高应变讲解

合集下载

第2章高应变

第2章高应变

桩头处理
剔除桩顶浮浆 桩顶设置桩垫 桩顶设置钢板围箍
仪器连接
24FD电源连接
24FD与电脑连接
24FD与高应变电缆的连接
24FD传感器连接
24FDN高应变电缆连接
24FDN传感器连接
传感器安装
距桩顶1.5-2.0倍桩径
应变计与加速度计中心在同一水平线上
紧贴桩身表面
应变计不能有变形
程序设置
第 2 章 高应变基桩检测
第 1 节
一、高应变法概念
检测原理及分析方法
用重锤冲击桩顶,使桩 一土产生足够位移,充分激 发桩周土阻力和桩端支承力 ,桩身两侧的力和加速度传 感器接收相应波信号,应用 应力波理论分析处理力和速 度时程曲线来判定桩的承载 力和评价桩身质量完整性。
二、基本理论
设桩为一维线弹性杆,测点下桩长为L,桩身横截有效面
F (t1 ) R x F (t x ) F (t1 ) F (t x )
其中:
F (t1 ) [ F (t1 ) Z · (t1 )] / 2 V F (t x ) [ F (t x ) Z · (t x )] / 2 V
Rx:缺陷点X以上的桩周土阻力
四、高应变法分析方法
应变1
应变2
F1=E.A.应变1
F2=E.A.应变2
(F1+F2)/2
平均力
a1ห้องสมุดไป่ตู้
a2
积分得V1
积分得V2
(V1+V2)/2
平均速度V
平均力F
平均速度V
与波阻抗Z乘积
F
ZV
与时间的函数
F-ZV波形
分析方法 1)采用Case法

高应变讲解

高应变讲解

高应变讲解公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]高应变----武汉岩海(曾)一.准备工作1.基桩开挖:不小于2倍桩径2.选择重锤:应为极限承载力的1~%3.桩顶要剔除浮浆以及露头钢筋,保证平整4.冲击钻钻头8mm,膨胀螺丝6mm,固定螺丝的小扳手1把,老虎钳1把,小铁锤1把5.打磨机:切割片为精钢片,不能用砂轮6.传感器的安装:应力环线向下,加速度计线向上7.桩头垫子:3CM左右厚的三合板或者木板8.吊车:可以使用重锤9.应变传感器两个孔距离为6-7CM二.理论知识1.高应变:200~1000个应变低应变:小于10个应变2.通过重锤冲击桩头,产生沿着桩身向下传播的应力波和一定的桩土位移,利用对称安装于桩顶两侧的加速度计和应变计,记录冲击波作用下的加速度和应变,并且通过长线电缆传输给基桩动测仪3.桩垫要求:2~3CM厚的板子,可以垫细沙,管桩用麻袋2-3层4.锤子重量:设计承载力*2=极限承载力再*1~%5.锤击时采用重锤低击(1~2.5m)6.积分:加速度--速度--位移7.贯入度:反弹后的位移,最好在2~6mm8.传感器安装点:大直径基桩--1倍,小直径基桩--2倍,大直径桩--直径大于600mm,桩长大于30m9.一定要保证4个传感器安装贴平!!!10.测点桩长:传感器(加速度计)安装点到桩底的长度测点面积:桩的截面积(管桩为内外直径的差)11.一般先做完低应变,测完整性,比较好的基桩才做高应变12.桩密度:灌注桩--2450,管桩--2550系数JC值粗砂,砂土~,粉质砂土~,粉土~,粉质黏土~,黏土~,固定端为0,自由端为114.应用:检测基桩的竖向抗压承载力和桩身完整性15.桩头混凝土强度等级最好比桩身提高1~2级,而且不低于C30法的条件:只限于中小直径基桩,桩身材质和截面基本均匀加速度计采用电荷信号模式,PDA是采用电压,电荷在导线中传播损耗快18.采用间隔50~200微秒(一般100),短桩用50(10m左右)19.监视:(正负200微应变以内)20.加速度计--电荷--电压--A/D转换--数字信号,应力--电压--A/D 转换--数字信号、适配器的作用:将电荷信号转换成电压信号22.弹性波速:为测点横截面处的波速,高于平均波速。

高应变讲解

高应变讲解

高应变一.准备工作1.基桩开挖:不小于2倍桩径2.选择重锤:应为极限承载力的1~1.5%3.桩顶要剔除浮浆以及露头钢筋,保证平整4.冲击钻钻头8mm,膨胀螺丝6mm,固定螺丝的小扳手1把,老虎钳1把,小铁锤1把5.打磨机:切割片为精钢片,不能用砂轮6.传感器的安装:应力环线向下,加速度计线向上7.桩头垫子:3CM左右厚的三合板或者木板8.吊车:可以使用重锤9.应变传感器两个孔距离为6-7CM二.理论知识1.高应变:200~1000个应变低应变:小于10个应变2.通过重锤冲击桩头,产生沿着桩身向下传播的应力波和一定的桩土位移,利用对称安装于桩顶两侧的加速度计和应变计,记录冲击波作用下的加速度和应变,并且通过长线电缆传输给基桩动测仪3.桩垫要求:2~3CM厚的板子,可以垫细沙,管桩用麻袋2-3层4.锤子重量:设计承载力*2=极限承载力再*1~1.5%5.锤击时采用重锤低击(1~2.5m)6.积分:加速度--速度--位移7.贯入度:反弹后的位移,最好在2~6mm8.传感器安装点:大直径基桩--1倍,小直径基桩--2倍,大直径桩--直径大于600mm,桩长大于30m9.一定要保证4个传感器安装贴平!!!10.测点桩长:传感器(加速度计)安装点到桩底的长度测点面积:桩的截面积(管桩为内外直径的差)11.一般先做完低应变,测完整性,比较好的基桩才做高应变12.桩密度:灌注桩--2450,管桩--255013.case系数JC值粗砂--0.05,砂土--0.1~0.15,粉质砂土0.15~0.25,粉土0.25~0.4,粉质黏土0.4~0.7,黏土0.7~1.0,固定端为0,自由端为1 14.应用:检测基桩的竖向抗压承载力和桩身完整性15.桩头混凝土强度等级最好比桩身提高1~2级,而且不低于C3016.case法的条件:只限于中小直径基桩,桩身材质和截面基本均匀17.RS加速度计采用电荷信号模式,PDA 是采用电压,电荷在导线中传播损耗快18.采用间隔50~200微秒(一般100),短桩用50(10m左右)19.监视:(正负200微应变以内)20.加速度计--电荷--电压--A/D转换--数字信号,应力--电压--A/D转换--数字信号、21.RS适配器的作用:将电荷信号转换成电压信号22.弹性波速:为测点横截面处的波速,高于平均波速。

高应变讲解

高应变讲解

高应变----武汉岩海(曾)一.准备工作1.基桩开挖:不小于2倍桩径2.选择重锤:应为极限承载力的1~1.5%3.桩顶要剔除浮浆以及露头钢筋,保证平整4.冲击钻钻头8mm,膨胀螺丝6mm,固定螺丝的小扳手1把,老虎钳1把,小铁锤1把5.打磨机:切割片为精钢片,不能用砂轮6.传感器的安装:应力环线向下,加速度计线向上7.桩头垫子:3CM左右厚的三合板或者木板8.吊车:可以使用重锤9.应变传感器两个孔距离为6-7CM二.理论知识1.高应变:200~1000个应变低应变:小于10个应变2.通过重锤冲击桩头,产生沿着桩身向下传播的应力波和一定的桩土位移,利用对称安装于桩顶两侧的加速度计和应变计,记录冲击波作用下的加速度和应变,并且通过长线电缆传输给基桩动测仪3.桩垫要求:2~3CM厚的板子,可以垫细沙,管桩用麻袋2-3层4.锤子重量:设计承载力*2=极限承载力再*1~1.5%5.锤击时采用重锤低击(1~2.5m)6.积分:加速度--速度--位移7.贯入度:反弹后的位移,最好在2~6mm8.传感器安装点:大直径基桩--1倍,小直径基桩--2倍,大直径桩--直径大于600mm,桩长大于30m9.一定要保证4个传感器安装贴平!!!10.测点桩长:传感器(加速度计)安装点到桩底的长度测点面积:桩的截面积(管桩为内外直径的差)11.一般先做完低应变,测完整性,比较好的基桩才做高应变12.桩密度:灌注桩--2450,管桩--255013.case系数JC值粗砂--0.05,砂土--0.1~0.15,粉质砂土0.15~0.25,粉土0.25~0.4,粉质黏土0.4~0.7,黏土0.7~1.0,固定端为0,自由端为1 14.应用:检测基桩的竖向抗压承载力和桩身完整性15.桩头混凝土强度等级最好比桩身提高1~2级,而且不低于C3016.case法的条件:只限于中小直径基桩,桩身材质和截面基本均匀17.RS加速度计采用电荷信号模式,PDA 是采用电压,电荷在导线中传播损耗快18.采用间隔50~200微秒(一般100),短桩用50(10m左右)19.监视:(正负200微应变以内)20.加速度计--电荷--电压--A/D转换--数字信号,应力--电压--A/D转换--数字信号、21.RS适配器的作用:将电荷信号转换成电压信号22.弹性波速:为测点横截面处的波速,高于平均波速。

高应变法检测

高应变法检测
2、传感器的安装
⑴传感器应分别对称安装在距桩顶不小于2D的桩侧表面处(D 为受检桩的直径或边宽),条件允许时,应尽量往下安装;对于 大直径桩,传感器与桩顶之间的距离可适当减小,但不得小于1D。 安装处的材质和截面尺寸应与原桩身相同,传感器不得安装在 截面突变处附近。
17 2024/3/28
⑵应变传感器与加速度传感器的中心应位于同一水平线上; 同 侧 的 应 变 传 感 器 与 加 速 度 传 感 器 的 水 平 距 离 不 宜 大 于 80mm (60~80mm)。传感器的中心轴应与桩中心轴保持平行。
2、桩的基本假定
在以下假定的条件下,将桩在冲击荷载作用下的运动简化为一 维的线性波动力学问题。
⑴假定桩身材料是均匀的和各向同性的,并且服从虎克定律。 ⑵假定桩是线弹性杆件。 振动位移相当微小,对动力激发的反应总是线弹性的,所有的 输入和输出都可以进行简单的叠加。 ⑶假定桩是一维杆件。 桩身每个截面上的应力应变都是均匀的,可以用它的平均应力 应变来加以描述而不必研究其在桩身截面上的分布。 ⑷假定纵波的波长比杆的横截面尺寸大得多,横向位移对纵向 运动的效应可以忽略不计。 ⑸假定破坏只发生在桩土界面 可以只把桩身取作隔离体来进行波动计算,桩周土的影响都以 作用于桩侧和桩端的力来参与计算。如果破坏发生在桩周土的土 体内部,则把部分土体看作是桩身上的附加质量。
且桩头截面尺寸应与桩身截面尺寸相同; ③桩头主筋应全部直通至桩顶混凝土保护层之下,各主筋应 在同一高度上。 ④距桩顶1倍桩径范围内,宜用厚度为35mm的钢板围裹或距 桩顶1.5倍桩径范围内设置箍筋,间距不宜大于100mm。桩顶应 设置钢筋网片2~3层,间距60~100mm。 ⑤桩头混凝土强度等级宜比桩身混凝土提高1~2级。 ⑷向建设方或监理方申报人工地基检测现场告知书。

高应变低应变(讲课)课件

高应变低应变(讲课)课件
多学科交叉融合
未来,高应变与低应变检测技术将进一步与其他学科交叉融合,如物理学、化学、生物学 等。这种跨学科的融合将为检测技术的发展带来更多新的思路和方法。
绿色环保
随着环保意识的不断提高,高应变与低应变检测技术将更加注重绿色环保。例如,通过采 用低能耗的传感器和信号处理技术,降低检测过程中的能耗和排放,实现绿色环保的检测 方式。
高应变检测技术在工程中的应用案例
桥梁检测
高应变检测技术用于检 测桥梁结构的完整性, 评估桥梁的承载能力和
安全性。
建筑结构检测
高应变检测技术用于检 测高层建筑、大跨度结 构等大型建筑结构的稳
定性。
隧道工程检测
高应变检测技术用于隧 道工程的施工监控和安
全性评估。
桩基检测
高应变检测技术用于检 测桩基的承载能力和完 整性,确保桩基的安全
高应变与低应变检测技术的比较
适用范围
高应变检测技术适用于大型结构物、桩基和地下连续墙等 深基础工程的检测,而低应变检测技术适用于小型结构物 、浅基础和地面土体的检测。
测试精度
高应变检测技术能够获得更准确的土体动态响应和波速等 参数,测试精度较高,而低应变检测技术测试精度相对较 低。
测试成本
高应变检测技术需要使用重锤或爆炸等大型设备,测试成 本较高,而低应变检测技术使用小型设备和低成本材料, 测试成本较低。
优点
低应变检测技术具有无损、快速、简 便、经济等优点,可在不破坏桩身结 构的情况下对大量桩基进行检测,且 检测结果较为准确可靠。
缺点
低应变检测技术对桩身阻抗变化较为 敏感,对于一些阻抗变化较小的缺陷 可能无法准确判断;同时,该技术对 桩顶条件要求较高,需要平整、干净 且与传感器耦合良好。

《高应变法检测》课件

《高应变法检测》课件

对桩身材料的要求
高应变法检测对于桩身材料的强 度和刚度有一定的要求,如果桩 身材料质量较差,可能会影响检 测结果的准确性。
对锤击力的控制
高应变法检测需要控制锤击力的 大小和方向,如果锤击力控制不 当,可能会影响检测结果的准确 性。
05
高应变法检测的发展趋势与 展望
技术发展趋势
智能化发展
高应变法检测技术将进一步集成 人工智能、大数据和物联网等先 进技术,实现检测过程的自动化
案例特点
在某大型水库大坝的稳定性监测中,高应变法实 时监测了大坝的位移和沉降变化,及时发现并预 警潜在的安全隐患,确保了大坝的正常运行和下 游安全。
04
高应变法检测的优缺点
优点
快速准确
适用范围广
高应变法检测具有快速、准确的优点,能 够迅速判断桩基的承载力和完整性,为工 程提供可靠的数据支持。
高应变法检测不仅可以用于桩基检测,还 可以用于桥梁、房屋等建筑物的检测,适 用范围广泛。
高应变法具有较高的测试精度和可靠性,因此在土木工程、地质工程等领域得到了 广泛应用。
02
高应变法检测设备与操作
检测设备的组成
01
02
03
传感器
用于采集地震波信号,通常由 加速度计和力传感器组成。
数据采集器
用于接收传感器信号,进行数 据转换和记录。
计算机
用于处理和分析采集到的数据 ,生成检测报告。
设计和加固提供了重要依据。
案例特点
适用于高层建筑、超高层建筑的结构安全评估和抗震 性能检测。
案例三:大坝检测
总结词
稳定性好、实时性强
适用场景
适用于各种类型的大坝,尤其是大型水库大坝的 结构安全监测。

高应变讲义

高应变讲义

一、打桩及打桩应力二、桩基检测——高应变检测1.如何通过高应变对低应变结果进行验证当低应变检测被判为III 、IV 类桩,或低应变检测难以对桩的完整性分类时,可采用高应变抽样检测验证,特别是对那些有接头的预制桩、有严重扩径的钻孔灌注桩或者缺陷埋深较深的桩,用高应变检测桩身完整性的结果可靠性高。

桩身完整性系数β值的物理意义如下:12Z Z =β即桩被测截面阻抗与完整截面的阻抗比。

当桩为一根没有任何阻力的自由杆时,上式成立。

但有二种情况值得注意:(1)高应变检测时推算β值的公式为:()()()()[]()()()()[]x x x x x x t V t V Z R t F t F t V t V Z R t F t F +⋅+---⋅+-+=111122β 桩侧土阻力及被测截面前面的缺陷均会对()x t F 和()x t V 产生影响,测出的β值有一定误差。

(2)当缺陷处有其他介质(如土)存在,因这些介质也能传递部分能量,此时Z为两种介质的声阻抗之和,β值会大于两截面的面积比,因此当桩在土中2完全断开后,β值一般也不等于零。

鉴于上述情况,测出的β值只能作为参考,还要结合其他情况综合判别。

规范中β值判定如下:(3)混凝土预制桩的接桩部位、钢桩的高频振荡波等均会出现β值小于1.0,因此在判断桩身完整性时要根据桩身结构、入土深度及经验积累综合评价。

图8图9图10图112.进行试打桩和沉桩分析高应变的另一个重要功能是用于工程正式开工前的试打桩和施工工程中进行打桩监控,使桩基础的设计和施工更加合理。

(1)试打桩的两个作用:一是检验设计的桩型及桩长是否合理,二是为施工选择合理的沉桩设备和沉桩工艺。

(2)打桩监控:(a)对工程桩抽样进行高应变检测,特别是对地质条件复杂、持力层起伏大的地区,可以协助设计和施工确定停锤标准。

(b)监控打桩应力,以便施工部门及时调整落锤高度和调整桩垫层,控制桩身应力。

(c)桩身锤击应力控制范围:——混凝土桩的锤击压应力不超过桩身混凝土轴向抗压强度设计值;——混凝土桩的锤击拉应力不超过桩身混凝土轴向抗拉强度标准值的1.3~1.4倍。

高应变讲稿-徐国华

高应变讲稿-徐国华

高应变测试基本理论及方法一、高应变测试的基本概念用重锤(1%~1.5%)锤击试桩桩顶,使试桩与桩周土发生塑性变形,量测桩顶附近力、速度的时域曲线,通过CASE法或曲线拟合计算法计算试桩的竖向抗压承载力、桩身完整性、最大锤击压应力、最大锤击拉应力、锤击能量传递比等。

二、应力波在桩身中的传递2.1桩身中的应力波为上行波和下行波的叠加,任意一点在某一时刻的力、速度可由下式表示:F=F↑+F↓,V=V↑+V↓F↑=-ZV↑,F↓=ZV↓F以压应力为正,拉应力为负,在下行波中,质点运动速度方向与受力方向一致。

在上行波中,质点运动速度方向与受力方向相反。

根据桩身中实测的力、速度,根据下式反算上行波、下行波的力速度:F↑=(F-ZV)/ 2F↓=(F+ZV)/ 2Z为桩身阻抗由下式计算:Z=EA/C=ρC2A/C=ρAC=(γ/g)AC式中:Z----桩身材料波阻抗,kN⋅s/m。

E----桩身材料弹性摸量,kPa。

C----波速,m/s。

A----桩身截面面积,m2。

ρ----桩身材料质量密度,kg/m3。

γ----桩身材料重度,kN/m3。

g----重力加速度,m/s2。

不同桩型典型桩身材料重度下表所示。

典型桩身材料重度计算阻抗注意的几个问题:(1)单位:(2)面积空心管桩或钢管桩计算小圆面积时扣掉了一边的壁厚。

2.2应力波在自由端、固定端的反射(1). 杆件底部为自由端F↓F,v F↑界面边界条件为:F=F↓ +F↑=0因而:F↑ = -F↓亦即:-Zv↑= -(Zv↓) v↑ =v↓因此:v=v↓ +v↑=2v↓结论:应力波到达自由端后,将产生一个性质相反、幅值相等的反射波。

即压力波产生拉力反射波;拉力波产生压拉力反射波。

在杆端处,由于波的叠加,使杆端处质点运动速度增加一倍。

(2). 杆件底部为固定端F↓F,v F↑界面边界条件:v=v↓ +v↑ =0因而:v↑ = -v↓亦即:- F↑ /Z = -(F↓ /Z) F↑ =F↓因此:F=F↓ +F↑ =2F↓结论:应力波到达固定端后,将产生一个性质相同、幅值相等的反射波。

高应变检测基本知识讲解

高应变检测基本知识讲解

第二步 仪器设备的安装与连接
1.放置重锤
2.放置固定架
3.传感器与应变环的安装
4.仪器连接
第三步 测试参数设定 开机,选择RS模式 设置高应变相关参数
设置桩土参数
第四步 检查和确认仪器、设备的工作状态
1.检查仪器设备是否正常连接 2.调试应力环的应变值
监视
应变值范围±1000
第五步 重锤锤击(重锤低击)
粗砂--0.05,砂土--0.1~0.15,粉质砂土0.15~0.25,粉土0.25~0.4,粉质 黏土0.4~0.7,黏土0.7~1.0,固定端为0,自由端为1 case法主要定3点:行波起跳点,行波峰值点,桩底反射点 2.在case法分析的基础上再用武汉岩海拟合分析程序进行拟合。 按地勘资料输入桩侧土的摩阻力和端阻力→按f键人工计算,这是第一次拟 合→拟合不满意→继续修改“土单元参数”或“整体参数”→再按f键人工 计算→想要电脑自动拟合→按u键“卸载优化”→拟合效果仍有待改进→按r 键“阻力优化”→反复使用这两种优化直到拟合满意为止。 卸载优化对曲线的整段综合优化即大方向的拟合较好 阻力优化对曲线的2L/c即桩底反射前的信号段拟合较好 辐射阻尼优化对曲线的尾部拟合较好 土塞优化对曲线的2L/c附近拟合较好
2.检测频率
抽检数量不宜少于总桩数的5%,且不得少于5根。
第二节 适用范围及检测方法
适用范围
1、可检测预制桩、预应力管桩和钢管桩的单桩竖向抗压承载力 和完整性; 2、监测打入桩的桩身应力和锤击能量传递比,为沉桩工艺参数 及桩端持力层选择提供依据; 3、对于灌注桩检测,应具备现场实测经验和本地区相似条件条 件下的可靠对比试验资料。 4、对于Q-s曲线为缓变形的大直径桩、扩底桩、嵌岩桩等,其桩 端阻力发挥所需的位移很大,难于把桩打动,一般不采用高应 变法。

桩基高应变检测技术讲义(237页,图文丰富)

桩基高应变检测技术讲义(237页,图文丰富)

1.1 高应变的基本概念
重锤冲击桩顶的作用是产生冲击力,施 加在桩顶。
桩受到冲击力后,向下运动会受到桩周 土对桩阻力。
也就是说:重锤冲击桩顶后桩身受力会 增加两个力,一个是锤对桩的冲击力,一个 是土对桩的阻力。
1.1 高应变的基本概念
概念中的几个要点: ✓重锤 ✓实测速度和力信号 ✓波动理论分析 ✓承载力和桩身完整性
1.2 应力波在桩中传播的基本规律
根据波阵面的几何形状分类
根据波阵面的几何形状,应力波可分为平面波、柱面 波和球面波。一般认为,平面波的波源是平面载荷, 柱面波的波源是线载荷,而球面波的波源是点载荷。
根据波动方程的自变量个数分类
根据描述应力波波动方程的自变量个数,应力波可分 为一维应力波、二维应力波和三维应力波。
F动
R侧
1.1 高应变的基本概念
桩身所有质点在空间上的运动规律, 以机械波形式来表现,为纵波。其运动可以 用波动理论来分析。
纵波将质点的振动在介质内传播,不 同介质的接触面质点振动会发生变化,并将 这种变化反向传播,形成反射波。
R端
1.1 高应变的基本概念
概念中的几个要点: ✓重锤 ✓实测速度和力信号 ✓波动理论分析 ✓承载力和桩身完整性
(2)桩与一维应力波
➢高应变基本假定 ➢一维应力波
1.2 应力波在桩中传播的基本规律
高应变的基本假设
假定桩身材料是均匀的和各向同性的 假定桩是线弹性杆件 假定桩是一维杆件 假定纵波的波长比杆的横截面尺寸大得多 假定破坏只发生在桩土界面
高应变动力试桩在原理上就被简化为一维线性波动力 学问题。
1.2 应力波在桩中传播的基本规律
一维弹性杆件服从虎克定律,即变形与 受力成正比
泊松比:杆件横向应变与纵向应变的比值,也叫 横向变形系数,它是反映材料横向变形的弹性常数。

高应变检测基本知识讲解

高应变检测基本知识讲解
类型:高应变检测设备中的传感器有多种类型如应变片、加速度计等
应用:传感器在高应变检测中发挥着重要作用能够实时监测结构的应变和振动等参数为 结构安全评估提供重要依据
数据采集系统
采集方式:通过传感器将物理信号转换为电信号 采集内容:包括应变、加速度、位移等数据 采集频率:根据实际需要选择合适的采集频率 数据处理:对采集到的数据进行处理、分析和存储
案例三:结构健康监测
监测目的:对桥梁、大坝等大型结构进行实时监测确保结构安全 监测方法:利用高应变检测技术对结构的应变、位移等参数进行实时监测 监测结果:通过数据分析及时发现结构异常预防结构破坏 应用价值:提高结构安全性和稳定性减少事故发生
THNK YOU析高应变检测数据 可生成各种图表和报告 具备数据筛选和异常检测功能 可与其他软件进行数据交互和共享
高应变检测操作流程
检测前的准备工作
检测设备的检 查与校准
检测人员的培 训与资质认证
检测环境的评 估与准备
检测方案的制 定与审批
安装传感器
确定安装位置
清理安装表面
固定传感器
检测设备:采用高应变检测系统包括传感器、采集器和数据分析软件等。
检测过程:在桥梁关键部位设置传感器采集车辆通过时的动态响应数据并进行实时分析。
检测结果:通过高应变检测数据分析评估出桥梁结构的安全性状况为后续维护和加固提 供了科学依据。
案例二:桩基检测
检测背景:某高层建筑桩基承载力不足需要进行高应变检测。 检测方法:采用高应变检测技术对桩基进行锤击采集信号并进行数据处理。 检测结果:通过高应变检测成功识别出桩基的承载力不足问题为后续加固处理提供了依据。 结论:高应变检测技术在桩基检测中具有重要应用价值能够为建筑物的安全性能提供保障。

高应变讲稿-徐国华

高应变讲稿-徐国华

高应变测试基本理论及方法一、高应变测试的基本概念用重锤(1%~1.5%)锤击试桩桩顶,使试桩与桩周土发生塑性变形,量测桩顶附近力、速度的时域曲线,通过CASE法或曲线拟合计算法计算试桩的竖向抗压承载力、桩身完整性、最大锤击压应力、最大锤击拉应力、锤击能量传递比等。

二、应力波在桩身中的传递2.1桩身中的应力波为上行波和下行波的叠加,任意一点在某一时刻的力、速度可由下式表示:F=F↑+F↓,V=V↑+V↓F↑=-ZV↑,F↓=ZV↓F以压应力为正,拉应力为负,在下行波中,质点运动速度方向与受力方向一致。

在上行波中,质点运动速度方向与受力方向相反。

根据桩身中实测的力、速度,根据下式反算上行波、下行波的力速度:F↑=(F-ZV)/ 2F↓=(F+ZV)/ 2Z为桩身阻抗由下式计算:Z=EA/C=ρC2A/C=ρAC=(γ/g)AC式中:Z----桩身材料波阻抗,kN⋅s/m。

E----桩身材料弹性摸量,kPa。

C----波速,m/s。

A----桩身截面面积,m2。

ρ----桩身材料质量密度,kg/m3。

γ----桩身材料重度,kN/m3。

g----重力加速度,m/s2。

不同桩型典型桩身材料重度下表所示。

典型桩身材料重度计算阻抗注意的几个问题:(1)单位:(2)面积空心管桩或钢管桩计算小圆面积时扣掉了一边的壁厚。

2.2应力波在自由端、固定端的反射(1). 杆件底部为自由端F↓F,v F↑界面边界条件为:F=F↓ +F↑=0因而:F↑ = -F↓亦即:-Zv↑= -(Zv↓) v↑ =v↓因此:v=v↓ +v↑=2v↓结论:应力波到达自由端后,将产生一个性质相反、幅值相等的反射波。

即压力波产生拉力反射波;拉力波产生压拉力反射波。

在杆端处,由于波的叠加,使杆端处质点运动速度增加一倍。

(2). 杆件底部为固定端F↓F,v F↑界面边界条件:v=v↓ +v↑ =0因而:v↑ = -v↓亦即:- F↑ /Z = -(F↓ /Z) F↑ =F↓因此:F=F↓ +F↑ =2F↓结论:应力波到达固定端后,将产生一个性质相同、幅值相等的反射波。

高应变、低应变(讲课)

高应变、低应变(讲课)
高应变与低应变检测讲课
目录 Contents
• 高应变与低应变检测概述 • 高应变检测原理及方法 • 低应变检测原理及方法 • 高应变与低应变检测的比较与选择 • 高应变与低应变检测案例分析
01
高应变与低应变检测概述
高应变检测定义
01
高应变检测是一种动力检测方法 ,通过施加较大的冲击力使土体 产生较大的变形,从而测量土体 的动态响应和土体的动力特性。
高应变检测的优缺点
优点
高应变检测能够获取土体的动力参数,如动态弹性模量和阻尼比等,具有较高 的精度和可靠性。同时,高应变检测能够检测桩基、地下连续墙等深基础结构 的质量和安全性。
缺点
高应变检测需要使用重锤或重物等大型设备,操作不便,且对现场环境有一定 要求。同时,高应变检测需要专业技术人员操作和解释结果,成本较高。
04
高应变与低应变检测的比较 与选择
高应变与低应变检测的优缺点比较
优点比较
高应变检测:能够准确反映土体的动 力响应,适用于大型结构物和深部土
体的检测。
低应变检测:对土体扰动小,适用于 小型结构物和浅层土体的检测。
缺点ห้องสมุดไป่ตู้较
高应变检测:对土体扰动大,可能引 起土体结构的破坏,且检测成本较高。
低应变检测:对土体扰动小,但检测 精度相对较低,可能无法准确反映土 体的动力响应。
高应变与低应变检测的选择依据
根据检测目的选择
如果需要准确了解土体的动力响应和结构特性,可以选择高应变检测;如果只需要对土体的浅层结构 和基本性质进行初步了解,可以选择低应变检测。
根据工程规模和复杂程度选择
大型工程和复杂结构的检测需要高应变检测;小型工程和简单结构的检测可以选择低应变检测。

高应变低应变

高应变低应变

高应变低应变
在材料力学和工程领域,“高应变”和“低应变”通常指的是材料在受力作用下的变形情况。

应变是描述物体形变程度的物理量,它是单位长度的变化与原始长度的比值。

1.高应变:高应变指的是在外力作用下,材料经历了相对较大的形变。

在这种情况下,材料可能会发生明显的形变,可能会经历塑性变形或变形较大的弹性阶段。

高应变通常与较大的应力有关,例如,在高负载或高压力下,材料可能会经历高应变。

2.低应变:低应变则表示在受力作用下,材料经历了相对较小的形变。

在这种情况下,材料可能处于弹性阶段,即在外力作用后能够恢复原状,或者经历微小的形变。

低应变通常伴随着较小的应力,例如,轻微的受力或者材料在弹性限度内的形变。

这两种情况的选择取决于具体的应用和需求:
1.高应变应用:在一些工程应用中,需要材料具有较大的形变能力,比如一些需要弯曲或拉伸变形的部件,这时候会选择具有高应变能力的材料。

2.低应变应用:在一些对形状变化要求较小的应用中,如精密仪器、电子元件等,通常会选择低应变材料,以确保在力的作用下,材料的形状和性能不发生明显变化。

高应变检测基本知识讲解

高应变检测基本知识讲解
随着传播距离的增加,应力波的幅值逐渐减小。
波动方程
描述应力波在固体中传播规律的偏微 分方程。
常用的波动方程有拉普拉斯方程、哈 密顿方程等。
边界条件和初始条件
边界条件
描述波在物体边界上的行为,如反射、 透射等。
初始条件
描述波在初始时刻的状态,如初速度、 初应变等。
波动传播和接收
传播过程
应力波在物体中传播,受到物体的吸收、散射等作用,逐渐衰减。
机械工程
在机械工程领域,高应变检测可用于评估设备的疲劳寿命和承载能 力,如航空航天器、船舶、重型机械等。
高应变检测的重要性
结构安全评估
高应变检测能够准确测量结构物 的应变和应力,从而评估其承载 能力和安全性。这对于预防结构 物因过载或疲劳导致的破坏具有
重要意义。
健康监测
高应变检测可以对结构物的健康 状况进行实时监测,及时发现潜 在的损伤和问题,为采取相应的
05
高应变检测的挑战与未来发 展
检测精度和可靠性的提高
检测精度
高应变检测技术需要不断提高检测精度 ,以更准确地评估结构或材料的性能。
VS
可靠性
确保检测结果的可靠性和稳定性,减少误 差和不确定性,提高检测的可信度。
智能化和自动化技术的应用
智能化
利用人工智能和机器学习技术,实现 高应变检测的智能化,提高检测效率 和准确性。
高应变检测具有高精度和高灵敏度的特点,能够检测到结构物在冲击力作用下的微小变化,从而对结 构物的健康状况和承载能力进行评估。
高应变检测的应用领域
建筑结构
高应变检测广泛应用于建筑结构的健康监测和安全性评估,如桥 梁、高层建筑、大跨度结构等。
土木工程
土木工程中的大型基础设施,如大坝、隧道、高速公路等,也经常 采用高应变检测进行安全评估和监测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高应变讲解
公司内部档案编码:[OPPTR・OPPT28・OPPTL98・OPPNN08]
高应变
一一武汉岩海(曾)
一.准备工作
1.基桩开挖:不小于2倍桩径
2.选择重锤:应为极限承载力的广%
3.桩顶要剔除浮浆以及露头钢筋,保证平整
4.冲击钻钻头8mm,膨胀螺丝6mm,固定螺丝的小扳手1把,老虎钳1 把,小铁锤1把
5.打磨机:切割片为精钢片,不能用砂轮
6.传感器的安装:应力环线向下,加速度计线向上
7.桩头垫子:3CM左右厚的三合板或者木板
8.吊车:可以使用重锤
9.应变传感器两个孔距离为6-7CM
二.理论知识
1.高应变:200^1000个应变
低应变:小于10个应变
2.通过重锤冲击桩头,产生沿着桩身向下传播的应力波和一定的桩土位移,利用对称安装于桩顶两侧的加速度计和应变计,记录冲击波作用下的加速度和应变,并且通过长线电缆传输给基桩动测仪
3.桩垫要求:2'3CM厚的板子,可以垫细沙,管桩用麻袋2-3层
4.锤子重量:设计承载力*2二极限承载力
s*r%
5.锤击时采用重锤低击(1'2. 5m)
6.积分:加速度一速度一位移
7.贯入度:反弹后的位移,最好在2、6mm
8.传感器安装点:大直径基桩--1倍,小直径基桩--2倍,大直径桩一直径大于600mm,桩长大于30m
9.一定要保证4个传感器安装贴平!!!
10.测点桩长:传感器(加速度计)安装点到桩底的长度
测点面积:桩的截面积(管桩为内外直径的差)
11.-般先做完低应变,测完整性,比较好的基桩才做高应变
12.桩密度:灌注桩一2450,管桩一2550
系数JC值
粗砂,砂土、,粉质砂土~,粉土、,粉质黏土、,黏土、,固定端为0,自由端为1
14.应用:检测基桩的竖向抗压承载力和桩身完整性
15.桩头混凝土强度等级最好比桩身提高「2级,而且不低于C30
法的条件:只限于中小直径基桩,桩身材质和截面基本均匀
加速度计采用电荷信号模式,PDA是采用电压,电荷在导线中传播损耗快
18.采用间隔50、200微秒(一般100),短桩用50 (10m左右)
19.监视:(正负200微应变以内)
20.加速度计一电荷一电压--A/D转换一数字信号,应力一电压--A/D 转换一数字信号、
适配器的作用:将电荷信号转换成电压信号
22.弹性波速:为测点横截面处的波速,高于平均波速。

23.测点波速:超声波大于小应变大于高应变,可以利用低应变测试的波速作为弹性波速
法主要定3点:行波起跳点,行波峰值点,桩底反射点
25.初步估计基桩的承载力:侧摩阻力+端承力,侧摩阻力是Ji*d*L*摩阻(L为不同土层的深度--L1+L2+L3...)
三・仪器操作
1•主要对于仪器的设置,采用,保存
四•软件分析
法的处理
2.拟合法的处理
五.一些图片的展示
9. 4. 9凯司法刿定单桩承载力可按下列公式计算:
R。

= ;(1 一人)• |F(r J + N • /⑺)]+ ;(1 + 儿)•[尸⑴ + 工)一Z • r(/, + —)]
2 2 c c
r E • A
z = ----
c
式中R c ----- 山凯司法刿定的单桩竖向抗压承载力(kN ):
j c ---- 凯司法阻尼系数:
t} --- 速度第一峰对应的时刻(U1S):
尸(八)柿时刻的锤击力(KN〉:
口人)-- 厂时刻的质点运动速度(m/s〉:
Z——桩身截面力学阻抗(k\・s/ni):
A ---- 桩身截面面积(I1T):
特别注意处!!L——测点下桩长(in)W
表9. 4. 12桩身完整性判定
类别■ 3 tn 类别
I P=1.0—Ul0.6WB V0・8 |[ 0.8W P <1.0l\ P <0.6
方桩管桩
Case法分析步骤
1・打开所需要分析的文件。

格式scr或者ssso
2・点击查看(测试参数),核对是否正确。

3・点击原始波形(平滑和反向)
4・点击力行波曲线(蓝色线和红色线前部和峰值对齐),F? “+ —”号是左右平移,然后就是尾部对齐,速度是尾部归零,力是清零(配合光标)
5・定3点(起跳,峰值,反射-根据平均波速)
6・存盘,预览,打印。

相关文档
最新文档