MATLAB图像处理DWT(离散小波变化)
MATLAB图像处理dct和dwt变换信息处理
subplot(2,2,1);
imshow(GR);
D=dct2(GR); %计算DCT dct2:二维离散余弦变换
subplot(2,2,2);
imshow(D,[0,5]);%abs(D):求整数绝对值[]:规定输出范围
colormap(gray(4));colorbar;%输出一个灰色系的曲面图
%总结二
clear;
RGB=imread('lenacaise.jpeg');
GR=rgb2gray(RGB);%转换成灰度图像
figure(1);imshow(GR);
D=dct2(GR); %计算DCT dct2:二维离散余弦变换
figure(2);imshow(abs(D),[0,5]);%abs(D):求整数绝对值[]:规定输出范围
A=upcoef2('a',cA,'bior3.7',1); %重构细节分量信号
H=upcoef2('h',cH,'bior3.7',1); % 重构水平分量信号
V=upcoef2('v',cV,'bior3.7',1); % 重构垂直分量信号
D=upcoef2('d',cD,'bior3.7',1); % 重构对角线分量信号
%显示各分量
subplot(2,2,1);image(wcodemat(A,192));title('细节分量');%wcodemat:对矩阵进行量化编码
subplot(2,2,2);image(wcodemat(H,192));title('水平分量');
小波包变换及matlab程序编写
1 小波变换的基本理论信号分析是为了获得时间和频率之间的相互关系。
小波变换(DWT )是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT 压缩普遍具有的方块效应。
通过缩放母小波(Mother wavelet )的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力工具。
它是以局部化函数所形成的小波基作为基底展开的,具有许多特殊的性能和优点,小波分析是一种更合理的进频表示和子带多分辨分析。
2小波包变换的基本理论和原理概论:由于正交小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,但它不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。
2.1小波包的定义:正交小波包的一般解释 仅考虑实系数滤波器.{}n n Z h ∈{}n n Zg ∈()11nn ng h -=-()()()()22k k Z kk Z t h t k t g t k φφψφ∈∈⎧=-⎪⎨=-⎪⎩为便于表示小波包函数,引入以下新的记号:通过,,h,g 在固定尺度下可定义一组成为小波包的函数。
matlab小波变换信号分离
MATLAB小波变换(Wavelet Transform)是一种常用的信号处理工具,可用于信号的时频分析,特征提取和信号分离等应用。
本文将对MATLAB小波变换进行详细介绍,并利用其进行信号分离的实际应用。
1. 小波变换原理MATLAB小波变换是一种多尺度分析方法,通过将信号分解为不同频率和尺度的小波基函数,能够揭示信号的时频特性。
其原理是利用小波基函数对信号进行分解和重构,从而实现对信号的时频分析和特征提取。
2. MATLAB小波变换工具MATLAB提供了丰富的小波分析工具包,包括小波变换函数、小波滤波器设计函数等,能够方便地进行信号的小波分解和重构。
利用MATLAB小波变换工具,可以对信号进行多尺度分析,揭示信号中的细节和特征信息。
3. 信号分离应用利用MATLAB小波变换,可以实现对混合信号的分离和去噪。
在实际应用中,经常遇到多个信号叠加在一起的情况,通过小波变换可以将这些混合信号分解为各自的成分,从而实现信号的分离和分析。
4. 实例分析接下来,我们通过一个实际的示例来演示MATLAB小波变换在信号分离中的应用。
假设我们有两个信号叠加在一起,分别是正弦信号和方波信号。
我们首先使用MATLAB将这两个信号混合在一起,然后利用小波变换对其进行分析和分离。
我们使用MATLAB生成正弦信号和方波信号,并将它们叠加在一起。
利用小波变换将这两个信号进行分解,得到它们各自的小波系数。
我们根据小波系数重构出原始信号的各个成分,实现信号的分离和还原。
通过实例分析,我们可以看到MATLAB小波变换在信号分离中的有效性和实用性,能够帮助我们从混合信号中提取出感兴趣的成分,实现对信号的分析和处理。
5. 总结MATLAB小波变换是一种强大的信号处理工具,可以用于信号的时频分析、特征提取和信号分离等应用。
通过对小波变换原理和工具的详细介绍,以及实际的应用实例分析,我们深入理解了MATLAB小波变换在信号分离中的应用和优势。
小波学习之一(单层一维离散小波变换DWT的Mallat算法C++和MATLAB实现)
⼩波学习之⼀(单层⼀维离散⼩波变换DWT的Mallat算法C++和MATLAB实现)1 Mallat算法离散序列的Mallat算法分解公式如下:其中,H(n)、G(n)分别表⽰所选取的⼩波函数对应的低通和⾼通滤波器的抽头系数序列。
从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进⾏隔点抽取⽽来。
离散序列的Mallat算法重构公式如下:其中,h(n)、g(n)分别表⽰所选取的⼩波函数对应的低通和⾼通滤波器的抽头系数序列。
2 ⼩波变换实现过程(C/C++)2.1 ⼩波变换结果序列长度⼩波的Mallat算法分解后的序列长度由原序列长SoureLen和滤波器长FilterLen决定。
从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进⾏隔点抽取⽽来。
即分解抽取的结果长度为(SoureLen+FilterLen-1)/2。
2.2 获取滤波器组对于⼀些通⽤的⼩波函数,简单起见,可以通过Matlab的wfilters(‘wavename’)获取4个滤波器;特殊的⼩波函数需要⾃⾏构造获得。
下⾯以db1⼩波函数(Haar⼩波)为例,其变换与重构滤波器组的结果如下://matlab输⼊获取命令>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db1')//获取的结果Lo_D =0.7071 0.7071Hi_D =-0.7071 0.7071Lo_R =0.7071 0.7071Hi_R =0.7071 -0.70712.3 信号边界延拓在Mallat算法中,假定输⼊序列是⽆限长的,⽽实际应⽤中输⼊的信号是有限的采样序列,这就会出现信号边界处理问题。
对于边界信号的延拓⼀般有3种⽅法,即零延拓、对称延拓和周期延拓。
3种延拓⽅法⽐较情况如下:对于正交⼩波变换来说,前两种延拓⽅法实现起来⽐较简单,但重建时会产⽣边界效应,⽽且分解的层数越多,产⽣的边界效应越显著。
matlab离散小波变换dwt(小波分解)
小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。
在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。
本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。
1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。
具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。
2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。
其中,图像处理是离散小波变换最为常见的应用之一。
通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。
在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。
在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。
3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。
其中,dwt函数是Matlab中常用的离散小波变换函数之一。
其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。
小波变换matlab
小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
matlab实验,图像变换域分析(dct变换和小波变换)
实验一 图像DCT 变换一、实验目的1.了解DCT 处理图像的基本知识;2.掌握用matlab 将对图像进行DCT 变换。
二、实验内容1.对图像进行DCT 处理;2.显示变换后的图像的三维的频谱; 3.对matlab 代码进行一定的文字说明;三、实验原理离散余弦变换(Discrete Cosine Transform ,DCT )是一种实数域变换,其变换核为实数余弦函数。
对一幅图像进行离散余弦变换后,许多有关图像的重要可视信息都集中在DCT 变换的一小部分系数中。
因此,离散余弦变换(DCT )是有损图像压缩JPEG 的核心,同时也是所谓“变换域信息隐藏算法”的主要“变换域(DCT 域)”之一。
因为图像处理运用二维离散余弦变换,所以直接介绍二维DCT 变换。
一个矩阵的二维DCT 定义如下:首先将输入图像分解为8*8或16*16块,然后再对每个图像块进行二维DCT 变换,接着再对DCT 系数进行量化、编码和传输;接收者通过对量化的DCT 系数进行解码,并对每个图像块进行的二维DCT 反变换。
最后将操作完成后所有的块拼接起来构成一幅单一的图像。
对于一般的图像而言,大多数DCT 系数值都接近于0,所以去掉这些系数不会对重建图像的质量产生较大影响。
因此,利用DCT 进行图像压缩确实可以节约大量的存储空间。
在实验中,先将输入的原始图像分为8*8块,然后再对每个块进行二维DCT 变换。
MATLAB 图像处理上具箱中提供的二维DCT 变换及DCT 反变换函数如下。
基于DCT 的JPEG 图像压缩编码理论算法过程框图如下:上图是基于DCT 变换的图像压缩编码的压缩过程,解压缩与上图的过程相反。
四、实验代码及结果close all;原始图像数据分成8*8的小块DCT 变换 量化器量化表熵编码器 码表压缩数据I=imread('222.jpg'); %读入原图像文件I=rgb2gray(I);%将原图像转换成灰色图像I1=dct2(I);%对原图像进行二维DCT变换fs=fftshift(I1);%将直流分量移到频谱中心subplot(121);imshow(I);title('灰色图像');%显示灰色图像subplot(122);imshow(log(abs(I1)),[]),colorbar;title('图像经DCT变换后能量分布情况') %显示经过dct变换后能量分布;figure(2);mesh(fs);title('三维频谱');%显示三维频谱五、实验结果分析图像经DCT变换后能量主要分布在左上角,右下角能量分布较低。
用matlab小波分析的实例
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
(完整版)MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname’)[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname’)使用指定的小波基函数’wname’ 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解.(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,’wname’)X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname’) 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X .’wname'为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,’wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能——————----—--——--———--—-—-----————-——————-—--—---——dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换—-—-—--——-—-——-—-—---—-—-——-—————------——-—----—-————---——-(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为’mat’),即:别可以实现一维、二维和N 维 DFTOPT='row’ ,按行编码OPT=’col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为’1’),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname’)[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname’)使用指定的小波基函数 'wname'对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
matlab对信号小波变换
matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。
小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。
MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。
二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。
小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。
三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。
以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。
2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。
3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。
4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。
5.重构信号:使用 waverec 函数根据小波系数重构信号。
四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。
2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。
3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。
五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
图像编码中的矩阵变换方法解析(一)
图像编码中的矩阵变换方法解析随着科技的进步和数码化时代的到来,图像编码技术逐渐成为我们生活中不可或缺的一部分。
在图像编码的过程中,矩阵变换方法被广泛应用,不仅可以提高图像的压缩率,还可以保证图像的质量。
那么,矩阵变换方法是什么呢?简单来说,矩阵变换方法是通过将原始图像按照一定的数学模型进行变换,从而得到新的表达形式,进而实现图像的压缩和恢复。
在图像编码中,最常见的矩阵变换方法包括离散余弦变换(DCT),离散小波变换(DWT)和快速傅里叶变换(FFT)。
首先,让我们来了解离散余弦变换。
DCT是一种将时域信号变换到频域的方法,通过将图像的亮度信息和颜色信息分别进行DCT变换,得到对应的频率系数。
DCT变换的优点是能够有效压缩图像信息并保持较好的图像质量。
其算法思想是将图像分割成8x8的块,然后对每个块进行DCT变换,最后保留一部分频率系数进行存储和传输。
除了DCT之外,离散小波变换也是一种常用的矩阵变换方法。
DWT 是一种多分辨率分析技术,在图像编码中被广泛应用。
与DCT不同的是,DWT可以将图像的低频信息和高频信息分别表示,从而更好地反映图像的细节和轮廓。
DWT变换的过程是通过将图像分解成一系列的低频子带和高频子带,然后对子带进行不同级别的小波变换。
通过调整不同子带的权重和阈值,可以实现对图像信息的压缩和恢复。
最后,我们来介绍一下快速傅里叶变换。
FFT是一种通过对信号进行频域分析的方法,将时域信号转换为频域信号。
在图像编码中,FFT被广泛用于信号处理和频谱分析。
与DCT和DWT不同的是,FFT变换将图像表示为一系列复数形式的频率系数,从而更好地反映图像的频率特征。
FFT的优点是计算速度快,适用于高效的图像压缩和恢复。
总结来说,矩阵变换方法在图像编码中起到了至关重要的作用。
离散余弦变换、离散小波变换和快速傅里叶变换是常用的矩阵变换方法。
这些方法可以将图像信息从时域转换到频域,从而提高图像的压缩率和质量。
收集和总结MATLAB中涉及到的小波函数
一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。
cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。
MATLAB 小波变换 指令及其功能介绍
MATLAB 小波变换指令及其功能介绍3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分析3.1 一维小波变换的 Matlab 实现(1) dwt 函数 Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
1. 离散傅立叶变换的 Matlab实现3.2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换 Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的 Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数 fft、fft2 和 fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
基于 matlab 实现的二维小波分解算法-概述说明以及解释
基于matlab 实现的二维小波分解算法-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括一些关于小波分解算法的基本介绍,可以简要介绍小波分解算法的原理和应用领域,同时提及该算法在信号处理、图像压缩以及特征提取等方面的重要性。
以下是一个示例:在当今信息时代,信号处理和图像处理一直是计算机科学和工程学中的研究热点。
为了更好地理解和处理信号和图像中的信息,及时去除噪声、压缩图像以及提取出关键特征,人们不断寻求更有效的处理方法。
而小波分解算法作为一种新兴的信号处理方法,在近年来得到了广泛的应用和研究。
小波分解算法是一种将信号或图像分解为时频域或时空域的工具,它可以分解出不同尺度和频率的子信号或子图像,这为信号处理和图像处理提供了一种有效途径。
与传统的傅里叶变换相比,小波分解算法具有更好的局部性质和多尺度分析能力,因此被广泛运用于信号处理、图像压缩、图像恢复、特征提取等领域。
在信号处理中,小波分解算法可以用于去噪、压缩、去除偶尔的干扰等。
在图像处理方面,小波分解算法具备较好的多分辨率特性,可以在不同分辨率上进行图像处理,对于边缘检测、纹理分析、目标识别等具备独特的优势。
此外,小波分解算法对于非平稳信号和非线性系统等具备突出的应用优势。
本文将介绍基于Matlab 的二维小波分解算法的实现,通过对该算法的深入剖析和实验验证,展示它在图像处理方面的应用前景以及算法效果的评估。
通过本文的研究,读者将了解到小波分解算法的实际应用场景和优势,进一步提高信号处理和图像处理的能力。
在文章的后续部分中,我们将重点介绍小波分解算法的原理,并详细阐述如何在Matlab 环境下实现二维小波分解算法。
1.2 文章结构本文将按照以下结构展开对基于Matlab 实现的二维小波分解算法的介绍和分析:1. 引言:首先对文章的主题和目的进行概述,介绍小波分解算法在图像处理领域的重要性,并总结文章结构。
2. 正文:2.1 小波分解算法概述:详细介绍小波分解算法的基本原理和应用领域,包括信号分析,压缩,去噪等方面。
matlab小波变换函数说明
matlab小波变换Matlab 1. 离散傅立叶变换的Matlab实现Matlab 函数fft、fft2 和fftn 分别可以实现一维、二维和N 维DFT 算法;而函数ifft、ifft2 和i fftn 则用来计算反DFT 。
这些函数的调用格式如下:A=fft(X,N,DIM)其中,X 表示输入图像;N 表示采样间隔点,如果X 小于该数值,那么Matlab 将会对X 进行零填充,否则将进行截取,使之长度为N ;DIM 表示要进行离散傅立叶变换。
A=fft2(X,MROWS,NCOLS)其中,MROWS 和NCOLS 指定对X 进行零填充后的X 大小。
别可以实现一维、二维和N 维DF TA=fftn(X,SIZE)其中,SIZE 是一个向量,它们每一个元素都将指定X 相应维进行零填充后的长度。
函数ifft、ifft2 和ifftn的调用格式于对应的离散傅立叶变换函数一致。
别可以实现一维、二维和N 维DFT例子:图像的二维傅立叶频谱1. 离散傅立叶变换的Matlab实现% 读入原始图像I=imread('lena.bmp');函数fft、fft2 和fftn 分imshow(I)% 求离散傅立叶频谱J=fftshift(fft2(I));figure;别可以实现一维、二维和N 维DFTimshow(log(abs(J)),[8,10])2. 离散余弦变换的Matlab 实现Matlab2.1. dct2 函数功能:二维DCT 变换Matlab格式:B=dct2(A)B=dct2(A,m,n)B=dct2(A,[m,n])函数fft、fft2 和fftn 分说明:B=dct2(A) 计算A 的DCT 变换B ,A 与 B 的大小相同;B=dct2(A,m,n) 和B=dct2(A, [m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。
2.2. dict2 函数功能:DCT 反变换格式:B=idct2(A)B=idct2(A,m,n)别可以实现一维、二维和N 维DFTB=idct2(A,[m,n])说明:B=idct2(A) 计算A 的DCT 反变换B ,A 与 B 的大小相同;B=idct2(A,m,n) 和B=idct 2(A,[m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。
(完整版)小波变换图像去噪MATLAB实现
基于小波图像去噪的MATLAB 实现一、 论文背景数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。
数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。
在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。
然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。
通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
二、 课题原理1.小波基本原理在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。
一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:())(1,ab x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。
当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:()()1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:()dx ab x a x f f x W b a b a )(1)(,,,-ψ=ψ=⎰+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4)可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。
Matlab图像处理工具箱中部分函数用法
1. blkproc( )用法blkproc功能:对图像进行分块处理调用形式: B = blkproc(A,[m n],fun, parameter1, parameter2, ...)B = blkproc(A,[m n],[mborder nborder],fun,...)B = blkproc(A,'indexed',...)参数解释:[m n] :图像以m*n为分块单位,对图像进行处理(如8像素*8像素)Fun:应用此函数对分别对每个m*n分块的像素进行处理parameter1, parameter2:要传给fun函数的参数mborder nborder:对每个m*n块上下进行mborder个单位的扩充,左右进行nborder个单位的扩充,扩充的像素值为0,fun函数对整个扩充后的分块进行处理。
这里:fun='P1*x*P2',fun的参数P1,P2,将T,T'传递给fun的参数,即:P1= T,P2=T'.2.dwt2( )用法d wt2功能:单级二维离散小波变换调用格式: [cA,cH,cV,cD] = dwt2(X,'wname')[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)其意义为使用指定的小波基函数'wname'对二维信号X进行二维离散小波变换。
cA,cH,cV,cD分别为近似细节分量、水平细节分量、垂直细节分量和对角细节分量。
3.wavedec2( )用法waveder2功能:二维信号的多层小波分解调用格式:[C,S] = wavedec2(X,N,'wname')[C,S] = wavedec2(X,N,Lo_D,Hi_D)其意义为使用小波基函数'wname'对二维信号X进行N层分解。
4.idwt2( )用法idwt2功能:单级二维离散小波反变换调用格式:X = idwt2(cA,cH,cV,cD,'wname')X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X = idwt2(cA,cH,cV,cD,'wname',S)X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)X = idwt2(...,'mode',MODE)其意义为由信号小波分解的近似信号cA和细节信号cH,cV,cD经小波反变换重构原信号X。
离散小波变换和连续小波变换的适用范围
离散小波变换和连续小波变换的适用范围
离散小波变换(DWT)和连续小波变换(CWT)的适用范围有所不同。
离散小波变换是一种在信号和图像处理中常用的技术,它主要用于分析处理数据序列,如一维、二维和多维的信号或图像。
它能够提供数据的时频特性,并具有多尺度分解的能力,因此在信号去噪、特征提取、压缩等领域都有广泛的应用。
连续小波变换则是一种更为一般的数学工具,它可以用来分析各种不同类型的信号或函数。
它适用于处理那些变化比较连续、没有明显的离散特性的数据。
连续小波变换可以用于分析如地震信号、生物医学信号等连续的、时间序列的数据。
总的来说,离散小波变换更适用于处理具有离散特性的数据,而连续小波变换则更适用于处理连续变化的数据。
使用MATLAB设计小波变换程序中的若干问题
使用MATLAB设计小波变换程序中的若干问题在使用MATLAB完成小波变换程序和通过阈值来压缩图像的过程中,我和许多同学都是边学边用,是从一个接一个的问题中逐步理解小波和MATLAB编写程序的。
因此我愿意就个人遇到和解决问题的经验与大家讨论,希望能够对遇到同样问题的人有所帮助。
在清华大学林福宗老师倡导的网上互动的学习方式中,老师同学的开诚布公的讨论,尤其是林老师启发大家对出现…问题‟采取的态度和做法,对我今后成长为一名合格的清华的研究生意义重大,谨以此文表示对他指导关心的敬意!1.内容简介本文分为三部分: 如何使用MATLAB设计小波标准与标准分解;如何完成使用小波变换压缩图像;仍需探讨的问题。
每一部分主要以问题和例子的形式讲述,为了便于参照,附录部分给出部分源代码供大家参考指正。
我个人在完成作业的时候,走了许多弯路,最后,反复读老师的第3章讲义的第3--5节,明白了小波变换的一些非常基础性的知识,正是如此,我主要是按照第三章的例子,做出使用MATLAB进行Haar变换的实例,这至少对完成非标准Haar小波的3级分解与合成没有任何问题,而且计算速度远远比使用一维变换快,甚至超过dwt2和wavedec2。
再者,是通过这些简短的例子的学习,也能从实践的角度理解小波变换的基础知识和道理,我觉得掌握小波的知识要比简单使用dwt2直接分析出结果更重要。
为了让使用一维变换或打算采用卷积完成分解重构程序的同学有所参考,也给出了我以前写的代码和设想供有兴趣者参考。
在图像压缩的任务中,我个人建议采用wdencmp,原因是简单可靠,能够生成老师要求小波压缩与重构的演示及PNG文件。
在最后部分着重对使用小波压缩之后重构图像的PNG文件会变大问题进行了简单的猜测性的解释和讨论,希望感兴趣的同学能深入研究。
2.如何使用MATLAB设计小波标准与标准分解1.使用Haar和Db9小波编写图像文件的标准和非标准分解重构程序实质上,任务书中规定首先要编写4种程序之一:哈尔(haar)小波的标准分解重构程序;Daubechies 9小波的标准分解重构程序;哈尔(haar)小波的非标准分解重构程序;Daubechies 9小波的非标准分解重构程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基础强化训练》报告题目:MATLAB图像处理专业班级:学生姓名:指导教师:2010 年07 月13 日基础强化训练任务书学生姓名:专业班级:指导教师:工作单位:题目: MATLAB图像处理DWT(离散小波变化)基础强化训练目的①较全面了解常用的数据分析与处理原理及方法;②能够运用相关软件进行模拟分析;③掌握基本的文献检索和文献阅读的方法;④提高正确地撰写论文的基本能力。
训练内容和要求①采集一幅像素大于64*64黑白图像;②常规的数学统计数据处理:计算图象各象素点灰度值得均值、标准差、方差,并绘出灰度直方图;③数据分析常用算法:FFT(傅立叶变换),DCT(离散余弦变化),DWT(离散小波变化)初始条件①MATLAB软件②数字信号处理与图像处理基础知识时间安排:第19周,安排任务第20周,仿真设计(鉴主13楼计算机实验室)第21周,完成(答辩,提交报告,演示)指导教师签名: 20010年 7月14 日系主任(或责任教师)签名:2010年 7月 14日目录摘要 (1)Abstract (2)1 数据采集 (3)1.1图像的选取 (3)1.2 MATLAB读取方法 (3)1.2.1 编辑M文件 (3)1.2.2 图像的读取与灰度图的转换 (4)1.2.3 灰度值的获取 (5)2 数据统计处理 (6)2.1 均值计算 (6)2.1.1 原理及计算公式 (6)2.2 各点像素灰度值的标准差计算 (7)2.3 各像素点灰度值的方差 (8)2.4 灰度直方图 (9)3.离散小波变换 (10)3.1 离散小波变换原理 (10)3.2变换及反变换程序和结果 (10)3.2.1离散小波变换 (10)3.2.2离散小波反变换 (12)5 总结(心得体会) (14)6参考文献 (15)摘要MATLAB是矩阵实验室之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能,MATLAB 语言在各国高校与研究单位起着重大的作用。
本次基础强化训练的目的在于较全面了解常用的数据分析与处理原理及方法,能够运用相关软件进行模拟分析。
通过对采集的图像进行常规的数学统计数据处理和计算图像各象素点灰度值得均值、标准差、方差,并绘出灰度直方图;最后进行各种变换,从而达到本次强化训练的目的。
AbstractMATLAB is the meaning of the matrix laboratory. Besides the remarkable numerical calculus ability, it has also provided the competence level mark computation, the language processing, visualization functions and so on modelling simulation and real-time control, the MATLAB language is playing the significant role in various countries' university and the research unit.This foundation strengthening training's goal lies in the thorough understanding commonly used data analysis and the processing principle and the method, and being able to utilize the related software to carry on the simulation analysis. Through carrying on conventional to the gathering image mathematics statistical data processing and a computation image various picture elements gradation is worth the average value, the standard deviation, the variance, and draws the gradation histogram; Finally carries on the kinds of transformation, thus achieves the goal of this strengthened training.1 数据采集1.1图像的选取从互联网上下载一张图片,如图1,像素为413*583,满足像素要求,但由于图像为彩图。
为满足要求,在下面的过程中会将彩图转换为灰度图。
图1 原彩色图1.2 MATLAB读取方法1.2.1 编辑M文件MATLAB是解释型语言,就是说MATLAB命令行中敲入的命令在当前MATLAB进程中被解释运行。
为方便起见,有两种方法可以使MATLAB的力量得到扩展——脚本和函数。
这两种方法都用像emacs一样的文本编辑器中编写的m文件(因为扩展名是.m所以这样命名,m文件还称点m文件)。
m文件的好处在于它可以保存命令,还可以轻易地修改命令而无需重新敲入整个命令行。
新建m文件的方法为File->New->Blank M-File,如图2所示。
图2 新建m文件1.2.2 图像的读取与灰度图的转换1.图像的读取:利用函数imread()可完成图形图像文件的读取,语法:a=imread(filename,fmt)[X,map]=imread(filename,fmt)[...]=imread(filename)[...]=imread(filename,idx) (只对TIF格式的文件)[...]=imread(filename,ref) (只对HDF格式的文件)通常,读取的大多数图像均为8bit,当这些图像加载到内存中时,Matlab 就将其存放在类uint8中。
此为Matlab还支持16bit的PNG和TIF图像,当读取这类文件时,Matlab就将其存贮在uint16中。
对于索引图像,即使图像阵列的本身为类uint8或类uint16,imread函数仍将颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。
2.灰度图的转换:为了转换为灰度图,利用MATLAB中的rgb2gray()命令实现RGB图像到灰度图像的转化。
转化后在使用命令isgray()判断图像是否变为灰度图,如果是灰度图将返回为1,不是将返回0。
灰度图转换成功后,将转化后的灰度图读取出来。
相关的MATLAB命令为:a=imread('F:\tuo.jpg'); %读取图像路径figure,subplot(1,2,1)imshow(a); %显示图像title('原彩色图像')A=rgb2gray(a); %转化成灰度图isgray(A)subplot(1,2,2)imshow(A);title('转化成的灰度图')键入isgray(A)后,显示的返回值ans =1,证明转化成功。
原彩图读取和灰度图转化图如图3所示。
图3 原彩图读取和灰度图转化图1.2.3 灰度值的获取直接在MATLAB命令行中输入灰度图像所存储的文件名“A”记得获得其灰度值,部分值如图4所示。
图4 灰度矩阵截图2 数据统计处理2.1 均值计算2.1.1 原理及计算公式用mean(A)(默认dim=1)就会求每一列的均值,结果如图5所示。
用mean2(A)求出所有像素的均值,结果如图6所示。
图5 每一列的均值图图6 所有像素平均值结果2.2 各点像素灰度值的标准差计算图像矩阵标准差的计算与平均值的类似,Matlab中提供的函数为std和std2,用途和用法与均值相同,每一列标准差值如图7所示,所有像素标准差如图8所示。
输入MATLAB命令:std(double(A))图7 每一列标准差值图输入MATLAB命令:std2(A)图8 所有像素标准差结果图2.3 各像素点灰度值的方差在方差的计算中,Matlab提供的函数为var,与mean和std函数相同,它只能计算矩阵中某一列的方差值,要计算整个矩阵的方差值,需要在var函数中输入x(:)以表示对整个矩阵的计算。
输入MATLAB命令:var(double(A)),结果如图9所示。
图9 方差结果截图输入MATLAB命令:var(double(A(:))),结果如图10所示。
图10 所有像素方差图2.4 灰度直方图相关的MATLAB代码:a=imread('F:/tu.jpg')A=rgb2gray(a);figure,imhist(A);title(‘灰度直方图’)所得出的灰度直方图如图11所示。
图11灰度直方图3.离散小波变换3.1 离散小波变换原理小波变换是现代谱分析工具,它既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。
它能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为它消除了DCT压缩普遍具有的方块效应。
3.2变换及反变换程序和结果3.2.1离散小波变换a=imread('F:\tuo.jpg');A=rgb2gray(a);figureimshow(A);title('原图');[m,n] = wavedec2(1, 2, 'bior3.7');figure;c = appcoef2( m, n, 'bior3.7', 1 );subplot(1,2,1);imshow(c, []);title('一层小波变换结果');d = appcoef2( m, n, 'bior3.7', 2 );subplot(1,2,2);imshow(d, []);title('二层小波变换结果');图14 小波变换结果3.2.2离散小波反变换[A,M]=imread('F:\tu.jpg','jpg'); %图像数据的读取,将图像数据放入矩阵A中,颜色数据放入矩阵M中i=rgb2gray(A);[cA,cH,cV,cD]=dwt2(i,'bior3.7'); %小波变换A=upcoef2('a',cA,'bior3.7',1); %重构细节分量信号H=upcoef2('h',cH,'bior3.7',1); % 重构水平分量信号V=upcoef2('v',cV,'bior3.7',1); % 重构垂直分量信号D=upcoef2('d',cD,'bior3.7',1); % 重构对角线分量信号%显示各分量subplot(2,2,1);image(wcodemat(A,192));title('细节分量');subplot(2,2,2);image(wcodemat(H,192));title('水平分量');subplot(2,2,3);image(wcodemat(V,192));title('垂直分量');subplot(2,2,4);image(wcodemat(D,192));title('对角线分量');figured=idwt2(cA,cH,cV,cD,'bior3.7');imshow(d,[ ]);%显示重构灰度图title('反变换后的图像');各分量图如图15所示。