高中数学专题:抽象函数常见题型解法

合集下载

抽象函数解题题型大全(例题含标准答案)

抽象函数解题题型大全(例题含标准答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数常见题型解法

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。

解:设x x 12<且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

抽象函数解题-题型大全(例题-含答案)

抽象函数解题-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数常见题型解法

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f()()>-=-012,,求f x()在[]-21,上的值域。

解:设x x12<且x x R12,∈,则x x210->,由条件当x>0时,f x()>0∴->f x x()21又f x f x x x()[()]2211=-+=-+>f x x f x f x()()()2111∴f x()为增函数,令y x=-,则f f x f x()()()0=+-又令x y==0得f()00=∴-=-f x f x()(),故f x()为奇函数,∴=-=f f()()112,f f()()-=-=-2214∴-f x()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

关于抽象函数问题的解法

关于抽象函数问题的解法

抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

下考抽象函数本领归纳之阳早格格创做由于函数观念比较抽象,教死对付解有闭函数暗号()f x 的问题感触艰易,教佳那部分知识,能加深教死对付函数观念的明白,更佳天掌握函数的本量,培植机动性;普及解题本领,劣化教死数教思维素量.现将罕睹解法及意义归纳如下:一、供表白式:1.换元法:即用中间变量表示本自变量x 的代数式,从而供出()f x ,那也是证某些公式大概等式时常使用的要领,此法解培植教死的机动性及变形本领.例1:已知 ()211x f x x =++,供()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1x f x x-=- 2.拼集法:正在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可供()f x .此解法简净,还能进一步复习代换法.例2:已知3311()f x x x x +=+,供()f x解:∵22211111()()(1)()(()3)f x x x x x x xx x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先决定函数典型,设定函数闭系式,再由已知条件,定出闭系式中的已知系数.例3. 已知()f x 二次真函数,且2(1)(1)f x f x x ++-=+2x +4,供()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数本量法:主要利用函数的奇奇性,供分段函数的剖析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,供()f x解:∵()f x 为奇函数,∴()f x 的定义域闭于本面对付称,故先供x <0时的表白式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为奇函数,()g x 为奇函数,且有()f x +1()1g x x =-, 供()f x ,()g x . 解:∵()f x 为奇函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……② 隐睹①+②即可消去()g x ,供出函数21()1f x x =-再代进①供出2()1xg x x =- 5.赋值法:给自变量与特殊值,从而创造顺序,供出()f x 的表白式例6:设()f x 的定义域为自然数集,且谦脚条件(1)()()f x f x f y xy +=++,及(1)f =1,供()f x解:∵()f x 的定义域为N ,与y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二、利用函数本量,解()f x 的有闭问题1.推断函数的奇奇性:例7 已知()()2()()f x y f x y f x f y ++-=,对付一确真数x 、y 皆创造,且(0)0f ≠,供证()f x 为奇函数.道明:令x =0, 则已知等式形成()()2(0)()f y f y f f y +-=……①正在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为奇函数.例8:奇函数()f x 正在定义域(-1,1)内递减,供谦脚2(1)(1)0f m f m -+-<的真数m 的与值范畴. 解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 正在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解大概式的有闭题目例9:如果()f x =2ax bx c ++对付任性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对付任性t 有(2)2)f t f t +=-∴x =2为扔物线y =2ax bx c ++的对付称轴 又∵其启心进与∴f (2)最小,f (1)=f (3)∵正在[2,+∞)上,()f x 为删函数∴f (3)<f (4),∴f (2)<f (1)<f (4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1、已知函数f(x)对付任性真数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,供f(x)正在区间[-2,1]上的值域.领会:由题设可知,函数f(x)是的抽象函数,果此供函数f(x)的值域,闭键正在于钻研它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为删函数.正在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2、已知函数f(x)对付任性,谦脚条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,供不等式的解.领会:由题设条件可预测:f(x)是y=x+2的抽象函数,且f(x)为单调删函数,如果那一预测精确,也便不妨脱去不等式中的函数标记,从而可供得不等式的解. 解:设,∵当,∴,则,即,∴f(x)为单调删函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),谦脚条件:存留,使得,对付所有x战y,创造.供:(1)f(0);(2)对付任性值x,推断f(x)值的正背.领会:由题设可预测f(x)是指数函数的抽象函数,从而预测f (0)=1且f(x)>0.解:(1)令y=0代进,则,∴.若f(x)=0,则对付任性,有,那与题设冲突,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对付任性x,f(x)>0恒创造.例4、是可存留函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4.共时创造?若存留,供出f (x)的剖析式,如不存留,道明缘由.领会:由题设可预测存留,又由f(2)=4可得a=2.故预测存留函数,用数教归纳法道明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,论断精确.(2)假设时有,则x=k+1时,,∴x=k+1时,论断精确.综上所述,x为十足自然数时.3、对付数函数型抽象函数对付数函数型抽象函数,即由对付数函数抽象而得到的函数.例5、设f(x)是定义正在(0,+∞)上的单调删函数,谦脚,供:(1)f(1);(2)若f(x)+f(x-8)≤2,供x的与值范畴.领会:由题设可预测f(x)是对付数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的删函数,故,解之得:8<x≤9.例6、设函数y=f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是可精确,试道明缘由.领会: 由题设条件可预测y=f(x)是对付数函数的抽象函数,又∵y =f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是预测g(a+b)=g(a)·g(b)精确.解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g (m)=a,g(n)=b,从而,∴g (m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g (a+b)=g(a)·g(b).4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7、己知函数f(x)的定义域闭于本面对付称,且谦脚以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇奇性怎么样?道明缘由.(2)正在(0,4a)上,f(x)的单调性怎么样?道明缘由.领会: 由题设知f(x)是的抽象函数,从而由及题设条件预测:f(x)是奇函数且正在(0,4a)上是删函数(那里把a瞅成举止预测).解:(1)∵f(x)的定义域闭于本面对付称,且是定义域中的数时有,∴正在定义域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵正在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于整,从而知中的,于是f(x1)<f(x2),∴正在(0,2a)上f(x)是删函数.又,∵f(a)=-1,∴,∴f (2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即正在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f (x2)均大于整.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)正在(2a,4a)上也是删函数.综上所述,f(x)正在(0,4a)上是删函数.5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8、已知函数f(x)对付任性真数x、y皆有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)推断f(x)的奇奇性;(2)推断f(x)正在[0,+∞)上的单调性,并给出道明;(3)若,供a的与值范畴.领会:由题设可知f(x)是幂函数的抽象函数,从而可预测f(x)是奇函数,且正在[0,+∞)上是删函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为奇函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)正在0,+∞)上是删函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕睹题型解法综述抽象函数是指不给出函数的简曲剖析式,只给出了一些体现函数个性的式子的一类函数.由于抽象函数表示形式的抽象性,使得那类问题成为函数真量的易面之一.本文便抽象函数罕睹题型及解法评析如下:一、定义域问题例1. 已知函数的定义域是[1,2],供f(x)的定义域.解:的定义域是[1,2],是指,所以中的谦脚从而函数f(x)的定义域是[1,4]评析:普遍天,已知函数的定义域是A,供f(x)的定义域问题,相称于已知中x的与值范畴为A,据此供的值域问题.例2. 已知函数的定义域是,供函数的定义域.解:的定义域是,意义是凡是被f效率的对付象皆正在中,由此可得所以函数的定义域是评析:那类问题的普遍形式是:已知函数f(x)的定义域是A,供函数的定义域.精确明白函数标记及其定义域的含意是供解此类问题的闭键.那类问题真量上相称于已知的值域B,且,据此供x 的与值范畴.例2战例1形式上正好同.二、供值问题例3. 已知定义域为的函数f(x),共时谦脚下列条件:①;②,供f(3),f(9)的值.解:与,得果为,所以又与得评析:通过瞅察已知与已知的通联,巧妙天赋值,与,那样便把已知条件与欲供的f(3)相通了起去.赋值法是解此类问题的时常使用本领.三、值域问题例4. 设函数f(x)定义于真数集上,对付于任性真数x、y,总创造,且存留,使得,供函数的值域.解:令,得,即有大概.若,则,对付任性均创造,那与存留真数,使得创造冲突,故,必有.由于对付任性均创造,果此,对付任性,有底下去道明,对付任性设存留,使得,则那与上头已证的冲突,果此,对付任性所以评析:正在处理抽象函数的问题时,往往需要对付某些变量举止符合的赋值,那是普遍背特殊转移的需要脚法.四、剖析式问题例5. 设对付谦脚的所有真数x,函数谦脚,供f(x)的剖析式.解:正在中以代换其中x,得:再正在(1)中以代换x,得化简得:评析:如果把x战分别瞅做二个变量,何如真止由二个变量背一个变量的转移是解题闭键.常常情况下,给某些变量符合赋值,使之正在闭系中“消得”,从而死存一个变量,是真止那种转移的要害战术.五、单调性问题例6. 设f(x)定义于真数集上,当时,,且对付于任性真数x、y,有,供证:正在R上为删函数.道明:正在中与,得若,令,则,与冲突所以,即有当时,;当时,而所以又当时,所以对付任性,恒有设,则所以所以正在R上为删函数.评析:普遍天,抽象函数所谦脚的闭系式,应瞅做给定的运算规则,则变量的赋值大概变量及数值的领会与拉拢皆应尽管与已知式大概所给闭系式及所供的截止相闭联.六、奇奇性问题例7. 已知函数对付任性不等于整的真数皆有,试推断函数f(x)的奇奇性.解:博得:,所以又博得:,所以再与则,即果为为非整函数,所以为奇函数.七、对付称性问题例8. 已知函数谦脚,供的值.解:已知式即正在对付称闭系式中与,所以函数的图象闭于面(0,2002)对付称.根据本函数与其反函数的闭系,知函数的图象闭于面(2002,0)对付称.所以将上式中的x用代换,得评析:那是共一个函数图象闭于面成核心对付称问题,正在解题中使用了下述命题:设a、b均为常数,函数对付一确真数x皆谦脚,则函数的图象闭于面(a,b)成核心对付称图形.八、搜集概括问题例9. 定义正在R上的函数f(x)谦脚:对付任性真数m,n,总有,且当x>0时,0<f(x)<1.(1)推断f(x)的单调性;(2)设,,若,试决定a的与值范畴.解:(1)正在中,令,得,果为,所以.正在中,令果为当时,所以当时而所以又当x=0时,,所以,综上可知,对付于任性,均有.设,则所以所以正在R上为减函数.(2)由于函数y=f(x)正在R上为减函数,所以即有又,根据函数的单调性,有由,所以曲线与圆里无大众面.果此有,解得.评析:(1)要计划函数的单调性必定波及到二个问题:一是f(0)的与值问题,二是f(x)>0的论断.那是解题的闭键性步调,完毕那些要正在抽象函数式中举止.由特殊到普遍的解题思维,奇像类比思维皆有帮于问题的思索妥协决.定义正在R 上的函数f x ()谦脚:f x f x ()()=-4且f x f x ()()220-+-=,供f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代进,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对付任性真数x y ,皆有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,供f x ()正在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由条件当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为删函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 供参数范畴那类参数隐含正在抽象函数给出的运算式中,闭键是利用函数的奇奇性战它正在定义域内的删减性,去掉“f ”标记,转移为代数不等式组供解,但是要特天注意函数定义域的效率.例3 已知f x ()是定义正在(-11,)上的奇函数,且正在(0,1)上为删函数,谦脚f a f a ()()---<2402,试决定a 的与值范畴. 解: f x ()是奇函数,且正在(0,1)上是删函数,∴f x ()正在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不可坐.(2)当32<<a 时,(3)当25<<a 时,综上所述,所供a 的与值范畴是()()3225,, . 例 4 已知f x ()是定义正在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对付x R ∈恒创造,供真数m 的与值范畴.解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对付x R ∈恒创造⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对付x R ∈恒创造⇔ 对付x R ∈恒创造, 三. 解不等式那类不等式普遍需要将常数表示为函数正在某面处的函数值,再通过函数的单调性去掉函数标记“f ”,转移为代数不等式供解.例5 已知函数f x ()对付任性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,供不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为删函数, 又f f f f f ()()()()()3212123145=+=+-=-=果此不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 道明某些问题例6 设f x ()定义正在R 上且对付任性的x 有f x f x f x ()()()=+-+12,供证:f x ()是周期函数,并找出它的一个周期.领会:那共样是不给出函数表白式的抽象函数,其普遍解法是根据所给闭系式举止递推,若能得出f x T f x ()()+=(T 为非整常数)则f x ()为周期函数,且周期为T. 道明: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364 由(3)战(4)得f x f x ()()=+6.上式对付任性x R ∈皆创造,果此f x ()是周期函数,且周期为6. 例7 已知f x ()对付十足x y ,,谦脚f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,供证:(1)x >0时,01<<f x ();(2)f x ()正在R 上为减函数.道明: 对付十足x y R ,∈有f x y f x f y ()()()+=⋅.且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 概括问题供解抽象函数的概括问题普遍易度较大,常波及到多个知识面,抽象思维程度央供较下,解题时需掌控佳如下三面:一是注意函数定义域的应用,二是利用函数的奇奇性去掉函数标记“f ”前的“背号”,三是利用函数单调性去掉函数标记“f ”.例8 设函数y f x =()定义正在R 上,当x >0时,f x ()>1,且对付任性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)道明f ()01=;(2)道明:f x ()正在R 上是删函数; (3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,供a b c ,,谦脚的条件.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00大概f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,那与当m n ≠时,f m f n ()()≠冲突, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,果为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1)、(2)中消去y 得()a b x a c x c b 2222220+++-<,果为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a bc 222+<例9 定义正在(-11,)上的函数f x ()谦脚(1),对付任性x y ,,∈-()11皆有f x f y f x yx y()()()+=++1,(2)当x ∈-()10,时,有f x ()>0,(1)试推断f x ()的奇奇性;(2)推断f x ()的单调性;(3)供证f f f n nf ()()()()15111131122+++++>…. 领会:那是一讲以抽象函数为载体,钻研函数的单调性与奇奇性,再以那些本量为前提去钻研数列供战的概括题.解:(1)对付条件中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所以f x ()是奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由条件(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数本量可知,f x ()正在(0,1)上仍是单调减函数. (3) f n n ()1312++ 抽象函数问题分类剖析咱们将不精确给出剖析式的函数称为抽象函数.连年去抽象函数问题频频出现于百般考查题中,由于那类问题抽象性强,机动性大,普遍共教感触狐疑,供解无从下脚.本文试图通过真例做分类剖析,供教习参照. 1. 供定义域那类问题只消紧紧抓住:将函数f g x [()]中的g x ()瞅做一个完全,相称于f x ()中的x 那一个性,问题便会迎刃而解.例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[l o g ()]222的定义域是___.领会:果为l o g()22x 2-相称于f x ()中的x ,所以l o g()2221x -≤,解得 22<≤x 大概-≤<-22x . 例2. 已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)12的定义域是______.领会:果为x a +及x a -均相称于f x ()中的x ,所以 (1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),12. 推断奇奇性根据已知条件,通过妥当的赋值代换,觅供f x ()与f x ()-的闭系. 例 3. 已知f x ()的定义域为R ,且对付任性真数x ,y 谦脚fx y fx f y()()()=+,供证:f x ()是奇函数. 领会:正在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是奇函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象闭于本面对付称,供证:函数y f x =()是奇函数.道明:设y f x =()图象上任性一面为P (x y 00,)y f x =()与y f x=-()的图象闭于本面对付称, ∴P x y ()00,闭于本面的对付称面()--x y 00,正在y f x =-()的图象上,又y f x 00=() 即对付于函数定义域上的任性x 皆有f x f x ()()-=,所以y f x =()是奇函数.3. 推断单调性根据函数的奇奇性、单调性等有闭本量,绘出函数的示企图,以形帮数,问题赶快获解.例5. 如果奇函数f x ()正在区间[]37,上是删函数且有最小值为5,那么f x ()正在区间[]--73,上是A. 删函数且最小值为-5B. 删函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 领会:绘出谦脚题意的示企图1,易知选B.图1例6. 已知奇函数f x ()正在(0),+∞上是减函数,问f x ()正在()-∞,0上是删函数仍旧减函数,并道明您的论断.领会:如图2所示,易知f x ()正在()-∞,0上是删函数,道明如下: 任与xx x x 121200<<⇒->-> 果为f x ()正在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是奇函数,所以f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()正在()-∞,0上是删函数. 图24. 探供周期性那类问题较抽象,普遍解法是小心领会题设条件,通过类似,奇像出函数本型,通过对付函数本型的领会大概赋值迭代,赢得问题的解.例7. 设函数f x()的定义域为R,且对付任性的x,y有f x y f x y f x f y()()()()++-=⋅2,并存留正真数c,使f c()2=.试问f x()是可为周期函数?假如,供出它的一个周期;若不是,请道明缘由.领会:小心瞅察领会条件,奇像三角公式,便会创造:y x=c o s谦脚题设条件,且cosπ2=,预测f x()是以2c为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 供函数值紧扣已知条件举止迭代变更,经有限次迭代可曲交供出截止,大概者正在迭代历程中创造函数具备周期性,利用周期性使问题巧妙获解.例8. 已知f x()的定义域为R+,且fxy fx fy()()()+=+对付十足正真数x,y皆创造,若f()84=,则f(2)=_______.领会:正在条件fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是定义正在R上的函数,且谦脚:f x f x f x()[()]()+-=+211,f()11997=,供f(2001)的值.领会:紧扣已知条件,并多次使用,创造f x()是周期函数,隐然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f x f x f x ()()()+=-+=814 故f x ()是以8为周期的周期函数,从而 6. 比较函数值大小利用函数的奇奇性、对付称性等本量将自变量转移到函数的单调区间内,而后利用其单调性使问题获解.例10. 已知函数f x ()是定义域为R 的奇函数,x <0时,f x ()是删函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小闭系是_______. 领会: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是删函数,f x ()是奇函数,故f x f x ()()->-12 7. 计划圆程根的问题例11. 已知函数f x ()对付一确真数x 皆谦脚f x f x ()()11+=-,而且f x ()=0有三个真根,则那三个真根之战是_______.领会:由f x f x ()()11+=-知曲线x =1是函数f x ()图象的对付称轴. 又f x ()=0有三个真根,由对付称性知x 11=必是圆程的一个根,其余二根x x 23,闭于曲线x =1对付称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 计划不等式的解供解那类问题利用函数的单调性举止转移,脱去函数标记.例12. 已知函数f x ()是定义正在(]-∞,1上的减函数,且对付一确真数x ,不等式fk x fk x(s i n )(s i n)-≥-22恒创造,供k 的值. 领会:由单调性,脱去函数暗号,得由题意知(1)(2)二式对付十足x R ∈恒创造,则有 9. 钻研函数的图象那类问题只消利用函数图象变更的有闭论断,便可获解.例13. 若函数y f x =+()2是奇函数,则y f x =()的图象闭于曲线_______对付称.领会:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是奇函数,对付称轴是x =0,故y f x =()的对付称轴是x =2.例14. 若函数f x ()的图象过面(0,1),则f x ()+4的反函数的图象必过定面______.领会:f x ()的图象过面(0,1),从而f x ()+4的图象过面()-41,,由本函数与其反函数图象间的闭系易知,f x ()+4的反函数的图象必过定面()14,-. 10. 供剖析式例15. 设函数f x ()存留反函数,g x f x h x ()()()=-1,与g x ()的图象闭于曲线x y +=0对付称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()领会:央供y h x =()的剖析式,真量上便是供y h x =()图象上任一面Px y ()00,的横、纵坐标之间的闭系.面Px y ()00,闭于曲线y x =-的对付称面()--y x 00,符合y f x =-1(),即-=-x g y 00(). 又gxf x ()()=-1, 即h x f x ()()=--,选B.抽象函数的周期问题2001年下考数教(文科)第22题:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.对付任性x x 12012,,∈[]皆有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,供f f ()()1214,; (II )道明f x ()是周期函数. 剖析:(I )解略.(II )道明:依题设y f x =()闭于曲线x =1对付称 故f x f x x R ()()=-∈2, 又由f x ()是奇函数知 将上式中-x 以x 代换,得那标明f x ()是R 上的周期函数,且2是它的一个周期 f x ()是奇函数的真量是f x ()的图象闭于曲线x =0对付称 又f x ()的图象闭于x =1对付称,可得f x ()是周期函数 且2是它的一个周期由此举止普遍化推广,咱们得到思索一:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x aa =≠()0对付称,道明f x ()是周期函数,且2a 是它的一个周期. 道明: f x ()闭于曲线xa =对付称 又由f x ()是奇函数知f x f x x R ()()-=∈,将上式中-x 以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思索二:设f x ()是定义正在R 上的函数,其图象闭于曲线x a=战x ba b =≠()对付称.道明f x ()是周期函数,且2()b a -是它的一个周期. 道明: f x ()闭于曲线x a x b ==和对付称 将上式的-x 以x 代换得∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把那讲下考题中的“奇函数”换成“奇函数”,f x ()仍旧不是周期函数?通过探索,咱们得到思索三:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.道明f x ()是周期函数,且4是它的一个周期., 道明: f x ()闭于x =1对付称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x 以x 代换,得∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的真量是f x ()的图象闭于本面(0,0)核心对付称,又f x ()的图象闭于曲线x =1对付称,可得f x ()是周期函数,且4是它的一个周期.由此举止普遍化推广,咱们得到思索四:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0核心对付称,且其图象闭于曲线x bb a =≠()对付称.道明f x ()是周期函数,且4()b a -是它的一个周期.道明: f x ()闭于面M a (),0对付称 ∴-=-∈f a x f x x R ()()2, f x ()闭于曲线x b =对付称∴=-∈∴-=--∈f x f b x x R f b x f a x x R()()()()222,,将上式中的-x 以x 代换,得f b x f a x x R f x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上咱们创造,定义正在R 上的函数f x (),其图象若有二条对付称轴大概一个对付称核心战一条对付称轴,则f x ()是R 上的周期函数.进一步咱们料到,定义正在R 上的函数f x (),其图象如果有二个对付称核心,那么f x ()是可为周期函数呢?通过探索,咱们得到思索五:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0战N b a b ()(),0≠对付称.道明f x ()是周期函数,且2()b a -是它的一个周期.道明: f x ()闭于Ma Nb ()(),,,00对付称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x Rf a x f b x x R()()()()()()2222,,,将上式中的-x以x 代换,得 f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解规则道抽象函数是指不给出简曲的函数剖析式大概图像,只给出一些函数标记及其谦脚的条件的函数,如函数的定义域,剖析递推式,特定面的函数值,特定的运算本量等,它是下中函数部分的易面,也是大教下等数教函数部分的一个贯串面,由于抽象函数不简曲的剖析表白式动做载体,果此明白钻研起去比较艰易.但是由于此类试题即能考查函数的观念战本量,又能考查教死的思维本领,所以备受命题者的青睐,那么,何如供解抽象函数问题呢,咱们不妨利用特殊模型法,函数本量法,特殊化要领,奇像类比转移法,等多种要领从多角度,多层里去领会钻研抽象函数问题, 一:函数本量法函数的个性是通过其本量(如奇奇性,单调性周期性,特殊面等)反应出去的,抽象函数也是如许,惟有充分掘掘战利用题设条件战隐含的本量,机动举止等价转移,抽象函数问题才搞转移,化易为易,时常使用的解题要领有:1,利用奇奇性完全思索;2,利用单调性等价转移;3,利用周期性返回已知4;利用对付称性数形分离;5,借帮特殊面,布列圆程等. 二:特殊化要领1正在供解函数剖析式大概钻研函数本量时,普遍用代换的要领,将x 换成-x 大概将x 换成等 2正在供函数值时,可用特殊值代进3钻研抽象函数的简曲模型,用简曲模型解采用题,挖空题,大概由简曲模型函数对付概括题,的解问提供思路战要领.总之,抽象函数问题供解,用惯例要领普遍很易凑效,但是咱们如果能通过对付题脚法疑息领会与钻研,采与特殊的要领战脚法供解,往往会支到事半功倍之成果,真有些山贫火复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对付任性x 、y ∈R 皆有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为自然数,(t>0)试供f(t)的表白式②谦脚f(t)=t 的所有整数t 是可形成等好数列?若能供出此数列,若不克不迭道明缘由 ③若t 为自然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒创造,供m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)定义域皆是R,且g(x)>0, g(1) =2,g(x) 是删函数. g(m) · g(n)=g(m+n)(m 、n ∈R) 供证:①f(x)是R 上的删函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的删函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的删函数②g(x) 谦脚g(m) · g(n)= g(m+n)(m 、n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单删,设f(x)= f1(x) +f2(x) ,且对付于(0,+∞)上的任性二相同真数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①供证:f (x)正在(0,+∞)上单删. ②设F(x)=x f (x), a>0、b>0. 供证:F(a+b)> F(a)+F(b) . ①道明:设 x1>x2>0f1(x) 正在(0,+∞)上单删f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)正在(0,+∞)上单删 ②F(x)=x f (x), a>0、b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)正在(0,+∞)上单删∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)谦脚 ①f(a+b)=f (a)·f (b),②f(4)=16, m 、n 为互量整数,n≠0 供f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0大概1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(冲突)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)利害背函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 定义正在(-1,1)上的函数f (x)谦脚 ① 任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 判决f(x)正在(-1,1)上的奇奇性,并道明缘由 2) 判决f(x)正在(-1,0)上的单调性,并给出道明3) 供证:f (1312++n n )=f (11+n )-f (21+n ) 大概f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*)解:1)定义正在(-1,1)上的函数f (x)谦脚任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)正在(-1,0)上单调递加.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是定义正在R 上的奇函数,其图像闭于曲线x=1对付称, 对付任性x1、x2∈[0,12]皆有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①供f (12)及 f (14);②道明f(x)是周期函数③记an=f(2n+12n ), 供lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是奇函数,其图像闭于曲线x=1对付称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x).∴f(x)是以2为周期的周期函数.③ an=f(2n+12n )= f (12n )=na 21 ∴lim ∞→n (lnan)= lim ∞→n aa 2ln =0 7. 设)(x f y =是定义正在R 上的恒不为整的函数,且对付任性x 、y ∈R 皆有 f(x+y)=f(x)f(y)①供f(0),②设当x<0时,皆有f(x)>f(0)道明当x>0时0<f(x)<1,③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项战,供lim ∞→n sn.解:①②仿前几例,略.③ an =f(n), ∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an ∴数列{an }是尾项为21公比为21的等比数列 ∴sn =1-n ⎪⎭⎫ ⎝⎛21 ∴lim ∞→n sn =18. 设)(x f y =是定义正在区间]1,1[-上的函数,且谦脚条件:(i );0)1()1(==-f f(ii )对付任性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)道明:对付任性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)道明:对付任性的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)正在区间[-1,1]上是可存留谦脚题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当。

抽象函数典型例题+习题

抽象函数典型例题+习题

五类抽象函数解法例说1、线性函数型抽象函数 :线性函数型抽象函数,是由线性函数抽象而得的函数。

例1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。

例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 +f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。

2、指数函数型抽象函数:指数函数型抽象函数,即由指数函数抽象而得到的函数。

例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。

求:(1)f(0);(2)对任意值x,判断f(x)值的正负。

例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。

同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。

3、对数函数型抽象函数:对数函数型抽象函数,即由对数函数抽象而得到的函数。

例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围。

例6、设函数y=f(x)的反函数是y=g(x)。

如果f(ab)=f(a)+f(b),那么g(a +b)=g(a)·g(b)是否正确,试说明理由。

4、三角函数型抽象函数 三角函数型抽象函数即由三角函数抽象而得到的函数。

例7、己知函数f (x )的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有②f (a )=-1(a >0,a 是定义域中的一个数); ③当0<x <2a 时,f (x )<0。

试问:(1)f (x )的奇偶性如何?说明理由。

(2)在(0,4a )上,f (x )的单调性如何?说明理由。

5、幂函数型抽象函数 幂函数型抽象函数,即由幂函数抽象而得到的函数。

例8、已知函数f (x )对任意实数x 、y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当时,。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技能总结 【1 】因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下: 一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x .解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑正当:在已知(())()fg xh x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩ 例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)<f (4),∴f (2)<f (1)<f (4)五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f (x )对随意率性实数x,y,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域. 剖析:由题设可知,函数f (x )是的抽象函数,是以求函数f (x )的值域,症结在于研讨它的单调性. 解:设,∵当,∴,∵,∴,即,∴f (x )为增函数.在前提中,令y =-x,则,再令x =y =0,则f (0)=2 f (0),∴f (0)=0,故f (-x )=f (x ),f (x )为奇函数,∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f (x )的值域为[-4,2]. 例2.已知函数f (x )对随意率性,知足前提f (x )+f (y )=2 + f (x +y ),且当x >0时,f (x )>2,f (3)=5,求不等式的解.剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f (x)为单调增函数. ∵, 又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f (0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f (2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g (x)必为指数函数的抽象函数,于是猜测g(a+b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而,∴g(m)·g(n)=g(m+n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x <4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b 均为常数,函数对一切实数x 都知足,则函数的图象关于点(a,b )成中间对称图形. 八.收集分解问题例9. 界说在R 上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性; (2)设, ,若,试肯定a 的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而 所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以 所以在R 上为减函数.(2)因为函数y=f(x)在R 上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得.评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值. 解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84 故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111 ∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时,f a f a f a a a a a a ()()()-<-=-⇔-<-<-<-<->-⎧⎨⎪⎩⎪<<24412014024322222解之得,(3)当25<<a 时,f a f a ()()-<-242=-⇔<-<<-<-<-⎧⎨⎪⎩⎪<<f a a a a a a ()22240210412425解之得, 综上所述,所求a 的取值规模是()()3225,, .例4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模.解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔m xm m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,∴-≤--≥⎧⎨⎪⎩⎪∴-≤≤-m m m m 223115421102为所求。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技能总结因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下:一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑正当:在已知(())()f g x h x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x xx +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x xx x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数∴f (3)<f (4),∴f (2)<f (1)<f (4) 五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f(x)对随意率性实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.剖析:由题设可知,函数f(x)是的抽象函数,是以求函数f(x)的值域,症结在于研讨它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为增函数.在前提中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f (0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2.已知函数f(x)对随意率性,知足前提f(x)+f(y)=2 + f (x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解. 剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f(x)为单调增函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f (2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f(2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜测g(a +b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g (n)=b,从而,∴g(m)·g(n)=g(m +n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)< f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b均为常数,函数对一切实数x都知足,则函数的图象关于点(a,b)成中间对称图形.八.收集分解问题例9. 界说在R上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性;(2)设,,若,试肯定a的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以所以在R上为减函数.(2)因为函数y=f(x)在R上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得. 评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时, (3)当25<<a 时,综上所述,所求a 的取值规模是()()3225,, .例 4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模. 解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔ 对x R ∈恒成立, 三. 解不等式这类不等式一般须要将常数暗示为函数在某点处的函数值,再经由过程函数的单调性去掉落函数符号“f ”,转化为代数不等式求解.例 5 已知函数f x ()对随意率性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=是以不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 证实某些问题例6 设f x ()界说在R 上且对随意率性的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.剖析:这同样是没有给出函数表达式的抽象函数,其一般解法是依据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证实: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对随意率性x R ∈都成立,是以f x ()是周期函数,且周期为6.例7 已知f x ()对一切x y ,,知足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数. 证实: 对一切x y R ,∈有f x y f x f y ()()()+=⋅. 且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 分解问题求解抽象函数的分解问题一般难度较大,常涉及到多个常识点,抽象思维程度请求较高,解题时需掌控好如下三点:一是留意函数界说域的运用,二是运用函数的奇偶性去掉落函数符号“f ”前的“负号”,三是运用函数单调性去掉落函数符号“f ”.例8 设函数y f x =()界说在R 上,当x >0时,f x ()>1,且对随意率性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证实f ()01=;(2)证实:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,知足的前提.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠抵触, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1).(2)中消去y 得()a b x a c x c b 2222220+++-<,因为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a b c222+< 例9 界说在(-11,)上的函数f x ()知足(1),对随意率性x y ,,∈-()11都有f x f y f x yx y()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试断定f x ()的奇偶性;(2)断定f x ()的单调性;(3)求证ff f n nf ()()()()15111131122+++++>….剖析:这是一道以抽象函数为载体,研讨函数的单调性与奇偶性,再以这些性质为基本去研讨数列乞降的分解题.解:(1)对前提中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所所以f x ()奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由前提(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数.(3) f n n ()1312++抽象函数问题分类解析我们将没有明白给出解析式的函数称为抽象函数.近年来抽象函数问题一再消失于各类测验题中,因为这类问题抽象性强,灵巧性大,多半同窗觉得迷惑,求解无从下手.本文试图经由过程实例作分类解析,供进修参考. 1. 求界说域这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x这一特点,问题就会水到渠成.例 1. 函数y f x =()的界说域为(]-∞,1,则函数y f x =-[l o g ()]222的界说域是___.剖析:因为l o g()22x 2-相当于f x ()中的x,所以l o g()2221x -≤,解得 22<≤x 或-≤<-22x .例 2. 已知f x ()的界说域为(0),1,则y f x a f x a a =++-≤()()(||)12的界说域是______.剖析:因为x a +及x a-均相当于f x ()中的x,所以(1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1 2. 断定奇偶性依据已知前提,经由过程恰当的赋值代换,追求f x ()与f x ()-的关系. 例3. 已知f x ()的界说域为R,且对随意率性实数x,y 知足fx y fx f y ()()()=+,求证:f x ()是偶函数.剖析:在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是偶函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数 y f x =()是偶函数.证实:设y f x =()图象上随意率性一点为P (x y 00,)y f x =()与y f x=-()的图象关于原点对称, ∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上, 又y f x 00=() 即对于函数界说域上的随意率性x 都有f x f x ()()-=,所所以y f x =()偶函数.3. 断定单调性依据函数的奇偶性.单调性等有关性质,画出函数的示意图,以形助数,问题敏捷获解.例5. 假如奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 剖析:画出知足题意的示意图1,易知选B.图1例6. 已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数照样减函数,并证实你的结论.剖析:如图2所示,易知f x ()在()-∞,0上是增函数,证实如下: 任取xx x x 121200<<⇒->-> 因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以 f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数. 图24. 寻找周期性这类问题较抽象,一般解法是细心剖析题设前提,经由过程相似,联想出函数原型,经由过程对函数原型的剖析或赋值迭代,获得问题的解. 例7. 设函数f x ()的界说域为R,且对随意率性的x,y 有f x y f x y f x f y ()()()()++-=⋅2,并消失正实数c,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请解释来由.剖析:细心不雅察剖析前提,联想三角公式,就会发明:y x =c o s 知足题设前提,且cos π20=,猜测f x ()是以2c 为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 求函数值紧扣已知前提进行迭代变换,经有限次迭代可直接求出成果,或者在迭代进程中发明函数具有周期性,运用周期性使问题奇妙获解.例8. 已知f x()的界说域为R+,且fxy fx fy()()()+=+对一切正实数x,y都成立,若f()84=,则f(2)=_______.剖析:在前提fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是界说在R上的函数,且知足:f x f x f x()[()]()+-=+211,f()11997=,求f(2001)的值.剖析:紧扣已知前提,并多次运用,发明f x()是周期函数,显然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f xf x f x()()()+=-+=81 4故f x()是以8为周期的周期函数,从而6. 比较函数值大小运用函数的奇偶性.对称性等性质将自变量转化到函数的单调区间内,然后运用其单调性使问题获解.例10. 已知函数f x()是界说域为R的偶函数,x<0时,f x()是增函数,若x 1<,x20>,且||||x x12<,则f x f x()()--12,的大小关系是_______.剖析: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是增函数,f x ()是偶函数,故f x f x ()()->-127. 评论辩论方程根的问题例11. 已知函数f x ()对一切实数x 都知足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.剖析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴. 又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 评论辩论不等式的解求解这类问题运用函数的单调性进行转化,脱去函数符号.例12. 已知函数f x ()是界说在(]-∞,1上的减函数,且对一切实数x,不等式fk x fk x(s i n )(s i n)-≥-22恒成立,求k 的值. 剖析:由单调性,脱去函数记号,得由题意知(1)(2)两式对一切x R ∈恒成立,则有 9. 研讨函数的图象这类问题只要运用函数图象变换的有关结论,就可获解.例13. 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称.剖析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例14. 若函数f x ()的图象过点(0,1),则f x ()+4的反函数的图象必过定点______.剖析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-. 10. 求解析式例15. 设函数f x ()消失反函数,g x f x h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()剖析:请求y h x =()的解析式,本质上就是求y h x =()图象上任一点Px y ()00,的横.纵坐标之间的关系.点Px y ()00,关于直线y x =-的对称点()--y x 00,合适y f x =-1(),即-=-x g y 00(). 又gx f x ()()=-1,即h x f x ()()=--,选B. 抽象函数的周期问题2001年高考数学(文科)第22题:设f x ()是界说在R 上的偶函数,其图象关于直线x =1对称.对随意率性x x 12012,,∈[]都有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,求f f ()()1214,; (II )证实f x ()是周期函数. 解析:(I )解略.(II )证实:依题设y f x =()关于直线x =1对称 故f x f x x R ()()=-∈2, 又由f x ()是偶函数知 将上式中-x以x 代换,得 这标明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的本质是f x ()的图象关于直线x =0对称 又f x ()的图象关于x =1对称,可得f x ()是周期函数 且2是它的一个周期由此进行一般化推广,我们得到思虑一:设f x ()是界说在R 上的偶函数,其图象关于直线x aa =≠()0对称,证实f x ()是周期函数,且2a 是它的一个周期.证实: f x ()关于直线x a=对称 又由f x ()是偶函数知f x f x x R ()()-=∈, 将上式中-x以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思虑二:设f x ()是界说在R 上的函数,其图象关于直线x a =和x ba b =≠()对称.证实f x ()是周期函数,且2()b a -是它的一个周期. 证实: f x ()关于直线x a x b ==和对称 将上式的-x以x 代换得 ∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()照样不是周期函数?经由摸索,我们得到思虑三:设f x ()是界说在R 上的奇函数,其图象关于直线x =1对称.证实f x ()是周期函数,且4是它的一个周期.,证实: f x ()关于x =1对称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x以x 代换,得 ∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的本质是f x ()的图象关于原点(0,0)中间对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思虑四:设f x ()是界说在R 上的函数,其图象关于点M a (),0中间对称,且其图象关于直线x bb a =≠()对称.证实f x ()是周期函数,且4()b a -是它的一个周期.证实: f x ()关于点M a (),0对称 ∴-=-∈f a x f x x R ()()2, f x ()关于直线x b =对称∴=-∈∴-=--∈f x f b x x Rf b x f a x x R()()()()222,,将上式中的-x以x 代换,得 f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上我们发明,界说在R 上的函数f x (),其图象如有两条对称轴或一个对称中间和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,界说在R 上的函数f x (),其图象假如有两个对称中间,那么f x ()是否为周期函数呢?经由摸索,我们得到思虑五:设f x ()是界说在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证实f x ()是周期函数,且2()b a -是它的一个周期.证实: f x ()关于Ma Nb ()(),,,00对称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x R f a x f b x x R()()()()()()2222,,,将上式中的-x 以x 代换,得f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解法规谈抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其知足的前提的函数,如函数的界说域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高级数学函数部分的一个连接点,因为抽象函数没有具体的解析表达式作为载体,是以懂得研讨起来比较艰苦.但因为此类试题即能考核函数的概念和性质,又能考核学生的思维才能,所以备受命题者的青睐,那么,如何求解抽象函数问题呢,我们可以运用特别模子法,函数性质法,特别化办法,联想类比转化法,等多种办法从多角度,多层面去剖析研讨抽象函数问题, 一:函数性质法函数的特点是经由过程其性质(如奇偶性,单调性周期性,特别点等)反响出来的,抽象函数也是如斯,只有充分发掘和运用题设前提和隐含的性质,灵巧进行等价转化,抽象函数问题才干转化,化难为易,经常运用的解题办法有:1,运用奇偶性整体思虑;2,运用单调性等价转化;3,运用周期性回归已知4;运用对称性数形联合;5,借助特别点,布列方程等. 二:特别化办法1在求解函数解析式或研讨函数性质时,一般用代换的办法,将x 换成-x 或将x 换成等 2在求函数值时,可用特别值代入3研讨抽象函数的具体模子,器具体模子解选择题,填空题,或由具体模子函数对分解题,的解答供给思绪和办法.总之,抽象函数问题求解,用通例办法一般很难凑效,但我们假如能经由过程对标题标信息剖析与研讨,采取特别的办法和手腕求解,往往会收到事半功倍之功能,真有些山穷水复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对随意率性x.y ∈R 都有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为天然数,(t>0)试求f(t)的表达式②知足f(t)=t 的所有整数t 可否组成等差数列?若能求出此数列,若不克不及解释来由 ③若t 为天然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒成立,求m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)界说域都是R,且g(x)>0, g(1) =2,g(x) 是增函数. g(m) · g(n)=g(m+n)(m.n ∈R)求证:①f(x)是R 上的增函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的增函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的增函数②g(x) 知足g(m) · g(n)= g(m+n)(m.n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1 ∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+∞)上的随意率性两相异实数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①求证:f (x)在(0,+∞)上单增. ②设F(x)=x f (x), a>0.b>0. 求证:F(a+b)> F(a)+F(b) . ①证实:设 x1>x2>0f1(x) 在(0,+∞)上单增f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)在(0,+∞)上单增 ②F(x)=x f (x), a>0.b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+∞)上单增∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)知足 ①f(a+b)=f (a)·f (b),②f(4)=16, m.n 为互质整数,n≠0 求f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(抵触)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)长短负函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 界说在(-1,1)上的函数f (x)知足 ① 随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 剖断f(x)在(-1,1)上的奇偶性,并解释来由 2) 剖断f(x)在(-1,0)上的单调性,并给出证实3) 求证:f (1312++n n )=f (11+n )-f (21+n )或f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*) 解:1)界说在(-1,1)上的函数f (x)知足随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)在(-1,0)上单调递增.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是界说在R 上的偶函数,其图像关于直线x=1对称, 对随意率性x1.x2∈[0,12]都有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①求f (12)及 f (14);②证实f(x)是周期函数③记an=f(2n+12n ), 求lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是偶函数,其图像关于直线x=1对称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x). ∴f(x)是以2为周期的周期函数.③an=f(2n+12n )= f (12n)=n a 21∴lim ∞→n (lnan)= lim ∞→n aa 2ln =07. 设)(x f y =是界说在R 上的恒不为零的函数,且对随意率性x.y ∈R 都有f(x+y)=f(x)f(y)①求f(0),②设当x<0时,都有f(x)>f(0)证实当x>0时0<f(x)<1, ③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项和,求lim ∞→n sn.解:①②仿前几例,略. ③an =f(n),∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an∴数列{an }是首项为21公比为21的等比数列∴sn =1-n⎪⎭⎫ ⎝⎛21∴lim ∞→n sn =18. 设)(x f y =是界说在区间]1,1[-上的函数,且知足前提: (i );0)1()1(==-f f(ii )对随意率性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证实:对随意率性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证实:对随意率性的;1|)()(|],1,1[,≤--∈v f u f v u 都有 (Ⅲ)在区间[-1,1]上是否消失知足题设前提的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当 若消失,请举一例:若不消失,请解释来由.(Ⅰ)证实:由题设前提可知,当]1,1[-∈x 时,有,1|1|)1()(|)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)证法一:对随意率性的 1.|v -u ||f(v)-f(u)|,1||],1,1[,≤≤≤--∈有时当v u v u当0,u ,1|v -u |<⋅>v 时无妨设,0<u 则1,u -0>>v v 且 所以,|1||1||)1()(||)1()(||)()(|-++≤-+--≤-v u f v f f u f v f u f.1)(211<--=-++=u v v u 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f证法二:由(Ⅰ)可得,当.||11)1()(||)(|,]0,1[x,-1f(x),]1,0[x x f x f x f x x -=+≤--=-∈≤∈时时 所以,当.||1)(|,]1,1[x x f x -≤-∈时是以,对随意率性的],1,1[,-∈v u当1||≤-v u 时,.1|||)()(|≤-≤-v u v f u f 当1||>-v u 时,有0<⋅v u 且.2||||||1≤+=-<v u v u所以.1)||(|2||1||1|)(||)(||)()(|≤+-=-+-≤+≤-v u v u v f u f v f u f 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f(Ⅲ)答:知足所述前提的函数不消失.来由如下,假设消失函数)(x f 知足前提,则由],1,21[,|,||)()(|∈-=-v u v u v f u f得.21|121||)1()21(|=-=-f f 又,0)1(=f 所以.21|)21(|=f ①。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

高一数学必修1抽象函数常见题型解法归纳

高一数学必修1抽象函数常见题型解法归纳

高一数学必修1抽象函数常见题型解法归纳一、直接法从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

三、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法将问题等价地转化成便于解决的问题,从而得出正确的结果。

解决恒成立问题通常可以利用分离变量转化为最值的方法求解。

问题1:我的基础还可以,上课老师讲的也都能听懂,但是一到自己做就做不出来了,帮忙分析一下原因。

答:数学这个东西是靠着逻辑吃饭的,是靠着逻辑演绎向前推进和发展的。

当一个老师把你抱到了逻辑的起点上,告诉你这个逻辑关系是怎样的,比如说饿了就应该找饭吃,下雨了就应该找伞来打,告诉你了这个逻辑规则,你自己肯定会按照逻辑的顺序往前跑,这就叫为什么上课听得懂。

为什么课下自己不会做了呢?是因为课下你找不到逻辑的起点,就像一个运动员空有一身本领,跑得飞快,没有找到起点,没有到起点做好认真的准备,结果人家一发令,你没反应。

有两种学习的模式,一种是靠效仿,老师给我变一个数,出两道类似的练习题,照老师的模子描下来,结果做对了,好象我学会了,这就是效仿的方式来学数学,这种方式在小学是主要手段,在初中,这种手段还占着百分之六七十的分量,但是到了高中就不行了,靠模仿能得到的分数也就是五六十分,其他的分数都要靠你的理解。

问题2:我有时候看基础知识的时候定义都没有问题,但是一做题的时候,就转不过来了,耗的时间比较多,怎么办?答:那你就看看定理、定义、公式都是怎么使用,除了背下它们之外,关键是要把握住这些数学的定义、定理、公式、法则,在解题中是如何运用的,建议你好好从课本出发,如何利用刚才讲的这个定理或者定义去解题的,把它先搞清楚,适当的时候自己做做笔记,问问自己,这个定义是怎么使用的,在这个定理里怎么用的,你自己在旁边注上一两句话。

抽象函数的常见解法

抽象函数的常见解法

抽象函数的常见解法兴义八中李明生抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。

因此,这类问题在高中数学的各类考试中经常出现。

下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。

这类问题经常出现,要认真理解其解题的要领和方法。

例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。

分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。

解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +n各式相加得:f(n) = 1+2+3+…+n = n(n+1)2∴ f(x) = x(x+1)2例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R, y∈R,且f(0)≠0,求证:f(x)是偶函数。

分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。

证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)求证:当x > 0时, f( 1x) = -f(x)分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·1x)可求得。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数常见题型解法

抽象函数常见题型解法

教学实践2014-05不给出具体解析式,只给出函数的特殊条件或特征的函数即为抽象函数。

一般形式为y=f(x),或许还附有定义域、值域等,如,y=f(x),(x>0,y>0)。

由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域、值域、单调性、奇偶性、周期性和图象集于一身,所以在各地高考试题中不断出现;学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法归类如下:题型一:求抽象函数的定义域例1.已知函数f(x-1)的定义域为[0,3],求f[log12(3-x)的定义域。

解析:自变量x的取值范围即为函数的定义域,因此函数f(x-1)中x-1∈[-1,2],所以log12(3-x)∈[-1,2],所求定义域为[1,114]一般情况下,函数y=f(x)定义域为[a,b],则函数y=f(g(x))的定义域为不等式a≤g(x)≤b的解集;函数y=f(g(x))的定义域[a,b],则函数y=f(x)定义域为g(x)(x∈[a,b])的值域。

题型二:求抽象函数值例2.已知函数f(x)满足:当x>4时,f(x)=(12)x,当x<4时,f(x)=f(x+1),求f(2+log23)的值。

解析:首先判断2+log23∈[3,4],再根据当x<4时,f(x)=f(x+ 1)得f(2+log23)=f(3+log23),所以f(2+log23)=(12)3+log23=124。

题型三:求抽象函数的解析式例3.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=1x-1,求f(x)和g(x)。

解析:用-x代换x得:f(-x)+g(-x)=1-x-1,由于已知f(x)为奇函数,g(x)为偶函数,所以-f(x)+g(x)=1-x-1,与已知条件解方程组即可得f(x)和g(x)解析式.题型四:判断或证明抽象函数的奇偶性例4.已知函数f(x)(x∈R,x≠0)对任意不等于0的实数x1,x2都有f(x1+x2)=f(x1)+f(x2),试判断函数f(x)的奇偶性。

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数问题常见题型及解法

抽象函数问题常见题型及解法

抽象函数问题常见题型及解法江苏省赣榆县海头高级中学 222111 胡继缙抽象函数是指仅给出函数的某些性质,而不给出函数解析式的函数,解题时可以根据已有的性质,如:周期性、奇偶性、单调性、图象对称性等,采用灵活的方法,如:换元法、赋值法、等价转化法、构造方程(组)或不等式(组)等方法。

本文就这类题型及解法作一简单介绍。

一、求函数解析式求解此类问题,通常利用换元法或利用函数的周期性,构造方程组.例1 已知对非零实数x ,恒有x xf x f 3)1(2)(=-,求)(x f . 解 由题意得,用x 1代换x ,可得xx f x f 3)(2)1(=- 于是有⎪⎪⎩⎪⎪⎨⎧=-=-x x f xf x x f x f 3)(2)1(3)1(2)( 将)(x f 视作为未知数,解之得xx x f 2)(--=. 例2 已知函数)(x f 是偶函数,)(x g 是奇函数,且满足11)()(-=+x x g x f , 求)(x f 、)(x g 的解析式.解 由题意得,用x -代换x ,得11)()(--=-+-x x g x f ∵)(x f 是偶函数,)(x g 是奇函数 于是有⎪⎪⎩⎪⎪⎨⎧+-=--=+11)()(11)()(x x g x f x x g x f将)(x f 视作为未知数,解之得11)(2-=x x f ,1)(2-=x x x g . 二、求函数定义域例3 已知函数)23(+x f 的定义域为(-2,1),求函数)3()(2+-x f x f 的定 义域.求解此类问题,通常利用换元法.解 令23+=x t ,由)1,2(-∈x ,可得54<<-t∴函数)(x f 的定义域为(-4,5)又由⎩⎨⎧<+<-<<-534542x x , 得25<<-x∴函数)3()(2+-x f x f 的定义域为)2,5(-.三、求函数值求解此类问题,通常利用函数的周期性,将自变量的值化归到给定的区间上.例4 设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时, x x f =)(,则)5.7(f 等于( ).(A )0.5 (B )-0.5 (C )1.5 (D )-1.5解 由 )()2(x f x f -=+,可得)()4(x f x f =+∴函数)(x f 是周期函数,且函数最小正周期4=T结合函数是奇函数,则)5.0()5.0()85.0()5.7(f f f f -=-=+-= 又∵10≤≤x 时,x x f =)(∴5.0)5.0(=f , ∴5.0)5.7(-=f , 故选(B ).四、求函数最值问题求解此类问题,通常要确定函数在给定的区间上的单调性,利用单调性求最值.例5 设函数)(x f 为奇函数,对任意R y x ∈,,都有)()()(y f x f y x f +=+,且0>x 时,0)(<x f ,2)1(-=f ,求)(x f 在[-3,3]的最大值和最小值.解 设3321≤<≤-x x ,则012>-x x∵)(x f 为奇函数,且当0>x 时,0)(<x f∴0)()()()()(121212<-=-+=-x x f x f x f x f x f∴)()(12x f x f <,∴)(x f 在[-3,3]上是减函数故6)]1()1()1([)]2()1([)3()3(max =++-=+-=-=-=f f f f f f f y 6)3()3(min -=--==f f y .五、求解函数不等式求解此类不等式,通常利用函数的单调性将抽象的函数不等式等价的转化成一般的不等式(组),有时也可借助数形结合的方法.例 6 若)(x f 是定义在),0(+∞上的增函数,且对一切0>x ,满足)()()(y f x f yx f -=.)1(求)1(f 的值. )2(若,1)6(=f 解不等式2)1()3(<-+af a f . 解 )1(令x y =,则0)()()()1(=-==x f x f xx f f . )2(∵对一切0>x ,满足)()()(y f x f yx f -=,且1)6(=f ∴2)1()3(<-+af a f )6(2)()3(f a f a f <++⇔ )6()63()()6()6()3(af a f a f f f a f <+⇔-<-+⇔ 2173300663+-<<⇔⎪⎩⎪⎨⎧><+⇔a a a a . 例7 若)(x f 是奇函数,且在),0(+∞内是增函数,又0)3(=-f ,则不等式 0)(<⋅x f x 的解集是 .解 根据题意,可以作出函数)(x f 的大致图象,如图1. ∵)(x f 是奇函数,且在),0(+∞内是增函数 ∴)3(0)3(f f -==-,∴0)3(=f∴0)(<⋅x f x 03300)(00)(0<<-<<⇔⎩⎨⎧><⎩⎨⎧<>⇔x x x f x x f x 或或 ∴不等式0)(<⋅x f x 的解集为),(),(3003⋃-.。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

抽象函数-题型大全(例题-含标准答案)

抽象函数-题型大全(例题-含标准答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解读式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数常见题型解法综述
抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

一、定义域问题
例1. 已知函数
)(2x f 的定义域是[1,2],求f (x )的定义域。

例2. 已知函数)(x f 的定义域是]21
[,-,求函数)]
3([log 2
1x f -的定义域。

二、求值问题
例 3. 已知定义域为+
R 的函数f (x ),同时满足下列条件:①
51
)6(1)2(=
=f f ,;②
)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

三、值域问题
例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

解:令0==y x ,得2
)]0([)0(f f =,即有0)0(=f 或1)0(=f 。

若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。

由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有
)]2([)2()2()22()(2≥==+=x
f x f x f x x f x f
下面来证明,对任意0)(≠∈x f R x ,
设存在
R
x ∈0,使得
)(0=x f ,则
)()()()0(0000=-=-=x f x f x x f f
这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f
评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题
例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1
(
)(,求f (x )的
解析式。

解:在
)
1(1)1
(
)(x x
x f x f +=-+中以x x 1
-代换其中x ,得:
)
2(1
2)11()1(
x
x x f x x f -=--+-
再在(1)中以
11
--
x 代换x ,得
)
3(1
2)()11(--=+--
x x x f x f
)3()2()1(+-化简得:
)1(21
)(23---=
x x x x x f 评析:如果把x 和x x 1
-分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。

通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

五、单调性问题
例 6. 设f (x )定义于实数集上,当0>x 时,1)(>x f ,且对于任意实数x 、y ,有
)()()(y f x f y x f ⋅=+,求证:)(x f 在R 上为增函数。

证明:在)()()(y f x f y x f =+中取0==y x ,得2
)]0([)0(f f =
若0)0(=f ,令00=>y x ,,则0)(=x f ,与1)(>x f 矛盾 所以0)0(≠f ,即有1)0(=f
当0>x 时,01)(>>x f ;当0<x 时,01)(0>>->-x f x , 而1)0()()(==-⋅f x f x f
所以
0)(1
)(>-=
x f x f
又当0=x 时,01)0(>=f
所以对任意R x ∈,恒有0)(>x f
设+∞<<<∞-21x x ,则1)(01212>->-x x f x x , 所以)()()()]([)(11211212x f x x f x f x x x f x f >-=-+= 所以)(x f y =在R 上为增函数。

评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。

六、奇偶性问题 例
7. 已知函数)0)((≠∈x R x x f ,对任意不等于零的实数21x x 、都有
)()()(2121x f x f x x f +=⋅,试判断函数f (x )的奇偶性。

解:取11
21=-=x x ,得:)1()1()1(f f f +-=-,所以0)1(=f 又取121-==x x 得:)1()1()1(-+-=f f f ,所以0)1(=-f 再取121-==x x x ,则)()1()(x f f x f +-=-,即)()(x f x f =- 因为)(x f 为非零函数,所以)(x f 为偶函数。

七、对称性问题
例8. 已知函数)(x f y =满足2002)()(=-+x f x f ,求)2002()(1
1
x f
x f
-+--的值。

解:已知式即在对称关系式b x a f x a f 2)()(=-++中取20020==b a ,,所以函数)(x f y =的图象关于点(0,2002)对称。

根据原函数与其反函数的关系,知函数)(1
x f y -=的图象关于
点(2002,0)对称。

所以0)1001()1001(1
1
=-++--x f
x f
将上式中的x 用1001-x 代换,得0)2002()(1
1
=-+--x f
x f
评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a 、b 均为常数,函数)(x f y =对一切实数x 都满足b x a f x a f 2)()(=-++,则函数)(x f y =的图象关于点(a ,b )成中心对称图形。

八、网络综合问题
例9. 定义在R 上的函数f (x )满足:对任意实数m ,n ,总有)()()(n f m f n m f ⋅=+,且当x>0
时,0<f (x )<1。

(1)判断f (x )的单调性;
(2)设
)}1()()(|){(2
2f y f x f y x A >⋅=,, }1)2(|){(R a y ax f y x B ∈=+-=,,,若∅=B A ,试确定a 的取值范围。

解:(1)在)()()(n f m f n m f ⋅=+中,令01==n m ,,得)0()1()1(f f f ⋅=,因为0)1(≠f ,
所以1)0(=f 。

在)()()(n f m f n m f ⋅=+中,令x n x m -==, 因为当0>x 时,1)(0<<x f 所以当0<x 时1)(00<-<>-x f x , 而1)0()()(==-⋅f x f x f
所以
01)(1
)(>>-=
x f x f
又当x=0时,01)0(>=f ,所以,综上可知,对于任意R x ∈,均有0)(>x f 。

设+∞<<<∞-21x x ,则1)(001212<-<>-x x f x x , 所以)()()()]([)(11211212x f x x f x f x x x f x f <-⋅=-+= 所以)(x f y =在R 上为减函数。

(2)由于函数y=f (x )在R 上为减函数,所以
)1()()()(2
222f y x f y f x f >+=⋅ 即有
12
2<+y x 又
)0(1)2(f y ax f ==+-,根据函数的单调性,有02=+-y ax
由∅=B A ,所以直线02=+-y ax 与圆面12
2<+y x 无公共点。

因此有1
1
2
2
≥+a ,
解得11≤≤-a 。

评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f (0)的取值问题,二是f (x )>0
的结论。

这是解题的关键性步骤,完成这些要在抽象函数式中进行。

由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决。

相关文档
最新文档