因式分解基础习题
解一元二次方程(因式分解法)习题精选附答案

解一元二次方程(因式分解法) 习题精选(一)(时间60分钟,满分100分)(一)基础测试:(每题3分,共18分)1.x x 52-因式分解结果为 ,)3(5)3(2---x x x 因式分解结果为 . 2.96202-+x x 因式分解结果为 ,096202=-+x x 的根为 .3.一元二次方程(1)x x x -=的解是 .4.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.5.若关于x 的方程250x x k -+=的一个根是0,则另一个根是 .6.经计算整式1+x 与4-x 的积为432--x x ,则0432=--x x 的所有根为( )A .4,121-=-=x xB .4,121=-=x xC .4,121==x xD .4,121-==x x(二)能力测试:(7,8,9,10题每题3分,11题每个方程7分,共47分)7.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个三角形.8.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 9.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A . 1B . -1C . 1或-1D . 1210.将4个数a b c d ,,,排成2行、2列,两边各 加一条竖直线记成a b c d,定义a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = .11.用因式分解法解下列方程:(1)035122=+-x x (2)04)13(2=--x (3)0)32(2)32(32=---x x (4)22)52(16)2(9-=+x x (5)06)3(5)3(2=++-+x x (三)拓展测试:(12,13,14每题5分,15,16每题10分,共35分)12.若04)3)((2222=--++b a b a ,则=+22b a .13.关于x 的一元二次方程052=+-p x x 的两实根都是整数,则整数p 的取值可以有( )A .2个B .4个C .6个D .无数个14.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( )A .-5B .5C .-1D .115.如果方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求b a ,的值,并分别求出两个方程的另一个根. 16.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案 1.(50),(3)(250)x x x x --- 2.4,24),4)(24(21=-=-+x x x x3.1,021==x x 4.0 5.5 6.S 7.直角1 8.6或10或129.B 10.2±11.(1)7,521==x x (2)31,1-==x x1114,526)4(611,23)3(21====x x x x1,0)5(21-==x x12.4 13.D 14.C15.,1==b a 另一根为-5.16.(1)a b -4x 2;(2)正方形的边长为。
(完整版)经典因式分解练习题100道

1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.)x(x+2)-x18.)x²-4x-ax+4a19.)25x²-4920.)36x²-60x+2521.)4x²+12x+922.)x²-9x+1823.)2x²-5x-324.)12x²-50x+825.)3x²-6x26.)49x²-2527.)6x²-13x+528.)x²+2-3x29.)12x²-23x-2430.)(x+6)(x-6)-(x-6)31.)3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+4933.)x4-2x³-35x34.)3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.)(x²-3x)+(x-3)²55.)9x²-66x+12156.)8-2x²57.)x4-158.)x²+4x-xy-2y+459.)4x²-12x+560.)21x²-31x-2261.)4x²+4xy+y²-4x-2y-362.)9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是(64.)若9x²−12xy+m是两数和的平方式,那么m的值是(65)把多项式a4− 2a²b²+b4因式分解的结果为()66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()) )1ö67.)æç-÷è2ø2001æ1ö+ç÷è2ø200068)已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N的大小关系为()69)对于任何整数m ,多项式( 4m+5)²−9都能()A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.)将−3x ²n −6x n 分解因式,结果是()71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是()2x 72.)若+2(m -3)x +16是完全平方式,则m 的值等于_____。
因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解练习题及答案

因式分解练习题及答案在初中数学学习中,因式分解是一个重要的概念和技巧。
因式分解是将一个代数式写成若干个因式的乘积的过程,对于解决代数方程、简化复杂的代数式以及寻找多项式的零点都有重要的作用。
为了帮助大家更好地掌握因式分解的方法和技巧,以下是一些因式分解的练习题及答案。
练习题1:因式分解基础1. 将代数式完全分解:a) 4x^2 - 9b) x^2 - 6x + 9c) 2x^3 - 8x^2 + 8x - 322. 将代数式因式分解:a) x^2 - 5x + 6b) 9x^2 - 16c) x^3 + 83. 判断以下代数式是否可以进一步因式分解:a) 3x^2 - 3x + 1b) 4x^3 + 2x^2 + 4x + 2c) x^4 - 81练习题2:因式分解中的公式1. 利用差平方公式,将以下代数式因式分解:a) x^2 - 16b) 4x^2 - 9c) 16x^2 - 4y^22. 利用完全平方公式,将以下代数式因式分解:a) x^2 + 2x + 1b) x^2 - 10x + 25c) 4x^2 + 12x + 93. 利用立方差公式,将以下代数式因式分解:a) 27 - 8x^3b) 8x^3 - 27答案:练习题1:1. a) (2x + 3)(2x - 3)b) (x - 3)^2c) 2(x - 4)(x^2 + x + 4)2. a) (x - 2)(x - 3)b) (3x - 4)(3x + 4)c) (x + 2)(x^2 - 2x + 4)3. a) 不可以进一步因式分解b) 不可以进一步因式分解c) (x^2 + 9)(x - 3)(x + 3)练习题2:1. a) (x - 4)(x + 4)b) (2x - 3)(2x + 3)c) 4(x + y)(4x - y)2. a) (x + 1)^2b) (x - 5)^2c) (2x + 3)^23. a) (3 - 2x)(9 + 4x + 2x^2)b) (2x - 3)^3通过这些练习题和答案,你可以更好地掌握因式分解的方法和技巧。
因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。
通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。
下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。
1. 将x^2 + 4x + 4因式分解。
答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。
答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。
答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。
答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。
答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。
答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。
答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。
答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。
10. 将x^2 + 6x + 9因式分解。
答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。
答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。
答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。
答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。
答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。
答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。
答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。
答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。
答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。
答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。
因式分解练习题40道

因式分解练习题40道因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a36.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3第1页(共25页)2x+7)27.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.第2页(共25页)13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分化因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.第3页(共25页)19.把以下各式因式分化:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣324.分化因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2第4页(共25页)25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y ﹣x).27.阅读下面的问题,然后回答,分化因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.第5页(共25页)29.因式分解:(1)a3﹣2a2+a(2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分化(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a第6页(共25页)(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.第7页(共25页)36.因式分化①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)37.分化因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y阐发:该多项式不克不及间接利用提取公因式法,公式法举行因式分化.因而细致窥察多项式的特性.甲发觉该多项式前两项有公因式2x,后两项有公因式﹣3,划分把它们提出来,剩下的是不异因式(x+y),能够连续用提公因式法分化.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.第8页(共25页)解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分化法并非一种自力的因式分化的办法,而是经由过程对多项式举行恰当的分组,把多项式转化为能够使用“根本办法”分化的布局方式,使之具有公因式,大概吻合公式的特性等,从而到达能够利用“根本办法”举行分化因式的目标.【学致利用】:测验考试活动分组分化法解答以下题目:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分化因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.第9页(共25页)40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.第10页(共25页)2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分化:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m(x﹣2y);第11页(共25页)2x+7)](2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分化:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)第12页(共25页)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+9.分化因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x ﹣y);)(x﹣).(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分化(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);第13页(共25页)(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分化因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)第14页(共25页)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分化因式:第15页(共25页)(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分化因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).第16页(共25页)21.分化因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分化:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分化因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2=(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;第17页(共25页)(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)2 26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4第18页(共25页)=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)第19页(共25页)=a(a﹣1)2;(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.第20页(共25页)【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x ﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分化:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分化因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2 第21页(共25页)③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2 =[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)第22页(共25页)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【办法总结】:对不克不及间接利用提取公因式法,公式法举行分化因式的多项式,我们可斟酌把被分化的多项式分红多少组,划分按“根本办法”即提取公因式法和第23页(共25页)运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展晋升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;第24页(共25页)(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y (x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)] =(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42。
因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a²-9b²=2、2x³-12x²+4x =2x()3、-27a³=()³4、2xy²-8x³ = 2x()()5、(x+2y)(y-2x)= -(x+2y)()6、x(x-y)+y(y-x)=7、a-a³= a(a+1)()8、1600a²-100=100()()9、9a²+()+4 =()²10、(x+2)x-x-2= (x+2)()11、a³-a =a()()12、()x²+4x+16 =()²13、3a³+5a²+()=(a+ )( +2a-4)14、()-2y² = -2( +1)²15、x²-6x-7=(x )(x )16、3xy+6y²+4x²+8xy=3y( )+4x()=()()17、a²+3a-10=(a+m)(a+n),则m= ,n=18、8a³-b³=(2a-b)()19、xy+y²+mx+my=(y²+my)+()=()()20、(x²+y²)²-4x²y²=二、选择题(共32题)1、多项式2a²+3a+1因式分解等于()A、(a+1)(a-1)B、(2a+1)(2a-1)C、(2a+1)(a+1)D、(2a+1)(a-1)2、下列各式分解因式正确的是()A、3x²+6x+3= 3(x+1)²B、2x²+5xy-2y²=(2x+y)(x+2y)C、2x²+6xy= (2x+3)(x+2y)D、a²-6=(a-3)(a-2)3、下列各式中,能有平方差公式分解因式的是()A、4x²+4B、(2x+3)² -4(3x²+2)²C、9x²-2xD、a²+b²4、把多项式x²-3x-70因式分解,得()A、(x-5)(x+14)B、(x+5)(x-14)C、(x-7)(x+10)D、(x+7)(x-10)5、已知a+b=0,则多项式a³+3a²+4ab+b²+b³的值是()A、0B、1C、 -2D、 26、把4a²+3a-1因式分解,得()A、(2a+1)(2a-1)B、(2a-1)(a-3)C、(4a-1)(a+1)D、(4a+1)(a-1)7、下列等式中,属于因式分解的是()A、a(1+b)+b(a+1)= (a+1)(b+1)B、2a(b+2)+b(a-1)=2ab-4a+ab-bC、a²-6a+10 =a(a-6)+10D、(x+3)²-2(x+3)=(x+3)(x+1)8、2m²+6x+2x²是一个完全平方公式,则m的值是()A、 0B、±32C、±52D、949、多项式3x³-27x 因式分解正确的是()A、3x(x²-9)B、3x(x²+9 )C、3x(x+3)(x-3)D、3x(3x-1)(3x+1)10、已知x>0,且多项式x³+4x²+x-6=0,则x的值是()A、1B、2C、3D、411、多项式2a²+4ab+2b²+k分解因式后,它的一个因式是(a+b-2),则k的值是()A、4B、-4C、8D、-812、对 a4 + 4进行因式分解,所得结论正确的是()A、(a²+2)²B、(a²+2)(a²-2)C、有一个因式为(a²+2a+2)D、不能因式分解13、多项式a²(m-n)+9(n-m)分解因式得()A、(a²+9)(m-n)B、(m-n)(a+3)(a-3)C、(a²+9)(m+n)D、(m+n)(a+3)²14、多项式m4-14m²+1分解因式的结果是()A、(m²+4m+1)(m²-4m+1)B、(m²+3m+1)(m²-6m+1)C、(m²-m+1)(m²+m+1)D、(m²-1)(m²+1)15、下列分解因式正确的是()A、-x²+3x = -x(x+3)B、x²+xy+x=x(x+y)C、2m(2m-n)+n(n-2m)= (2m-n)²D、a²-4a+4=(a+2)(a-2)16、下列等式从左到右的变形,属于因式分解的是()A、2x(a-b)=2ax-2bxB、2a²+a-1=a(2a+1)-1C、(a+1)(a+2)= a²+3a+2D、3a+6a²=3a(2a+1)17、下列各式① 2m+n 和m+2n ② 3n(a-b)和-a+b③x³+y³和x²+xy ④a²+b²和a²-b²其中有公因式的是()A、①②B、②③C、①④D、③④18、下列四个多项式中,能因式分解的是()A、x²+1B、 x²-1C、 x²+5yD、x²-5y19、将以下多项式分解因式,结果中不含因式x-1的是()A、1 -x³B、x²-2x+1C、x(2a+3)-(3-2a) D 、2x(m+n)-2(m+n)20、若多项式2x²+ax可以进行因式分解,则a不能为()A、0B、-1C、1D、221、已知x+y= -3,xy=2 ,则x³y+xy³的值是()A、 2B、 4C、10D、2022、多项式x a-y a因式分解的结果是(x²+y²)(x+y)(x-y),则a的值是()A、2B、4C、-2 D-423、对8(a²-2b²)-a(7a+b)+ab 进行因式分解,其结果为()A、(8a-b)(a-7b)B、(2a+3b)(2a-3b)C、(a+2b)(a-2b)D、(a+4b)(a-4b)24、下列分解因式正确的是()A、x²-x-4=(x+2)(x-2)B、2x²-3xy+y² =(2x-y)(x-y)C、x(x-y)- y(y-x)=(x-y)²D、4x-5x²+6=(2x+3)(2x+2)25、多项式a=2x²+3x+1,b=4x²-4x-3,则M和N的公因式是()A、2x+1B、2x-3C、x+1D、x+326、多项式(x-2y)²+8xy因式分解,结果为()A、(x-2y+2)(x-2y+4)B、(x-2y-2)(x-2y-4)C、(x+2y)²D、(x-2y)²27、下面多项式① x²+5x-50 ②x³-1③ x³-4x ④3x²-12他们因式分解后,含有三个因式的是()A、①②、B、③④C、③ D 、④28、已知x= 12+1,则代数式(x+2)(x+4)+x²-4的值是()A、4+2 2B、4-2 2C、2 2D、4 229、下列各多项式中,因式分解正确的()A、4x² -2 =(4x-2)x²B、1-x²=(1-x)²C、x²+2 = (x+2)(x+1)D、x²-1=(x+1)(x-1)30、若x²+7x-30与x²-17x+42有共同的因式x+m,则m的值为()A、-14B、-3C、3D、1031、下列因式分解中正确的个数为()① x²+y²=(x+y)(x-y)② x²-12x+32=(x-4)(x-8)③ x³+2xy+x=x(x²+2y)④x4-1=(x²+1)(x²-1)A、1B、2C、3D、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x²B、x²+20x+100C、 4x²+4x+4D、x²-y²-2xy三、因式分解(共42题)1、x²(a-b)+(b-a)2、x³-xy²3、(a+1)²-9(a-1)²4、x(xy+yz+xz)-xyz5、(x-1)(x-3)+16、a²-4a+4-b²7、(x²-2x)²+2x(x-2)+18、(x+y+z)³-x³-y³-z³9、x4-5x²+410、5+7(x+1)+2(x+1)²11、a²+b²-a²b²-4ab-112、x4+x²+113、a5-2a³-8a14、a²(b-2)-a(2-b)15、a²(x-y)+16(y-x)16、x²+6xy+9y²-x-3y-3017、(x²+y²-z²)²-4x²y²18、xy²-xz²+4xz-4x19、x²(y-z)+y²(z-x)+z²(x-y)20、3x²-5x-11221、3m²x-4n²y-3n²x+4m²y22、x²(2-y)+(y-2)23、x4+x²y²+y424、x4-1625、(x-1)²-(y+1)²26、(x-2)(x-3)-2027、2(x+y)²-4(x+y)-3028、x²+1-2x+4(x-1)29、(a²+a)(a²+a+1)-1230、5x+5y+x²+2xy+y²31、x³+x²-x-132、x(a+b)²+x²(a+b)33、(x+2)²-y²-2x-334、(x²-6)(x²-4)-1535、(x+1)²-2(x²-1)36、(ax+by)²+(ax-by)²-2(ax+by)(ax-by)37、(a+1)(a+2)(a+3)(a+4)-338、(a+1)4+(a+1)²+139、x4+2x³+3x²+2x+140、4a³-31a+1541、a5+a+142、a³+5a²+3a-9四、求值(共10题)1、x+y=1,xy=2求x²+y²-4xy的值2、x²+x-1=0,求x4+x³+x的值3、已知a(a-1)-(a²-b)+1=0,求a²+b²2-ab的值4、若(x+m)(x+n)=x²-6x+5,求2mn的值5、xy=1,求x²+xx²+2x+1+y²y²+y的值6、已知x>y>0,x-y=1,xy=2,求x²-y²的值7、已知a= 2+1,b= 3-1,求ab+a-b-1的值8、已知x=m+1,y= -2m+1,z=m-2,求x²+y²-z²+2xy的值。
因式分解专项练习题

因式分解专项练习题(一)提取公因式一、分解因式1、2x 2y -xy2、6a 2b 3-9ab23、 x (a -b )+y (b -a )4、9m 2n-3m 2n 25、4x 2-4xy+8xz 6、-7ab-14abx+56aby7、6m 2n-15mn 2+30m 2n 28、-4m 4n+16m 3n-28m 2n9、x n+1-2x n-110、a n-a n+2+a 3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2= 14、ab +b 2-ac -bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)318、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +2 22、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 2213 26、a ab a b a ab b a ()()()-+---32222二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯三、先化简再求值(2x +1)2(3x -2)-(2x +1)(3x -2)2-x (2x +1)(2-3x )(其中,32x =)四、在代数证明题中的应用例:证明:对于任意正整数n ,323222n n n n ++-+-一定是10的倍数。
因式分解练习题40道

因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2 (2)(3x﹣2)2﹣(2x+7)24.分解因式:(1)3mx﹣6my (2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4 (2)ax2+2a2x+a36.分解因式:①﹣a4+16 ②6xy2﹣9x2y﹣y37.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2 (2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.(1)8ax2﹣2ax (2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2 (2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分解因式:(1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3 (2)x2﹣4x+4﹣y2.(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣324.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3 (2)4x2+12x﹣7.28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.(1)a3﹣2a2+a (2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16 (4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3 ②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.36.因式分解①﹣2a3+12a2﹣18a ②9a2(x﹣y)+4b2(y﹣x)37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b 【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz ﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.40.分解因式:(1)x2﹣9 (2)x2+4x+4(3)a2﹣2ab+b2﹣16 (4)(a+b)2﹣6(a+b)+9.2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m (x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+)(x﹣).9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25 =(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).21.分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分解:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2 =(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)226.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展提升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42=(a﹣b+4)(a﹣b﹣4)(4)(a+b)2﹣6(a+b)+9=(a+b﹣3)2。
因式分解练习题40道

因式分解练习题40道因式分解1.因式分解:ab²-2ab+a2.因式分解:(x²-6)²-6(x²-6)+93.因式分解:1) 3ax²-6axy+3ay²2) (3x-2)²-(2x+1)²4.分解因式:1) 3m(x-y)2) -y(x-y)(4x+y)5.因式分解:1) (3a+2)(3a-2)2) a(ax+2a)+a²(ax+2a)6.分解因式:1) -(a²-4)(a²+4)2) -3(y-x)(y+2x)(y-x)7.因式分解:(x²-9y²)(x²+y²)8.在实数范围内将下列各式分解因式:1) 3a(x-y)(x-ay)2) x(x-5)(x+1)9.分解因式:1) 9a(x-y)(x+y)2) 2xy(x+y)(x+2y) 10.因式分解1) -x(x-y)(x-2y)2) (x+2)(x-2)(x²-4) 11.因式分解:1) y(x-1)(x+1)2) ab(a-b)²12.分解因式:1) 3ab²(a-4c)2) 3(x-y)²13.将下列各式分解因式1) 2ax(4a-1)2) (2a-3b)(2a+3b)14.因式分解1) (m+2n)(m-2n)2) 2(a-1)²15.分解因式:(m+2)^2(m-2)^216.分解因式:1) -2(m-2n)²2) (a+b)(a-b)+(b-1)^23) (m+n)^2-(2mn)^217.分解因式:(m+3n)(m-3n)+(n+2m)(n-2m)18.分解因式:1) xy(x-y)(x+y)2) (x-2)^2-y^219.把下列各式因式分解:1) 9a^2(x-y)+4b^2(y-x)2) (x^2y^2+1-2xy)(x^2y^2+1+2xy)20.分解因式:1) 4ab^2(2a+3c)2) (x+y+3)(x-y-3)21.分解因式:b(a^2-b^2)22.因式分解:(x²-9y²)(x²-y²)23.分解因式:1) (m-2)^22) ab(a^2-b^2)3) (x+3)(x-1)24.分解因式:1) (9x^2-4)(3x+2)(3x-2)2) 2b(a-b)(a+2b)25.分解因式:1) 5a(a+2b)2) m(x-6)^226.分解因式:1) 2x(1-4x^2)2) -3(m-3)^33.题目解答及改写28.因式分解:1) a^4 - a^2b^2.(2) (x-1)(x-3)+1.1) a^4 - a^2b^2 可以看做 a^2(a^2 - b^2)。
因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)、填空题(共20题) 1、 a2-9b 2= ____________ 2、 2x3-12x2+4x =2x ( )3、 -27a3=( __ )34、 2xy2-8x 3 = 2x (_) ( __ )5、 ( x+2y )( y-2x )= - (x+2y )( __ )6、 x ( x-y ) +y ( y-x )= _________7、 a-a 3= a ( a+1)( )8、 1600a2-100=100( ___ ) (___ )9、 9a2+(_)+4 =( )2 10、 ( x+2)x-x-2= ( x+2) ___ ( ) 11、 ____________ a 3-a =a ( ) (12、 ( ____ )x2+4x+16 =( ______ )2 13、 ________________ 3a3+5a2+ ( ) = ( a+ ) ( +2a-4 ) 14、 (_)-2y2 = -2 ( —+1 )2 15、 x2-6x-7= ( x ) ( x_ 16、 3xy+6y2+4x2+8xy=3y ( )+4x ( ) =( ) ()17、 a2+3a-10= ( a+m ( a+n ),贝U m= ,n= ___18、 8a3-b 3= (2a-b ) (19、 ______________________________ xy+y2+mx+my=(y2+my + ( ) = ( ) ( )20、 ( x2+y2) 2-4x2y2= ___________3、下列各式中,能有平方差公式分解因式的是( )A 4x2+4B 、( 2x+3) 2 -4 (3x2+2) 2C 、9x2-2xD 、a2+b21、 多项式2a2+3a+1因式分解等于( ) A (a+1 ) (a-1 ) B 、( 2a+1 ) (2a-1)C 、 2a+1 ) ( a+1)D 、( 2a+1 )(a-1 ) 2、 下列各式分解因式正确的是( ) A 3x2+6x+3= 3 (x+1) 2 B、2x2+5xy-2y 2= (2x+y ) C 、 2x2+6xy= (2x+3) (x+2y ) D 、a2-6=(a-3) ( a-2) 二、选择题(共32题)(x+2y )4、把多项式x2-3x-70因式分解,得()A、(x-5 )(x+14) B 、(x+5 )(x-14 )C、(x-7)(x+10 ) D 、(x+7)(x-10)5、已知a+b=O,则多项式a3+3a2+4ab+b2+b3的值是( )A 0B 、1C 、-2D 、2 6把4a2+3a-1因式分解,得( ) A 、( 2a+1)( 2a-1) B 、( 2a-1 )( a-3) C 、( 4a-1)( a+1) D 、( 4a+1)( a-1 ) 7、 下列等式中,属于因式分解的是( ) A 、 a ( 1+b ) +b ( a+1) = ( a+1)( b+1) B 、 2a ( b+2) +b ( a-1 ) =2ab-4a+ab-b C 、 a 2-6a+10 =a ( a-6) +10 D ( x+3)2-2(x+3) =(x+3)( x+1)8、 2m2+6x+2x2是一个完全平方公式,则 m 的值是( ),3, 5 9 A 、0 B 、± - C 、 ±二 D 、二 22 49、 多项式3x3-27x 因式分解正确的是()A 、3x (x2-9 )B 、3x (x2+9 )C 、3x (x+3)( x-3)D 、3x (3x-1 ) ( 3x+1) 10、已知x >0,且多项式x3+4x2+x-6=0,贝U x 的值是( )A 、1B 、2C 、3D 、411、 多项式2a2+4ab+2b2+k 分解因式后,它的一个因式是(a+b-2),贝U k 的值 是( ) A 、4B、-4 C 、8 D 、-812、对a 4 + 4进行因式分解,所得结论正确的是( )A (a2+2)2B 、 (a2+2) (a2-2)C 、有一个因式为(a2+2a+2) D、不能因式分解+9 (n-m )分解因式得( )B 、( m-n )( a+3)( a-3) D 、( m+r) ( a+3)214、多项式m i -14m2+1分解因式的结果是()13、多项式 a2 (m-n ) A 、( a2+9)( m-n ) C 、( a2+9)( m+nB 、( m2+3m+1 ( m2-6m+1) D 、( m2-1 ) (m2+1))B 、 x2+xy+x=x (x+y )A 、( n2+4m+1 ( n2-4m+1)C 、( n2-m+1)( m2+m+1 15、下列分解因式正确的是(C、2m(2m-n) +n (n-2m) = (2m-n)2D、a2-4a+4= (a+2)( a-2)16、下列等式从左到右的变形,属于因式分解的是( )A 2x (a-b) =2ax-2bxB 、2a2+a-仁a (2a+1) -1C、( a+1)( a+2) = a 2+3a+2D、3a+6a2=3a (2a+1)17、下列各式① 2m+n 和m+2n ③x3+y3 和x2+xy 其中有公因式的是(A、①② B 、② 3n (a-b )和-a+b④a2+b2 和a2-b2)②③ C 、①④ D 、③④18、下列四个多项式中,能因式分解的是(A、x2+1 B 、x 2-1 C 、x 2+5y D 、x2-5y19、将以下多项式分解因式,结果中不含因式x-1的是(A、1 -x 3 B 、x2-2x+1C、x (2a+3)- (3-2a)D 、2x (m+n -2 (m+n20、若多项式2x2+ax可以进行因式分解,则a不能为()A、0 B 、-1 C 、1 D 、221、已知x+y= -3,xy=2,贝U x3y+xy3的值是()A、2 B 、4 C 、10 D 、20a a22、多项式x -y因式分解的结果是(x2+y2)(x+y)(x-y ),则a的值是()A、2 B 、4 C 、-2 D-423、对8 (a2-2b2) -a (7a+b) +ab进行因式分解,其结果为()A、(8a-b)(a-7b) B 、(2a+3b)( 2a-3b) C、a+2b)a-2b) D 、(a+4b)( a-4b)24、下列分解因式正确的是(A、x2-x-4= (x+2)( x-2 ) C、x(x-y)- y(y-x)= (x-y ) 2)B 、2x2-3xy+y 2 = (2x-y ) (x-y ) D 、4x-5x 2+6= (2x+3)( 2x+2)25、多项式a=2x2+3x+1,b=4x2-4x-3,贝U M和N的公因式是()A、2x+1 B 、2x-3 C 、x+1 D 、x+326、多项式(x-2y )2+8xy因式分解,结果为( )A、( x-2y+2 ) (x-2y+4 ) B 、( x-2y-2 ) (x-2y-4 )C、( x+2y)2 D 、( x-2y ) 227、下面多项式① x 2+5X-50 ②x3-1③ x3-4x ④ 3x2-12他们因式分解后,含有三个因式的是()A、①②、B、③④ C ③D、④128、已知x=.,则代数式(x+2)(x+4)+x2-4的值是()A 4+2「2B 、4-2「2C 、2_2D 、4 一229、下列各多项式中,因式分解正确的()A 4x2 -2 = (4x-2)x2B 、1-x 2=(1-x)2C、x2+2 = (x+2)(x+1) D 、x2-仁(x+1)(x-1)30、若x2+7x-30与x2-17x+42有共同的因式x+m贝U m的值为()A -14B 、-3 C、3 D 、1031、下列因式分解中正确的个数为()① x 2+y2= (x+y)(x-y )② x2-12x+32= (x-4 )(x-8 )③ x3+2xy+x=x (x2+2y)④x4-仁(x2+1)(x2-1A 1B 、2C 、3D 、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x 2 B 、x2+20x+100C、4x 2+4x+4 D 、x2-y2-2xy三、因式分解(共42题)1、x2 (a-b)+ (b-a)2、x3-xy 23、(a+1)2-9 (a-1 ) 24、x (xy+yz+xz)-xyz5、(x-1 )(x-3 )+16 a2-4a+4-b 27、(x2-2x )2+2x (x-2 )+18、(x+y+z)3 -x 3-y 3-z 349、x -5x 2+410、5+7 (x+1)+2 (x+1 )2412、x +x2+1513、a -2a 3-8a15、a2 (x-y ) +16 (y-x )16、x2+6xy+9y2-x-3y-3017、(x2+y2-z2)2-4x2y218、xy2-xz 2+4xz-4x19、x2 (y-z ) +y2 (z-x ) +z2 (x-y )20、3x2-5x-11221、3n2x-4n 2y-3n2x+4n2y22、x2 (2-y ) + (y-2 )4 423、x +x2y2+y424、x -1625、(x-1 ) 2- (y+1) 226、( x-2) ( x-3) -2027、2 (x+y ) 2-4 (x+y ) -3028、x2+1-2x+4 (x-129、( a2+a) ( a2+a+1 ) -1230、5x+5y+x2+2xy+y231、x3+x2-x-132、x (a+b) 2 +x2 (a+b)33、( x+2 ) 2 -y 2-2x-334、( x2-6) ( x2-4) -1535、(x+1) 2-2 (x2-1 )36、( ax+by ) 2+ (ax-by ) 2-2 (ax+by ) (ax-by )37、( a+1) ( a+2) (a+3)(a+4)-3438、( a+1) + (a+1 ) 2 +1439、x +2x3+3x2+2x+140、4a3-31a+15541、a +a+142、a3+5a2+3a-9四、求值(共10题)1、x+y=1, xy=2 求x2+y2-4xy 的值2、x2+x-1=0,求x4+x3+x 的值亠a2+b2 + 3、已知a (a-1 ) - (a2-b) +仁0,求一2 — -ab 的值5、若(x+m) (x+n) =x2-6x+5,求2mn的值4、xy=1,求囂争+ -^2-的值x2+2x+1 y2+y5、6 已知x>y>0, x-y=1 , xy=2,求x2-y2的值7、已知a=「2+1 , b=「3-1,求ab+a-b-1 的值8、已知x=m+1,y= -2m+1, z=m-2,求x2+y2-z 2+2xy 的值。
因式分解练习题加答案-200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解50题(答案版)

因式分解50题1.43269a b a b a b -+分解因式的正确结果是()A .()2269a b a a -+B .()()233a b a a +-C .()223b a -D .()223a b a -【答案】D2.下列各式从左到右的变形中,是因式分解的是()A .()()24416x x x -+=-B .()()2222x y x y x y -+=+-+C .()222ab ac a b c +=+D .()()()()1221x x x x --=--【答案】C3.下列等式的变形是因式分解的是()A .21234a b a ab=-B .()()2224x x x +-=-C .()2481421x x x x --=--D .()111222ax ay a x y -=-【答案】D4.下面的多项式中,能因式分解的是()A .2m n +B .21m m -+C .2m n-D .221m m -+【答案】D5.观察下列各式:①2a b +和a b +;②()5m a b -和a b -+;③()3a b +和a b --;④22x y -和22x y +,其中有公因式的是()A .①②B .②③C .③④D .①④【答案】B6.因式分解:224x x -=__________.【答案】()212x x -7.因式分解()()3a x y x y ---【答案】()()31x y a --8.分解因式:22226482x y x y xy xy -++【答案】()23241xy xy x y -++9.分解因式()()()222m x y n y x x y ---=-(______).【答案】m n+10.在分解因式()()22353223x a b b a --+-时,提出公因式()232a b --后,另一个因式是()A .35x B .351x +C .351x -D .35x -【答案】C11.⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+-⑵346()12()m n n m -+-【答案】⑴原式22323224()(652)x y z a b yz x x y z =--+⑵原式[]34336()12()6()12()6()(122)m n m n m n m n m n m n =-+-=-+-=-+-12.分解因式:⑴2316()56()m m n n m -+-⑵(23)(2)(32)(2)a b a b a b b a +--+-【答案】⑴原式[]232216()56()8()27()8()(75)m n m n m n m m n m n m n m =-+-=-+-=--⑵原式(23)(2)(32)(2)(2)(55)5(2)()a b a b a b a b a b a b a b a b =+-++-=-+=-+13.分解因式:⑴()()2121510n na ab ab b a +---(n 为正整数)⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)【答案】(1)原式=()()()()()()212221510532535n nn na ab ab a b a a b a b b a a b a b +---=---=--⎡⎤⎣⎦⑵(21)(2)10n n n +-+=->,(21)(2)n n +>+,2121211462(23)n m n m n m n a b a b a b a b ++-+---=-14.因式分解()219x --的结果是()A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+【答案】A15.马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:()()()4242a a a a -++-■=▲中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是()A .64,8B .24,3C .16,2D .8,1【答案】C16.因式分解:()222224x y x y +-.【答案】()()()22222224x y x y x y x y +-=+-17.分解因式()2222224c a b a b ---【答案】()()()()c a b c a b c a b c a b +--+++--18.求证:无论m 为何整数时,多项式()2459m +-能被8整除【答案】原式=()()8221m m ++19.已知x 是有理数,则多项式2114x x --的值是()A.一定为负数B.不可能为正数C.一定为正数D.可能是正数、负数、0【答案】B20.因式分解222(6)25x x +-【答案】原式22(65)(65)x x x x =+++-(2)(3)(2)(3)x x x x =++--21.()222416xx +-【答案】22(2)(2)x x +-22.分解因式:2()6()9x y x y ++++=【答案】2(3)x y ++23.分解因式()()2269x y z x y z +-++【答案】2(3)x y z +-24.(1)316x x-(2)3244y y y-+【答案】(1)()()3164141x x x x x -=+-(2)()232442y y y y y -+=-25.因式分解:22363x xy y -+-=.【答案】()23x y --26.分解因式:322x y x y xy -+-=.【答案】2(1)xy x --27.因式分解:2221a b b ---=【答案】(1)(1)a b a b ++--28.分解因式:()22323m x y mn --【答案】()()322m x y n x y n -+--29.分解因式:222328712x y y xy xy+++【答案】()()437y x x y ++30.因式分解:2m mn mx nx -+-=【答案】()()m n m x -+31.分解因式:22x x y y +--=【答案】()()1x y x y -++32.分解因式:222694a ab b x -+-【答案】()()3232a b x a b x -+--33.分解因式22x y ax ay -++=【答案】()()x y x y a +-+34.若248123x x +-可因式分解成()()13x a bx c ++,其中a 、b 、c 均为整数,则下列叙述正确的是()A .1a =B .468b =C .3c =D .29a b c ++=【答案】C35.已知2y x -=,31x y -=,则2243x xy y -+的值为()A .1-B .2-C .3-D .4-【答案】B36.如果多项式212x kx ++能够分解成两个系数为整数的一次因式的积,那么整数k 可取的值有()A .2个B .4个C .6个D 8个【答案】C37.分解因式:231212b b -+=.【答案】23(2)b -38.分解因式:2412x x --=__________________【答案】(6)(2)x x -+39.若多项式26x mx +-有一个因式是()3x +,则m =.【答案】1m =40.分解因式:257(1)6(1)a a ++-+【答案】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+41.分解因式:222()14()24x x x x +-++【答案】(2)(1)(3)(4)x x x x +--+42.分解因式:222332x xy y x y +-+++43.分解因式:22344883x xy y x y +-+--22344883(32)(2)8()3x xy y x y x y x y x y +-+--=-++--(321)(23)x y x y =--++44.分解因式:2265622320x xy y x y --++-【答案】2265622320(234)(325)x xy y x y x y x y --++-=-++-45.分解因式:22276212x xy y x y -++--【答案】22276212(23)(234)x xy y x y x y x y -++---+--=46.分解因式:22121021152x xy y x y -++-+【答案】22121021152(32)(421)x xy y x y x y x y -++-+-+-+=47.分解因式:222695156x xy y xz yz z-+-++【答案】222695156(32)(33)x xy y xz yz z x y z x y z -+-++=----48.已知:a 、b 、c 为三角形的三条边,且满足232433720a ac c ab bc b ++--+=,求证2b =a +c23243372(3)(2)a ac c ab bc b a b c a b c ++--+=-+-+(3)(2)0a b c a b c -+-+=;两边之和大于第三边30a b c -+>,所以20a b c -+=,即2b a c=+49.设a 、b 、c 是三角形的三边长,且满足322322a ab bc b a b ac ++=++,三角形的形状为______由322322a ab bc b a b ac ++=++得3223220a ab bc b a b ac ++---=322322()()()0a a b ab b bc ac -+-+-=222()()()0a a b b a b c a b -+---=222()()0a b a b c -+-=∴22200a b a b c -=+-=或∴形状为等腰或直角50.设a 、b 、c 是三角形的三边长,且满足2222b ab c ac +=+,三角形的形状为_____【答案】由2222b ab c ac +=+得222222b ab a c ac a ++=++22()()a b a c +=+则有a b a c+=+所以b =c ∴是等腰三角形。
经典因式分解练习题100道

1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3) ²-6(a+3)13.)(x+1) ²(x+2)-(x+1)(x+2) ²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.) x(x+2)-x18.) x²-4x-ax+4a19.) 25x²-4920.) 36x²-60x+2521.) 4x²+12x+922.) x²-9x+1823.) 2x²-5x-324.) 12x²-50x+825.) 3x²-6x26.) 49x²-2527.) 6x²-13x+528.) x²+2-3x29.) 12x²-23x-2430.) (x+6)(x-6)-(x-6)31.) 3(x+2)(x-5)-(x+2)(x-3)32.) 9x²+42x+4933.) x4-2x³-35x34.) 3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.) (x²-3x)+(x-3) ²55.) 9x²-66x+12156.) 8-2x²57.) x4-158.) x²+4x-xy-2y+459.) 4x²-12x+560.) 21x²-31x-2261.) 4x²+4xy+y²-4x-2y-362.) 9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )64.) 若9x²−12xy+m是两数和的平方式,那么m的值是( )65) 把多项式a4− 2a²b²+b4因式分解的结果为( )66.) 把(a+b) ²−4(a²−b²)+4(a−b)²分解因式为( )67.) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-68) 已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N 的大小关系为( )69) 对于任何整数m ,多项式( 4m+5) ²−9都能( )A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
因式分解练习题加答案-100题

因式分解下列各式:1.3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)2.xy+6-2x-3y=(x-3)(y-2)3.x2(x-y)+y2(y-x)=(x+y)(x-y)^24.2x2-(a-2b)x-ab=(2x-a)(x+b)5.a4-9a2b2=a^2(a+3b)(a-3b)6.x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^27.ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)8.(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)9.a2-a-b2-b=(a+b)(a-b-1)10.(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^211.(a+3)2-6(a+3)=(a+3)(a-3)12.(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.x2-25=(x+5)(x-5)36.x2-20x+100=(x-10)^237.x2+4x+3=(x+1)(x+3)38.4x2-12x+5=(2x-1)(2x-5)39.(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.2ax2-3x+2ax-3=(x+1)(2ax-3)42.9x2-66x+121=(3x-11)^243.8-2x2=2(2+x)(2-x)44.x2-x+14 =整数内无法分解45.9x2-30x+25=(3x-5)^246.-20x2+9x+20=(-4x+5)(5x+4)47.12x2-29x+15=(4x-3)(3x-5)48.36x2+39x+9=3(3x+1)(4x+3)49.21x2-31x-22=(21x+11)(x-2)50.9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.2ax2-3x+2ax-3=(x+1)(2ax-3)53.x(y+2)-x-y-1=(x-1)(y+1)54.(x2-3x)+(x-3)2=(x-3)(2x-3)55.9x2-66x+121=(3x-11)^256.8-2x2=2(2-x)(2+x)57.x4-1=(x-1)(x+1)(x^2+1)58.x2+4x-xy-2y+4=(x+2)(x-y+2)59.4x2-12x+5=(2x-1)(2x-5)60.21x2-31x-22=(21x+11)(x-2)61.4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解练习题精选

因式分解练习题精选一、基础题1. 分解因式:x^2 + 2x + 12. 分解因式:a^2 b^23. 分解因式:4m^2 9n^24. 分解因式:x^3 y^35. 分解因式:8a^3 27b^3二、提高题1. 分解因式:x^2 + 5x + 62. 分解因式:a^2 + 2ab + b^23. 分解因式:2x^2 5x 34. 分解因式:3a^2 4ab 5b^25. 分解因式:x^4 16三、拓展题1. 分解因式:x^3 + 3x^2 + 3x + 12. 分解因式:a^3 b^3 c^3 + 3abc3. 分解因式:x^2 + 2xy + y^2 4z^24. 分解因式:x^4 + 4x^2 + 45. 分解因式:a^5 b^5四、综合题1. 分解因式:x^2 + 6x + 9 4y^22. 分解因式:a^3 + 3a^2b + 3ab^2 + b^3 4a^23. 分解因式:x^4 4x^2 + 4 9y^24. 分解因式:a^4 b^4 + 2a^2b^25. 分解因式:x^6 y^6五、特殊因式分解题1. 分解因式:x^2 5x + 62. 分解因式:2a^2 8a + 83. 分解因式:3x^2 12x + 94. 分解因式:4y^2 20y + 255. 分解因式:5z^2 10z + 5六、多项式因式分解题1. 分解因式:x^3 + 2x^2 x 22. 分解因式:a^4 b^43. 分解因式:x^4 6x^2 + 94. 分解因式:4a^2 12ab + 9b^25. 分解因式:x^5 32x七、复杂因式分解题1. 分解因式:x^6 y^6 z^6 + 3x^2y^2z^22. 分解因式:a^3 + b^3 + c^3 3abc3. 分解因式:x^4 + 4x^3 + 6x^2 + 4x + 14. 分解因式:x^8 y^85. 分解因式:a^5 + b^5 + c^5 5abc(a + b + c)八、应用题1. 已知一个长方体的长、宽、高分别为x、x+1和x+2,求其体积的因式分解形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解提公因式法提公因式法常用的变形:a -b =-(b -a),(a -b)n=⎩⎨⎧(b -a)n(n 为偶数)-(b -a)n(n 为奇数).例1:(1)ma+mb(2)4kx -8ky (3)5y 3+20y 2(4)a 2b -2ab 2+ab同步练习(1)2a -4b;(2)ax 2+ax -4a;(3)3ab 2-3a 2b;(4)2x 3+2x 2-6x;(5)7x 2+7x+14;(6)-12a 2b+24ab 2;(7)xy -x 2y 2-x 3y 3;(8)27x 3+9x 2y.例2:(1)a(x-3)+2b(x-3);(2)4(x+y)3-6(x+y)2同步练习(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y) (3)6(p+q)2-12(q+p)(4)8(a-b)4+12(a-b)5例3:(1)2-a=__________(a-2);(2)y-x=__________(x-y); (3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;同步练习(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.(3)a(m-2)+b(2-m) (4)2(y-x)2+3(x-y)(5)mn(m-n)-m(n-m)2(6)1.5(x-y)3+10(y-x)2平方差公式法平方差公式:a2-b2=(a+b)(a-b)例1:把下列各式分解因式:(1)x2-16;(2)9 m 2-4n2;(3)9a2-14b2.同步练习(1)a2b2-m2(2)25-16x2;(3)a2-81(4)36-x2 (5)1-16b2(6)m 2-9n2(7)0.25q2-121p2(8)169x2-4y2例2:(1)(m+n)2-(m-n)2; (2)16(a+b)2-9(a-b)2 同步练习(1)(m+n)2-n2(2)49(a-b)2-16(a+b)2(3)(2x+y)2-(x+2y)2(4)(x2+y2)2-x2y2(5)(2m-n)2-(m-2n)2; (6)9a2p2-b2q2(7)494a2-x2y2(8)(m+n)2-n2(9)(2x+y)2-(x+2y)2(10)p4-1例3:(1)2x3-8x.(2)3ax2-3ay4 (3)-6xy3+24x3y(4)(x-1)+b2(1-x)完全平方式例1:(1)x2+2x+1;(2)4a2-12a+9 (3)x2-x+14同步练习(1)14x2-x+1(2)14m2+3 m n+9n2(3)x2-12xy+36y2(4)16a4+24a2b2+9b4(5)-2xy-x2-y2例2:(1)(m+n)2-6(m +n)+9. (2)4(a-b)2+4(a-b)+1 同步练习(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.(3)4-12(x-y)+9(x-y)2 (4)(x+y)2+6(x+y)+9(5)a2-2a(b+c)+(b+c)2例3:(1)1-2xy+ x2y2;(2)-12t+9+4t2;同步练习(1)14+y2+y;(2)25m2-80 m +64; (3)x24+xy+y2;(4)a2b2-4ab+4;(5)4xy2-4x2y-y3(6)-a+2a2-a3(7)1+m+m24(8)-4x2y2+4xy-1因式分解综合题(一)(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式来分解;(3)三查:分解因式,必须进行到每一个多项式因式都不能再分解为止.一、基础综合(1)1-25a2(2)12p3-2pq2(3)-x2+4x+5(4)2x2-x-3(5)a3-2a2+a(6)x6-81x2y4(7)(a2+1)2-4a2(8)a2+4ab+4b2(9)x3-x2-2x+2(10)4a2+4ab+b2-1(11)3ay-3by(12)a2-14a+49(13)n2-m2(14)20a3x-45ay2x(15)16a2-9b2(16)4x2-12x+9 (17)4x3+8x2+4x(18)3m(a-b)3-18n(b-a)3(19)(m+n)2-(m-n)2(20)(x2+1)2-4x2二、直接写答案(1)x2-4x+4=__________(2)m2-2m=__________(3)x2y-9y=__________(4)x2-16=__________(5)xy2-4x=__________(6)a3-4a=__________(7)x4-4=__________(8)x2+4xy+4y2=__________(9)a2-a=__________(10)2a3-8a=__________ (11)ax2+2axy+ay2=__________(12)(x+y)2-3(x+y)=__________(13)x2-x=__________(14)2x2-12x+18 =__________(15)-x3+2x2-x=__________(16)ax2-ax-2a=__________(17)3x3-6x2y+3xy2=__________(18)2x2-8x+8=__________(19)x3-2x2y+xy2=__________(20)a2+2a+1=__________(21)2x2-xy-x=__________(22)-xy2+2xy-3y=__________(23)x(x-y)-y(x-y) =__________(24)x2-9=__________(25)x2-x=__________(26)ax2-ay2=__________(27)x2+2x+1=__________(28)m3-4m=__________(29)27x2+18x+3=__________(30)9x2-y2-4y-4=__________(31)x4-4=__________(32)x2y-4y=__________(33)m3-mn2=__________(34)x3-2x2+x=__________(35)a2-ab=__________(36)4a2-1=__________(37)a2+4a+4=__________(38)ax2-ay2=__________(39)2a2-8=__________(40)x3y-xy=__________(41)2a2-4ab+2b2=__________(42)2a2-4a+2=__________(43)mx2-6mx+9m=__________(44)2mx2-4mx+2m=__________(45)a2-2ab+b2-5a+5b-6=__________(46)x(x+y)(x-y)-x(x+y)2=________因式分解综合题(二)一、 填空题:(每小题2分,共26分)1、把下列各式写在横线上:①5x 2-25x 2y 的公因式为__________; ②-4x 2n -6x 4n 的公因式为__________2、填上适当的式子,使以下等式成立: (1)2xy 2+x 2y-xy=xy ·(__________) (2)a n +a n+2+a 2n =a n ·(__________)3、直接写出因式分解的结果: (1)x 2y 2-y 2=__________; (2)3a 2-6a+3=__________。
4、若x 2-mx+16=(x-4)2,那么m=________。
5、如果x+y=0,xy=-7,则x 2y+xy 2=__________,x 2+y 2=__________。
6、简便计算:7.292-2.712=__________。
7、若x 2+mx+n 是一个完全平方式,则m 、n 的关系是__________。
8、已知正方形的面积是9x 2+6xy+y 2(x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式__________。
9、已知a+b=2,ab=2,则12 a 3b+a 2b 2+ 12 ab 3的值为__________。
二、选择题:(每小题3分,共18分)1、下列各式从左到右的变形中,是因式分解的为__________。
A.x(a-b)=ax-bxB.x 2-1+y 2=(x-1)(x+1)+y 2C.x 2-1=(x+1)(x-1)D.ax+bx+c=x(a+b)+c2、一个多项式分解因式的结果是(b 3+2)(2-b 3),那么这个多项式是__________。
A.b 6-4 B.4-b 6 C.b 6+4 D.-b 6-43、下列各式是完全平方式的是__________。
A.x 2-x+ 14B.1+x 2C.x+xy+1D.x 2+2x-14、把多项式m 2(a-2)+m(2-a)分解因式等于__________。
A.(a-2)(m 2+m)B.(a-2)(m 2-m)C.m(a-2)(m-1)D.m(a-2)(m+1)5、分解因式x 4-1得__________。
A.(x2+1)(x2-1)B.(x+1)2(x-1)2C.(x-1)(x+1)(x2+1)D.(x-1)(x+1)3三、将下列各式分解因式(1)3x-12x3(2)2a(x2+1)2-2ax2(3)20a2bx-45bxy2(4)49(a-b)2-16(b-a)2(5)(a-b)(3a+b)2+(a+3b)2(b-a) (6)(x2+y2)2-4x2y21)(7)(12p2-2pq)÷(p-4q)(8)(x4-1)÷(x2-1)(9)9(a-b)2+12(a2-b2)+4(a+b)2(10)用简便方法计算:20072-4012×2007+20062因式分解综合题(三)一、选择题(3′×10=30′)1、下列等式从左到右的变形,是因式分解的是__________。
A.(x+1)(x-1)=x2+1B.x2+6x+9=x(x+6)+9C.a2-16+3a=(a+4)(a-4)+3aD.x2+3x+2=(x+1)(x+2)2、分解8a3b2-12ab3c时应提取的公因式是__________。
A.2ab2B.4abC.ab2D.4ab23、把-x2+xy-xz分解因式正确的结果是__________。
A.x(x+y-z)B.-x(x+y-z)C.-x(x-y-z)D.-x(x-y+z)4、下列各式中,不能提取公因式的是__________。
A.12xyz-9x2y2B.a2+2ab+b2C.x6y-x4zD.x(a+b)-y(a+b)5、-(x+y)(x-y)是( )分解因式的结果__________。