122全等三角形的判定(1--SSS、SAS)
12.2.2三角形全等的判定-SAS(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“SAS全等判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS即“边角边”,当两个三角形中有两边和它们夹的角相等时,这两个三角形全等。这个判定方法是几何中非常重要的一部分,它帮助我们解决了很多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将看到SAS在实际中的应用,以及它如何帮助我们解决问题。
-举例解释:
-例如,给出两个三角形,其中一个三角形的两边和夹角与另一个三角形的部分元素相等,但不满足SAS条件,如只有两边相等。此时,教师需引导学生识别这种情况并不满足SAS判定,不能直接得出全等的结论。
-在解决实际问题时,教师可以指导学生先识别出已知的SAS条件,再进行判定。如在一个多边形内,已知两条边和一个角,教师需引导学生如何找出第三条边,以形成SAS条件。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的判定-SAS》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”比如,在拼接图形或制作模型时,我们需要确认两个三角形的尺寸和形状是否一致。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
12.2三角形全等的判定(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形全等判定方法的基本原理。
2.在实践活动和小组讨论环节,学生们积极参与,课堂氛围良好。但我也观察到,部分学生在讨论过程中过于依赖同伴,缺乏独立思考。为了提高学生的独立思考能力,我计划在后续教学中增加一些个人任务,鼓励学生独立解决问题。
3.在教学难点解析部分,我尝试通过举例和比较来帮助学生突破难点。从学生的反馈来看,这种方法效果不错。但我也意识到,对于一些理解能力较弱的学生,可能需要更多的时间和耐心去引导。因此,我决定在课后设立辅导时间,为这部分学生提供额外的帮助。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.能够运用三角形全等的判定方法解决实际问题;
4.了解AAS(Angle-Angle-Side,角角边)判定方法,并了解其适用条件。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的空间观念和几何直观,使其能够通过观察、操作、推理等手段,理解三角形全等的内涵及其判定方法;
1223三角形全等的判定ASAAAS
通过这节课的学习,你 有什么收获?
课本P15 第5、6题
补充练习:
A
1、在△ABC中,
AB=AC,
AD是边BC上的中线,
证明证:明∵:AD∠是BBACD边=上∠的CA中D线 B
DC
∴BD=CD(三角形中线的定义)
在△ABD和△ACD中
AB AC(已 知) BD CD(已 证)
AD AD(公 共 边)
判断两个三角形 全等的方法有哪些?
1.定义(重合)法: 2.SSS: 3.SAS:
议一议
小明踢球时不慎把一块三角 形玻璃打碎为两块,他是否可以 只带其中的一块碎片到商店去, 就能配一块与原来一样的三角 形玻璃呢?如果可以,带哪块去 合适呢?为什么?
B A
画 出 一 个 △ ABC , 使 得 ∠ A = 4 5 ° , AB=3cm, ∠B=60°,并把所画的三角形剪下 来,与同伴比一比,发现什么?
即∠ACB= ∠DCB
A
在ABC和DBC中
110
ABC DBC (已知) B
35 35
C
BC BC (公共边)
110
∠ACB=∠DCB (已证)
D
ABC DBC (ASA)
有两角和它们中的一边对应相等的两个三 角形全等(简写成“角角边”或“AAS”)。
几何语言:
在△ABE和△A’CD中 ∠B=∠C(已知 )
C=E(已知) BAC=DAE (已证)
AB=AD(已知)
∴ △ABC≌△ADE (AAS)
E C
3.如图:已A知E=ABA=D,AC∠,B=∠B∠=C,∠C, △ABD与△ACE全等吗?为什么? A
解:全等。 在ABD 和ACE中
122全等三角形的判定(1--SSS、SAS)
12.2三角形全等的判定(1)(SSS 、SAS )一、学习目标1、掌握三角形全等的“S AS ”条件,能运用“S AS ”证明简单的三角形全等问题 2.经历探索三角形全等条件的过程,体会利用操作归纳获得数学结论的过程. 3、积极投入,激情展示,做最佳自己。
二、重点难点教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件. 三、合作学习 1、复习引入(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上学时我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等?(1)动手试一试(学生合作(二)精练、教师积极参与) 已知:△ABC求作:'''AB C ∆,使''A B A B =,''B C B C =,B B ∠='∠(2) 把△'''ABC剪下来放到△ABC 上,观察△'''ABC 与△ABC 是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”) (4)用数学语言表述全等三角形判定(二)在△ABC 和'''A B C ∆中, ∵''A B A B B B C =⎧⎪∠=⎨⎪=⎩∴△ABC ≌3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出:不全等四、(一)精讲例1 如图,AC=BD ,∠1= ∠2,求证:BC=AD.C 'B 'A 'C B ACBADC BA21例2、如图,AC=BD,BC=AD,求证:∠C=∠D(二)精练(学生合作(二)精练,教师积极参与、指正)(二)精练1、如图,AC=BD,BC=AD,求证:∠A=∠B(二)精练2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD(允许添加一个条件)五、小结SSS、SAS六、作业:如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN学习反思:学生是学习的主体,教师是学生的引导者DCBADCBAOACDB。
12.2.1三角形全等的判定sss及教学反思
12.2.1三角形全等的判定sss及教学反思•相关推荐12.2.1三角形全等的判定(sss)及教学反思12.2.1三角形全等的判定(SSS)西河九年制学校郭欢教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果ABCA′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的.支架,求证ABDACD.(教师板书)【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.证明:D是BC的中点,∴BD=CD在ABD和ACD中∴ABDACD(SSS).【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.习题11.2第1,2题.2.选做课时作业设计.教学反思:首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。
12.2.2三角形全等的判定(SAS)最新
A
△BOD≌ △COE
D E
S
A
S
O
B C
OB=OC ∠BOD= ∠ COE OD=OE
3.如图,要证△ACB≌ △ADB ,至少选 用哪些条件才可以?
证得△ACB≌ △ADB △ACB≌ △ADB
C
A S A
S B AB=AB ∠CAB= ∠ DAB AC=AD D
在△COA与△COB中 ∠COA=∠COB OC=OC
∴△COA≌△COB( SAS)
∵直线 l ⊥AB
∴∠COA=∠BOC=90° A OA=OB
O
B
∴CA=CB(全等三角形对应边相等)
垂直平分线的定义:垂直于一条线段,并且平分 这条线段的直线叫做这条线段的垂直平分线。 垂直平分线的性质:线段的垂直平分线上的点到线 段两端点的距离相等。
B
A
C
D
∴ △ABC ≌△ DEF(SSS) E
F
注重书写格式
三步走:
①准备条件 ②摆齐条件 ③得结论
除了SSS外,还有其他情况吗?继续探索三角形全 等的条件.
当两个三角形满足六个条件中的三个时,有四种 情况:
(1) 三个角 (2) 三条边 (3) 两边一角 (4) 两角一边
不能! SSS ?
继续探讨三角形全等的条件: 两边一角
我们学过哪几种判定三角形全等的方法?
1、全等三角形概念:三条边对应相 等,三个角对应相等。 2、全等三角形判定条件(一) 三边对应相等的两个三角形全等。 简称“边边边”或“SSS”
知识回顾:
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
12.2 三角形全等的判定(解析版)
12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
人教版八年级数学上册12.2三角形全等的判定第1课时教学设计
(二)过程与方法
1.通过实际操作、观察、猜想、验证等教学活动,培养学生动手动脑、自主探究的学习习惯。
2.引导学生运用合作交流的学习方式,培养学生的团队协作能力和表达能力。
3.教学中采用问题驱动法,引导学生主动发现问题、解决问题,提高学生的问题解决能力。
6.拓展延伸,激发兴趣:
设想在教学结束后,引入一些拓展性的问题,如全等三角形的性质在生活中的应用、全等变换的探究等,激发学生的学习兴趣,培养学生的探究精神。
四、教学内容与过程
(一)导入新课
在本节课的开始,我将采用生活实例导入法,引发学生对全等三角形的学习兴趣。首先,我会展示一组图片,包括建筑物的对称设计、剪纸艺术中的全等图形等,让学生观察并思考这些图片中的共同特征。通过观察和讨论,学生能够发现这些图形都是全等的,从而引出全等三角形的概念。
6.课外阅读题:推荐一篇关于全等三角形历史发展的文章,要求学生课后阅读,了解全等三角形知识的发展过程,激发学生对数学学科的兴趣。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
2.作业完成后,进行自我检查,确保答案的正确性。
3.对于难题和疑问,鼓励学生与同学讨论、请教老师,及时解决问题。
4.家长要关注孩子的学习情况,协助督促孩子按时完成作业,培养良好的学习习惯。
4.实践应用,巩固知识:
设想通过实际操作、尺规作图、解决实际问题等多种形式,让学生在实践中巩固全等三角形的判定方法和性质,提高学生的应用能力。
5.反馈评价,促进发展:
设想在教学过程中,教师及时给予学生反馈,指导学生进行自我评价和同伴评价。通过评价,帮助学生了解自己的学习情况,调整学习策略,促进全面发展。
12.2全等三角形的判定(SSS)
课题12..2全等三角形的判定第1课时学习内容:通过独立思考和小组合作,能够利用“边边边”判定三角形全等 学习目标:1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.能够作一个三角形与原三角形全等.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.1、已知△ABC ≌△A ′B ′C ′,找出其中相等的边____________________________ 相等的角___________________________________.C 'B 'A 'C B A2、探究1(1).只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?①.只给定一条边时:只给定一个角时:可以发现按这些条件画出的三角形 一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即: .(2).给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.可以发现按这些条件画出的三角形一定全等.(3)给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:.3、探究2(1)按课本提供的作图方法画出另一个三角形(2)这两个三角形全等吗?(3)这两个三角形全等具备了哪些条件?(4)这一基本事实是简写成(5)在解题过程中的叙述∵在△和△中{∴△≌△4、学习例题15、学习尺规作图二、小组合作解决以上问题三、拓展延伸1.如图13—2—46所示,MP=MQ,PN=QN,MN交PQ于O点,则下列结论中不正确的是()A.△MPN≌△MQN B.OP=OQ C.MO=NO D.∠MPN=∠MQN2.如图13—2—47所示,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P,则下列结论中正确的是()①△AOD≌△BOC ②△APC△BPD ③点P在∠AOB的平分线上A.①B.②C.①②D.①②③3.如图13—2—48所示,已知OA=OB,OC=OD,AD与BC相交于E,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对4.如图13—2—49所示,AB=CD,AD=BC。
12.2三角形全等的判定(一)(SSS、SAS)(原卷版)
八年级上册数学《第十二章 全等三角形》1.2.2 三角形全等的判定(一)“边边边”与“边角边”◆利用“SSS ”判定两个三角形全等文字语言:三边分别相等的两个三角形全等,简写为“边边边”或“SSS”.几何语言:在△ABC 和△DEF 中,AB =DE BC =EF CA =FD∴△ABC ≌△DEF (SSS).◆利用“SAS ”判定两个三角形全等1、文字语言:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.2、几何语言:在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF∴△ABC ≌△DEF (SSS).3、方法:(1)已知两边,可以找“夹角”;(2)已知一角和这角的一夹边,可找这角的另一夹边【注意】1. 有两边和其中一边的对角对应相等的两个三角形不一定全等.2. 说明两三角形全等所需的条件应按对应边的顺序书写.3. 结论中所出现的边必须在所证明的两个三角形中.【例题1】如图,△ABC 中,AB =AC ,EB =EC ,则由“SSS ”可以判定( )A.△ABE≌△ACE B.△ABD≌△ACDC.△BDE≌△CDE D.以上答案都不对【变式1-1】如图,在△ACE和△BDF中,AE=BF,CE=DF,要利用“SSS”证明△ACE≌△BDF,需添加的一个条件可以是( )A.AB=BC B.DC=BC C.AB=CD D.以上都不对【变式1-2】下列四个三角形中,与图中的△ABC全等的是( )A.B.C .D .【变式1-3】如图,已知点A 、D 、B 、F 在一条直线上,AC =EF ,AD =FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是( )A .AC ∥EFB .∠E =∠C C .∠ABC =∠FDED .AB =DF【变式1-4】如图,已知∠1=∠2,若用“SAS ”证明△BDA ≌△ACB ,还需加上条件( )A .AD =BCB .BD =AC C .∠D =∠C D .OA =OB【例题2】如图,已知点B ,C ,D ,E 在同一直线上,且AB =AE ,AC =AD ,BD =CE .求证:△ABC ≌△AED.【变式2-1】(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【变式2-2】如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【变式2-3】(2023•永善县三模)如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.【例题3】11.(2018秋•庆云县校级月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 .【变式3-1】小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C '为圆心,CD 长为半径画弧,与第(2)步中所画的弧相交于点D ′;(4)过点D '画射线O ′B ′,则∠A ′O ′B ′=∠AOB .小聪作法正确的理由是( )A .由SSS 可得△O ′C ′D′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBB .由SAS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBC .由ASA 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBD .由“等边对等角”可得∠A ′O ′B ′=∠AOB【变式3-2】(2023春•白银期中)已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.【变式3-3】如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧,再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD 、CD ,若∠B =56°,则∠ADC 的大小为 度.【例题4】(2023•官渡区一模)如图,点A ,B ,C ,D 在同一直线上,AF =DE ,∠A =∠D ,AC =DB .求证:△ABF ≌△DCE.【变式4-1】(2023•从化区二模)为了制作燕子风筝,燕子风筝的骨架图如图所示,AB=AE,AC=AD,∠BAD=∠EAC,证明:△ABC≌△AED.【变式4-2】(2023•祥云县模拟)已知:如图,点F、C在线段BE上,AB=DE,∠B=∠E,BF=EC,求证:△ABC≌△DEF.【变式4-3】(2023•乾安县四模)已知:如图,BA=BD,BE=BC,∠ABD=∠CBE,求证:△ABE≌△DBC.【变式4-4】(2023•宁江区二模)如图,△ABC 中,D 是BC 延长线上一点,满足CD =AB ,过点C 作CE ∥AB 且CE =BC ,连接DE 并延长,分别交AC 、AB 于点F 、G ,求证:△ABC ≌△DCE .【变式4-5】(2023•五华区校级模拟)如图,已知AB ∥DE ,AB =DE ,AF =DC .求证:△ABC ≌△DEF .【例题5】如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,∠B =∠C ,若BE =4,则CD = .【变式5-1】(2022春•成华区期末)如图,在等腰△ABC 中,∠ACB =90°,点D 是AC 的中点,过点A 作直线BD 的垂线交BC 的延长线于点E ,若BC =4,则CE 的长为 .【变式5-2】茗茗用同种材料制成的金属框架如图所示,已知∠B =∠E ,AB =DE ,BF =EC ,其中△ABC 的周长为24cm ,CF =3cm ,则制成整个金属框架所需这种材料的长度为 cm .【变式5-3】(2023•青海一模)在△ABC 中,D 是BC 边的中点,若AB =9,AC =5,则△ABC 的中线AD 长的取值范围是( )A .5<AD <9B .4<AD <9C .2<AD <14D .2<AD <7【例题6】如图,已知OA =OB ,OC =OD ,∠O =50°,∠D=35°,则∠OBC =( )A.95°B.120°C.50°D.105°【变式6-1】(2022春•福山区期中)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=76°,求∠BAC的度数.【变式6-2】(2023春•青羊区期末)如图在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=40°,求∠DEC的度数.【变式6-3】(2022秋•湟中区校级期末)如图,在△ABC中,D为AB上一点,E为AC中点,连接DE 并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【例题7】(2022秋•甘井子区校级月考)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BF =CE,试判断AB和DE的关系,并说明理由.【变式7-1】(2023春•罗湖区校级期末)已知:如图,点A、F、C、D在同一直线上,AF=DC,AB=DE,AB∥DE,连接BC,BF,CE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【变式7-2】(2023春•萍乡期末)如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE 有什么关系?写出你的猜想并说明理由.【变式7-3】如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【例题8】如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .【变式8-1】如图,已知在△ABC 和△DEF 中,∠B =∠E ,BF =CE ,点B 、F 、C 、E 在同一条直线上,若使△ABC ≌△DEF ,则还需添加的一个条件是 (只填一个即可).【变式8-2】如图,AB =AE ,AC=AD,要使△ABC ≌△AED ,应添加一个条件是 .【变式8-3】问题:如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB =DE ,若 .求证:△ABC ≌△DEF .在①AC =DF ,②∠ABC =∠DEF ,③BE =CF 这三个条件中选择其中两个,补充在上面的问题中,并完成解答.【例题9】(2022春•包头期末)如图,已知点A ,C 在线段BD 两侧,AB =AD ,CB =CD ,线段AC ,BD 相交A 于点O .下列结论:①∠ABC =∠ADC ;②AC ⊥BD ;③AC 平分∠BAD ;④OB =OD .其中正确的是 (填写所有正确结论的序号).【变式9-1】(2023•禅城区校级一模)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,且B、D、E三点共线,(1)证明:△ABD≌△ACE;(2)证明:∠3=∠1+∠2.【变式9-2】(2022春•沙坪坝区校级期中)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF 平分∠DCE.求证:△DCF≌△ECF【变式9-3】(2023春•浦东新区校级期末)如图,已知AB=AE,AC=AD,∠BAD=∠EAC,AD∥BC.(1)△ADE与△ACB是否全等?说明理由;(2)如果∠B=30°,∠D=40°,求∠BAE的度数.【变式9-4】(2022秋•自流井区校级期末)如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2,AD、BC相交于点F.(1)求证:∠B=∠D;(2)若AB∥DE,AE=3,DE=4,求△ACF的周长.【变式9-5】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若点E、F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E、F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E、F不重合,则AD和CB平行吗?请说明理由.。
全等三角形判定一(SSSSAS)(基础)知识讲解
全等三角形判定一(SSS ,SAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等) ∴ OP平分∠AOB.。
12.2.1全等三角形的判定(SSS,SAS,ASA,AAS)20160724
E C
A 练习:如图,点 D 在 AB 上,点 E 在 AC 上,BA =AC, ∠B =∠C,BE、CD 相交于点 O.求证:OB=OC D B 练习:如图,CD⊥AB 于 D,BE⊥AC 与 E, BE、CD 交于 O,且 AO 平分∠BAC,求证:OB=OC D O B 六、全等三角形的判定方法 简称 边边边 边角边 角边角 角角边 缩写 SSS SAS ASA AAS 具体条件 三边对应相等 两边和它们的夹角对应相等 两角和它们的夹边对应相等 两角和其中一角的对边对应相等 A O E C
A 练习:如图:己知 AD∥BC,AE=CF,AD=BC,E、F都在直线AC来自,试说明DE∥ D A BF。
B
E
F
C B 五、全等三角形的判定方法(ASA,AAS) 1. 两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA” 。 2. 两角和其中一角的对边对应相等的两个三角形全等。简写为“角角边”或“AAS”。
E A D
B
C
H
B
四、全等三角形的判定方法(SAS) 1. 用尺规作图,两边和它们的夹角对应相等的两个三角形,发现它们是能够完全重合(全 等)的。 2. 两边和它们的夹角对应相等的两个三角形全等。简写为“边角边”或“SAS” 练习:如图,AC=BD,∠CAB=∠DBA,你能判断 BC=AD 吗?说明理由。 C D
12.2 三角形全等的判定 复习 1. 全等三角形的定义:能够完全重合的两个三角形是全等三角形。 2. 全等三角形的性质:全等三角形对应边相等,对应角相等。 3. 因为△ABC≌△A’B’C’, 所以 AB=A’B’, BC=B’ C’, AC=A’ C’ ∠A=∠A’, ∠B=∠B’, ∠C=∠C’ 一、全等三角形的判定方法 1. 首先可以肯定的是,三条边对应相等,三个角对应相等的两个三角形全等。 2. 然后至少需要几个条件才能判定两三角形全等。 二、全等三角形的判定方法(SSS) 1. 用尺规作图,画两个三边相等的三角形,发现它们是能够完全重合(全等)的。 2. 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 三、证明三角形全等的书写格式 例题:如图已知 AB=CD,AC=DB,求证△ABC≌△DCB 证明:∵在△ABC 和△DCB 中 A AB=CD 已知 AC=DB 已知 BC=BC 公共边 B
人教版八年级上册12.2全等三角形判定同步练习(包含答案)
12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。
12.2.2 三角形全等的判定(SAS)
C
F
1、识记三角形全等的判定方法二:“SAS”法;
2、掌握“SAS”法的书写格式; 3、会运用“SAS”法判定三角形全等。
问题
已知△ABC,能画一个三角形与它全等吗?怎样画?
如果给出三个条件画三角形时,有几种可能的情况?
①三个角; ②三条边; ③两条边一个角; ④两个角一条边。
探究1
做一做:画△ABC,使AB=12cm,AC=10cm,∠A=45° 。 画法: 1. 画∠MAN= 45° 2. 在射线AM上截取AB=12cm 3. 在射线AN上截取AC=10cm 4.连接BC ∴△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的三 角形进行比较,它们能互相重合吗?
2、掌握“SAS”法的书写格式;
在△ABC与△DEF中 AB=DE ∠B=∠E BC=EF ∴△ABC≌△DEF(SAS) A D
B
C
E
F
3、会运用“SAS”法判定三角形全等。
A组
1、如图,使∆ABC≌∆ADC成立的条件是( D )
A
A. B. C. D.
AB=AD,∠B=∠D AB=AD,∠ACB=∠ACD BC=DC,∠BAC=∠DAC AB=AD,∠BAC=∠DAC
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 ,BC=EF=5 ㎝
则它们完全重合吗?即△ABC≌△ DEF ? A 3㎝ B
300
D 3㎝
300
5㎝
CE
5㎝
F
三角形全等的判定方法2
两边和它们的夹角对应相等的两个三角 形全等。简写成“边角边”或“SAS” 用符号语言表达为: 在△ABC与△DEF中 AB=DE
全等三角形的四种判定方法
全等三角形的四种判定方法
1.SSS判定法(边-边-边):
SSS判定法是通过比较两个三角形的边长来判断它们是否全等。
当三
个边的长度完全相等时,两个三角形就是全等的。
这是最直观的方法,也
是最易判定的方法之一
2.SAS判定法(边-角-边):
SAS判定法是通过比较两个三角形的边长和夹角来判断它们是否全等。
当两个三角形的一对相邻边和它们之间的夹角相等时,这两个三角形就是
全等的。
3.ASA判定法(角-边-角):
ASA判定法是通过比较两个三角形的两个角度和它们之间的夹边来判
断它们是否全等。
当两个三角形的两个角度和它们之间的夹边相等时,这
两个三角形就是全等的。
4.AAS判定法(角-角-边):
AAS判定法是通过比较两个三角形的两个角度和一个非夹角边来判断
它们是否全等。
当两个三角形的两个角度和一个非夹角边相等时,这两个
三角形就是全等的。
这些判定方法都基于三角形的重要性质:对于两个全等的三角形,它
们的对应边长相等,对应角度相等。
因此,通过比较两个三角形的边长和
角度可以判断它们是否全等。
在实际应用中,这些判定方法可以用来解决各种问题,比如计算三角形的面积、寻找相似三角形等。
此外,全等三角形的概念也是其他几何学概念的基础,比如正方形和正五边形都是全等三角形的特殊情况。
综上所述,全等三角形的判定方法有四种:SSS、SAS、ASA和AAS。
通过比较边长和角度的相等性可以确定两个三角形是否全等。
这些方法在解决几何问题中非常有用,并且为其他几何学概念的理解提供了基础。
12.2全等三角形的判定(SSS)(SAS)(ASA)(HL)(微信支付)
结论:满足两 个条件相等的 50° 两个三角形不 一定全等。
4cm
如果给出三个条件画三角形,你能说出有哪几 种可能的情况?
①三边;
②两边一角;
③两角一边; ④三角。
探究2:画出一个△ABC ,再画一个△A`B`C` 使A`B`=AB,B`C`=BC,C`A`=CA。把画好的 △A`B`C`剪下,放到△ABC 上,他们全等吗?
A B C
D
∴ △ABC ≌△ DEF(SSS)
E
F
除了SSS外,还有其他情况吗?继续探索三角形全 等的条件.
当两个三角形满足六个条件中的三个时,有四种 情况:
(1) 三个角
(2) 三条边
不能!
SSS
(3) 两边一角 (4) 两角一边
?
探讨三角形全等的条件:两边一角
思考:已知一个三角形的两边和一角,那么这 两条边与这一个角的位置上有几种可能性呢?
证明:
连结 BD 在△BAD 和△DCB中
AB = CD AD = CB BD = DB
(已知) (已知) B
A
D
C
(公共边)
∴
∴
△BAD ≌ △DCB( SSS )
∠ A =∠ C
(全等三角形的对应角相等)
你能说明AB∥CD,AD∥BC吗?
小结
三角形全等判定一: 三边对应相等的两个三角形全等 简写:“边边边”或“SSS”
A
B
C
在图中, ∠A 是AB和AC的夹角, 符合图中的条件,称为“两边及其夹角”
探讨三角形全等的条件:两边一角 思考:已知一个三角形的两边和一角,那么这 两条边与这一个角的位置上有几种可能性呢?
A
图二
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2三角形全等的判定(1)(SSS 、SAS )
一、学习目标
1、掌握三角形全等的“S AS ”条件,能运用“S AS ”证明简单的三角形全等问题 2.经历探索三角形全等条件的过程,体会利用操作归纳获得数学结论的过程. 3、积极投入,激情展示,做最佳自己。
二、重点难点
教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件. 三、合作学习 1、复习引入
(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?
(2)上学时我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等?
(1)动手试一试(学生合作(二)精练、教师积极参与) 已知:△ABC
求作:'''AB C ∆,使''A B A B =,''B C B C =,B B ∠='∠
(2) 把△'''ABC
剪下来放到△ABC 上,观察△'''ABC 与△ABC 是否能够完全重合?
(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”) (4)用数学语言表述全等三角形判定(二)
在△ABC 和'''A B C ∆
中, ∵
''A B A B B B C =⎧⎪
∠=⎨⎪=⎩
∴△ABC ≌
3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?
通过画图或实验可以得出:不全等
四、(一)精讲
例1 如图,AC=BD ,∠1= ∠2,求证:BC=AD.
C '
B 'A '
C B A
C
B
A
D
C B
A
2
1
例2、如图,AC=BD,BC=AD,求证:∠C=∠D
(二)精练(学生合作(二)精练,教师积极参与、指正)(二)精练1、如图,AC=BD,BC=AD,求证:∠A=∠B
(二)精练2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD(允许添加一个条件)
五、小结
SSS、SAS
六、作业:
如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,
求证:DM=DN
学习反思:
D
C
B
A
D
C
B
A
O
A
C
D
B。