课时)》示范教学设计

人教版九年级数学上册《弧长和扇形面积(第1课时)》示范教学设计

弧长和扇形面积(第1课时)教学目标1.经历探索弧长和扇形面积公式的过程,培养学生的探索能力,并会利用弧长公式、扇形面积公式解决问题.2.在弧长和扇形面积计算公式的探究过程中,理解局部与整体之间的关系,感受转化、类比的数学思想.教学重点弧长公式及扇形面积公式的推导和应用.教学难点利用扇形面积公式解决不规则图形的面积问题.教学过程新知探究一、探究学习【思考】(1)什么是弧?(2)什么是弧长?【追问】如何求弧长?【师生活动】学生根据前面学过的知识得出答案:(1)弧是圆的一部分;(2)弧长是弧的长度,就是圆周长的一部分.教师引导学生思考如何求弧长.【设计意图】通过简单的问题串,让学生初步感知弧长的实际意义,为学习弧长公式做铺垫.【问题】(1)半径为R,圆心角为1°的弧长是多少?(2)半径为R,圆心角为2°的弧长是多少?(3)半径为R,圆心角为90°的弧长是多少?【师生活动】教师引导学生得出(1)~(3)的答案:(1)1°的弧长是圆周长的1360,即1π2π360180RR⨯=;(2)2°是1°的2倍,所以弧长也是1°的弧长的2倍,即ππ218090R R ⨯=;(3)90°是1°的90倍,所以弧长也是1°的弧长的90倍,即ππ901802R R⨯=.【设计意图】引导学生关注圆心角的大小,让学生体验弧长公式的推导过程.【追问】(4)半径为R,圆心角为n°的弧长是多少?【师生活动】学生独立思考,n°的圆心角所对的弧长是1°的圆心角所对弧长的n倍,半径为R的圆周长为2πR,利用1°的圆心角所对的弧长π180R乘n,就可以得到n°的圆心角所对的弧长为ππ180180=R n Rn⋅.教师强调注意点:n表示1°的圆心角的倍数,它是不带单位的,公式中,180也是不带单位的.【新知】n°的圆心角所对的弧长为ππ180180=R n Rn⋅.【设计意图】让学生经历从整体到部分的研究过程,从圆周长公式出发推导出弧长公式.【问题】弧长的大小由哪些量决定?【师生活动】学生独立思考,根据弧长公式π180=n Rl,可得180和π是常数,n和R是变量.弧的长度与圆心角的度数和圆的半径有关:当圆的半径一定时,圆心角的度数越大,弧的长度越大;当圆心角的度数一定时,圆的半径越大,弧的长度越大.【设计意图】通过辨析弧长公式,让学生加深对弧长公式的理解.【练习】1.已知一条弧所对的圆心角为90°,半径是4,则弧长为________.2.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角为________.3.钟表的轴心到分针针端的长为5 cm,那么经过40分钟,分针针端转过的弧长是()cm.A.103πB.203πC.253πD.503π【答案】1.2π;2.160°;3.B.【设计意图】通过练习,考察学生对弧长公式的掌握情况.二、典例精讲【例1】制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算如图所示的管道的展直长度L(结果取整数).【分析】管道的展直长度L=AC的长+BD的长+弧AB的长.【答案】解:由弧长公式,得AB的长l=100900180⨯⨯π=500π≈1570(mm).则展直长度L≈2×700+1570=2970(mm).【设计意图】通过实际问题,巩固学生对弧长公式的理解.三、探究新知【新知】由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.【思考】如图,扇形面积就是圆面积的一部分,想一想,如何计算圆的面积?如何计算扇形的面积呢?【师生活动】学生独立思考,得出圆的面积公式2πR;教师引导学生思考扇形的面积与哪些量有关.【问题】(1)半径为R,圆心角为1°的扇形的面积是多少?(2)半径为R,圆心角为2°的扇形的面积是多少?(3)半径为R,圆心角为90°的扇形的面积是多少?(4)半径为R,圆心角为n°的扇形的面积是多少?【师生活动】学生独立思考并讨论,类比弧长公式的探究过程,可以发现在半径为R 的圆中,360°的圆心角所对的扇形的面积就是圆的面积S=2πR,所以1°的圆心角所对的扇形面积是圆面积的1360,即221π360360RRπ⨯=;2°的圆心角所对的扇形面积是圆面积的2 360,即22222π360360180R RRππ⨯==;90°的圆心角所对的扇形面积是圆面积的90360,即2229090π3603604R R R ππ⨯==;所以n °的圆心角所对的扇形面积为2π360扇形=n R S . 【新知】圆心角为n °的扇形面积是2π360扇形=n R S . 扇形的面积与圆的半径和组成扇形的圆心角的度数有关.【设计意图】类比弧长公式的发现过程,由学生独立思考、归纳出扇形的面积公式。

人教版数学九年级(上册)弧长和扇形面积教案

人教版数学九年级(上册)弧长和扇形面积教案

24.4弧长和扇形面积第1课时弧长和扇形面积一、教学目标1、知识与技能经历探索弧长计算公式的过程,培养学生的探索能力,了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力。

2、过程与方法通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力。

3、情感、态度与价值观通过对弧长和扇形面积公式的推导,理解整体和局部的关系。

通过图形的转化,体会转化在数学解题中的妙用。

二、重点难点1、重点弧长和扇形面积公式,准确计算弧长和扇形的面积。

2、难点运用弧长和扇形面积公式计算比较复杂图形的面积。

三、教学设计1、情境导入问题:如果有一根总够长的绳子和一个能测量长度的卷尺,你有什么办法能得到田径跑道最外侧一圈的长度?2、探究新知探索弧长公式(1)半径为r 的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?注意:①在应用弧长公式进行计算时,要注意公式中n 的意义,n 表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只有在同圆或等圆中才可能是等弧.小试牛刀:①已知圆的半径为10cm ,半圆的弧长为_______。

②已知半径为3,则弧长为π的弧所对的圆心角为_______。

③已知圆心角为150°,所对的弧长为20π,则圆的半径为_______。

扇形面积计算公式提出问题:什么是扇形?如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

类比探究:(1)半径为r 的圆,面积是多少?(2)圆面可以看作是多少度的圆心角所对的扇形?(3)1°圆心角所对扇形面积是多少?【设计意图】引导学生迁移推导弧长公式的方法步骤,利用类比的方法探究B新问题,归纳结论。

教师提问:比较扇形面积与弧长公式, 能否用弧长表示扇形面积?180r πn l = 360r 2πn S =扇形学生独立思考得出结论:2r l S =扇形小试牛刀:①已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇形=____。

人教版九年级上册数学人教版九年级上册数学 24.4 弧长和扇形面积 第1课时 弧长和扇形面积教案1

人教版九年级上册数学人教版九年级上册数学   24.4  弧长和扇形面积 第1课时  弧长和扇形面积教案1

24.4 弧长和扇形面积第1课时弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中,弧形随处可见,大到星体运行轨道,小到水管弯管,操场跑道,高速立交的环形入口等等,你有没有想过,这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm的圆中,圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l=nπr180,这里r=1,n=120,将相关数据代入弧长公式求解.即l=120·π·1180=23π.方法总结:半径为r的圆中,n°的圆心角所对的弧长为l=nπR180,要求出弧长关键弄清公式中各项字母的含义.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO.若∠A=30°,则劣弧BC︵的长为________cm.解析:连接OB、OC,∵AB是⊙O的切线,∴AB⊥BO.∵∠A=30°,∴∠AOB=60°.∵BC∥AO,∴∠OBC=∠AOB=60°.在等腰△OBC中,∠BOC=180°-2∠OBC=180°-2×60°=60°.∴BC︵的长为60×π×6180=2π.方法总结:根据弧长公式l=nπR180,求弧长应先确定圆弧所在圆的半径R和它所对的圆心角n的大小.【类型二】利用弧长求半径或圆心角(1)已知扇形的圆心角为45°,弧长等于π2,则该扇形的半径是________;(2)如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角的大小为________.解析:(1)若设扇形的半径为R,则根据题意,得45×π×R180=π2,解得R=2.(2)根据弧长公式得n ×π×1180=π3,解得n =60,故扇形圆心角的大小为60°.方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2,圆心角为120°的扇形弧长与两个半径为3,圆心角为90°的扇形弧长之和,即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题,通过归纳探究出这个点经过的路线情况,并以此推断整个运动途径,从而利用弧长公式求出运动的路线长.探究点二:扇形面积 【类型一】求扇形面积一个扇形的圆心角为120°,半径为3,则这个扇形的面积为________.(结果保留π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π.方法总结:公式中涉及三个字母,只要知道其中两个,就可以求出第三个.扇形面积还有另外一种求法S =12lr ,其中l是弧长,r 是半径.【类型二】求运动形成的扇形面积如图,把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C ,则在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3 C.3π4+32 D.11π12+34解析:在Rt △ABC 中,∵∠A =30°,∴BC =12AB =1,由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1,∴S 扇形BCB 1=90·π·12360=π4,S 扇形ACA 1=90·π·(3)2360=3π4,∴S 总=π4+3π4=π.故选A. 【类型三】求阴影部分的面积如图,半径为1cm 、圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .πcm 2 B.23πcm 2C.12cm 2D.23cm 2 解析:设两个半圆的交点为C ,连接OC ,AB ,根据题意可知点C 是半圆OA ︵,OB ︵的中点,所以BC ︵=OC ︵=AC ︵,所以BC =OC =AC ,即四个弓形的面积都相等,所以图中阴影部分的面积等于Rt △AOB 的面积,又OA =OB =1cm ,即图中阴影部分的面积为12cm 2,故选C.方法总结:求图形面积的方法一般有两种:规则图形直接使用面积公式计算;不规则图形则进行割补,拼成规则图形再进行计算.三、板书设计教学过程中,强调学生应熟记相关公式并灵活运用,特别是求阴影部分的面积时,要灵活割补法、转换法等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . .

1.360 2.S 扇形= 1 R2 3.S 扇形= 2 R2 4.S 扇形= 5 R2
360
360
360
5.S 扇形
= n R2 360 因此:在半径为 R 的圆中,圆心角 n°的扇形
S 扇形=n R2 =1 lR 360 2
(幻灯片 13—幻灯片 15) 判断:几种特殊的扇形(幻灯片 16) 练习:(幻灯片 17—幻灯片 22)
三、归纳小结(学生小结,老师点评) 本节课应掌握: 1.n°的圆心角所对的弧长 L= n R 180 2.扇形的概念.
3.圆心角为 n°的扇形面积是 S 扇形= n R2 360
= 1 lR 2
4.运用以上内容,解决具体问题. 四、布置作业
五、课后反思:要让学生掌握公式的推导。
∴ AB的长= n R= 110 40 ≈76.8(mm) 180 180
因此,管道的展直长度约为 76.8mm.
例 3:如图,把 Rt△ABC 的斜边放在直线 l 上,按顺时针方向转动一次,使 它转到△A/BC/ 的位置。若 BC=1,∠A=300。求点 A 运动到 A′位置时,点 A 经 过的路线长。(幻灯片 8)
义务教育基础课程初中教学资料
24.4 弧长和扇形面积 第一课时
教学内容
1.n°的圆心角所对的弧长 L= n R 180
2.扇形的概念;
3.圆心角为
n°的扇形面积是
S
扇形=
n R2 360

4.应用以上内容解决一些具体题目. 教学目标
了解扇形的概念,理解 n °的圆心角所对的弧长和扇形面积的计算公式并 熟练掌握它们的应用.
片 6)
说明:没有特别要求,结果保留 。
例 2、制作弯形管道时,需要先按中心线计算“展直长度”再下料, 试计算
如图所示的管道的展直长度,即 AB的长(结果精确到 0.1mm)(幻灯片 7)
_A
_110 _40mm _B
_O
分析:要求 AB的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm,n=110
通过复习圆的周长、圆的面积公式,探索 n°的圆心角所对的弧长 L= n R2 180
和扇形面积 S 扇= n R2 的计算公式,并应用这些公式解决一些题目. 360
重难点、关键
1.重点:n°的圆心角所对的弧长 L= n R ,扇形面积 S 扇= n R2 及其它们
180
360
的应用.
2. 难点:两个公式的应用. 3. 关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.
教具、学具准备 小黑板、圆规、直尺、量角器、纸板. 教学过程 一、复习引入 (幻灯片 2—幻灯片 4)
二、探索新知
(老师口问,学生口答)请同学们回答下列问题.
1. 圆的周长公式是什么?
2. 圆的面积公式是什么?
3. 什么叫弧长?
老师点评:(1)圆的周长 C=2 R
2 圆的面积 S 图= R2 3 弧长就是圆的一部分. (小黑板)请同学们独立完成下题:设圆的半径为 R,则:
练习:(幻灯片 9、幻灯片 10) 扇形的定义:如下图,由组成圆心角的两条半径和圆心角所对的弧围成 的 图形是扇形。(幻灯片 11) 判断:下列图形是扇形吗?(幻灯片 12)
(小黑板),请同学们结合圆心面积 S= R2的公式,独立完成下题:
1. 该图的面积可以看作是
度的圆心角所对的扇形的面积.
2. 设圆的半径为 R,1°的圆心角所对的扇形面积 S 扇形= 3. 设圆的半径为 R,2°的圆心角所对的扇形面积 S 扇形= 4. 设圆的半径为 R,5°的圆心角所对的扇形面积 S 扇形= …… 5.设圆半径为 R,n°的圆心角所对的扇形面积 S 扇形= 老师检察学生练习情况并点评
1.圆的周长可以看作
度的圆心角所对的弧.
2.1°的圆心角所对的弧长是

3.2°的圆心角所对的弧长是

4.4°的圆心角所对的弧长是

……
5.n°的圆心角所对的弧长是


(老师点评)根据同学们的解题过程,我们可得到:
n°的圆心角所对的弧长为l n R(幻灯片 5) 180
例 1、已知圆弧的半径为 50 厘米,圆心角为 60°,求此圆弧的长度。(幻灯
相关文档
最新文档