海洋平台介绍

合集下载

海洋平台

海洋平台

海洋平台的现状和发展趋势作者:荆永良引言海洋平台对海洋资源的开发和空间利用的发展,以及工程设施的大量兴建,对人类文明的演化将产生不可估量的影响。

正文1、海洋平台技术概述海洋工程项目是一个庞大的科技系统工程,而主要针对海洋石油开采而言的海洋工程装备包括油气钻采平台、油气存储设施、海上工程船舶等。

这其中的海洋平台是集油田勘测、油气处理、发电、供热、原油产品储存和运输、人员居住于一体的综合性海洋工程装备,是实施海底油气勘探和开采的工作基地。

海洋平台结构复杂、体积庞大、造价昂贵,特别是与陆地采油设备相比,它所处的海洋环境十分复杂和恶劣,台风、海浪、海流、海冰和潮汐还有海底地震对平台的安全构成严重威胁。

与此同时,由于环境腐蚀、海生物附着、地基土冲刷和基础动力软化、构件材料老化、缺陷损伤扩大以及疲劳损伤累积等因素都将导致平台结构构件和整体抗力逐渐衰减,影响平台结构的服役安全性和耐久性。

因此,海洋平台的设计与制造只有在一个国家的综合工业水平整体提高与进步的基础上才能完成。

2、海洋平台的类型分类(1)、按运动方式可分为固定式与移动式两大类(如图)(2)、按使用功能的不同可分为钻井平台、生产平台、生活平台、储油平台、近海平台等。

3、海洋平台的发展及现状3.1国内海洋平台的发展及现状我国海洋工业开始于60 年代末期,最早的海洋石油开发起步于渤海湾地区,该地区典型水深约为20 m。

到了80 年代末期,在南中国海的联合勘探和生产开始在100 m 左右水深的范围内进行,直到现在,我国的油气勘探和开发工作还没能突破400 m 水深。

近年来,石油、石油化工装备工业以我国石油和石油化工工业为依托,取得了长足的发展。

尤其是近年来世界各国对石油能源开发的重视和原油价格的飚升,更是极大拉动了国内海上平台设备制造业的需求和发展。

我国目前已具有设计和建造浅海固定式采油平台的能力,中国海洋石油总公司已设计建造水深5 m 以内的固定式采油平台40 多座,中国石油天然气总公司建成5 m 以内的固定式采油平台10 余座。

海洋平台图文并貌介绍

海洋平台图文并貌介绍

海洋平台海洋平台概述海洋平台是在海洋上进行作业的场所,是海洋石油钻探与生产所需的平台。

海洋平台从功能上分有钻井平台、生产平台、生活服务平台、储油平台等。

从型式及原理上分有,桩基式、坐底式、重力式、自升式、半潜式、张力腿式、竖筒平台等多种,桩基式、坐底式、重力式平台用于浅水海域,而从世界范围来讲浅水海域的海洋油气资源已很有限,各国和石油公司已将目光瞄准深海油田,自升式、半潜式、张力腿式、竖筒式等类型的海洋平台成为目前海洋工程领域的热点,下面主要介绍这四种类型的平台。

1 自升式钻井平台Jack-up Platform(Self-elevating Platform)自升式平台由平台体和可以升降的桩腿组成,作业时桩腿支撑在海底,平台升起离开水面一定高度,因此只有桩腿受到波浪和海流的作用,受到的外界负荷较小。

自升式平台的作业水深按作业水域的要求确定,但通常不超过90m。

大多数自升式平台是非自航平台。

拖航时,平台浮在水面上,桩腿高高升起,此时平台如同一艘驳船,应符合各种规则、规范对非自航船舶在海上拖航时,包括完整稳性和破舱稳性及干舷等各种要求。

到达井位后,桩腿下降插入海底,平台升起,进行钻井作业。

现今的自升式平台桩腿数为3根或4根,深水平台采用3条桁架式桩腿。

自升式平台的升降结构主要有两种型式,即液压插销式升降结构和齿轮条式升降结构。

自升式平台的布置与其形状有关,三角形平台的井架总是布置在某一边的中部,而生活区布置在与该边相对的角端,直升机平台则设在靠近生活区附近,矩形平台则将井架与生活区布置在相对的两端边处。

井架及其底座通常为可移动式,拖航时移至平台中间以减少平台的纵倾。

新型的自升式平台,有的将井架及其底座设置在伸至平台外面的悬臂梁上。

由于自升式平台可适用于不同海底土壤条件和较大的水深范围,移位灵活方便,拖船可以轻松把它从一个地方拖移到另一个地方,因而得到了广泛的应用。

目前,在海上移动式钻井平台中它仍占绝大多数。

海洋平台简介培训资料

海洋平台简介培训资料

2020/10/20
5
自升式平台:自升式平台又称甲板升降式桩腿平台,这种石油 钻井装置在浮在水面的平台上装载钻井机械、动力、器材、居住 设备以及若干可升降桩腿,钻井时桩腿着底,平台则沿桩腿升离 一定高度;移位时平台降至海面,桩腿升起,平台就像驳船,可 由拖轮将其拖到新的井位。
2020/10/20
6
浮筒结构有浮箱和下浮体两种形式:(1)浮箱结构是一个水密 的圆台或其他形状的箱体,放置在立柱下面,彼此互不相连,三 角形半潜平台和五角形半潜平台采用浮箱结构多。(2)下浮体结 构一般有平行浮体和组合浮体两种,平行浮体多为两个,也有四 个或多个平行浮体。平行浮体多为矩形或圆角矩形横剖面纵骨架 式壳体结构。下浮体就是由若干个纵横舱壁及外壳板架组成水密 壳体。
是由坐底式演变而来。半潜式和坐底式平台统称支柱稳定式钻井 装置。坐沉在海底的称坐底式(可沉式),浮在水中的称半潜式。
2020/10/20
8
固定式平台
固定式钻井平台通常是固定一处不能整体移动。固定式平台的下部由 桩、扩大基脚或其他构造直接支撑并固着于海底。
混凝土重力式平台:这种平台的底部通常是一个巨大的混凝土基础 (沉箱),用三个或四个空心的混凝土支柱支撑着甲板结构,在平 台底部的巨大基础中别分隔为许多圆筒形的贮油舱和压载舱,这种 平台的重力可达数十吨,正是依靠自身的巨大重量,平台直接置于 海底。
2020/10/20
10
半潜平台简介
半潜式平台主要由上层平台结构、支持结构、浮筒结构组成。
上层平台布置着所有的钻井机械、平台操作设备、物资贮备和 生 活设施,上层平台通常承受甲板载荷在3000~6000t,加上风、 浪、流作用,立柱之间相互作用力。
半潜平台用沉垫提供浮力,漂浮在海中通过支撑结构支撑平台 上部结构,半潜平台支撑结构大都为立柱式。

海洋平台工艺知识总结汇报

海洋平台工艺知识总结汇报

海洋平台工艺知识总结汇报海洋平台工艺知识总结汇报一、概述:海洋平台是指在海洋上建造的大型钢结构平台,用于进行海洋石油、天然气等资源的开发和生产。

海洋平台工艺是指在设计、建造和运营海洋平台过程中所涉及的技术和方法。

下面将对海洋平台工艺知识进行总结汇报。

二、海洋平台工艺的重要性:1. 提高工作效率:合理的工艺能够提高建造平台的效率,降低工期,使平台尽快投入生产,实现资源的开发利用。

2. 提高安全性:科学的工艺设计能够确保平台的结构稳定、船员的安全,减少事故的发生。

3. 降低成本:合理的工艺设计能够减少材料浪费,提高利用率,降低了平台建造的成本。

三、海洋平台建造的主要工艺:1. 设计:海洋平台的设计是整个建造过程的基础。

包括结构设计、强度计算、材料选取、预应力设计等内容。

2. 模块化建造:海洋平台采用模块化建造的方式可以提高施工效率。

每个模块都在陆地上制造完成后,通过船运方式将其运送到海洋平台建设地点进行安装。

3. 吊装:吊装是指将大型模块或设备从陆地上通过吊机等装置吊装安装到海洋平台上。

吊装作业需要考虑重量、平衡、高度等因素,保证安全顺利进行。

4. 焊接与拼装:海洋平台的构件多采用钢结构,需要进行焊接与拼装。

焊接工艺要求高,要保证焊接强度和质量。

5. 装备安装:包括设备、管道、阀门等的安装,需要保证正确连接、良好密封和可靠性。

6. 防腐保温:海洋平台需要考虑到海洋环境的腐蚀性和气候条件,进行合适的防腐保温处理,延长平台的使用寿命。

7. 海底管线铺设:海洋平台需要与陆地或其他设施进行管线连接,涉及到海底管线的铺设,需要考虑水深、地质条件、管道材料等问题。

四、海洋平台工艺的关键问题:1. 结构强度:海洋平台需要在恶劣的环境下承受海浪、风力等外力的作用,因此结构强度是一个关键问题,需要结构设计师进行精确计算。

2. 耐腐蚀性:海洋平台需要经受海水的腐蚀,因此需要合理选择材料和进行防腐保护措施,确保平台的使用寿命。

海洋平台简介

海洋平台简介

浮筒式平台
以浮筒为支撑,上部结构 可随海浪自由浮动,适用 于深水海域。
自升式平台
由船体和桩腿组成,桩腿 可随海床高低调整,适用 于各种海洋环境。
半潜式海洋平台
半潜式钻井平台
可进行海上钻井作业的平台,适 用于深海作业。
半潜式生产平台
可进行海上生产作业的平台,适 用于各种海洋环境。
特殊类型海洋平台
Spar平台
3
复合式海洋平台
结合固定式和浮动式海洋平台的结构特点而设计 的海洋平台,如锚链-桩基复合平台等。
海洋平台的组成部件
平台甲板
固定式和浮动式海洋平台上部 结构,用于安装和支撑油气生 产设备、生活设施等。
定位系统
确保海洋平台在海上安全定位 的系统,包括锚链、桩基等。
平台基础
固定式海洋平台的下部结构, 包括导管架、重力式平台的墙 身等。
03
平台可靠性
海洋平台的可靠性是一个重要的问题,尤其是在恶劣的海洋环境下。如
何提高平台的可靠性,以减少故障和维护需求,是当前面临的一个挑战

海洋平台技术的发展趋势与方向
数字化与智能化
随着技术的发展,海洋平台的设计和建造将越来越依赖于数字化和智能化技术。例如,使 用数字孪生技术进行平台设计和模拟,以及使用物联网和大数据技术进行平台监控和维护 。

海洋平台的建设可以降低海上油 气开发的成本,提高开发效率, 同时可以减少对陆地设施的依赖

海洋平台在油气资源开发中的具 体应用包括固定式、浮动式和半 潜式等不同类型,每种类型都有
其特点和适用范围。
海洋平台在科研、观测、通信等领域的应用
01
海洋平台在科研领域的应用包括 海洋环境观测、气象观测、地球 物理探测等,为科研人员提供了 重要的数据支持。

海洋平台——自升式

海洋平台——自升式
桩脚的下部结构称为桩底端部结构或桩脚 端部结构,主要根据海底地貌、土质情况 设计各种形状的结构形式。
桩脚端部结构的主要形式有桩靴和沉淀。
桁架式桩腿桩腿ຫໍສະໝຸດ 端部结构形式桩靴结构沉 淀 结 构
(结 固合 定式 式结 )构
(结 固合 定式 式结 )构
升降机构
升降装置常用的有电动液压式和电动齿轮 条式。
桩腿结构有独立式桩腿,有沉垫式桩腿, 也有混合式桩腿。独立式桩腿的形式可分 为壳体式和桁架式两类。
带有齿块的圆形壳体式桩腿
带有销孔的圆形壳体式桩腿
带有销孔的圆形壳体式桩腿
方形齿条壳体桩腿
圆形齿条壳体桩腿
桩脚端部结构
桩腿实际上是指桩脚的上部,也称桩身, 这一部分要考虑强度和与升降机构的配合。
主体 桩腿 升降装置
主体结构
从形状上分有三角形、矩形、五角形等。
自升式平台横剖面结构(矩形)
自升式平台中纵剖面结构(矩形)
上甲板平面结构
桩腿结构
桩腿的作用主要是在平台主体升起后支承 平台的全部重量,并把载荷传至海底。
桩腿一般要承担传递轴向载荷、水平载荷、 弯曲力矩和升降过程中的局部载荷。
Harbin Engineering University
That’s all! Thank you for your attention!
缺点:桩腿长度有限,最 大工作水深在120m左右, 否则桩腿升高对稳性和平 台强度有很大的不利影响。
自升式平台载荷
自升式平台所受到载荷有甲板载荷与平台 重量、风、浪、流等。
自升式平台的工作状态
拖航状态 放桩和提桩状态 插桩和拔桩状态 桩腿预压状态 着底状态
自升式平台的结构

海洋平台简介

海洋平台简介

2019/9/2
10
半潜平台简介
半潜式平台主要由上层平台结构、支持结构、浮筒结构组成。
上层平台布置着所有的钻井机械、平台操作设备、物资贮备和 生 活设施,上层平台通常承受甲板载荷在3000~6000t,加上风、 浪、流作用,立柱之间相互作用力。
半潜平台用沉垫提供浮力,漂浮在海中通过支撑结构支撑平台 上部结构,半潜平台支撑结构大都为立柱式。
设计: Forex Neptune & IFP Pentagone 85 建造: 1973 ~ 1975年 水深 / 钻井深度:1200/7500m 可变载荷: < 3,000 s/t
2019/9/2
15
第三代半潜平台
设计: F&G Enhanced Pacesetter 建造: 20世纪80年代初期到中期 水深 / 钻井深度:450~1050/7500m 可变载荷: < 4,000 s/t
DSS 21Maersk ContractorsK-
SeaDrill
FELS 2008 Daewoo 2009
2019/9/2
19
THANK YOU !
江苏熔盛重工有限公司
2019/9/2
20
2019/9/2
11
2019/9/2
12
半潜平台的发展
自1961 年世界上首座半潜式钻井平台诞生到目前,半潜式钻井平台经 历了6 个发展阶段,各阶段的代表平台参数如表1 。
第几代 泊位方式 作业水深(m) 钻井深度(m) 大钩载荷(t)
1
锚泊
<180
___
___
2
锚泊
300~1200
约7500
___
设计: Trosvik Bingo 3000 建造: 20世纪80年代初期到中期 水深 / 钻井深度:450~1050/7500m ~9000 可变载荷: < 4,000 s/t

《海洋平台设计》课件

《海洋平台设计》课件

总结词
浮式、自重轻、钢材、适用于深水
VS
详细描述
浮式海洋平台是一种浮体结构,上部结构 通常采用钢材制造,自重较轻,适用于深 水海域。其设计需要考虑风、浪、流等自 然条件的影响,同时要保证平台的稳定性 、强度和安全性。浮式海洋平台可以通过 锚链或浮筒等方式进行固定,具有较高的 灵活性,适用于不同海域条件下的使用。
06
海洋平台设计发展趋势与展望
数字化设计技术的应用
数字化建模
使用计算机辅助设计(CAD)软件进行建模,提 高设计效率和准确性。
虚拟现实技术
利用虚拟现实技术进行海洋平台设计的可视化展 示,方便设计师和客户进行交流和评估。
数字孪生
通过数字孪生技术,实现对海洋平台的全生命周 期管理,包括设计、建造、运营和维护。
案例二:重力式海洋平台设计
总结词
固定式、重力支撑、混凝土、适用于浅水
详细描述
重力式海洋平台是一种固定式海洋平台,依靠自身重量稳定地支撑在海底,上部结构通常采用混凝土材料。这种 平台适用于浅水海域,设计时需要考虑海底地质条件、自然环境等因素,同时要保证平台的结构安全性和稳定性 。
案例三:浮式海洋平台设计
概述 美国海洋平台设计规范与标准是 指在美国范围内被广泛接受和应 用的海洋平台设计规范和标准。
ABS规范与标准 ABS规范与标准是美国船级社制 定的海洋平台设计规范,包括《 海洋平台结构设计》、《海洋平 台机械设计》等。
分类 美国海洋平台设计规范与标准主 要分为两类,即美国石油学会( API)和美国船级社(ABS)。
《海洋平台设计》课件
汇报人: 日期:
目录
• 海洋平台概述 • 海洋平台设计基础 • 海洋平台设计流程 • 海洋平台设计规范与标准 • 海洋平台设计案例分析 • 海洋平台设计发展趋势与展望

海洋平台概述

海洋平台概述

导管架平台安装过程
滑移装船 拖运
调整
安装
我 国 东 海 的 导 管 架 平 台
自升式钻井平台
自升式钻井平台是能自行升降的钻井平台. 自升式钻井平台是能自行升降的钻井平台.分独立腿 式和沉垫式两类. 式和沉垫式两类. 1.独立腿式由平台和桩腿组成,各桩腿互相独立,不相连 1.独立腿式由平台和桩腿组成,各桩腿互相独立, 独立腿式由平台和桩腿组成 整个平台的重量由各桩腿分别支承. 接,整个平台的重量由各桩腿分别支承. 沉垫式由平台,桩腿和沉垫组成, 2. 沉垫式由平台,桩腿和沉垫组成,设在各桩腿底部的沉 将各桩腿联系在一起, 垫,将各桩腿联系在一起,整个平台的重量由相联各桩腿 支承. 支承. 目前海上移动式钻井平台中自升式钻井平台仍占45%. 目前海上移动式钻井平台中自升式钻井平台仍占45%. 45%
LNG LNG
FPSO FPSO
单点系泊模式FPSO 单点系泊模式FPSO
三,海洋平台火灾及预防措施
1. 海上钻井平台火灾特点
(1)蔓延迅速,易形成立方体燃烧. )蔓延迅速,易形成立方体燃烧. (2)烟熏较大,有毒有害气体较多. )烟熏较大,有毒有害气体较多. (3)火灾损失大,易造成群死群伤. )火灾损失大,易造成群死群伤. 4)作战环境复杂,阵地进攻困难. (4)作战环境复杂,阵地进攻困难.
2. 海上钻井平台火灾事故防范
(1)严格按照国家规范的要求进行设计和投入使用 ) (2)严格按照国家规范的要求设置平台的电气线路 ) (3)加强消防设施的维护与保养 ) (4)加强舱室的消防安全评价 )
平台重千金 责任重泰山
澳大利亚附近海域一平台失火
墨 西 哥 海 上 油 井 漏 油 引 发 火 灾

海洋平台概述

海洋平台发展简史课件

海洋平台发展简史课件
影响
古代海洋平台的发展为后来的大型海洋平台建设提供了基础和借鉴,推动了海洋 工程技术的进步。
03 近代海洋平台
石油钻井平台
01
02
03
04
石油钻井平台是近代海洋平台 中最为常见的一种,主要用于 海上石油和天然气的钻探和开
采。
石油钻井平台通常由一个或多 个钻井塔和相关设施组成,可
移动或固定在海面上。
船只
随着造船技术的发展,船只逐渐成为海洋运输和探险的主要 工具,为海洋平台的发展奠定了基础。
灯塔与浮标
灯塔
灯塔的出现大大提高了海上航行的安全性,为船只提供了导航和定位服务。
浮标
浮标用于指示航道、礁石等危险区域,对航海安全起到了重要作用。
古代海洋平台的局限性与影响
局限性
由于技术条件的限制,古代海洋平台的功能比较单一,主要用于简单的漂浮和运 输。
根据结构和功能的不同,海洋平台可 以分为固定式、浮式和半潜式等类型 。
海洋平台的重要性
能源供应
海洋平台是获取海底石油和天然 气的重要手段,对于保障全球能
源供应具有重要意义。
经济发展
海洋平台的发展推动了海洋工程产 业的发展,为沿海地区带来了巨大 的经济效益。
科学研究
海洋平台为科学家提供了开展海洋 科学研究的重要平台,有助于深入 了解地球的海洋环境和生态系统。
随着技术的发展,石油钻井平 台逐渐向深海移动,需要更高
的稳定性和安全性。
石油钻井平台的发展对全球能 源供应和经济发展具有重要意
义。
海洋观测平台
海洋观测平台主要用于海洋环境和生 态系统的监测和研究。
海洋观测平台还可以搭载各种科研设 备,进行海洋生物、地质、化学等方 面的研究。

《海洋平台概述》课件

《海洋平台概述》课件
需要进行调研、设计、立项等工作。
生产制造
平台的生产制造过程主要包括制造工艺、 工艺流程、生产数据、质量检验等工作。
开发利用
平台开始进行开发利用,例如进行采油、 发电等工作。
海洋平台的风险管理
1 物资运输风险
涉及到大量物资运输,风险较大。
2 祸变风险
恶劣海洋环境可能引发洪水、海啸、猛兽等 事件,导致平台损毁。
海洋环境因素
必须考虑海洋环境特点、水动力特性、风速风向 规律等海洋环境因素。
材料使用
使用高强度、防腐、抗海洋腐蚀能力强的材料。
海洋平台的建设流程
1
设计阶段
2
主要包括平台、降水、供配电、维护、
测控等各个专业的系统设计。
3
运输与安装
4
平台泊位到港,涉及海上运输、港口装
卸、海上吊装、靠泊锚固等环节。
5
前期准备
市场机遇与挑战
海洋平台市场将随着我国油气 能源需求的增长而逐渐扩大, 但同时也要面对环保和可持续 性等挑战。
海洋平台的未来发展方向
工艺技术创新
智能化建设
应用新的工艺和技术创新,提高 平台设计的节能、环保、安全性。
发展智能化建设,提高平台的适 应性和可持续性。
环保节能化发展
加强节能环保技术,实现高效、 低耗、光离岸的发展。
总结
1 海洋平台的重要性
海洋平台是人类对海洋资源开发的重要基础,对世界各国的经济和安全均具有重要的影 响。
2 后续发展机遇
油气、风电、海洋环保等为海洋平台的发展带来了无限的机遇。
3 需要解决的问题
在海洋平台的建设、管理以及环境保护等方面,仍然存在许多需解决的问题。
类型
固定式平台、浮式平台、半潜式平台和末端浮筒。不同类型的海洋平台具有不同的使用场合 和特点。

海洋工程各种平台分类与介绍

海洋工程各种平台分类与介绍

海洋工程各种平台分类与介绍下面图文并茂简单介绍下海洋平台分类、钻井船、喷我,海洋平台简单可以分为以下2大类(1)固定式平台:导管架式平台重力式平台(2)移动式平台:坐底式平台自升式平台索塔式平台SPAF平台FPSO SEVANG台,纯属胡扯,各位看官不要半潜式平台张力腿式平台第一个导管架平台Jacket),适用于浅近海。

导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。

钢桩穿过导管打入海底,并由若干根导管组合成导管架。

导管架先在陆地预制好后, 拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。

重力式(混凝土)钻井平台:混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。

UR 1坐底式钻井平台是早期在浅水区域作业的一种移动式钻井平台。

平台分本体与下体(即浮箱),由若干立柱连接平台本体与下体,平台上设置钻井设备、工作场所、储藏与生活舱室等。

钻井前在下体中灌入压载水使之沉底,下体在坐底时支承平台的全部重量,而此时平台本体仍需高出水面,不受波浪冲击。

自升式钻井平台(Jack-up)又称甲板升降式或桩腿式平台。

这种石油钻井装置在浮在水面的平台上装载钻井机械、动力、器材、居住设备以及若干可升降的桩腿,钻井时桩腿着底,平台则沿桩腿升离海面一定高度;移位时平台降至水面,桩腿升起,平台就像驳船,可由拖轮把它拖移到新的井位。

半潜式平台(Semi)是大部分浮体沉没于水中的一种小水线面的移动式平台,它从坐底式平台演变而来,由平台本体、立柱和下体或浮箱组成。

此外,在下体与下体、立柱与立柱、立柱与平台本体之间还有一些支撑与斜撑连接,在下体问的连接支撑一般都设在下体的上方,这样,当平台移位时,可使它位于水线之上,以减小阻力;平台上设有钻井机械设备、器材和生活舱室等,供钻井工作用。

海洋平台介绍

海洋平台介绍

国际浮式生产储油卸油船(FPSO)发展态势:FPSO(Floating Production Storage and Offloading)浮式生产储油卸油船,它兼有生产、储油和卸油功能,油气生产装置系统复杂程度和价格远远高出同吨位油船,FPSO装置作为海洋油气开发系统的组成部分,一般与水下采油装置和穿梭油船组成一套完整的生产系统,是目前海洋工程船舶中的高技术产品。

韩国船企对FPSO建造具有较强规模效应。

如现代重工专门建有FPSO海洋项目生产厂,已交付了6艘大型FPSO;三星重工手中持有5艘大型FPSO订单;大宇造船海洋工程公司则是全球造船企业中建造海上油气勘探船最多的企业,2005年承接海洋项目设备订单计划指标是17亿美元。

据海事研究机构(DW)预计,未来5年内FPSO新增需求将会达到84座,投资额约为210亿美元。

FPSO主要技术结构表: FPSO主要技术结构FPSO主要结构功能系泊系统:主要将FPSO系泊于作业油田。

FPSO在海域作业时系泊系统多采用一个或多个锚点、一根或多根立管、一个浮式或固定式浮筒、一座转塔或骨架。

FPSO系泊方式有永久系泊和可解脱式系泊两种;船体部分:既可以按特定要求新建,也可以用油轮或驳船改装;生产设备:主要是采油和储油设备,以及油、气、水分离设备等;卸载系统:包括卷缆绞车、软管卷车等,用于连接和固定穿梭油轮,并将FPSO储存的原油卸入穿梭油轮。

其作业原理是通过海底输油管线把从海底开采出的原油传输到FPSO的船上进行处理,然后将处理后的原油储存在货油舱内,最后通过卸载系统输往穿梭油轮。

配套系统:在FPSO系统配置上,外输系统是其关键的配套系统。

FPSO主要优点随着海洋油气开发、生产向深海不断进入,FPSO与其它海洋钻井平台相比,优势明显,主要表现在以下四个方面:(1)生产系统投产快,投资低,若采用油船改装成FPSO,优势更为显著。

而且目前很容易找到船龄不高,工况适宜的大型油船。

浅谈海洋平台的类型及发展

浅谈海洋平台的类型及发展

浅谈海洋平台的类型及发展海洋平台是在海上进行采油、集运、观测、导航、施工等活动的基础性设施。

海洋平台板主要用于制造海上采油钻井,是海上生产作业和生活的基地。

随着国家海洋科技逐渐走向深海,海洋平台结构的研究和建设越来越受到国内外科研机构和产业集团的重视。

本文重点介绍海洋平台的结构类型及其发展概况。

标签:海洋平台;类型;发展0 引言21世纪以来,随着中国经济的快速发展,石油消费日益增加,采取有效措施开发海底油田保障油气供给十分必要。

海洋平台由于功能强大,适用于多种水深和多种环境,在国内外海洋油气资源开发活动中得到广泛应用,已经成为未来海洋工程领域的一大发展趋势,研究、开发、制造海洋平台具有十分重要的意义。

1 海洋平台的分类海洋平台的类型很多,按运动方式大体可以分为固定式、活动式和半固定式。

(1)固定式海洋平台。

固定式平台通常由混凝土和钢结构直接锚定在海底来支撑为钻探设备、生产设施和居住区提供空间的上甲板。

其结构也有多种不同形式:导管架型、塔架型、钢筋混凝土重力式、钢重力式等。

其优点在于整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强。

缺点是机动性能差,一经下沉定位固定,则较难移位重复使用。

被广泛应用于海洋石油开发中,特别是在水深520m内的浅海石油开发中占据主导地位。

(2)活动式海洋平台。

活动式平台浮于水中或支承于海底,可以在不同井位之间移动,按支承情况可分为着底式和浮动式两类。

它是为适应勘探、施工、维修等海上作业必须经常更换地点的需要而发展起来的。

现有的活动式平台又可分为坐底式、自升式、半潜式等多种不同结构型式。

由于机动性能好,故一般均用于钻井。

(3)半固定式海洋平台。

半固定式平台既能固定在深水中,又可以移动,新型的张力腿式平台和拉索塔式平台即属此类。

其上部结构是浮体,通过收紧锚固在海底的缆索张紧固定。

这种平台用料少,工作水深大,适用于大深度水域,是近年来发展起来的新结构型式,具有明显的优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国际浮式生产储油卸油船(FPSO)发展态势:FPSO(Floating Production Storage and Offloading)浮式生产储油卸油船,它兼有生产、储油和卸油功能,油气生产装置系统复杂程度和价格远远高出同吨位油船,FPSO装置作为海洋油气开发系统的组成部分,一般与水下采油装置和穿梭油船组成一套完整的生产系统,是目前海洋工程船舶中的高技术产品。

韩国船企对FPSO建造具有较强规模效应。

如现代重工专门建有FPSO海洋项目生产厂,已交付了6艘大型FPSO;三星重工手中持有5艘大型FPSO订单;大宇造船海洋工程公司则是全球造船企业中建造海上油气勘探船最多的企业,2005年承接海洋项目设备订单计划指标是17亿美元。

据海事研究机构(DW)预计,未来5年内FPSO新增需求将会达到84座,投资额约为210亿美元。

FPSO主要技术结构表: FPSO主要技术结构FPSO主要结构功能系泊系统:主要将FPSO系泊于作业油田。

FPSO在海域作业时系泊系统多采用一个或多个锚点、一根或多根立管、一个浮式或固定式浮筒、一座转塔或骨架。

FPSO系泊方式有永久系泊和可解脱式系泊两种;船体部分:既可以按特定要求新建,也可以用油轮或驳船改装;生产设备:主要是采油和储油设备,以及油、气、水分离设备等;卸载系统:包括卷缆绞车、软管卷车等,用于连接和固定穿梭油轮,并将FPSO储存的原油卸入穿梭油轮。

其作业原理是通过海底输油管线把从海底开采出的原油传输到FPSO的船上进行处理,然后将处理后的原油储存在货油舱内,最后通过卸载系统输往穿梭油轮。

配套系统:在FPSO系统配置上,外输系统是其关键的配套系统。

FPSO主要优点随着海洋油气开发、生产向深海不断进入,FPSO与其它海洋钻井平台相比,优势明显,主要表现在以下四个方面:(1)生产系统投产快,投资低,若采用油船改装成FPSO,优势更为显著。

而且目前很容易找到船龄不高,工况适宜的大型油船。

(2)甲板面积宽阔,承重能力与抗风浪环境能力强,便于生产设备布置;(3)储油能力大,船上原油可定期、安全、快速地通过卸油装置卸入穿梭油船中运输到岸上,穿梭油船不仅可与FPSO串联,也可傍靠FPSO系泊。

最新FPSO还具备了海上天然气分离压缩罐装能力,提高了油田作业的经济性。

(4)应用灵活,移动方便,其海上自航能力是其它海洋平台系统所不具备的,因此,FPSO可根据作业需要和实际情况迅速转换工作海域和回厂检修。

FPSO技术发展趋势随着科技发展和海上作业难度加大,海洋油气开采工程装备正在向大型化、自动化、专用化方面发展,同时国际海事组织(IMO)对涉海船舶产品的安全、环保等方面的要求也越来越严格,当前FPSO设备的技术发展主要体现在以下五个方面:(1)建造技术向模块化发展,周期缩短早期建造FPSO基本上都是在船体结构建成后,在甲板上安装各种生产设备、主电站和热站等,建造一艘FPSO通常需要20个月或更长时间。

目前,FPSO建造已开始采用了模块化生产工艺,船体结构和上部设施可以同时施工建造,使得FPSO建造周期可缩短至10-14个月。

(2)定位系泊技术创新,动力配置加大新一代FPSO装置的系泊多为转塔式多点辐射状系泊,有的还在艏艉配备多个侧向推进器,发展了第三代动力定位技术(DPS-3)。

多点系泊采用锚链和钢缆相组合,也有采用高防腐蚀的高强度聚脂纤维和锚链相组合的方式;根据当前FPSO船体尺寸增大以及作业能力增强的特点,新建的FPSO也相应配备了强大的动力系统,并设计采用侧推螺旋桨技术以提高大尺寸船体在强风暴下的生存能力,确保正常航行时的快速性能。

(3)降低油耗、循环利用过去FPSO生产的原油主要靠穿梭油船外输,油田中生产的天然气在不值得铺设海底管线的情况下,只能将价值昂贵的天然气经分离处理后通过FPSO的火炬将其烧掉;现在,FPSO 具有将天然气处理并转换成压缩天然气外输能力,即将海上采集的天然气压缩后用罐装,后用船舶外输,或管道输运。

(4)石油生产能力不断加强2003年据《maritime—reporter and engineering news》杂志报道,新加坡远东利文斯顿船厂为挪威国家石油公司建造的”NORNE”号FPSO,原油日处理能力达到了3.5万立方米(计22万桶);2005年,大宇接获了世界上规模最大的一艘FPSO船订单,造价9.78亿美元,该船可以储存石油216万桶,将在水深1400米的深海区作业。

(5)FPSO新概念船正在加速研发为了解决环境污染问题,提高FPSO系统的环保性能,世界上出现了LPGFPSO(浮式液化石油气生产储卸船)新概念船;如日本石川岛播磨重工正在建造世界上第一艘LPGFPSO,一家瑞士公司已和日本三井重工及石川岛播磨重工签订了该船单点系泊技术、采购及建造服务合约。

另外,近海油气工业界也在不断进行探索,试图把油气钻井设备并入FPSO,变为FDPSO。

业内专家分析认为,随着世界各国石油需求量的快速增长,新一代FPSO技术将不断涌现。

我国自主研发的FPSOFPSO即Float Production Storage and Offloading,中文是海上浮式生产储油船。

FPSO是对开采的石油进行油气分离、处理含油污水、动力发电、供热、原油产品的储存和运输,集人员居住与生产指挥系统于一体的综合性的大型海上石油生产基地。

与其他形式石油生产平台相比,FPSO具有抗风浪能力强、适应水深范围广、储/卸油能力大,以及可转移、重复使用的优点,广泛适合于远离海岸的深海、浅海海域及边际油田的开发,目前,已成为海上油气田开发的主流生产方式。

FPSO始于20世纪70年代中期。

它具有两个特点:一是体型庞大,船体一般从5~30万吨,一艘30万吨的FPSO甲板面积相当于3个足球场。

二是功能较多,FPSO集合了各种油田设施,对油气水实施分离处理和原油储存,故被称为"海上工厂"、"油田心脏"。

FPSO 主要由船体、负责油气生产处理的上部模块和水下单点系泊系统三部分组成,一般适用于20~2000米不同水深和各种环境的海况,通过固定式单点或悬链式单点系泊系统固定在海上,可随风、浪和水流的作用进行360度全方位的自由旋转,规避风浪带来的破坏力。

中国船舶工业集团公司第708研究所(以下简称708所)是我国进行FPSO设计的主要单位,建造FPSO的主要造船厂有上海外高桥造船有限公司,上海沪东船厂,上海江南造船厂,大连新船重工船厂等。

目前,FPSO的自主化程度已经很高,压力容器、泵类、吊机、空压机、锅炉、应急/备用发电机、污水处理设备、消防救生设备、高低压盘、电缆、普通仪表、单点主体部分,已经全部实现自主化,主发电机、大型流量计、中央控制系统设备、惰气发生器、单点关键部件等仍依靠进口。

我国第一艘FPSO-52000吨"渤海友谊"号由708所设计、上海外高桥造船有限公司建造,于***7月完工并投入海上油田生产。

上海外高桥造船有限公司建造的30万吨级FPSO"海洋石油117号",是我国承接吨位最大,造价最高,技术最新的FPSO,造价2.4亿美元,日加工原油19万桶、储油量200万桶。

目前,我国已经成为全球最大的FPSO制造与应用国,所拥有的FPSO数量与总吨位均居世界首位。

Spar平台(深水浮筒平台)Spar平台(深水浮筒平台)属于顺应式平台的范畴,被广泛应用于人类开发深海的事业中,担负着钻探、生产、海上原油处理、石油储藏和装卸等各种工作,成为当今世界深海石油开采的有力工具。

1961年,在北海海域建造的一座浮动式工具平台,主要用于海洋研究工作。

20 世纪70年代,Royal Dutch Shell公司又在北海的中等水深中建造了一座Brent Spar平台,用作石油的储藏和装卸中心。

不过,早期建造的Spar平台结构与当前深海油气开发使用的Spar平台相比还是有区别的。

一般来讲,现代 Spar平台都具有以下几个特征(如下图所示):Spar平台示意图1. 现代Spar平台的主体是单圆柱结构,垂直悬浮于水中,特别适宜于深水作业,在深水环境中运动稳定、安全性良好。

Spar平台主体可分为几个部分,有的部分为全封闭式结构,有的部分为开放式结构,但各部分的横截面都具有相同的直径。

由于主体吃水很深,平台的垂荡和纵荡运动幅度很小,使得Spar平台能够安装刚性的垂直立管系统,承担钻探、生产和油气输出工作。

2. Spar平台的中心处开有中央井,中央井内装有独立的立管浮筒,具有良好的灵活性。

生产立管上与平台上体的控井和生产处理设施相连,向下则一直延伸到海底油井。

Spar平台的油气产品有两种输出方式,它既可以通过柔性输油管、SCR立管或顶紧张式立管将油气产品直接输送到海底管道系统,也可以将石油储藏在 Spar平台的主体中,然后用油轮将石油向岸上运输。

由于采用了缆索系泊系统固定,使得Spar平台十分便于拖航和安装,在原油田开发完后,可以拆除系泊系统,直接转移到下一个工作地点继续使用,特别适宜于在分布面广、出油点较为分散的海洋区域进行石油探采工作。

Spar PlatformsSpar Platforms, moored停泊 to the seabed like the TLP, but whereas the TLP has vertical tension tethers范围 the Spar has more conventional mooring lines. Spars have been designed in three configurati***: the "conventional" one-piece cylindrical hull, the "truss spar" where the midsection is composed of truss elements connecting the upper buoyant hull (called a hard tank) with the bottom soft tank containing permanent ballast, and the "cell spar" which is built from multiple vertical cylinders. The Spar may be more economical to build for small and medium sized rigs than the TLP, and has more inherent stability than a TLP since it has a large counterweight at the bottom and does not depend on the mooring to hold it upright. It also has the ability, by use of chain-jacks attached to the mooring lines, to move horizontally over the oil field.The first Spar was Kerr-McGee's Neptune, which is a floating production facility anchored in 1,930 feet (588 m) in the Gulf of Mexico. Dominion Oil's Devil's Tower is located in 5,610 feet (1,710 m) of water, in the Gulf of Mexico, and is the world's deepest spar. The first (and only) cell spar is Kerr-McGee's Red Hawk.SPAROil and gas exploration in deep water has accelerated the need of ocean structures suitable for these depths. A spar platform is such a compliant floating structure used for deep water for the drilling, production, processing and storage of ocean deposits. The follows gives a review on the technical development of spar platform, including the research on dynamic resp***e, mooring system, fatigue and coupled analysis and the design of heave plate and strake configuration.深海油气资源的大量开发加速了对适应深水环境的平台结构物的需求。

相关文档
最新文档