抽象函数的解析式例题讲解
抽象函数题的解法与技巧
抽象函数题的解法及技巧随着高考改革的不但深入,对基本初等函数中的抽象函数部分考查又有所提高,其题型包括抽象函数的定义域值域问题,抽象函数的单调性和奇偶性问题,求解析式及对称性问题,现就结合着近几年高考出现的体型对抽象函数部分题的解法及技巧总结如下,供备考同学们参考使用。
类型一:求抽象函数的定义域。
例题1.(2013高考大纲版数学(理))已知函数f(x )的定义域为(-1,0),则函数f (2x-1)的定义域为 (A)(-1,1) (B)(-1,21) (C)(-1,0) (D)(21,1) 解析:因为原函数的定义域为(﹣1,0),所以﹣1<2x ﹣1<0,解得﹣1<x <.所以则函数f (2x ﹣1)的定义域为(-1,21).故选B . 变式1:已知f (2x-1)定义域是[]2,1,则函数)(x f 的定义域为 答案:[1,3]变式2:已知已知f(2x-1)定义域是[]2,1,则函数)12(+x f 的定义域为 答案:[0,1] 解题技巧:抽象函数是没有解析式的函数,解决此类问题的方法是抓住这种类型题的本质,像例题1这种题型的本质是解不等式,变式1题型的本质就是求函数的值域,变式2这种题型的本质就是解不等式和求值域的结合。
解决这类问题的技巧搞清本质抓住两个小括号的范围要对应起来,是解决的技巧所在。
类型二:抽象函数的求值问题:例2.对任意实数x,y ,均满足f(2x +y)=2[f 2)(x ]+f(y)且f (1)≠0,则f2014)=_______. 解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:令x=1,y=n ,得f (n+1)=f (n )+22)]1([f , 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0,得:f(0)=0,∴f(1)=21,即f (n+1)-f (n )=21,f (n )=2n,所以,f(2014)=22014=1007. 解题技巧:抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
抽象函数定义域三种题型及解法
抽象函数定义域三种题型及解法抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说有一定难度,特别是其定义域,大多数学生解答起来总感棘手.下面结合实例具体介绍一下抽象函数定义域问题的四种题型及求法.一、已知f (x )的定义域,求f [g (x )]的定义域其解法是:若f (x )的定义域为a ≤x ≤b ,则f [g (x )]中a ≤g (x )≤b ,从中解得x 的取值范围即为f [g (x )]的定义域.例1 已知函数f (x )的定义域为[-1,5],求f (x 2-3x -5)的定义域.分析:这个函数是由u =x 2-3x -5和f (u )构成的复合函数,其中x 是自变量,u (或x 2-3x -5)是中间变量,由于f (x ),f (u )是同一个函数,因此这里是已知-1≤u ≤5,即-1≤x 2-3x -5≤5,要求x 的取值范围.解:由-1≤x 2-3x -5≤5,得223100340x x x x ⎧--≤⎪⎨--≥⎪⎩,即254 1x x x -≤≤⎧⎨≥≤-⎩或 ∴-2≤x ≤-1或4≤x ≤5.∴函数f (x 2-3x -5)的定义域是[-2,-1]∪[4,5].二、已知f [g (x )]的定义域,求f (x )的定义域其解法是:若f [g (x )]的定义域为m ≤x ≤n ,则由m ≤x ≤n 确定g (x )的范围即为f (x )的定义域.例2 已知函数f (x 2-2x +2)的定义域是[0,3],求函数f (x )的定义域.分析:设u =x 2-2x +2,则f (x 2-2x +2)=f (u ),由于f (u ),f (x )是同一函数,因此这里是已知0≤x ≤3,求x 2-2x +2的取值范围.解:由0≤x ≤3,得-1≤x -1≤2,即0≤(x -1)2≤4,1≤(x -1)2+1≤5即1≤x 2-2x +2≤5.设u =x 2-2x +2,则f (x 2-2x +2)=f (u ),又f (u )与f (x )是同一个函数,1≤u ≤5,即是1≤x ≤5.∴f (x ) 的定义域是[1,5].三、已知f [g (x )]的定义域,求f [h (x )]的定义域其解法是:可先由f [g (x )]定义域求得f (x )的定义域,再由f (x )的定义域求得f [h (x )]的定义域.例3 若函数f (x +1)的定义域为[-21,2],求f (x 2)的定义域. 分析:已知f (x +1)的定义域为[-21,2],x 满足-21≤x ≤2,于是21<x +1<3,得到f (x )的定义域,然后f (x 2)的定义域由f (x )的定义域可得.解:先求f (x )的定义域: 由题意知-21≤x ≤2,则21<x +1<3,即f (x )的定义域为[21,3], 再求f [h (x )] 的定义域:∴ 21<x 2<3,解得-3<x<-2或2<x <3. ∴f (x 2)的定义域是{x |-3<x<-2或2<x <3}. 四、运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集.例4 若f (x )的定义域为[-3,5],求ϕ(x )=f (-x )+f (x 2)的定义域.解:由f (x )的定义域为[-3,5],则ϕ(x )必有23535x x -≤-≤⎧⎨-≤≤⎩,即53x x -≤≤⎧⎪⎨≤⎪⎩x所以函数ϕ(x )的定义域为[.。
抽象函数解题方法与技巧
抽象函数解题方法与技巧所谓抽象函数问题,是指没有具体地给出函数的解析式,只给出它的一些特征或性质。
解决这类问题常涉及到函数的概念和函数的各种性质,因而它具有抽象性、综合性和技巧性等特点。
抽象函数问题既是教学中的难点,又是近几年来高考的热点。
一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x)解:令u=1+sinx ,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤x ≤2)二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设解:x x x f x x f x f x x 323)(,1)(2)1(,1--==-联立方程组,得得代换用322323|)(|≥+=∴x x x f三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
例3.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x ,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a≠0) 代入f(x+1)=a(x+1)2+b(x+1)+c=ax 2+(2a+b)x+a+b+c f(x-1)= a(x-1)2+b(x-1)+c=ax 2+( b -2a)x+a-b+c ∴f(x+1)+ f(x-1)=2ax 2+2bx+2a+2c=2x 2-4x 比较系数得:a=1,b= -2,c= -1 , f(x)=x 2-2x-1.四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
例4.对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______. 解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,∵f(1)≠0 ∴f(1)= . 令x=n,y=1,得f(n+1)=f(n)+2[f(1)]2=f(n)+即f(n+1)-f(n)= 12,故f(n)= 2n ,f(2001)= 20012例5.已知f(x)是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论; (3)若f(2)=2,u n =f(2n ) (n ∈N*),求证:u n+1>u n (n ∈N*). 解:(1)令a=b=0,得f(0)=0,令a=b=1,得f(1)=0.(2)f(x)是奇函数。
微专题21 抽象函数的处理技巧(原卷版)
微专题21抽象函数的处理技巧【方法技巧与总结】常见抽象函数的模型()()()()(1)f x y f x f y f x f x+=+⇔=()()()()log a f xy f x f y f x x=+↔=()()()()xf x y f x f y f x a +=↔=()()()()kf xy f x f y f x x =↔=2()()()()f x y f x f y kxy f x ax bx+=++↔=+()()2()()f x y f x y f x f x ax b++-=↔=+【题型归纳目录】题型一:求抽象函数的解析式及函数值题型二:抽象函数的奇偶性问题题型三:抽象函数的单调性问题【典型例题】题型一:求抽象函数的解析式及函数值例1.设函数:f R R →满足(0)1f =,且对任意x ,y R ∈,都有(1)()()()2f xy f x f y f y x +=--+,则(2017)(f =)A .0B .2018C .2017D .1例2.设函数()f x 满足(0)1f =,且对任意x ,y R ∈,都有(1)()()()2f xy f x f y f y x +=--+,则f (1)(=)A .2B .2-C .1D .1-例3.设函数:f R R →满足(0)1f =,且对任意x ,y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则(2020)(f =)A .0B .1C .2019D .2021变式1.若函数()f x 对定义域内任意两个自变量x ,y 都有()()()f x y f x f y +=,则()f x 可以是()A .()21f x x =+B .2()f x x =C .1()f x x =D .()2xf x =变式2.函数()f x 满足对定义域内的任意x ,都有(2)()2(1)f x f x f x ++<+,则函数()f x 可以是()A .()21f x x =+B .2()2f x x x =-C .()x f x e =D .()f x lnx =变式3.若()f x 满足对任意的实数a ,b 都有()f a b f +=(a )f (b )且f (1)2=,则下列判断正确的有()A .()f x 是奇函数B .()f x 在定义域上单调递增C .当(0,)x ∈+∞时,函数()1f x >D .(2)(4)(6)(2016)(2018)(2020)2020(1)(3)(5)(2015)(2017)(2019)f f f f f f f f f f f f +++⋯++=变式4.已知函数()f x 对一切实数x ,y 都有()()(21)f x y f y x x y +-=++成立,且f (1)0=,则(0)f =,()f x =.变式5.若函数()f x 对任意实数x ,y 均有22()2()233f x y f y x xy y x y +=++-+-,则()f x 的解析式为.变式6.对任意正实数x ,y ,()()()f xy f x f y =+,f (9)4=,则f =.变式7.(1)已知()2()1f x f x x +-=+,求()f x 的解析式.(2)设()f x 是R 上的函数,且(0)1f =,并且对任意实数x ,y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式.题型二:抽象函数的奇偶性问题例4.(2022·重庆市辅仁中学校高一期中)已知()f x 定义域为R ,对任意,x y ∈R 都有()()()1f x y f x f y +=+-,当0x >时,()1,(1)0f x f <=.(1)求(1)f -;(2)试判断()f x 在R 上的单调性,并证明;(3)解不等式:2(232)2()4f x x f x --+>.例5.(2022·广东·深圳外国语学校高一期中)已知函数()f x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求证:()f x 在R 上为增函数;(2)若()()923292x x x f f k -⋅+⋅->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.例6.(2022·广西梧州·高一阶段练习)(1)已知函数()f x 对任意的,a b ∈R ,都有()()()1f a b f a f b +=+-,且当0x >时,()1f x >,求证:()f x 是R 上的增函数;(2)若()f x 是R 上的增函数,且()(),(2)1x f f x f y f y ⎛⎫=-= ⎪⎝⎭,解不等式1()23f x f x ⎛⎫-≤ ⎪-⎝⎭.变式8.(2022·湖南省临澧县第一中学高一阶段练习)对任意的0x ≠函数()f x 满足对任意的a ,b 都有()()()f ab f a f b =+,且当1x >时,()0f x >.(1)判断()f x 的奇偶性,并加以证明;(2)判断()f x 的单调性,并加以证明;(3)对任意的0t ≠都有不等式()()20f t t f k --<恒成立,求k 的取值范围.变式9.(2022·全国·高一课时练习)已知函数()f x 的定义域为()0,∞+,对任意正实数a 、b 都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.求证:函数()f x 是()0,∞+上的增函数.变式10.(2022·全国·高一专题练习)定义在()0∞+,上的函数()f x 满足下面三个条件:①对任意正数a b ,,都有()()()f a f b f ab +=;②当1x >时,()0f x <;③()21f =-(1)求()1f 和14f ⎛⎫ ⎪⎝⎭的值;(2)试用单调性定义证明:函数()f x 在()0∞+,上是减函数;(3)求满足()()32412218f x x f x -+>的x 的取值集合.变式11.(2022·全国·高一期中)已知函数f (x )对∀x ,y ∈R ,都有f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,且f (1)=-2.(1)证明函数f (x )在R 上的奇偶性;(2)证明函数f (x )在R 上的单调性;(3)当x ∈[1,2]时,不等式f (x 2-mx )+f (x )<4恒成立,求实数m 的取值范围.变式12.(2022·全国·高一单元测试)已知f (x )是定义在区间[-1,1]上的奇函数,且f (1)=1,当a ,b ∈[-1,1],a +b ≠0时,有()()f a f b a b++>0成立.(1)判断f (x )在区间[-1,1]上的单调性,并证明;(2)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.题型三:抽象函数的单调性问题例7.(2022·辽宁·铁岭市清河高级中学高一阶段练习)定义在()1,1-上的函数()f x 满足对任意的(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,且当(0,1)x ∈时,()0f x <.(1)求证:函数()f x 是奇函数;(2)判断()f x 在()1,1-上的单调性,不需证明;(3)解不等式()()10f x f x -+<.例8.(2022·湖南·慈利县教育科学研究室高一期中)已知函数()f x 是定义在R 上的增函数,并且满足()()(),(1) 4.f x y f x f y f +=+=(1)求(0)f 的值.(2)判断函数()f x 的奇偶性.(3)若(23)()8f x f x +-<,求x 的取值范围.例9.(2022·全国·高一课时练习)设函数()f x 对任意,x y ∈R ,都有()()()f x y f x f y +=+,证明:()f x 为奇函数.变式13.(2022·全国·高一课时练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当x y ≠时,()()0f x f y x y->-成立,且(1)2f =.(1)求(0)f ,并证明函数()()1g x f x =-的奇偶性;(2)当[0,9]x ∈,不等式()(3f x f m +-≤恒成立,求实数m 的取值范围.变式14.(2022·全国·高一课时练习)已知函数()f x 定义域为[1,1]-,若对于任意的,[1,1]x y ∈-,都有()()()f x y f x f y +=+,且0x >时,有()0f x >.(1)证明:()f x 为奇函数;(2)证明:()f x 在[1,1]-上是增函数;(3)设(1)1f =,若()22f x m am <-+,对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.变式15.(2022·黑龙江双鸭山·高一期末)设函数()f x 是增函数,对于任意,R x y ∈都有()()()f x y f x f y +=+.(1)写一个满足条件的()f x ;(2)证明()f x 是奇函数;(3)解不等式()211()(3)22f x f x f x ->.变式16.(2022·重庆·西南大学附中高一期中)已知y =f (x )满足对一切x ,y ∈R 都有f (x +2y )=f (x )+2f (y ).(1)判断y =f (x )的奇偶性并证明;(2)若f (1)=2,求f (-13)+f (-3)+f (22)+f (53)的值.变式17.(2022·全国·高一课时练习)函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立.(1)证明函数f (x )的奇偶性;(2)若f (1)=-2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->--变式18.(2022·河南焦作·高一期中)已知f (xy )=f (x )+f (y ).(1)若x ,y ∈R ,求f (1),f (-1)的值;(2)若x ,y ∈R ,判断y =f (x )的奇偶性;(3)若函数f (x )在其定义域(0,+∞)上是增函数,f (2)=1,f (x )+f (x -6)≤4,求x 的取值范围.【过关测试】一.单选题1.若对任意x ,y R ∈,有()()()3f x f y f x y +-+=,函数22()()1x g x f x x =++,则g (2)(2)g +-的值等于()A .0B .4C .6D .82.若对x ∀,y R ∈,有()()()3f x f y f x y +-+=,函数2()()1x g x f x x =++,则g (2)(2)g +-的值()A .0B .4C .6D .93.已知定义在(0,)+∞上的减函数()f x 满足条件:对任意x ,(0,)y ∈+∞,总有()()()1f xy f x f y =+-,则关于x 的不等式(1)1f x ->的解集是()A .(1,)+∞B .(1,2)C .(,2)-∞D .(0,2)二.填空题4.函数()y f x =的定义域为(0,)+∞,且对于定义域内的任意x ,y 都有()()()f xy f x f y =+,且f (2)1=,则f 的值为.5.已知函数()f x 的定义域是(0,)+∞,满足f (2)1=,且对于定义域内任意x ,y 都有()()()f xy f x f y =+成立,那么f (1)f +(4)=.6.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,f (2)1=.如果对于0x y <<,都有()()f x f y <,则不等式(1)(1)2f x f x -++<的解集为(表示成集合).7.已知定义在正实数集上的函数()f x 满足①若1x >,则()0f x <;②1()12f =;③对定义域内的任意实数x ,y ,都有:()()()f xy f x f y =+,则不等式()(5)2f x f x +-- 的解集为.三.解答题8.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,f (1)1=,求(0)g ,g (1),g (2)的值.9.若函数()f x ,()g x 满足()()()()()g x y g x g y f x f y -=+,并且(0)0f =,(1)1f -=-,f(1)1=.(1)证明:22()()(0)f x g x g +=.(2)求(0)g ,g (1),(1)g -,g (2)的值.(3)判断()f x ,()g x 的奇偶性.10.(2022·北京市第五中学高一期末)已知定义在R 上的函数()f x 满足:①对任意实数x ,y ,均有()()2()()f x y f x y f x f y ++-=;②(1)0f =;③对任意[0,1)x ∈,()0f x >.(1)求(0)(2)f f -的值,并判断()f x 的奇偶性;(2)对任意的x ∈R ,证明:(4)()f x f x +=;(3)直接写出()f x 的所有零点(不需要证明).11.(2022·山西太原·高一开学考试)若定义在R 上的函数()f x 对任意实数1x ,2x ,都有()()()12122f x x f x f x +=+-成立,且当0x >时,()2f x >.(1)求证:()2f x -为奇函数;(2)判断()f x 在R 上的单调性,并说明理由;(3)若()45f =,解不等式()2328f m m --<.12.(2022·福建·泉州市第六中学高一期中)设函数()f x 对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <.(1)证明:()f x 为奇函数;(2)证明:()f x 为减函数,(3)若()11f -=,试求关于m 的不等式()()22213f m f m m +-+>-的解集.13.(2022·福建省龙岩第一中学高一阶段练习)已知函数()f x 对任意实数x 、y 恒有f (x +y )=f (x )+f (y ),当0x >时,()0f x <,且()12f =-.(1)判断()f x 的奇偶性;(2)证明函数单调性并求()f x 在区间[]3,3-上的最大值;(3)若()222f x m am <-+对所有的][1,1 ,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.14.(2022·海南中学三亚学校(三亚市实验中学)高一期中)已知函数()f x 对一切实数x ,R y ∈都有()()()f x y f x f y +=+,且当0x >时,()0f x <,又()32f =-.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)若()()22240f x f x ++--<,求x 的取值范围.15.(2022·陕西·长安一中高一阶段练习)函数()f x 的定义域为{}|0D x x =≠,且满足对于任意1x ,2x D ∈,有()()()1212f x x f x f x ⋅=+.(1)判断()f x 的奇偶性并证明你的结论;(2)如果()41f =,()12f x -<,且()f x 在()0,∞+上是增函数,求x 的取值范围.16.(2022·宁夏·银川一中高一期中)已知函数()f x 定义域为[11]-,,若对于任意的[11]x y ∈-、,,都有()()()f x y f x f y +=+,且0x >时,有()0f x >.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在[11]-,上的单调性;(3)若f (1)=1,2()21f x m am <-+,对所有[11]x ∈-,,[11]a ∈-,恒成立,求m 的取值范围;17.(2022·四川·攀枝花市第十五中学校高一期中)函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当0x >时,()0f x <(1)判断()f x 的奇偶性;(2)求证∶()f x 是R 上的减函数∶(3)若a R ∈,求关于x 的不等式()()()()222f ax f x f x f ax ++<-的解集.。
重难点2-4-抽象函数及其性质8大题型(解析版) (1)
重难点2-4 抽象函数及其性质8大题型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。
抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。
一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
关于抽象函数问题的解法
抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
求解抽象函数解析式六法
厂 ( ) 一 一 寺 一 2 .
( 责任 编辑 金 铃)
【 例6 】 已知 一厂 ( z ) 为奇 函数 , 当x >O时 , 厂 ( z ) l g ( z +1 ) , 求- 厂 ( ) .
解: 。 . ‘ - 厂 ( ) 为奇 函数 , . 。 . - 厂 ( z ) 的定义 域关 于原 点对 称, 故先求 x <O时的表达式.
【 例9 】 函数 , ( ) 对 一切 实数 z , Y均有 厂( z + ) f ( y ) 一( z +2 +1 ) z成立 , 且厂 ( 1 ) 一0 . 求厂 ( ) 的解 解: 令 : = : 1 , 一0 , 代 入得 L 厂 ( 1 +0 ) 一厂( 0 ) = = : ( 1 +
( 2 z — +1 ) 恒成立 ,
【 例3 】已 知厂 ( + ÷) 一 + 专, 求厂 ( z ) .
解: ‘ . ‘ z + ) 一( z + ) ( 一1 + ) 一( z + )・
一
不妨令 x =O , 则有 厂 ( -y ) 一厂 ( O ) -y ( 一 +1 ) 一
+1 ,
再令 一 = = = 得 函数解析式 ( z ) 一z + +1 .
[ ( + ) 2 m 3 ] . 又 。 . ‘ I x +  ̄ I — I z l + 酉 1 ≥ 1 ,
-
。
.
.
- 厂 ( z ) 一 ( 一3 ) 一z 。 -3 x ( 1 zl ≥1 ) .
厂 ( £ ) 一下 4 t +5, ( z ) 一4 x +S
,
二、 凑合法 : 在 已知 f { g ( x ) ) 的条件下 , 把h ( x ) 拼凑
成以g ( ) 表示的代数式 。 再 利 用代 换 即可 求 f ( x )
抽象函数-题型大全(例题-含答案)
高考抽象函数技能总结因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下:一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑正当:在已知(())()f g x h x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x xx +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x xx x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数∴f (3)<f (4),∴f (2)<f (1)<f (4) 五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f(x)对随意率性实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.剖析:由题设可知,函数f(x)是的抽象函数,是以求函数f(x)的值域,症结在于研讨它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为增函数.在前提中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f (0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2.已知函数f(x)对随意率性,知足前提f(x)+f(y)=2 + f (x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解. 剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f(x)为单调增函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f (2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f(2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜测g(a +b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g (n)=b,从而,∴g(m)·g(n)=g(m +n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)< f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b均为常数,函数对一切实数x都知足,则函数的图象关于点(a,b)成中间对称图形.八.收集分解问题例9. 界说在R上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性;(2)设,,若,试肯定a的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以所以在R上为减函数.(2)因为函数y=f(x)在R上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得. 评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时, (3)当25<<a 时,综上所述,所求a 的取值规模是()()3225,, .例 4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模. 解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔ 对x R ∈恒成立, 三. 解不等式这类不等式一般须要将常数暗示为函数在某点处的函数值,再经由过程函数的单调性去掉落函数符号“f ”,转化为代数不等式求解.例 5 已知函数f x ()对随意率性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=是以不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 证实某些问题例6 设f x ()界说在R 上且对随意率性的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.剖析:这同样是没有给出函数表达式的抽象函数,其一般解法是依据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证实: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对随意率性x R ∈都成立,是以f x ()是周期函数,且周期为6.例7 已知f x ()对一切x y ,,知足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数. 证实: 对一切x y R ,∈有f x y f x f y ()()()+=⋅. 且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 分解问题求解抽象函数的分解问题一般难度较大,常涉及到多个常识点,抽象思维程度请求较高,解题时需掌控好如下三点:一是留意函数界说域的运用,二是运用函数的奇偶性去掉落函数符号“f ”前的“负号”,三是运用函数单调性去掉落函数符号“f ”.例8 设函数y f x =()界说在R 上,当x >0时,f x ()>1,且对随意率性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证实f ()01=;(2)证实:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,知足的前提.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠抵触, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1).(2)中消去y 得()a b x a c x c b 2222220+++-<,因为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a b c222+< 例9 界说在(-11,)上的函数f x ()知足(1),对随意率性x y ,,∈-()11都有f x f y f x yx y()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试断定f x ()的奇偶性;(2)断定f x ()的单调性;(3)求证ff f n nf ()()()()15111131122+++++>….剖析:这是一道以抽象函数为载体,研讨函数的单调性与奇偶性,再以这些性质为基本去研讨数列乞降的分解题.解:(1)对前提中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所所以f x ()奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由前提(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数.(3) f n n ()1312++抽象函数问题分类解析我们将没有明白给出解析式的函数称为抽象函数.近年来抽象函数问题一再消失于各类测验题中,因为这类问题抽象性强,灵巧性大,多半同窗觉得迷惑,求解无从下手.本文试图经由过程实例作分类解析,供进修参考. 1. 求界说域这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x这一特点,问题就会水到渠成.例 1. 函数y f x =()的界说域为(]-∞,1,则函数y f x =-[l o g ()]222的界说域是___.剖析:因为l o g()22x 2-相当于f x ()中的x,所以l o g()2221x -≤,解得 22<≤x 或-≤<-22x .例 2. 已知f x ()的界说域为(0),1,则y f x a f x a a =++-≤()()(||)12的界说域是______.剖析:因为x a +及x a-均相当于f x ()中的x,所以(1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1 2. 断定奇偶性依据已知前提,经由过程恰当的赋值代换,追求f x ()与f x ()-的关系. 例3. 已知f x ()的界说域为R,且对随意率性实数x,y 知足fx y fx f y ()()()=+,求证:f x ()是偶函数.剖析:在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是偶函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数 y f x =()是偶函数.证实:设y f x =()图象上随意率性一点为P (x y 00,)y f x =()与y f x=-()的图象关于原点对称, ∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上, 又y f x 00=() 即对于函数界说域上的随意率性x 都有f x f x ()()-=,所所以y f x =()偶函数.3. 断定单调性依据函数的奇偶性.单调性等有关性质,画出函数的示意图,以形助数,问题敏捷获解.例5. 假如奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 剖析:画出知足题意的示意图1,易知选B.图1例6. 已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数照样减函数,并证实你的结论.剖析:如图2所示,易知f x ()在()-∞,0上是增函数,证实如下: 任取xx x x 121200<<⇒->-> 因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以 f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数. 图24. 寻找周期性这类问题较抽象,一般解法是细心剖析题设前提,经由过程相似,联想出函数原型,经由过程对函数原型的剖析或赋值迭代,获得问题的解. 例7. 设函数f x ()的界说域为R,且对随意率性的x,y 有f x y f x y f x f y ()()()()++-=⋅2,并消失正实数c,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请解释来由.剖析:细心不雅察剖析前提,联想三角公式,就会发明:y x =c o s 知足题设前提,且cos π20=,猜测f x ()是以2c 为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 求函数值紧扣已知前提进行迭代变换,经有限次迭代可直接求出成果,或者在迭代进程中发明函数具有周期性,运用周期性使问题奇妙获解.例8. 已知f x()的界说域为R+,且fxy fx fy()()()+=+对一切正实数x,y都成立,若f()84=,则f(2)=_______.剖析:在前提fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是界说在R上的函数,且知足:f x f x f x()[()]()+-=+211,f()11997=,求f(2001)的值.剖析:紧扣已知前提,并多次运用,发明f x()是周期函数,显然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f xf x f x()()()+=-+=81 4故f x()是以8为周期的周期函数,从而6. 比较函数值大小运用函数的奇偶性.对称性等性质将自变量转化到函数的单调区间内,然后运用其单调性使问题获解.例10. 已知函数f x()是界说域为R的偶函数,x<0时,f x()是增函数,若x 1<,x20>,且||||x x12<,则f x f x()()--12,的大小关系是_______.剖析: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是增函数,f x ()是偶函数,故f x f x ()()->-127. 评论辩论方程根的问题例11. 已知函数f x ()对一切实数x 都知足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.剖析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴. 又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 评论辩论不等式的解求解这类问题运用函数的单调性进行转化,脱去函数符号.例12. 已知函数f x ()是界说在(]-∞,1上的减函数,且对一切实数x,不等式fk x fk x(s i n )(s i n)-≥-22恒成立,求k 的值. 剖析:由单调性,脱去函数记号,得由题意知(1)(2)两式对一切x R ∈恒成立,则有 9. 研讨函数的图象这类问题只要运用函数图象变换的有关结论,就可获解.例13. 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称.剖析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例14. 若函数f x ()的图象过点(0,1),则f x ()+4的反函数的图象必过定点______.剖析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-. 10. 求解析式例15. 设函数f x ()消失反函数,g x f x h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()剖析:请求y h x =()的解析式,本质上就是求y h x =()图象上任一点Px y ()00,的横.纵坐标之间的关系.点Px y ()00,关于直线y x =-的对称点()--y x 00,合适y f x =-1(),即-=-x g y 00(). 又gx f x ()()=-1,即h x f x ()()=--,选B. 抽象函数的周期问题2001年高考数学(文科)第22题:设f x ()是界说在R 上的偶函数,其图象关于直线x =1对称.对随意率性x x 12012,,∈[]都有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,求f f ()()1214,; (II )证实f x ()是周期函数. 解析:(I )解略.(II )证实:依题设y f x =()关于直线x =1对称 故f x f x x R ()()=-∈2, 又由f x ()是偶函数知 将上式中-x以x 代换,得 这标明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的本质是f x ()的图象关于直线x =0对称 又f x ()的图象关于x =1对称,可得f x ()是周期函数 且2是它的一个周期由此进行一般化推广,我们得到思虑一:设f x ()是界说在R 上的偶函数,其图象关于直线x aa =≠()0对称,证实f x ()是周期函数,且2a 是它的一个周期.证实: f x ()关于直线x a=对称 又由f x ()是偶函数知f x f x x R ()()-=∈, 将上式中-x以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思虑二:设f x ()是界说在R 上的函数,其图象关于直线x a =和x ba b =≠()对称.证实f x ()是周期函数,且2()b a -是它的一个周期. 证实: f x ()关于直线x a x b ==和对称 将上式的-x以x 代换得 ∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()照样不是周期函数?经由摸索,我们得到思虑三:设f x ()是界说在R 上的奇函数,其图象关于直线x =1对称.证实f x ()是周期函数,且4是它的一个周期.,证实: f x ()关于x =1对称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x以x 代换,得 ∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的本质是f x ()的图象关于原点(0,0)中间对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思虑四:设f x ()是界说在R 上的函数,其图象关于点M a (),0中间对称,且其图象关于直线x bb a =≠()对称.证实f x ()是周期函数,且4()b a -是它的一个周期.证实: f x ()关于点M a (),0对称 ∴-=-∈f a x f x x R ()()2, f x ()关于直线x b =对称∴=-∈∴-=--∈f x f b x x Rf b x f a x x R()()()()222,,将上式中的-x以x 代换,得 f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上我们发明,界说在R 上的函数f x (),其图象如有两条对称轴或一个对称中间和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,界说在R 上的函数f x (),其图象假如有两个对称中间,那么f x ()是否为周期函数呢?经由摸索,我们得到思虑五:设f x ()是界说在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证实f x ()是周期函数,且2()b a -是它的一个周期.证实: f x ()关于Ma Nb ()(),,,00对称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x R f a x f b x x R()()()()()()2222,,,将上式中的-x 以x 代换,得f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解法规谈抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其知足的前提的函数,如函数的界说域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高级数学函数部分的一个连接点,因为抽象函数没有具体的解析表达式作为载体,是以懂得研讨起来比较艰苦.但因为此类试题即能考核函数的概念和性质,又能考核学生的思维才能,所以备受命题者的青睐,那么,如何求解抽象函数问题呢,我们可以运用特别模子法,函数性质法,特别化办法,联想类比转化法,等多种办法从多角度,多层面去剖析研讨抽象函数问题, 一:函数性质法函数的特点是经由过程其性质(如奇偶性,单调性周期性,特别点等)反响出来的,抽象函数也是如斯,只有充分发掘和运用题设前提和隐含的性质,灵巧进行等价转化,抽象函数问题才干转化,化难为易,经常运用的解题办法有:1,运用奇偶性整体思虑;2,运用单调性等价转化;3,运用周期性回归已知4;运用对称性数形联合;5,借助特别点,布列方程等. 二:特别化办法1在求解函数解析式或研讨函数性质时,一般用代换的办法,将x 换成-x 或将x 换成等 2在求函数值时,可用特别值代入3研讨抽象函数的具体模子,器具体模子解选择题,填空题,或由具体模子函数对分解题,的解答供给思绪和办法.总之,抽象函数问题求解,用通例办法一般很难凑效,但我们假如能经由过程对标题标信息剖析与研讨,采取特别的办法和手腕求解,往往会收到事半功倍之功能,真有些山穷水复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对随意率性x.y ∈R 都有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为天然数,(t>0)试求f(t)的表达式②知足f(t)=t 的所有整数t 可否组成等差数列?若能求出此数列,若不克不及解释来由 ③若t 为天然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒成立,求m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)界说域都是R,且g(x)>0, g(1) =2,g(x) 是增函数. g(m) · g(n)=g(m+n)(m.n ∈R)求证:①f(x)是R 上的增函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的增函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的增函数②g(x) 知足g(m) · g(n)= g(m+n)(m.n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1 ∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+∞)上的随意率性两相异实数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①求证:f (x)在(0,+∞)上单增. ②设F(x)=x f (x), a>0.b>0. 求证:F(a+b)> F(a)+F(b) . ①证实:设 x1>x2>0f1(x) 在(0,+∞)上单增f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)在(0,+∞)上单增 ②F(x)=x f (x), a>0.b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+∞)上单增∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)知足 ①f(a+b)=f (a)·f (b),②f(4)=16, m.n 为互质整数,n≠0 求f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(抵触)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)长短负函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 界说在(-1,1)上的函数f (x)知足 ① 随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 剖断f(x)在(-1,1)上的奇偶性,并解释来由 2) 剖断f(x)在(-1,0)上的单调性,并给出证实3) 求证:f (1312++n n )=f (11+n )-f (21+n )或f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*) 解:1)界说在(-1,1)上的函数f (x)知足随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)在(-1,0)上单调递增.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是界说在R 上的偶函数,其图像关于直线x=1对称, 对随意率性x1.x2∈[0,12]都有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①求f (12)及 f (14);②证实f(x)是周期函数③记an=f(2n+12n ), 求lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是偶函数,其图像关于直线x=1对称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x). ∴f(x)是以2为周期的周期函数.③an=f(2n+12n )= f (12n)=n a 21∴lim ∞→n (lnan)= lim ∞→n aa 2ln =07. 设)(x f y =是界说在R 上的恒不为零的函数,且对随意率性x.y ∈R 都有f(x+y)=f(x)f(y)①求f(0),②设当x<0时,都有f(x)>f(0)证实当x>0时0<f(x)<1, ③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项和,求lim ∞→n sn.解:①②仿前几例,略. ③an =f(n),∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an∴数列{an }是首项为21公比为21的等比数列∴sn =1-n⎪⎭⎫ ⎝⎛21∴lim ∞→n sn =18. 设)(x f y =是界说在区间]1,1[-上的函数,且知足前提: (i );0)1()1(==-f f(ii )对随意率性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证实:对随意率性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证实:对随意率性的;1|)()(|],1,1[,≤--∈v f u f v u 都有 (Ⅲ)在区间[-1,1]上是否消失知足题设前提的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当 若消失,请举一例:若不消失,请解释来由.(Ⅰ)证实:由题设前提可知,当]1,1[-∈x 时,有,1|1|)1()(|)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)证法一:对随意率性的 1.|v -u ||f(v)-f(u)|,1||],1,1[,≤≤≤--∈有时当v u v u当0,u ,1|v -u |<⋅>v 时无妨设,0<u 则1,u -0>>v v 且 所以,|1||1||)1()(||)1()(||)()(|-++≤-+--≤-v u f v f f u f v f u f.1)(211<--=-++=u v v u 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f证法二:由(Ⅰ)可得,当.||11)1()(||)(|,]0,1[x,-1f(x),]1,0[x x f x f x f x x -=+≤--=-∈≤∈时时 所以,当.||1)(|,]1,1[x x f x -≤-∈时是以,对随意率性的],1,1[,-∈v u当1||≤-v u 时,.1|||)()(|≤-≤-v u v f u f 当1||>-v u 时,有0<⋅v u 且.2||||||1≤+=-<v u v u所以.1)||(|2||1||1|)(||)(||)()(|≤+-=-+-≤+≤-v u v u v f u f v f u f 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f(Ⅲ)答:知足所述前提的函数不消失.来由如下,假设消失函数)(x f 知足前提,则由],1,21[,|,||)()(|∈-=-v u v u v f u f得.21|121||)1()21(|=-=-f f 又,0)1(=f 所以.21|)21(|=f ①。
求抽象函数解析式的几种方法及适用范围
求函数的解析式的几种方法一:方法名称:配凑法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式2再把g(x)用h(x)代替例:的解析式。
已知求的解析式。
已知f(x+1)=x-3, 求f(x) 的解析式。
已知,求的解析式。
二:方法名称:换元法适用范围:已知f(g(x))的解析式,求f(h(x))的解析式方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围)2在用一个只含有t的式子把x表示出来3然后把这个式子在解析式的右端的x中,使右边只含有t4再把t用h(x)代替。
例题:已知求的解析式。
已知f()=x2+5x,则f(x)的解析式。
三方法名称:待定系数法适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)方法步骤:1先设出函数解析式(如f(x)=ax+b)2把解析式的左端用这个函数模型表示出来4求出函数模型的系数例:四方法名称:方程组法适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。
等号右边也含有变量x。
方法步骤:将左边的两个抽象函数看成两个变量。
变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式例:设f(x)满足关系式 ,求函数的解析式.五:方法名称:赋值法适用范围:一般包含一句话“对任意实数满足”方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。
例:。
抽象函数常见题型解法
且存在,使得,求函数的值域。 解:令,得,即有或。 若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必
有。 由于对任意均成立,因此,对任意,有 下面来证明,对任意 设存在,使得,则 这与上面已证的矛盾,因此,对任意。所以 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的
五、单调性问题 例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y, 有,求证:在R上为增函数。 证明:在中取,得 若,令,则,与矛盾 所以,即有 当时,;当时, 而所以 又当时,。所以对任意,恒有
设,则 所以,所以在R上为增函数。 评析:一般地,抽象函数所满足的关系式,应看作给定的运算法 则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给 关系式及所求的结果相关联。
, ( ),考察下列结论,① ;②
为偶函数;③数列
为等差数列;④数列
为等比数列,其中正确的是_______(填序号) 答案 ①③④ 3.(岳阳联考题)若
是定义在
上的函数,对任意的实数
,都有
和
且
,则
的值是( )答案 C
A.2008
B.2009
C.2010
4.(成都市石室中学高三三诊模拟)定义在[0,1]上的函数
抽象函数专题训练
1 线性函数型抽象函数
【例题1】已知函数对任意实数,均有,且当时,求在区间上的值域。 【例题2】已知函数对任意实数,均有,且当时,求不等式的解。
2 指数函数型抽象函数
【例题3】已知函数定义域为R,满足条件:存在,使得对任何和,成 立。 求:(1) (2) 对任意值,判断值的正负。 【例题4】是否存在函数满足下列三个条件:
抽象函数常见题型和解法
抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。
即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。
例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。
即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。
例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。
即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。
例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。
抽象函数几类问题的解题方法与技巧
一、求解析式的一般方法 1、换元法例1:已知f(x+1)=x 2-2x 求f(x)解:令t=x+1则x=t-1 f(t)=(t-1)2-2(t-1)=t 2-4t-3∴f(x)=x 2-4x-3换元法是解决抽象函数问题的基本方法,换元法包括显性换元法和隐性换元法。
2、方程组法例2:若函数f(x)满足f(x)+2f(x1)=3x ,求f(x) 解:令x=x 1则f(x 1)+2f(x)= x 3 f(x)+2f(x 1)=3x =>f(x)= x 2-x2f(x)+f(x 1)=x 3∴f(x)= x2-x例3 .例43、待定系数法例5:如果f[f(x)]=2x-1则一次函数f(x)=______ 解:f(x)是一次函数∴不妨设f(x)=ax+b(a ≠0)则f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b 又已知f[f(x)]=2x-1例6:已知f(x)是多项式函数,解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x2-2x-1.如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
二、判断奇偶性的一般方法在奇偶性的求解中,常用方法是赋值法,赋值法中常见的赋值有-1、0、1。
例7 定义在(-1、1)上的函数f(x)满足。
(1)对任意x、y∈ (-1、1) 都有f(x)+f(y)=f()(2)当x∈ (-1、0) 时,有f(x)>0求证(I)f(x)是奇函数,(II)f(证明:(1)令x=y=0,则2f(0)=f(0) ∴f(0)=0令y=-x,则f(x)+f(y)=f(x)+f(-x)=f(=f(0)=0∴f(-x)=-f(x) ∴f(x)是奇函数例8定义在R上的函数f(x),对任意 x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1)求证f(0)=1 (2)求证y=f(x)是偶函数证明:(1)令x=y=0∴f(0)+f(0)=2×f(0)2∵f(0)≠0∴f(0)=1(2)令x=0则f(0+y)+ f(0-y)=2 f(0)f(y)f(y)+f(-y)=2f(y) =>f(-y)=f(y) =>y=f(x)是偶函数例9.对任意实数x,y ,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+1)=f(0)+2f[(1)]2,三、单调性的求解方法例6:定义域为R 的函数f(x)满足:对于任意的实数x 、y 都有f(x+y)=f(x)+f(y)成立,且当x >0时,f(x)<0恒成立。
抽象函数的定义域的求法-解析式的求法-很全面
题型3:复合函数及其定义域的求法一.基本知识(1)函数的概念:设是A,B非空数集,如果按某个确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:ATB为集合A到集合B的函数,记作:y=f(x),xeA。
其中x叫自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值.(2)复合函数的定义:一般地:若y=f(u),又u=g(x),且g(x)值域与f(u)定义域的交集不空,则函数y=f[g(x)]叫x的复合函数,其中y=f(u)叫外层函数,u=g(x)叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如:f(x)二3x+5,g(x)二x2+1;复合函数f(g(x))即把f(x)里面的x换成g(x),f(g(x))=3g(x)+5=3(x2+1)+5=3x2+8(3)复合函数的定义域函数f(g(x))的定义域还是指x的取值范围,而不是g(x)的取值范围.①已知f(x)的定义域,求复合函数f[g GM的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若f(x)的定义域为xe(a,b),求出f[g(x)]中a<g(x)<b的解x的范围,即为f[g(x)]的定义域。
②已知复合函数f[g6》的定义域,求f(x)的定义域方法是:若f[gQ的定义域为xe(a,b),则由a<x<b确定g(x)的范围即为f(x)的定义域③已知复合函数f[g(x)]的定义域,求f[h(x)]的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由f[g(x》定义域求得fC)的定义域,再由fG)的定义域求得f[hGR的定义域。
④已知f(x)的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
抽象函数常见题型解法
抽象函数常见题型解法作者:文/王新荣来源:《新课程·中学》2014年第05期不给出具体解析式,只给出函数的特殊条件或特征的函数即为抽象函数。
一般形式为y=f (x),或许还附有定义域、值域等,如,y=f(x),(x>0,y>0)。
由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域、值域、单调性、奇偶性、周期性和图象集于一身,所以在各地高考试题中不断出现;学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法归类如下:题型一:求抽象函数的定义域例1.已知函数f(x-1)的定义域为[0,3],求f[log■(3-x)的定义域。
解析:自变量x的取值范围即为函数的定义域,因此函数f(x-1)中x-1∈[-1,2],所以log■(3-x)∈[-1,2],所求定义域为[1,■]一般情况下,函数y=f(x)定义域为[a,b],则函数y=f(g(x))的定义域为不等式a≤g(x)≤b的解集;函数y=f(g(x))的定义域[a,b],则函数y=f(x)定义域为g (x)(x∈[a,b])的值域。
题型二:求抽象函数值例2.已知函数f(x)满足:当x>4时,f(x)=(■)x,当x<4时,f(x)=f(x+1),求f(2+log23)的值。
解析:首先判断2+log23∈[3,4],再根据当x<4时,f(x)=f(x+1)得f(2+log23)=f(3+log23),所以f(2+log23)=(■)■=■。
题型三:求抽象函数的解析式例3.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=■,求f(x)和g (x)。
解析:用-x代换x得:f(-x)+g(-x)=■,由于已知f(x)为奇函数,g(x)为偶函数,所以-f(x)+g(x)=■,与已知条件解方程组即可得f(x)和g(x)解析式.题型四:判断或证明抽象函数的奇偶性例4.已知函数f(x)(x∈R,x≠0)对任意不等于0的实数x1,x2都有f(x1+x2)=f (x1)+f(x2),试判断函数f(x)的奇偶性。
常见抽象函数解析式的求法
常见抽象函数解析式的求法2019-03-07由于函数概念⽐较抽象,学⽣对解有关函数记号的问题感到困难,学好这部分知识,能加深学⽣对函数概念的理解,使其更好地掌握函数的性质,培养灵活性;提⾼解题能⼒,优化学⽣数学思维。
现将常见解法及意义总结如下。
⼀、换元法即⽤中间变量表⽰原⾃变量x的代数式,从⽽求出f(x),这也是证某些公式或等式常⽤的⽅法,此法能培养学⽣的灵活性及变形能⼒。
例1 已知f()=2x+1,求f(x)。
解:设 =u,则x= ,f(u)=2 +1= ,f(x)= 。
⼆、凑合法在已知f(g(x))=h(x)的条件下,把h(x)并凑成以g(u)表⽰的代数式,再利⽤代换即可求f(x)。
此解法简洁,还能进⼀步复习代换法。
例2 已知f(x+ )=x3+ ,求f(x)。
解:f(x+ )=(x+ )=(x2-1+ )=(x+ )((x+ )2-3),⼜|x+ |=|x|+ ≥1,f(x)=x(x2-3)=x3-3x,(|x|≥1)。
三、待定系数法先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3 已知f(x)⼆次实函数,且f(x+1)+f(x-1)=x2+2x+4,求f(x)。
解:设f(x)=ax2+bx+c,则f(x+1)+f(x-1)=a(x+1)2+b(x+1)c+a(x-1)2+b(x-1)+c=2ax2+2bx+2(a+c)=x2+2x+4,⽐较系数得2(a+c)=42a=12b=2 a= ,b=1,c= ,f(x)= x2+x+ 。
四、利⽤函数性质法主要利⽤函数的奇偶性,求分段函数的解析式。
例4 已知y=f(x)为奇函数,当x>0时,f(x)=lg(x+1),求f(x)。
解:f(x)为奇函数,f(x)的定义域关于原点对称,故先求x-x>0,f(-x)=lg(-x+1)=lg(1-x),f(x)为奇函数,lg(1-x)=f(-x)=-f(x),当x五、构建⽅程组法例5 已知f(x)为偶函数,g(x)为奇函数,且有f(x)+g(x)= ,求f(x),g(x)。
抽象函数常见题型和解法
抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。
即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。
例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。
即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。
例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。
即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。
例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。
数学解题方法(抽象函数)
数学解题方法(抽象函数)。
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数,它是中学数学函数部分的难点.因为抽象,学生难以理解,接受困难;因为抽象,教师对教材难以处理,何时讲授,如何讲授,讲授哪些内容,采用什么方式等等,深感茫然无序.其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路,本文就上述问题作一些探讨.1. 正比例函数型的抽象函数例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.2. 幂函数型的抽象函数例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤,求a的取值范围.分析:(1)令y=-1;(2)利用f(x1)=f(·x2)=f()f(x2);(3)0≤a≤2.3. 指数函数型的抽象函数例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1) f(0);(2)对任意值x,判断f(x)值的符号.分析:(1)令y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明4. 对数函数型的抽象函数例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1) f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;(2)利用函数的单调性和已知关系式.例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g (b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….5. 三角函数型的抽象函数例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:① x1、x2是定义域中的数时,有f(x1-x2)=;② f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0. 试问:(1) f(x)的奇偶性如何?说明理由;(2)在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f [-(x1-x2)]=-f [(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y=-1;(2)令y=-1;(3)由f(x)为偶函数,则f(x)=f(|x|). 例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2) f(x)在x ∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:由f(x+y)=f(x)f(y)可得f(x-y)=,进而由x1<x2,有=f(x1-x2)>1.高一数学抽象函数的经典题定义域(0,+∞)上的增函数f(x)满足:f(x/y)=f(x)-f(y),(1)求证:f(x^n)=nf(x)(2)求证:f(xy)=f(x)+f(y)分析:做这题的时候,先要证明(2)再证(1)(2)证明:因为y∈(0,+∞)所以1/y∈(0,+∞)f(xy)-f(y)=f(x/(1/y))-f(y)因为f(x/y)=f(x)-f(y)所以f(x/(1/y))-f(y)=f{[x/(1/y)]/y}=f(x)也就是f(xy)-f(y)=f(x)所以 f(xy)=f(x)+f(y) (证毕)(1)证明:由上述证明结论可知,f(xy)=f(x)+f(y)则f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)f(x^4)=f(x^3*x)=f(x^3)+f(x)=3f(x)+f(x)=4f(x)…….同理可求得f[(x^(n-1)]=f[x^(x-2)*x]=f[x^(x-2)]+f(x)=(n-2)f(x)+f(x)=(n-1)f(x)f(x^n)=f[x^(n-1)*x]=f[x^(x-1)]+f(x)=(n-1)f(x)+f(x)=nf(x)综上所述得:f(x^n)=nf(x) (证毕)希望对你有帮助补充:(1)证明时,第一步应包括n=1的情况,即则f(x^1)=1*f(x)f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)以下同,另结论时补上:对于n∈N+时,f(x^n)=nf(x) 恒成立,对于n∈N-的情况,有兴趣的可以讨论一下高一函数解题思路,首先把握定义和题目的叙述2,记住一次函数与坐标轴的交点坐标,必须很熟3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况)如果你是中学生的话,就参考一下我的回答吧。
求抽象函数解析式的常用方法
求抽象函数解析式的常用方法作者:年东升来源:《甘肃教育》2009年第07期〔关键词〕抽象函数;解析式;配方法;换元法;待定系数法;递推法〔中图分类号〕G633.62〔文献标识码〕 C〔文章编号〕 1004—0463(2009)04(A)—0050—01配方法当已知复合函数f[g(x)]的表达式较简单时,可采用配方法,使得f下输入的变量与解析式输出的变量一致,从而求出f(x)的解析式.例1:已知f(x+1)=x2+2x+3,求f(x).解:f(x+1)=x2+2x+3=(x+1)2+2,即f(x)=x2+2(x∈R).评析:求一个函数的解析式,就是要清楚对接受法则的对象实施什么运算,而不是在意接受法则的是哪一个字母或怎样的式子.在函数的定义域和对应法则f不变的条件下,可以变换自变量字母,以至变换为其他字母的代数式,例如f(x)=x2+1与f(u+1)2=(u+1)2+1应视为同一函数.换元法形如f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,再代入g (x)进行换元来解.评析:(1)在进行变形或变量代换的过程中,要注意变量取值范围的变化.(2)换元法是一种通性通法,适合于形如f[h(x)]=g(x)的函数解析式.待定系数法有时题目给出函数特征,求函数的解析式,可用待定系数法.比如函数是二次函数,可设f (x)=ax2+bx+c(a≠0),其中a,b,c是要待定的系数,然后根据题设条件列出方程组,解出a,b,c即可.例3:已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,求f(x).解:设f(x)=ax2+bx+c(a≠0).由f(0)=0,知c=0,故f(x)=ax2+bx.又由f(x+1)=f(x)+x+1,得a(x+1)2+b(x+1)=ax2+bx+x+1,即ax2+(2a+b)x+a+b=ax2+(b+1)x+1.评析:已知函数解析式的构造时,也可用待定系数法.如:已知f(3x+1)=9x2-6x+5,求f(x).可设f(x)=ax2+bx+c(a≠0),则f(3x+1)=a(3x+1)2+b(3x+1)+c=9ax2+(6a+3b)x+a+b+c,然后再比较等式两边系数解出a,b,c即可.解方程组法根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).递推法若已知f(x)的表达式与正整数等有关时,可以将数列与函数有机地结合起来,用迭代相加的方法求f(x)的解析式.例5:设f(x)是定义在正整数集上的函数,并满足f(x1+x2)=f(x1)+f(x2)+x1x2,且f(1)=1(x1,x2∈N+),求f(x).解:∵ f(1)=1,f(x+1)=f(x)+x+1,即f(x+1)-f(x)=x+1,则f(2)-f(1)=2f (3)-f(2)=3…f(x)-f(x-1)=x,将以上各式相加,得f(x)-f(1)=2+3+4+…+x .。