2018年高考物理总复习 机械能、功、功率 功练习含答案(5)
2018届高考物理二轮复习 专题卷汇编 功和能 专题卷 含
机械能知识网络:单元切块:按照考纲的要求,本章内容可以分成四个单元,即:功和功率;动能、势能、动能定理;机械能守恒定律及其应用;功能关系动量能量综合。
其中重点是对动能定理、机械能守恒定律的理解,能够熟练运用动能定理、机械能守恒定律分析解决力学问题。
难点是动量能量综合应用问题。
§1 功和功率教学目标:理解功和功率的概念,会计算有关功和功率的问题培养学生分析问题的基本方法和基本技能教学重点:功和功率的概念教学难点:功和功率的计算教学方法:讲练结合,计算机辅助教学教学过程:一、功1.功功是力的空间积累效应。
它和位移相对应(也和时间相对应)。
计算功的方法有两种:(1)按照定义求功。
即:W =Fs cos θ。
在高中阶段,这种方法只适用于恒力做功。
当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
(2)用动能定理W =ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
【例1】 如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;⑵F 为恒力;⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
可供选择的答案有A.θcos FL B .θsin FL C.()θcos 1-FL D .()θcos 1-mgL【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B点恰好是半个圆周。
2018高考一轮总复习物理模拟演练第5章机械能及其守恒定律5-1功和功率有答案
5-1功和功率时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.静止在水平地面上的物体,同时受到水平面内两个互相垂直的力F1、F2的作用,由静止开始运动了2 m,已知F1=6 N,F2=8 N,则( )A.F1做功12 J B.F2做功16 JC.F1、F2的合力做功28 J D.F1、F2做的总功为20 J2. 2016年10月银川一中团委组织学生志愿者前往盐池县冯记沟乡进行助学帮扶活动,当车辆行驶在崎岖的山路上时坐在前排的学生看到司机师傅总是在上坡的时候换成低挡而到了平直的路上时又换成了高挡,于是他们几个人形成了小组进行了讨论,关于他们的讨论最符合物理原理的是( )A.上坡的时候换成低挡是为了增加汽车发动机的功率B.上坡的时候换成低挡是为了增大汽车的牵引力C.上坡的时候换成低挡是为了同学们仔细欣赏沿途的美景D.在平直的路面上换成高挡可以减小汽车发动机的功率3.如图所示,质量为m的小球以初速度v0水平抛出,恰好垂直打在倾角为θ的斜面上,则球落在斜面上时重力的瞬时功率为(不计空气阻力)( )A.mgv0tanθ B.mgv0 tanθC.mgv0sinθD.mgv0cosθ4.质量为2 kg的物体放在动摩擦因数为μ=0.1的水平面上,在水平拉力F的作用下,从O点由静止开始运动,拉力做的功W和物体发生的位移x之间的关系如图所示,g取10 m/s2。
下列说法中正确的是( )A .此物体在OA 段做匀加速直线运动,且整个过程中拉力的最大功率为15 W B.此物体在AB 段做匀速直线运动,且整个过程中拉力的最大功率为6 W C.此物体在AB 段做匀加速直线运动,且整个过程中拉力的最大功率为15 W D.此物体在OA 段做匀速直线运动,且整个过程中拉力的最大功率为15 W5.一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v图象如图所示。
2018大二轮高考总复习物理: 功、功率与动能定理(专题强化训练) 含答案
专题强化训练(五) 功、功率与动能定理一、选择题(1~6为单选题,7~10为多选题)1.(2017·江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k 与位移x 关系的图线是( )解析:本题考查动能定理和图象的应用.依据动能定理,上升过程中F 升=mg sin α+μmg cos α大小恒定,下降过程中F 降=mg sin α-μmg cos α大小恒定.说明在E k -x 图象中,上升、下降阶段图线的斜率均恒定,图线均为直线,则选项B 、D 错误.物块能够返回,返回过程位移减小,而动能增加,则A 项错误.因整个过程中摩擦力做负功,则E k1<E k0,故选项C 正确.答案:C2.(2017·辽宁省实验中学分校月考)一辆跑车在行驶过程中的最大输出功率与速度大小的关系如图,已知该车质量为 2×103 kg ,在某平直路面上行驶,阻力恒为3×103 N .若汽车从静止开始以恒定加速度2 m/s 2做匀加速运动,则此匀加速过程能持续的时间大约为( )A .8 sB .14 sC .26 sD .38 s解析:由图可知,跑车的最大输出功率大约为200 kW ,根据牛顿第二定律得,牵引力F =f+ma =3000+2000×2 N =7000 N ,则匀加速过程最大速度v m =P F =2000007000m/s ≈28.6 m/s 则匀加速过程持续的时间t =v m a =28.62s =14.3 s .故B 正确,ACD 错误. 答案:B3.(2017·兰州一中月考)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( )A .0~2 s 内外力的平均功率是94W B .第2秒内外力所做的功是54J C .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是1∶1解析:由牛顿第二定律和运动学公式求出1 s 末、2 s 末速度的大小分别为:v 1=2 m/s 、v 2=3 m/s ,故合力做功为W =12m v 2=4.5 J ,功率为P =W t =4.52 W =94W .所以A 对;1 s 末、2 s 末功率分别为4 W 、3 W .所以C 错;第1秒内与第2秒动能增加量分别为:12m v 21=2 J ,12m v 22-12m v 21=2.5 J ,比值为4∶5,所以D 错.答案:A4.(2017·长春外国语学校期末)质量为10 kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1 m/s ,不计一切摩擦,则物体运动到x =16 m 处时,速度大小为( )A .2 2 m/sB .3 m/sC .4 m/sD .17m/s解析:在0-4 m 位移内F 恒定,物体做匀加速直线运动,根据牛顿第二定律得a =F m=1 m/s 2,根据2ax =v 24-v 20得v 4=3 m/s ,对物体在4-16 m 内运动过程运用动能定理得12m v 216-12m v 24=F 4-8s 4-8+0-F 12-16s 12-16,从图中可知F 4-8=F 12-16,s 4-8=s 12-16=4 m ,所以4-16 m 内力F 做功之和为0,所以v 16=v 4=3 m/s ,B 正确.答案:B5.(2017·广东省五校协作体联考)起重机用轻绳以恒定的功率P 使质量为m 的物体从静止开。
2018版高考物理(新课标)一轮复习教师用书:第五章机械能第1讲功功率含答案
第五章机械能【研透全国卷】近几年高考既有对本章内容的单独考查,也有与牛顿运动定律、曲线运动、电磁学等内容相结合的综合考查,对本章单独考查的题目多为选择题.高考中将本章内容与其他知识相结合,与实际生产、生活和现代科技相结合进行命题的趋势较强,在复习中应侧重对基础知识的理解和应用。
定律及其应用势能择、计算律2。
命题形式填空机械能守恒定律及其应用Ⅱ四、功能关系、能量守恒定律功能关系Ⅱ选择、计算第1讲功功率知识点一功1。
做功的两个必要条件: 和物体在力的方向上发生的。
2。
公式:W=,适用于做功,其中α为F、l方向间夹角,l为物体对地的位移。
3。
功的正负判断(1)α〈90°,力对物体做功.(2)α>90°,力对物体做功,或说物体克服该力做功。
(3)α=90°,力对物体不做功.答案:1.力位移 2.Fl cos α恒力3。
(1)正(2)负知识点二功率1.定义:功与完成这些功所用时间的.2。
物理意义:描述力对物体做功的.3。
公式(1)定义式:P=,P为时间t内的。
(2)推论式:P=。
(α为F与v的夹角)4.额定功率:机械正常工作时输出的功率.5.实际功率:机械时的功率,要求不能大于功率。
答案:1.比值 2.快慢 3.(1)错误!平均功率(2)Fv cos α 4.最大5。
工作额定(1)只要物体受力的同时又发生了位移,则一定有力对物体做功.( )(2)一个力对物体做了负功,则这个力一定阻碍物体的运动。
( )(3)作用力做负功时,反作用力一定做正功。
( )(4)力对物体做功的正负可由力和速度方向间的夹角决定.()(5)静摩擦力一定对物体不做功。
()(6)由P=Fv可知,发动机输出功率一定时,机车的牵引力与运行速度的大小成反比。
()(7)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力。
()答案:(1)×(2)√(3)×(4)√(5)×(6)√(7)√考点恒力做功1。
功和能、动能、动能定理及机械能守恒练习题及答案
要点归纳功 单位:J力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度动能: E K =m2p mv 2122= 重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2 一E k1 =12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功) ⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。
④功是能量转化的量度(最易忽视)主要形式有:“功是能量转化的量度”这一基本概念含义理解。
⑴重力的功------量度------重力势能的变化物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。
与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关.除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。
只有重力做功时系统的机械能守恒。
功能关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻一、选择题(每小题中至少有一个选项是正确的)1.关于功和能的下列说法正确的是()A.功就是能B.做功的过程就是能量转化的过程C.功有正功、负功,所以功是矢量D.功是能量转化的量度2.一个运动物体它的速度是v时,其动能为E。
那么当这个物体的速度增加到3v时,其动能应该是:()A.E B.3E C.6E D.9E3.一个质量为m的物体,分别做下列运动,其动能在运动过程中一定发生变化的是:()A.匀速直线运动B.匀变速直线运动C.平抛运动D.匀速圆周运动4.对于动能定理表达式W=E K2-E K1的理解,正确的是:()A.物体具有动能是由于力对物体做了功B.力对物体做功是由于该物体具有动能C.力做功是由于物体的动能发生变化D.物体的动能发生变化是由于力对物体做了功5.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为nv,则在t2时刻的动能是t1时刻的()A、n倍B、n/2倍C、n2倍D、n2/4倍6.打桩机的重锤质量是250kg,把它提升到离地面15m高处,然后让它自由下落,当重锤刚要接触地面时其动能为(取g=10m/s2):()A.1.25×104J B.2.5×104J C.3.75×104J D.4.0×104J7.质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了()A.28J B.64J C.32J D.36J8.下列关于运动物体所受的合外力、外力做功和动能变化的关系中正确的是:()A.如果物体受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定变化D.物体的动能不变,所受的合外力一定为零*9.一物体在水平方向的两个水平恒力作用下沿水平面做匀速直线运动。
2018版高考物理大一轮专题复习课时作业:专题五 机械能第1讲 功和功率含答案
专题五机械能第1讲功和功率一、单项选择题1.(2015年浙江温州八校联考)如图K5.11甲所示为一女士站立在台阶式自动扶梯上正在匀速上楼,如图乙所示为一男士站立在履带式自动人行道上正在匀速上楼.下列关于两人受到的力做功判断正确的是()甲乙图K5。
1。
1A.甲图中支持力对人做正功B.乙图中支持力对人做正功C.甲图中摩擦力对人做负功D.乙图中摩擦力对人做负功2.(2015年广东深圳一模)一汽车的额定功率为P,设在水平公路行驶所受的阻力恒定,最大行驶速度为v m.则( )A.若汽车以额定功率启动,则做匀加速直线运动B.若汽车匀加速启动,则在刚达到额定功率时的速度等于v m C.无论汽车以哪种方式启动,加速度与牵引力成正比D.汽车以速度v m匀速行驶,若要减速,则要减少牵引力3.一滑块在水平地面上沿直线滑行,t=0时其速度为1 m/s.从此刻开始在滑块运动方向上再施加一水平作用力F,力F和滑块的速度v随时间的变化规律分别如图K51.2甲和乙所示.设在第1 s 内、第2 s内、第3 s内力F对滑块做的功分别为W1、W2、W3,则以下关系式正确的是()图K51。
2A.W1=W2=W3B.W1<W2<W3C.W1<W3<W2D.W1=W2<W34.一质量为m的物体静止在粗糙的水平地面上,从t=0时刻开始受到方向恒定的水平拉力F作用,F与时间t的关系如图K5.1。
3甲所示.物体在错误!时刻开始运动,其v。
t图象如图乙所示,若可认为滑动摩擦力等于最大静摩擦力,则( )甲乙图K5。
1.3A.物体与地面间的动摩擦因数为错误!B.物体在t0时刻的加速度大小为错误!C.物体所受合力在t0时刻的功率为2F0v0D.水平力F在t0到2t0这段时间内的平均功率为F0错误!5.(2014年广东十校联考)完全相同的两辆汽车,都拖着完全相同的拖车以相同的速度在平直公路上匀速齐头并进,某一时刻两拖车同时与汽车脱离之后,甲汽车保持原来的牵引力继续前进,乙汽车保持原来的功率继续前进,则一段时间后(假设均未达到最大功率)()A.甲车超前,乙车落后B.乙车超前,甲车落后C.它们仍齐头并进D.甲车先超过乙汽车,后乙车又超过甲车6.如图K5。
2018版高考物理知识复习与检测:第五章 机械能 第3讲
第3讲功能关系能量守恒定律一、几种常见的功能关系及其表达式深度思考一对相互作用的静摩擦力做功能改变系统的机械能吗?答案不能,因做功代数和为零.二、两种摩擦力做功特点的比较三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确.(1)摆球机械能守恒.( ×)(2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( √)(3)能量正在消失.( ×)(4)只有动能和重力势能的相互转化.( ×)2.如图1所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( )图1A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR答案 D3.如图2所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( )图2A .两个阶段拉力做的功相等B .拉力做的总功等于A 的重力势能的增加量C .第一阶段,拉力做的功大于A 的重力势能的增加量D .第二阶段,拉力做的功等于A 的重力势能的增加量 答案 B4.(多选)如图3所示,轻质弹簧上端固定,下端系一物体.物体在A 处时,弹簧处于原长状态.现用手托住物体使它从A 处缓慢下降,到达B 处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W .不考虑空气阻力.关于此过程,下列说法正确的有( )图3A.物体重力势能减少量一定大于WB.弹簧弹性势能增加量一定小于WC.物体与弹簧组成的系统机械能增加量为WD.若将物体从A处由静止释放,则物体到达B处时的动能为W答案AD解析根据能量守恒定律可知,在此过程中减少的重力势能mgh=ΔE p+W,所以物体重力势能减少量一定大于W,不能确定弹簧弹性势能增加量与W的大小关系,故A正确,B错误;支持力对物体做负功,所以物体与弹簧组成的系统机械能减少W,所以C错误;若将物体从A处由静止释放,从A到B的过程,根据动能定理:E k=mgh-W弹=mgh-ΔE p=W,所以D 正确.命题点一功能关系的理解和应用在应用功能关系解决具体问题的过程中:(1)若只涉及动能的变化用动能定理.(2)只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化,用除重力和弹簧的弹力之外的力做功与机械能变化的关系分析.(4)只涉及电势能的变化,用电场力做功与电势能变化的关系分析.例1 (多选)(2018·江苏单科·9)如图4所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环( )图4A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14mv 2C .在C 处,弹簧的弹性势能为14mv 2-mghD .上滑经过B 的速度大于下滑经过B 的速度经过B 处的速度最大,到达C 处的速度为零.答案 BD解析 由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12mv 2+E p =mgh+W f ,联立解得:W f =14mv 2,E p =mgh -14mv 2,所以B 正确,C 错误;根据能量守恒,从A 到B的过程有12mv 2B +ΔE p ′+W f ′=mgh ′,B 到A 的过程有12mv B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.1.(多选)如图5所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图5A .两滑块组成的系统机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功答案 CD解析 两滑块释放后,M 下滑、m 上滑,摩擦力对M 做负功,系统的机械能减少,减少的机械能等于M 克服摩擦力做的功,选项A 错误,D 正确.除重力对滑块M 做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B 错误.绳的拉力对滑块m 做正功,滑块m 机械能增加,且增加的机械能等于拉力做的功,选项C 正确.2.(多选)如图6所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中( )图6A .物块在A 点时,弹簧的弹性势能等于W -12μmgaB .物块在B 点时,弹簧的弹性势能小于W -32μmgaC .经O 点时,物块的动能小于W -μmgaD .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能 答案 BC命题点二 摩擦力做功的特点及应用1.静摩擦力做功时,只有机械能的相互转移,不会转化为内能. 2.滑动摩擦力做功的特点相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: (1)机械能全部转化为内能;(2)有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.例2 如图7所示,质量为m =1 kg 的滑块,在水平力作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端B 与水平传送带相接(滑块经过此位置滑上传送带时无能量损失),传送带的运行速度为v 0=3 m/s ,长为l =1.4 m ;今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ=0.25,g 取10 m/s 2.求:图7(1)水平作用力F 的大小; (2)滑块下滑的高度;(3)若滑块滑上传送带时速度大于3 m/s ,滑块在传送带上滑行的整个过程中产生的热量. 答案 (1)1033N (2)0.1 m 或0.8 m (3)0.5 J解析 (1)滑块受到水平力F 、重力mg 和支持力F N 作用处于平衡状态,水平力F =mg tan θ,F =1033N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v , 下滑过程机械能守恒mgh =12mv 2,得v =2gh若滑块冲上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有 μmgl =12mv 20-12mv 2则h =v 202g-μl ,代入数据解得h =0.1 m若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理: -μmgl =12mv 20-12mv 2则h =v 202g+μl代入数据解得h =0.8 m.(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,mgh =12mv 2,v 0=v-at ,μmg =ma滑块相对传送带滑动的位移Δx =l -x 相对滑动生成的热量Q =μmg ·Δx代入数据解得Q =0.5 J.摩擦力做功的分析方法1.无论是滑动摩擦力,还是静摩擦力,计算做功时都是用力与对地位移的乘积. 2.摩擦生热的计算:公式Q =F f ·x 相对中x 相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x 相对为总的相对路程.3.如图8所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )图8A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第一阶段物体和传送带间摩擦产生的热等于第一阶段物体机械能的增加量D .物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功 答案 C解析 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v2t ,对传送带:x 1′=v ·t ,摩擦产生的热Q =F f x 相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.4.(多选)如图9所示,一块长木块B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( )图9A .外力F 做的功等于A 和B 动能的增量 B .B 对A 的摩擦力所做的功等于A 的动能的增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和 答案 BD解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F -W f =ΔE k B ,W F =ΔE k B +W f ,即外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和,D 正确.由上述讨论知B 克服摩擦力所做的功与A 的动能的增量(等于B 对A 的摩擦力所做的功)不等,故A 错误. 命题点三 能量守恒定律及应用例3 如图10所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中轻绳始终处于伸直状态,求:图10(1)物体A 向下运动刚到C 点时的速度; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案 (1)v 2-gL (2)v 202g -L 2 (3)3mv 204-3mgL 4解析 (1)A 与斜面间的滑动摩擦力F f =2μmg cos θ物体A 从初始位置向下运动到C 点的过程中,根据功能关系有2mgL sin θ+12×3mv 20=12×3mv 2+mgL +F f L解得v =v 20-gL(2)从物体A 接触弹簧到将弹簧压缩到最短后又恰好能弹到C 点的整个过程中,对A 、B 组成的系统应用动能定理-F f ·2x =0-12×3mv 2解得x =v 202g -L 2(3)弹簧从压缩到最短到恰好能弹到C 点的过程中,对A 、B 组成的系统根据功能关系有E p +mgx =2mgx sin θ+F f x所以E p =F f x =3mv 204-3mgL4.应用能量守恒定律解题的基本思路1.分清有多少种形式的能量在变化.2.明确哪种形式的能量增加,哪种形式的能量减小,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.3.列出能量守恒关系:ΔE 减=ΔE 增.5.如图11所示,质量为m 的滑块从斜面底端以平行于斜面的初速度v 0冲上固定斜面,沿斜面上升的最大高度为H ,已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tan α,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块在斜面上运动的机械能E 、动能E k 、势能E p 与上升高度h 之间关系的图象是( )图11答案 D解析重力势能的变化仅仅与重力做功有关,随着上升高度h的增大,重力势能增大,选项A错误;机械能的变化仅与重力和系统内弹力之外的其他力做功有关,上滑过程中有-F fhsin α=E-E0,即E=E0-F fhsin α;下滑过程中有-F f2H-hsin α=E′-E0,即E′=E0-2F f Hsin α+F fhsin α,故上滑和下滑过程中E-h图线均为直线,选项B错误;动能的变化与合外力做功有关,上滑过程中有-mgh-F fsin αh=E k-E k0,即E k=E k0-(mg+F fsin α)h,下滑过程中有-mgh-F f 2H-hsin α=E k′-E k0,即E k′=E k0-2F fHsin α-(mg-F fsin α)h,故E k-h图线为直线,但下滑过程斜率小,选项C错误,D正确.6.如图12所示,在竖直方向上A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A 放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上.用手拿住C,使细线刚好拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后它沿斜面下滑,A刚离开地面时,B获得最大速度,求:图12(1)从释放C到物体A刚离开地面时,物体C沿斜面下滑的距离;(2)物体C的质量;(3)释放C到A刚离开地面的过程中细线的拉力对物体C做的功.答案(1)0.25 m (2)0.8 kg (3)-0.6 J解析(1)设开始时弹簧的压缩量为x B,得kx B=mg①设物体A刚离开地面时,弹簧的伸长量为x A,得kx A =mg ②当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B ③ 由①②③解得h =2mgk=0.25 m ④(2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有F T -mg -kx A =0⑤对C 有Mg sin α-F T =0⑥ 由②⑤⑥解得M =4m =0.8 kg(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v 2m解得v m =1 m/s对C 由动能定理可得Mgh sin α+W T =12Mv 2m解得W T =-0.6 J.题组1 功能关系的理解和应用1.如图1所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点.将小球拉至A 点,弹簧恰好无形变,由静止释放小球,当小球运动到O 点正下方与A 点的竖直高度差为h 的B 点时,速度大小为v .已知重力加速度为g ,下列说法正确的是( )图1A .小球运动到B 点时的动能等于mgh B .小球由A 点到B 点重力势能减少12mv 2C .小球由A 点到B 点克服弹力做功为mghD .小球到达B 点时弹簧的弹性势能为mgh -12mv 2答案 D解析 小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧由原长到发生伸长的形变,小球动能增加量小于重力势能减少量,A 项错误;小球重力势能减少量等于小球动能增加量与弹簧弹性势能增加量之和,B 项错误;弹簧弹性势能增加量等于小球重力势能减少量与动能增加量之差,D 项正确;弹簧弹性势能增加量等于小球克服弹力所做的功,C 项错误.图22.(多选)如图2所示,质量为m 的物体(可视为质点)以某一速度由底端冲上倾角为30°的固定斜面,上升的最大高度为h ,其加速度大小为34g .在这个过程中,物体( )A .重力势能增加了mghB .动能减少了mghC .动能减少了3mgh2D .机械能损失了3mgh2答案 AC解析 物体重力势能的增加量等于克服重力做的功,选项A 正确;合力做的功等于物体动能的变化,则可知动能减少量为ΔE k =mahsin 30°=32mgh ,选项B 错误,选项C 正确;机械能的损失量等于克服摩擦力做的功,因为mg sin 30°+F f =ma ,a =34g ,所以F f =14mg ,故克服摩擦力做的功W f =F fhsin 30°=14mg h sin 30°=12mgh ,选项D 错误.3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图3中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )图3A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能 答案 B解析 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误. 4.如图4所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g .图4(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求: ①滑块运动过程中,小车的最大速度大小v m ; ②滑块从B 到C 运动过程中,小车的位移大小s . 答案 (1)3mg (2)①gR3 ②13L 解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12mv 2B滑块在B 点处,由牛顿第二定律知N -mg =m v 2BR解得N =3mg 由牛顿第三定律知N ′=3mg(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒mgR =12Mv 2m +12m (2v m )2解得v m =gR3②设滑块运动到C 点时,小车速度大小为v C , 由功能关系mgR -μmgL =12Mv 2C +12m (2v C )2设滑块从B 到C 过程中,小车运动加速度大小为a , 由牛顿第二定律μmg =Ma 由运动学规律v 2C -v 2m =-2as 解得s =13L .题组2 摩擦力做功的特点及应用5.足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( ) A .W =0,Q =mv 2B .W =0,Q =2mv 2C .W =mv 22,Q =mv 2D .W =mv 2,Q =2mv 2答案 B解析 对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v2μg ,这段时间内因摩擦产生的热量Q =μmg ·x相对=2mv 2,选项B 正确.6.(多选)如图5,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )图5A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s 答案 BC解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12mv 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12Mv ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误.7.如图6所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求: (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm .图6答案 (1)0.52 (2)24.4 J解析 (1)最后的D 点与开始的位置A 点比较: 动能减少ΔE k =12mv 20=9 J.重力势能减少ΔE p =mgl AD sin 37°=36 J. 机械能减少ΔE =ΔE k +ΔE p =45 J机械能的减少量全部用来克服摩擦力做功,即W f =F f l =45 J ,而路程l =5.4 m ,则F f =W fl≈8.33 N.而F f =μmg cos 37°,所以μ=F fmg cos 37°≈0.52.(2)由A 到C 的过程:动能减少ΔE k ′=12mv 20=9 J.重力势能减少ΔE p ′=mgl AC sin 37°=50.4 J. 机械能的减少用于克服摩擦力做功W f ′=F f l AC =μmg cos 37°·l AC =35 J.由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4 J.题组3 能量守恒定律及应用8.如图7为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:图7(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMmr,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功. 答案 (1)4π2r 3GT 2 2πr T (2)2(k -1)π2mr2(k +1)T2解析 (1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有G Mm r 2=mr (2πT)2 求得地球的质量M =4π2r 3GT2在轨道Ⅰ上的线速度大小为v =2πr T.(2)设飞船在椭圆轨道上远地点速度为v 1,在近地点的速度为v 2,则 由开普勒第二定律有rv 1=krv 2 根据能量守恒有1 2mv21-GMmr=12mv22-GMmkr求得v1=2GMk(k+1)r=2πrT2kk+1因此飞船在A点变轨时,根据动能定理,发动机对飞船做的功为W=12mv21-12mv2=2(k-1)π2mr2(k+1)T2.。
2018版高考物理知识复习与检测:第五章机械能第2讲含答案
第2讲机械能守恒定律一、机械能1.重力做功与重力势能(1)重力做功的特点重力做功与路径无关,只与初、末位置的高度差有关.(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.②定量关系:物体从位置A到位置B时,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p.③重力势能的变化量是绝对的,与参考面的选取无关.2.弹性势能(1)定义发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能.(2)弹力做功与弹性势能变化的关系①弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系.②对于弹性势能,一般物体的弹性形变量越大,弹性势能越大.深度思考同一根弹簧伸长量和压缩量相同时,弹簧的弹性势能相同吗?答案相同二、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.2.表达式:mgh1+错误!mv错误!=mgh2+错误!mv错误!。
3.机械能守恒的条件(1)系统只受重力或弹簧弹力的作用,不受其他外力.(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.(4)系统跟外界没有发生机械能的传递,系统内外也没有机械能与其他形式的能发生转化.深度思考处理连接体的机械能守恒问题时,一般应用哪个公式较方便?答案ΔE p=-ΔE k.1.(粤教版必修2P82第2题)(多选)忽略空气阻力,下列物体运动过程中满足机械能守恒的是( )A.电梯匀速下降B.物体自由下落C.物体由光滑斜面顶端滑到斜面底端D.物体沿着斜面匀速下滑E.铅球运动员抛出的铅球从抛出到落地前答案BCE2.(人教版必修2P78第3题改编)(多选)如图1所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上.若以地面为零势能面,而且不计空气阻力,则下列说法中正确的是( )图1A.重力对物体做的功为mghB.物体在海平面上的势能为mghC.物体在海平面上的动能为错误!mv错误!-mghD.物体在海平面上的机械能为错误!mv错误!答案AD3.(多选)如图2所示,下列关于机械能是否守恒的判断正确的是( )图2A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒C.丙图中,不计任何阻力和定滑轮质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒答案CD4.(人教版必修2 P80第2题改编)如图3所示是某公园设计的一种惊险刺激的娱乐设施.管道除D点右侧水平部分粗糙外,其余部分均光滑.若挑战者自斜管上足够高的位置滑下,将无能量损失的连续滑入第一个、第二个圆管轨道A、B内部(圆管A比圆管B高).某次一挑战者自斜管上某处滑下,经过第一个圆管轨道A内部最高位置时,对管壁恰好无压力.则这名挑战者()图3A.经过管道A最高点时的机械能大于经过管道B最低点时的机械能B.经过管道A最低点时的动能大于经过管道B最低点时的动能C.经过管道B最高点时对管外侧壁有压力D.不能经过管道B的最高点答案C命题点一机械能守恒的判断1.做功判断法:若物体系统内只有重力和弹簧弹力做功,其他力均不做功或其他力做功的代数和为零,则系统的机械能守恒.2.能量转化判断法:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转变成其他形式的能(如没有内能增加),则系统的机械能守恒.3.利用机械能的定义判断若物体在水平面上匀速运动,则其动能、势能均不变,机械能守恒.若一个物体沿斜面匀速下滑,则其动能不变,重力势能减少,机械能减少.例1 (多选)如图4,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D 处时,到达最低点.不计空气阻力,以下描述正确的有()图4A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少C.小球由B向C运动的过程中,处于超重状态,小球的动能增加D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少关键位置C、D处受力特点.答案BD解析小球由A向B运动的过程中,做自由落体运动,加速度等于竖直向下的重力加速度g,处于完全失重状态,此过程中只有重力做功,小球的机械能守恒,A错误;小球由B向C运动的过程中,重力大于弹簧的弹力,加速度向下,小球处于失重状态,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增加,小球的重力势能减少,由于小球向下加速运动,小球的动能还是增大的,B正确,C错误;小球由C 向D运动的过程中,弹簧的弹力大于小球的重力,加速度方向向上,处于超重状态,弹簧继续被压缩,弹性势能继续增大,小球的机械能继续减小,D正确.故答案为B、D。
2018年物理新课标高考总复习第一轮复习教师用书:第五
功和功率从近几年的高考看,动能和动能定理 重力做功与重力势能 功能关系、机械能守恒第一节 功和功率一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移.3.功的正、负的判断 (1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.功是标量,比较做功多少要看功的绝对值. 1.判断正误(1)只要物体受力的同时又发生了位移,则一定有力对物体做功.( )(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.( ) (3)作用力做负功时,反作用力一定做正功.( )(4)力对物体做功的正、负可由力和位移方向间的夹角决定.( ) (5)静摩擦力一定对物体不做功.( ) 提示:(1)× (2)√ (3)× (4)√ (5)× 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P =F v cos_α.(α为F 与v 的夹角)2.(2017·福建闽粤联合体联考)如图所示,质量相同的两物体从同一高度由静止开始运动,A 沿着固定在地面上的光滑斜面下滑,B 做自由落体运动.两物体分别到达地面时,下列说法正确的是( )A .重力的平均功率P A >PB B .重力的平均功率P A =P BC .重力的瞬时功率P A =P BD .重力的瞬时功率P A <P B提示:选D.B 做自由落体运动,运动时间t B = 2hg.A 做匀加速直线运动,a =g sin θ,根据h sin θ=12g sin θt 2A 得,t A =2h g sin 2θ,可知t A >t B .重力做功相等,根据P =W Gt 知,P A <P B ,A 、B 错误.根据动能定理,mgh =12m v 2得,两物体到达地面时的速度大小均为v =2gh .A 物体重力的瞬时功率P A =mg v sin θ,B 物体重力的瞬时功率P B =mg v .则P A <P B .C 错误,D 正确.对功的判断和计算 【知识提炼】1.功的正、负的判断方法(1)恒力做功的判断:依据力与位移的夹角来判断.(2)曲线运动中做功的判断:依据F 与v 的方向夹角α来判断,0°≤α<90°,力对物体做正功;90°<α≤180°,力对物体做负功;α=90°,力对物体不做功.(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功.此法常用于判断两个相联系的物体之间的相互作用力做功的情况.2.合力做功的计算方法法一:先求合力F合,再用W合=F合l cos α求功.法二:先求各个力做的功W1、W2、W3……,再应用W合=W1+W2+W3+……求合力做的功.【典题例析】如图所示,质量为m的小球用长为L的轻绳悬挂于O点,用水平恒力F拉着小球从最低点运动到使轻绳与竖直方向成θ角的位置,求此过程中,各力对小球做的功及总功.[审题指导]W=F·l cos α可以理解为功等于力与力方向上的位移的乘积.[解析]如解析图,小球在F方向的位移为CB,方向与F同向,则W F=F·CB=F·L sin θ小球在重力方向的位移为AC,方向与重力反向,则W G=mg·AC·cos 180°=-mg·L(1-cos θ)绳的拉力F T时刻与运动方向垂直,则W F T=0故W总=W F+W G+W F T=F·L sin θ-mgL(1-cos θ).[答案]见解析【跟进题组】考向1对功的正、负的判断1.一辆正沿平直路面行驶的车厢内,一个面向车前进方向站立的人对车厢壁施加水平推力F,在车前进s的过程中,下列说法正确的是()A.当车匀速前进时,人对车做的总功为正功B.当车加速前进时,人对车做的总功为负功C.当车减速前进时,人对车做的总功为负功D.不管车如何运动,人对车做的总功都为零解析:选B.人对车施加了三个力,分别为压力、推力F、静摩擦力f,根据力做功的公式及作用力和反作用力的关系判断做正功还是负功.当车匀速前进时,人对车厢壁的推力F 做的功为W F=Fs,静摩擦力做的功为W f=-fs,人处于平衡状态,根据作用力与反作用力的关系可知,F=f,则人对车做的总功为零,故A错误;当车加速前进时,人处于加速状态,车厢对人的静摩擦力f′向右且大于车厢壁对人的作用力F′,所以人对车厢的静摩擦力f 向左,静摩擦力做的功W f=-fs,人对车厢的推力F方向向右,做的功为W F=Fs,因为f>F,所以人对车做的总功为负功,故B正确,D错误;同理可以证明当车减速前进时,人对车做的总功为正功,故C 错误.考向2 恒力做功的求解2.(高考全国卷Ⅱ)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f 1、W f 2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f 2>2W f 1B .W F 2>4W F 1,W f 2=2W f 1C .W F 2<4W F 1,W f 2=2W f 1D .W F 2<4W F 1,W f 2<2W f 1解析:选C.物体两次的加速度之比a 2∶a 1=2v t ∶v t =2∶1,位移之比l 2∶l 1=2v 2t ∶v2t =2∶1,摩擦力之比f 2∶f 1=1∶1,由牛顿第二定律得F -f =ma ,则拉力之比F 2∶F 1=(ma 2+f )∶(ma 1+f )<2,做功之比W F 2∶W F 1=(F 2·l 2)∶(F 1·l 1)<4,W f 2∶W f 1=(-f 2·l 2)∶(-f 1·l 1)=2∶1,故C 正确.考向3 变力做功的求解3.(多选)(2017·宁波模拟)如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力F 阻的大小不变,则下列说法正确的是( )A .重力做功为mgLB .悬线的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-12F 阻πL解析:选ABD.由重力做功特点得重力做功为:W G =mgL ,A 正确;悬线的拉力始终与v 垂直,不做功,B 正确;由微元法可求得空气阻力做功为:W F 阻=-12F 阻πL ,D 正确.求解变力做功的几种思路(1)利用动能定理W =ΔE k 或功能关系W =ΔE 计算能量变化量ΔE 或ΔE k ,即等量替换的物理思想.(2)当变力的功率P 一定时,可用W =Pt 求功,如机车以恒定功率启动.(3)当变力方向不变,大小与位移成正比时,可用力对位移的平均值F =12(F 初+F 末)来计算.(4)当变力大小不变,方向在变化且力的方向始终与速度方向相同或相反时,功可用力与路程的乘积计算.(5)用变力F 随位移x 的变化图象与x 轴所围的“面积”计算功.注意x 轴上下两侧分别表示正、负功.对功率的理解和计算 【知识提炼】1.平均功率的计算 (1)利用P =Wt.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度,F 为恒力. 2.瞬时功率的计算(1)利用公式P =F ·v cos α,其中v 为t 时刻的瞬时速度. (2)P =F ·v F ,其中v F 为物体的速度v 在力F 方向上的分速度. (3)P =F v ·v ,其中F v 为物体受的外力F 在速度v 方向上的分力.对于α变化的不能用公式P =F v cos α计算平均功率.【典题例析】(多选)(2017·海口模拟)质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图所示,力的方向保持不变,则( )A .3t 0时刻的瞬时功率为 5F 20t 0mB .3t 0时刻的瞬时功率为 15F 20t 0mC .在t =0到3t 0这段时间内,水平力的平均功率为 23F 20t 04mD .在t =0到3t 0这段时间内,水平力的平均功率为 25F 20t 06m[审题指导] (1)求瞬时功率时,先明确所用公式,再确定该时刻的力和速度. (2)求平均功率时,先明确所用公式及研究的过程,再确定功和时间.[解析] 2t 0时刻速度大小v 2=a 1·2t 0=2F 0m t 0,3t 0时刻的速度大小为v 3=v 2+a 2t 0=F 0m ·2t+3F 0m ·t 0=5F 0t 0m,3t 0 时刻力F =3F 0,所以瞬时功率P =3F 0·v 3=15F 20t 0m,A 错、B 对;0~3t 0时间段,水平力对物体做功W =F 0x 1+3F 0x 2=F 0×12·F 0m (2t 0)2+3F 0·v 2+v 32t 0=25F 20t 202m ,平均功率P =W t=25F 20t 06m,C 错、D 对. [答案] BD(多选)(2015·高考浙江卷)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104 kg ,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( )A .弹射器的推力大小为1.1×106 NB .弹射器对舰载机所做的功为1.1×108 JC .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 2解析:选ABD.对舰载机应用运动学公式v 2-02=2ax ,即802=2·a ·100,得加速度a =32 m/s 2,选项D 正确;设总推力为F ,对舰载机应用牛顿第二定律可知:F -20%F =ma ,得F =1.2×106 N ,而发动机的推力为1.0×105 N ,则弹射器的推力为F推=(1.2×106-1.0×105)N =1.1×106 N ,选项A 正确;弹射器对舰载机所做的功为W =F 推·l =1.1×108 J ,选项B 正确;弹射过程所用的时间为t =v a =8032 s =2.5 s ,平均功率P =W t =1.1×1082.5W =4.4×107 W ,选项C 错误.计算功率的基本思路(1)首先要明确所求功率是平均功率还是瞬时功率,然后明确所用公式.(2)判断变力的瞬时功率的变化情况时,若F 大小不变,根据F 与v 的夹角的变化,由P =F ·v cos θ判断,若F 的大小和F 、v 夹角均变化时,可先把F 做功转换成其他恒力做功,然后再判断.机车启动问题 【知识提炼】两种启动方式的比较某汽车发动机的额定功率为60 kW ,汽车质量为5 t ,汽车在运动中所受阻力的大小恒为车重的0.1倍.(g 取10 m/s 2)(1)若汽车以额定功率启动,则汽车所能达到的最大速度是多少?当汽车速度达到5 m/s 时,其加速度是多少?(2)若汽车以恒定加速度0.5 m/s 2启动,则其匀加速过程能维持多长时间? [审题指导] (1)达到最大速度时,汽车处于什么状态? (2)v =5 m/s 时,牵引力多大?(3)以加速度0.5 m/s 2启动时,牵引力多大?此阶段能达到的最大速度为多少? [解析] (1)当汽车的加速度为零时,汽车的速度v 达到最大值v m ,此时牵引力与阻力相等,故最大速度为v m =P F =PF f =60×1030.1×5 000×10 m/s =12 m/sv =5 m/s 时的牵引力F 1=P v =60×1035 N =1.2×104 N ,由F 1-F f =ma 得:a =F 1-F fm=1.2×104-0.1×5×103×105×103m/s 2=1.4 m/s 2. (2)当汽车以a ′=0.5 m/s 2的加速度启动时的牵引力 F 2=ma ′+F f =(5 000×0.5+0.1×5×103×10) N=7 500 N匀加速运动能达到的最大速度为v ′m =P F 2=60×1037 500m/s =8 m/s由于此过程中汽车做匀加速直线运动,满足v ′m =a ′t 故匀加速过程能维持的时间t =v ′m a ′=80.5 s =16 s.[答案] (1)12 m/s 1.4 m/s 2 (2)16 s【跟进题组】考向1 以恒定功率启动方式的求解1.(高考重庆卷)某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k 1和k 2倍,最大速率分别为v 1和v 2,则( )A .v 2=k 1v 1B .v 2=k 1k 2v 1C .v 2=k 2k 1v 1D .v 2=k 2v 1解析:选B.车以最大速率行驶时,牵引力F 等于阻力F f ,即F =F f =kmg .由P =k 1mg v 1及P =k 2mg v 2,得v 2=k 1k 2v 1,故B 正确.考向2 以恒定牵引力启动方式的求解2.某汽车集团公司研制了一辆燃油与电动混合动力赛车,燃油发动机单独工作时的额定功率为P ,蓄电池供电的电力发动机单独工作时的额定功率为3P4,已知赛车运动过程中受到的阻力恒定.(1)若燃油发动机单独工作时的最大速度为120 km/h ,则两台发动机同时工作时的最大速度为多少?(2)若赛车先单独启动电力发动机从静止开始做匀加速直线运动,经过t 1时间达到额定功率,然后以燃油发动机的额定功率单独启动继续加速,又经过t 2时间达到最大速度v 0,赛车总质量为m ,求赛车的整个加速距离.解析:(1)燃油发动机单独工作,P =F 1v 1=f v 1 两台发动机同时工作,P +3P4=F 2v 2=f v 2最大速度v 2=7v 14=210 km/h.(2)燃油发动机的额定功率为P ,最大速度为v 0, 阻力f =Pv 0匀加速过程功率随时间均匀增加,发动机的平均功率为3P8,设总路程为s ,由动能定理有3P 8t 1+Pt 2-fs =12m v 20解得s =P (3t 1+8t 2)v 0-4m v 308P.答案:(1)210 km/h (2)P (3t 1+8t 2)v 0-4m v 308P机车启动问题中的三个重要关系式(1)无论哪种运动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v =P F <v m =P F 阻.(3)机车以恒定功率运动时,牵引力做的功W =Pt .由动能定理:Pt -F 阻x =ΔE k .此式经常用于求解机车以恒定功率启动过程的位移大小.1.如图所示,两箱相同的货物,现要用电梯将它们从一楼运到二楼,其中图甲是利用扶梯台式电梯运送货物,图乙是用履带式自动电梯运送,假设两种情况下电梯都是匀速地运送货物,下列关于两电梯在运送货物时说法正确的是( )A .两种情况下电梯对货物的支持力都对货物做正功B .图乙中电梯对货物的支持力对货物做正功C .图甲中电梯对货物的支持力对货物不做功D .图乙中电梯对货物的支持力对货物不做功解析:选D.在图甲中,货物随电梯匀速上升时,货物受到的支持力竖直向上,与货物位移方向的夹角小于90°,故此种情况下支持力对货物做正功,选项C 错误;图乙中,货物受到的支持力与履带式自动电梯接触面垂直,此时货物受到的支持力与货物位移垂直,故此种情况下支持力对货物不做功,故选项A 、B 错误,D 正确.2.(多选)(2017·成都模拟)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( )A .0~2秒内外力的平均功率是94 WB .第2秒内外力所做的功是54 JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是45解析:选AD.由题意知质点所受的水平外力即为合力,则知质点在这2秒内的加速度分别为a 1=2 m/s 2、a 2=1 m/s 2,则质点在第1 s 末与第2 s 末的速度分别为v 1=2 m/s 、v 2=3 m/s ,每一秒内质点动能的增加量分别为ΔE k1=12m v 21=2 J 、ΔE k2=12m v 22-12m v 21=2.5 J ,D 正确.再由动能定理可知第2 s 内与0~2 s 内外力所做功分别为W 2=ΔE k2=2.5 J 、W =12m v 22-0=4.5J ,则在0~2 s 内外力的平均功率P =W t =94 W ,A 正确、B 错误.由P =F v 知质点在第1 s末与第2 s 末的瞬时功率分别为P 1=4 W 、P 2=3 W ,故C 错误.3.如图甲所示,轻质弹簧上端固定,下端悬挂一个质量m =0.5 kg 的物块,处于静止状态.以物块所在处为原点,以竖直向下为正方向建立x 轴,重力加速度g =10 m/s 2.现对物块施加竖直向下的拉力F ,F 随x 变化的情况如图乙所示.若物块运动到x =0.4 m 处速度为零,则在物块下移0.4 m 的过程中,弹簧弹性势能的增加量为( )A .5.5 JB .3.5 JC .2.0 JD .1.5 J解析:选A.由图线与横轴所围的“面积”可得物块下移0.4 m 的过程中,拉力F 做的功W =3.5 J ,重力势能减少量mgx =2 J ,由功能关系,弹簧弹性势能的增加量ΔE p =W +mgx =5.5 J ,选项A 正确.4.如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力F 的作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( )A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大解析:选A.因小球速率不变,所以小球以O 点为圆心做匀速圆周运动,受力如图所示,因此在切线方向上应有:mg sin θ=F cos θ,得F =mg tan θ.则拉力F 的瞬时功率P =F ·v cos θ=mg v ·sin θ.从A 运动到B 的过程中,拉力的瞬时功率随θ的增大而增大,A 项正确.5.当前我国“高铁”事业发展迅猛,假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其v -t 图象如图所示,已知0~t 1时间内为过原点的倾斜直线,t 1时刻达到额定功率P ,此后保持功率P 不变,在t 3时刻达到最大速度v 3,以后匀速运动.下列判断正确的是( )A .从0至t 3时间内,列车一直做匀加速直线运动B .t 2时刻的加速度大于t 1时刻的加速度C .在t 3时刻以后,机车的牵引力为零D .该列车所受的恒定阻力大小为P v 3解析:选D.0~t 1时间内,列车做匀加速运动,t 1~t 3时间内,加速度逐渐变小,故A 、B 错误;t 3以后列车做匀速运动,牵引力大小等于阻力大小,故C 错误;匀速运动时F f =F 牵=P v 3,故D 正确. 6.(2015·高考四川卷)严重的雾霾天气,对国计民生已造成了严重的影响.汽车尾气是形成雾霾的重要污染源,“铁腕治污”已成为国家的工作重点.地铁列车可实现零排放,大力发展地铁,可以大大减少燃油公交车的使用,减少汽车尾气排放.若一地铁列车从甲站由静止启动后做直线运动,先匀加速运动20 s 达最高速度72 km/h ,再匀速运动80 s ,接着匀减速运动15 s 到达乙站停住.设列车在匀加速运动阶段牵引力为1×106 N ,匀速运动阶段牵引力的功率为6×103 kW ,忽略匀减速运动阶段牵引力所做的功.(1)求甲站到乙站的距离;(2)如果燃油公交车运行中做的功与该列车从甲站到乙站牵引力做的功相同,求公交车排放气态污染物的质量.(燃油公交车每做1焦耳功排放气态污染物3×10-6克)解析:(1)设列车匀加速直线运动阶段所用的时间为t 1,距离为s 1;在匀速直线运动阶段所用的时间为t 2,距离为s 2,速度为v ;在匀减速直线运动阶段所用的时间为t 3,距离为s 3;甲站到乙站的距离为s .则s 1=12v t 1① s 2=v t 2②s 3=12v t 3③s=s1+s2+s3④联立①②③④式并代入数据得s=1 950 m.⑤(2)设列车在匀加速直线运动阶段的牵引力为F,所做的功为W1;在匀速直线运动阶段的牵引力的功率为P,所做的功为W2.设燃油公交车与该列车从甲站到乙站做相同的功W,将排放气态污染物的质量为M.则W1=Fs1⑥W2=Pt2⑦W=W1+W2⑧M=(3×10-9 kg·J-1)·W⑨联立①⑥⑦⑧⑨式并代入数据得M=2.04 kg.答案:(1)1 950 m(2)2.04 kg一、单项选择题1.有一固定轨道ABCD如图所示,AB段为四分之一光滑圆弧轨道,其半径为R,BC 段是水平光滑轨道,CD段是光滑斜面轨道,BC和斜面CD间用一小段光滑圆弧连接.有编号为1、2、3、4完全相同的4个小球(小球不能视为质点,其半径r<R),紧挨在一起从圆弧轨道上某处由静止释放,经平面BC到斜面CD上,忽略一切阻力,则下列说法正确的是()A.四个小球在整个运动过程中始终不分离B.在圆弧轨道上运动时,2号球对3号球不做功C.在CD斜面轨道上运动时,2号球对3号球做正功D.在CD斜面轨道上运动时,2号球对3号球做负功解析:选A.圆弧轨道越低的位置切线的倾角越小,加速度越小,故相邻小球之间有挤压力,小球在水平面上速度相同,无挤压不分离,在斜面上加速度相同,无挤压也不分离,故B、C、D错误,A正确.2.(2015·高考海南卷)假设摩托艇受到的阻力的大小正比于它的速率.如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的()A.4倍B.2倍C. 3 倍D. 2 倍解析:选D.设F f =k v ,当阻力等于牵引力时,速度最大,输出功率变化前,有P =F v =F f v =k v ·v =k v 2,变化后有2P =F ′v ′=k v ′·v ′=k v ′2,联立解得v ′=2v ,D 正确.3.如图所示,质量为m 的小猴子在荡秋千,大猴子用水平力F 缓慢将秋千拉到图示位置后由静止释放,此时藤条与竖直方向夹角为θ,小猴子到藤条悬点的长度为L ,忽略藤条的质量.在此过程中正确的是( )A .缓慢上拉过程中拉力F 做的功W F =FL sin θB .缓慢上拉过程中小猴子重力势能增加mgL cos θC .小猴子再次回到最低点时重力的功率为零D .由静止释放到最低点小猴子重力的功率逐渐增大解析:选C.缓慢上拉过程中拉力F 是变力,由动能定理,F 做的功等于克服重力做的功,即W F =mgL (1-cos θ),重力势能增加mgL (1-cos θ),选项A 、B 错误;小猴子由静止释放时速度为零,重力的功率为零,再次回到最低点时重力与速度方向垂直,其功率也为零,则小猴子下降过程中重力的功率先增大后减小,选项C 正确、D 错误.4.如图是武广铁路上某机车在性能测试过程中的v -t 图象,测试时机车先以恒定的牵引力F 启动发动机使机车在水平铁轨上由静止开始运动,t 1时刻机车关闭发动机,到t 2时刻机车完全停下.图象中θ>α,设整个测试过程中牵引力F 做的功和克服摩擦力f 做的功分别为W 1、W 2,0~t 1时间内F 做功的平均功率和全过程克服摩擦力f 做功的平均功率分别为P 1、P 2,则下列判断正确的是( )A .W 1>W 2,F =2fB .W 1=W 2,F >2fC .P 1<P 2,F >2fD .P 1=P 2,F =2f解析:选B.机车整个运动过程中,根据动能定理有W 1-W 2=0,所以W 1=W 2,又P 1=W 1t 1,P 2=W 2t 2,因t 2>t 1,所以P 1>P 2;根据牛顿第二定律,机车的牵引力为F 时的加速度大小a 1=F -f m ,关闭发动机后机车加速度大小a 2=f m,根据v -t 图象斜率的意义可知a 1>a 2,即F -f >f ,所以有F >2f ,综上分析可知,B 正确.5.水平面上一质量为m 的物体,在水平力F 作用下开始加速运动,如图甲所示,力F 的功率P 保持恒定,运动过程所受的阻力f 大小不变,物体速度最终达到稳定值v m ,F 作用过程中物体的速度v 的倒数与加速度a 的关系图象如图乙所示,仅在已知功率P 的情况下,根据图象所给的信息( )A .可求出m 、f 、v mB .不能求出mC .不能求出fD .可求出加速运动时间解析:选A.当加速度为零时,物体做匀速运动,此时牵引力等于阻力,速度为最大值;由功率的计算公式可得P =F v ,而F -f =ma ,联立可得1v =m P a +f P,由题图乙可得图线的斜率为m P ,纵截距为f P =1v m,因此可求出m 、f 和v m ,选项A 正确,B 、C 错误;物体做变加速运动,加速运动的时间不可求,选项D 错误.二、多项选择题6.(2017·山东济南模拟)汽车从静止匀加速启动,最后做匀速运动,其速度随时间及加速度、牵引力和功率随速度变化的图象如图所示,其中正确的是( )解析:选ACD.汽车启动时由P =F v 和F -F f =ma 可知,匀加速启动过程中,牵引力F 、加速度a 恒定不变,速度和功率均匀增大,当功率增大到额定功率后保持不变,牵引力逐渐减小到与阻力相等,加速度逐渐减小到零,速度逐渐增大到最大速度,故A 、C 、D 正确,B 错误.7.如图所示,细绳的一端绕过定滑轮与木箱相连,现以大小恒定的拉力F 拉动细绳,将静置于A 点的木箱经B 点移到C 点(AB =BC ),地面平直且与木箱的动摩擦因数处处相等.设从A 到B 和从B 到C 的过程中,F 做功分别为W 1、W 2,克服摩擦力做功分别为Q 1、Q 2,木箱经过B 、C 时的动能和F 的功率分别为E k B 、E k C 和P B 、P C ,则下列关系一定成立的有( )A .W 1>W 2B .Q 1>Q 2C .E k B >E k CD .P B >P C解析:选AB.F 做功W =Fl cos α(α为绳与水平方向的夹角),AB 段和BC 段相比较,F 大小相同,l 相同,而α逐渐增大,故W 1>W 2,A 正确;木箱运动过程中,支持力逐渐减小,摩擦力逐渐减小,故Q 1>Q 2,B 正确;因为F cos α与摩擦力的大小关系无法确定,木箱运动情况不能确定,故动能关系、功率关系无法确定,C 、D 错误.8.(2017·孝感统测)如图所示,汽车通过轻质光滑的定滑轮,将一个质量为m 的物体从井中拉出,绳与汽车连接点距滑轮顶点高h ,开始时物体静止,滑轮两侧的绳都竖直绷紧,汽车以速度v向右匀速运动,运动到跟汽车连接的细绳与水平方向夹角为30°时,则( )A .从开始到细绳与水平方向夹角为30°时,拉力做功mghB .从开始到细绳与水平方向夹角为30°时,拉力做功mgh +38m v 2 C .在细绳与水平方向夹角为30°时,拉力功率为mg vD .在细绳与水平方向夹角为30°时,拉力功率大于32mg v 解析:选BD.汽车以v 向右匀速运动,运动到跟汽车连接的细绳与水平方向夹角为30°时,物体上升的高度恰为h ,对速度v 分解可知沿细绳方向的分速度大小为32v ,根据动能定理可知A 错误、B 正确;由于物体加速上升,故细绳拉力大于物体的重力,所以细绳拉力的功率大于32mg v ,C 错误,D 正确. 三、非选择题9.如图所示,竖直向上拉动细绳,使质量m =1 kg 的物体从静止开始以5 m/s 2的加速度上升,不计滑轮及绳子的质量和摩擦,则拉力F 在1 s 内对物体做的功为多大?拉力F 在1 s 末的瞬时功率为多大?(g 取10 m/s 2)解析:对物体受力分析,由牛顿第二定律得:2F -mg =ma ,由运动学规律可得在 1 s 内物体上升的高度和1 s 末的速度分别为h =12at 2,v =at . 根据动滑轮的特点以及功的定义可得,在1 s 内力F 做的功为W =F ·2h .1 s 末力F 对物体做功的瞬时功率为P =F ·2v联立上述方程,代入数据可得:W =37.5 J ,P =75 W.答案:37.5 J 75 W10.(2017·常州模拟)高速连续曝光照相机可在底片上重叠形成多个图象.现利用这架照相机对MD -2 000家用汽车的加速性能进行研究,如图为汽车做匀加速直线运动时三次曝光的照片,图中汽车的实际长度为4 m ,照相机每两次曝光的时间间隔为2.0 s .已知该汽车的质量为1 000 kg ,额定功率为90 kW ,汽车运动过程中所受的阻力始终为1 500 N.(1)试利用图示,求该汽车的加速度.(2)若汽车由静止开始以此加速度做匀加速运动,匀加速运动状态最多能保持多长时间.(3)汽车所能达到的最大速度是多大.(4)若该汽车从静止开始运动,牵引力不超过3 000 N ,求汽车运动2 400 m 所用的最短时间(汽车已经达到最大速度).解析:(1)由题图可得汽车在第1个2 s 时间内的位移x 1=9 m ,第2个2 s 时间内的位移x 2=15 m汽车的加速度a =Δx T 2=1.5 m/s 2. (2)由F -F f =ma 得,汽车牵引力F =F f +ma =(1 500+1 000×1.5) N =3 000 N汽车做匀加速运动的末速度v =P 额F =90×1033×103m/s =30 m/s 匀加速运动保持的时间t 1=v a =301.5s =20 s. (3)汽车所能达到的最大速度v m =P 额F f =90×1031.5×103m/s =60 m/s. (4)由(1)、(2)知匀加速运动的时间t 1=20 s ,运动的距离x ′1=v t 12=302×20 m =300 m 所以,后阶段以恒定功率运动的距离x ′2=(2 400-300) m =2 100 m对后阶段以恒定功率运动,有P 额t 2-F f x ′2=12m (v 2m -v 2) 解得t 2=50 s所以,所用最短时间为t 总=t 1+t 2=(20+50) s =70 s.答案:(1)1.5 m/s 2 (2)20 s (3)60 m/s (4)70 s四、选做题11.质量为2 kg 的物体放在水平面上,物体与水平面之间的动摩擦因数μ=0.1,在水平拉力F 的作用下,物体由静止开始运动,拉力做的功W 和物体发生的位移x 之间的关系如图所示,g =10 m/s 2.下列说法中正确的是( )A .此物体在OA 段做匀加速直线运动,且整个过程中拉力的最大功率为15 W。
2018年全国卷高考物理总复习《功和能》专题演练(含解析)
2018年全国卷高考物理总复习《功和能》专题演练1.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q 球的绳短。
将两球拉起,使两绳均被水平拉直,如图所示。
将两球由静止释放,在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度【答案】C2.(多选)两实心小球甲和乙由同一种材质制成,甲球质量大于乙球质量。
两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关。
若它们下落相同的距离,则()A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD3.假设摩托艇受到的阻力的大小正比于它的速率。
如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的()A.4倍B.2倍C.3倍D.2倍【答案】D4.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大【答案】A5.一汽车在平直公路上行驶。
从某时刻开始计时,发动机的功率P随时间t的变化如图所示。
假定汽车所受阻力的大小f恒定不变。
下列描述该汽车的速度v随时间t变化的图像中,可能正确的是()A B C D【答案】A6.(多选)如图,滑块a、b的质量均为m,a套在固定直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接。
不计摩擦,a、b可视为质点,重力加速度大小为g。
则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为C.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg【答案】BD7.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,并且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒BC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变【答案】B8.【2017·长春外国语学校高三上学期期末考试】质量为10 kg的物体,在变力F作用下沿x轴做直线运动,力随坐标x的变化情况如图所示.物体在x=0处,速度为1 m/s,不计一切摩擦,则物体运动到x=16 m处时,速度大小为()A.2 2 m/s B.3 m/s C.4 m/s D.17m/s【答案】B9.【2017·河南省中原名校豫南九校高三上学期第四次质量考评】如图所示,汽车在平直路面上匀速运动,用跨过光滑定滑轮的轻绳牵引轮船,汽车与滑轮间的绳保持水平,当牵引轮船的绳与水平方向成θ角时,轮船速度为υ,汽年的功率为P,汽车受到的阻力(不含绳的拉力)恒为f,则此时绳对船的拉力大小为()A .f P +θυcos B .f P -θυcos C .f P +υθcos D .f P -υθcos【答案】B10.如图所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m 的带正电小球在外力F 的作用下静止与图示位置,小球与弹簧不连接,弹簧处于压缩状态,现撤去F ,在小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做功分别为1W 、2W 、3W ,不计空气阻力,则上述过程中( )A .小球重力势能的增量为1WB .小球与弹簧组成的系统机械能守恒C .小球的动能的增量为12W W +D .小球机械能的增加量为23W W + 【答案】D11.如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止开始下滑,到b 点开始压缩轻弹簧,到c 点时达到最大速度,到d 点(图中未画出)开始弹回,返回b 点离开弹簧,恰能再回到a 点.若bc =0.1 m ,弹簧弹性势能的最大值为8 J ,则下列说法正确的是( )A.轻弹簧的劲度系数是50 N/mB.从d到b滑块克服重力做功8 JC.滑块的动能最大值为8 JD.从d点到c点弹簧的弹力对滑块做功8 J【答案】A12.【2017·株洲市高三教学质量统一检测】如图所示,质量为m的小滑块(可视为质点),从h高处的A 点由静止开始沿斜面下滑,停在水平地面上的B点(斜面和水平面之间有小圆弧平滑连接)。
2018高考一轮物理文档 第五章 机械能及其守恒定律 第1节 功和功率 教师用书 含答案 精品
[高考指南]第1节功和功率知识点1功1.做功的两个必要条件力和物体在力的方向上发生的位移.2.公式W=Fl cos_α,适用于恒力做功,其中α为F、l方向间的夹角,l为物体对地的位移.3.功的正负1.定义功与完成这些功所用时间的比值.2.物理意义描述做功的快慢.3.公式(1)P=Wt,P为时间t内的平均功率.(2)P=F v cos α(α为F与v的夹角)①v为平均速度,则P为平均功率.②v为瞬时速度,则P为瞬时功率.4.额定功率与实际功率(1)额定功率:动力机械正常工作时输出的最大功率.(2)实际功率:动力机械实际工作时输出的功率,要求小于或等于额定功率.1.正误判断(1)只要物体受力的同时又有位移发生,则一定有力对物体做功.(×)(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.(√)(3)滑动摩擦力可能做负功,也可能做正功;静摩擦力对物体一定做负功.(×)(4)作用力做正功时,反作用力一定做负功.(×)(5)据P=F v可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.(√)(6)汽车上坡的时候,司机必须换挡,其目的是减小速度,得到较大的牵引力.(√)2.[功的大小比较]如图5-1-1所示的a、b、c、d中,质量为M的物体甲受到相同的恒力F的作用,在力F作用下使物体甲在水平方向移动相同的位移.μ表示物体甲与水平面间的动摩擦因数,乙是随物体甲一起运动的小物块,比较物体甲移动的过程中力F对物体甲所做的功的大小()图5-1-1A.W a最小B.W d最大C.W a>W c D.四种情况一样大D[四种情况下,拉力F的大小和方向、物体甲移动的位移均相同,由W=Fl cos θ可知,四种情况下拉力F做功相同,D正确.]3.[正功负功的判断](多选)如图5-1-2所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面体以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对m的支持力和摩擦力的下列说法中正确的是()图5-1-2A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功ACD[支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a=g tan θ,当a>g tan θ,摩擦力沿斜面向下,摩擦力与位移夹角大于90°,则做正功;当a<g tan θ,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,A、C、D正确.] 4.[机车启动问题](2017·宁波模拟)汽车在平直公路上以速度v0匀速行驶,发动机功率为P.快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶.如图四个图象中,哪个图象正确表示了从司机减小油门开始,汽车的速度与时间的关系()【导学号:92492210】C[汽车匀速行驶时牵引力等于阻力;功率减小一半时,汽车的速度由于惯性来不及变化,根据功率和速度关系公式P=F v,牵引力减小一半,小于阻力,合力向后,汽车做减速运动.由公式P=F v可知,功率一定时,速度减小后,牵引力增大,合力减小,加速度减小,故物体做加速度不断减小的减速运动.当牵引力增大到等于阻力时,加速度减为零,物体重新做匀速直线运动;故选C.](1)恒力做的功直接用W=Fl cos α计算.(2)合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.(3)变力做的功①应用动能定理求解.②用W=Pt求解,其中变力的功率P不变.③常用方法还有转换法、微元法、图象法、平均力法等,求解时根据条件灵活选择.[题组通关]1.如图5-1-3所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2 J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()图5-1-3A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为0B[物块所受的摩擦力F f沿木板斜向上,与物块的位移方向垂直,故摩擦力F f对物块不做功,物块在慢慢移动过程中,重力势能增加了2 J,重力做负功2 J,支持力F N对物块做正功2 J,故B正确.]2.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h,空气阻力的大小恒为F,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为()【导学号:92492211】A.0B.-FhC.Fh D.-2FhD[阻力与小球速度方向始终相反,故阻力一直做负功,W=-Fh+(-Fh)=-2Fh,D正确.]3.(2014·全国卷Ⅱ)一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则() A.W F2>4W F1,W f2>2W f1B .W F 2>4W F 1,W f 2=2W f 1C .W F 2<4W F 1,W f 2=2W f 1D .W F 2<4W F 1,W f 2<2W f 1 C [根据x =v +v 02t 得 两过程的位移关系x 1=12x 2 根据加速度的定义a =v -v 0t得两过程的加速度关系为a 1=a 22由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等 即f 1=f 2=f根据牛顿第二定律F -f =ma 得 F 1-f 1=ma 1,F 2-f 2=ma 2 所以F 1=12F 2+12f ,即F 1>F 22根据功的计算公式W =Fl ,可知W f 1=12W f 2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D 错误.]常见力做功的特点1.(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算(1)利用公式P=F·v cos α,其中v为t时刻的瞬时速度.(2)利用公式P=F·v F,其中v F为物体的速度v在力F方向上的分速度.(3)利用公式P=F v·v,其中F v为物体受的外力F在速度v方向上的分力.[题组通关]1.如图5-1-4所示,小球在水平拉力作用下,以恒定速率v沿竖直光滑圆轨道由A点运动到B点,在此过程中拉力的瞬时功率变化情况是()图5-1-4A.逐渐减小B.逐渐增大C.先减小,后增大D.先增大,后减小B[因为小球是以恒定速率运动,即它做匀速圆周运动,那么小球受到的重力G、水平拉力F、轨道的支持力三者的合力必是沿半径指向O点.设小球与圆心的连线与竖直方向夹角为θ,则FG=tan θ(F与G的合力必与轨道的支持力在同一直线上),得F=G tan θ,而水平拉力F的方向与速度v的方向夹角也是θ,所以水平力F的瞬时功率是P=F v cos θ=G v sin θ.显然,从A点到B点的过程中,θ是不断增大的,所以水平拉力F 的瞬时功率是一直增大的,故B 正确,A 、C 、D 错误.]2.(多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图5-1-5所示.下列判断正确的是( )【导学号:92492212】图5-1-5A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4 AD [第1 s 末质点的速度 v 1=F 1m t 1=31×1 m/s =3 m/s. 第2 s 末质点的速度v 2=v 1+F 2m t 2=(3+11×1)m/s =4 m/s. 则第2 s 内外力做功W 2=12m v 22-12m v 21=3.5 J 0~2 s 内外力的平均功率 P =12m v 22t =0.5×1×422W =4 W.选项A 正确,选项B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W =9 W , 第2 s 末外力的瞬时功率P 2=F 2v 2=1×4 W =4 W ,故 P 1∶P 2=9∶4,选项C 错误,选项D 正确.]1(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v=PF<v m=PF阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻s=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.[母题]动车组是城际间实现小编组、大密度的高效运输工具,以其编组灵活、方便、快捷、安全、可靠、舒适等特点而备受世界各国铁路运输和城市轨道交通运输的青睐.动车组就是几节自带动力的车厢加几节不带动力的车厢编成一组,就是动车组.假设有一动车组由8节车厢连接而成,每节车厢的总质量均为7.5×104 kg.其中第一节、第二节带动力,他们的额定功率分别为3.6×107 W 和2.4×107 W ,车在行驶过程中阻力恒为重力的0.1倍(g 取10 m/s 2).(1)求该动车组只开动第一节动力的情况下能达到的最大速度;(2)若列车从A 地沿直线开往B 地,先以恒定的功率6×107 W(同时开动第一、第二节的动力)从静止开始启动,达到最大速度后匀速行驶,最后除去动力,列车在阻力作用下匀减速至B 地恰好速度为0.已知AB 间距为5.0×104 m ,求列车从A 地到B 地的总时间.【解析】 (1)只开动第一节动力的前提下,当第一节以额定功率运行且列车的牵引力等于阻力时达到最大速度:P 1m =f v m 得:v m =P 1mf其中阻力f =0.1×8mg =6.0×105 N ,P 1m =3.6×107 W 联立解得v m =60 m/s.(2)列车以恒定的功率6×107 W(同时开动第一、第二节的动力)从静止开始启动,当牵引力等于阻力时达到最大速度v m =P 1m +P 2mf,代入数据解得:v m =100 m/s 设列车从C 点开始做匀减速运动,令A 到C 的时间为t 1,AC 间距为x 1;C 到B 的时间为t 2,CB 间距为x 2,在CB 间匀减速运动的加速度大小为a ,列车的总质量M =8m =6.0×105 kg ,运动示意图如下:从C 到B 由牛顿第二定律和运动学公式得:F f =Ma 代入数据解得:a =f M =0.1MgM =1 m/s 2 v m =at 2代入数据解得:t 2=v ma =100 s x 2=v m 2t 2代入数据解得:x 2=5.0×103 m所以x 1=x AB -x 2=4.5×104 m从A 到C 用动能定理得:(P 1m +P 2m )t 1-f ·x 1=12M v 2m代入数据解得:t 1=500 s所以:t 总=t 1+t 2=600 s.【答案】 (1)60 m/s (2)600 s[母题迁移]●迁移1 竖直方向上的机车启动问题1.如图5-1-6所示为修建高层建筑常用的塔式起重机.在起重机将质量m =5×103 kg 的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a =0.2 m/s 2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m =1.02 m/s 的匀速直线运动.g 取10 m/s 2,不计额外功.求:图5-1-6(1)起重机允许输出的最大功率;(2)重物做匀加速运动所经历的时间;(3)起重机在第2 s 末的输出功率.【解析】 (1)起重机达到允许输出的最大功率时,P m =F v mF =mg ,可得起重机的最大输出功率为P m =mg ·v m =5.1×104 W.(2)设重物做匀加速直线运动经历的时间为t 1,达到的速度为v 1,则有F 1-mg =ma ,P m =F 1·v 1,v 1=at 1解得t 1=5 s.(3)2 s 末重物在做匀加速直线运动,速度为v 2=at 22 s 末起重机的输出功率为P =F 1·v 2解得P =2.04×104 W.【答案】 (1)5.1×104 W (2)5 s (3)2.04×104 W●迁移2 斜面上的汽车启动问题2.(2017·舟山模拟)质量为1.0×103 kg 的汽车,沿倾角为30°的斜坡由静止开始运动,汽车在运动过程中所受摩擦阻力大小恒为2 000 N ,汽车发动机的额定输出功率为5.6×104 W ,开始时以a =1 m/s 2的加速度做匀加速运动(g 取10 m/s 2).求:(1)汽车做匀加速运动的时间t 1;(2)汽车所能达到的最大速率;(3)若斜坡长143.5 m ,且认为汽车到达坡顶之前,已达到最大速率,则汽车从坡底到坡顶需多长时间?【导学号:92492213】【解析】 (1)由牛顿第二定律得F -mg sin 30°-F f =ma设匀加速过程的末速度为v ,则有P =F vv =at 1解得t 1=7 s.(2)当达到最大速度v m 时,a =0,则有P =(mg sin 30°+F f )v m解得v m =8 m/s.(3)汽车匀加速运动的位移x 1=12at 21,在后一阶段对汽车由动能定理得Pt 2-(mg sin 30°+F f )x 2=12m v 2m -12m v 2又有x =x 1+x 2解得t 2=15 s故汽车运动的总时间为t =t 1+t 2=22 s.【答案】 (1)7 s (2)8 m/s (3)22 s分析机车启动问题时应注意的三点1.恒定功率下的加速运动一定不是匀加速运动,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F为变力).2.以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).3.在机车功率P=F v中,F是机车的牵引力而不是机车所受合力,正是基于此,P=F f v m时,即牵引力与阻力平衡时达到最大运行速度.。
2018年高考物理真题分类题库考点六 功和能
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
考点六功和能1.(2018·全国卷I ·T18) 如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点。
一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。
重力加速度大小为g。
小球从a点开始运动到其轨迹最高点,机械能的增量为( )A.2mgRB.4mgRC.5mgRD.6mgR【解题指南】解答本题应注意以下三点:(1)小球由a到c的过程,由动能定理求出小球在c点的速度大小。
(2)小球离开c点后水平方向和竖直方向的加速度大小均为g。
(3)小球轨迹最高点的竖直方向速度为零。
【解析】选C。
设小球运动到c点的速度大小为v c,小球由a到c的过程,由动能定理得:F·3R-mgR=12m2cv,又F=mg,解得:2c v=4gR。
小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,整个过程运动轨迹如图所示,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间t=c vg ,小球在水平方向的位移为x=12gt2,解得x=2R。
小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为x+3R=5R,则小球机械能的增加量ΔE=F·5R=5mgR。
【题后反思】此题将运动的合成与分解、牛顿运动定律和动能定理有机融合,难度较大,能力要求较高。
2.(2018·全国卷II ·T14)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。
木箱获得的动能一定 ( )A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【解析】选A。
2018年高考考点完全题物理考点通关练文稿:第七单元 机械能功、功率和动能定理 含解析 精品
第七单元机械能(功、功率和动能定理)测试时间:90分钟满分:110分第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,共48分。
在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.[2017·河北阶段测试]2016年7月8日,海军三大舰队南海演习,军舰、潜艇、飞机、导弹对抗演练。
在训练中,某直升机将一个质量为60 kg的物体以2 m/s2的加速度由静止匀加速竖直向上提升。
若g取10 m/s2,不计空气阻力,则0~5 s内直升机对物体所做的功是()A.6000 J B.12000 JC.18000 J D.36000 J答案 C解析由牛顿第二定律得F-mg=ma,直升机对物体的拉力为F=m(g+a)=720 N,5秒内物体的位移h=12at2=25 m,故直升机对物体做的功为W=Fh=18000 J,选项C正确。
2.[2016·哈尔滨适应性训练]如图所示,人站在电动扶梯的水平台阶上,若人与扶梯一起沿斜面减速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C .水平向右,对人做正功D .斜向上,对人做正功答案 B解析 设扶梯与水平方向的夹角为θ,人的加速度斜向下,将加速度分解到水平和竖直方向得:a x =a cos θ,方向水平向左:a y =a sin θ,方向竖直向下,水平方向受静摩擦力作用,f =ma x =ma cos θ,水平向左,物体向上运动,静摩擦力对人做负功,所以B 选项正确。
3.[2017·唐山乐亭模拟]2016年7月15日,全国七人制橄榄球冠军赛在河北唐山举行。
在比赛中假设某运动员将质量为m =0.4 kg 的橄榄球以3 m/s 的速度水平抛出,当橄榄球的速度为5 m/s 时,不计空气阻力,重力加速度取10 m/s 2,重力势能的减少量和重力的瞬时功率分别为( )A .1.8 J,12 WB .3.2 J,16 WC .4 J,20 WD .5 J,36 W答案 B解析 将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,则合速度v =v 2x +v 2y ,代入数据解得橄榄球竖直方向的速度为v y =4 m/s ;橄榄球在运动过程中只受重力作用,机械能守恒,重力势能的减少量等于动能的增加量,动能的增加量E k =12m v 2-12m v 20=12×0.4×25 J -12×0.4×9 J =3.2 J ,重力的瞬时功率P =mg v y =0.4×10×4 W =16 W ,选项B 正确。
2018高考物理全国大一轮复习综合检测:机械能 含答案 精品
《机械能》综合检测(时间:90分钟满分:100分)【测控导航】一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7题只有一个选项正确,第8~12题有多项正确,全部选对得4分,选对但不全得2分,有选错或不选的得0分)1.(2016·上海市十一校联考)下列运动过程中机械能守恒的是( B )A.跳伞运动员打开降落伞在竖直方向向下做匀速直线运动B.悬点固定的单摆摆球获得一初速度后在竖直平面内做圆周运动C.摩天轮在竖直平面内匀速转动时,舱内的乘客做匀速圆周运动D.带电小球仅在电场力作用下做加速运动解析:跳伞运动员打开降落伞在竖直方向向下做匀速直线运动,说明运动员动能不变,重力势能减小,所以机械能不守恒,故A错误;悬点固定的单摆摆球获得一初速度后在竖直平面内做圆周运动,只有重力做功,所以机械能守恒,故B正确;舱内的乘客做匀速圆周运动时,动能不变,重力势能变化,所以机械能不守恒,故C错误;带电小球仅在电场力作用下做加速运动,电场力对小球做正功,所以机械能不守恒,故D错误.2.(2016·黑龙江省双鸭山市月考)在光滑的水平面上,用一水平拉力F使物体从静止开始移动x,平均功率为P,如果将水平拉力增加为4F,使同一物体从静止开始移动x,平均功率为( D )A.2PB.4PC.6PD.8P解析:当用一水平拉力F使物体从静止开始移动x时,由动能定理得Fx=错误!未找到引用源。
mv2,所需时间为t=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
;平均功率错误!未找到引用源。
=错误!未找到引用源。
=F错误!未找到引用源。
∝F错误!未找到引用源。
,则水平拉力增加为4F,使同一物体从静止开始移动x,平均功率为8P,故选D.3.(2016·黑龙江省大庆实验中学高三第一次月考)如图所示,倾角为30°的斜面上,质量为m的物块在恒定拉力作用下沿斜面以加速度a= 错误!未找到引用源。
高考物理总复习 机械能、功、功率 功练习5(附答案)
高考物理总复习机械能、功、功率功练习5(附答案)功 (5) 1.用水平推力是200牛的力,将一木箱在水平方向上匀速地椎动了5米,水平推力所做的功是_______ J。
用500牛顿的举力,将杠铃匀速地举高,若所做的功为250焦耳,那么举高的高度是__________。
2.一人坐在雪橇上,从静止开始沿着高度为15m的斜坡下滑,到达底部时速度为10m/s。
人和雪橇的总质量为60kg求人下滑过程中克服阻力做功等于多少”(取g=10m/s2) 3.一个人从4m深的水井中匀速提取50N的水桶至地面,又提着水桶在水平道路上行走12m,再匀速走下4m深的地下室,则此人提水桶的力所做的功为。
4.将一小球在有空气阻力(大小恒定)的情况下以初速度v0竖直向上抛出,当落回原地时速度大小为v1若上升过程时间为t1,加速度大小为a1,克服空气阻力做功为W1,下落过程时间为t2,加速度大小为a2,克服空气阻力做功为W2,则有() A. v1= v0 B. t1 > t2 C. a1 > a2 D. W1 > W2 5.讨论力F在下列几种情况下做功的多少①用水平推力F推质量是m的物体在光滑水平面上前进了s.②用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s.③斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿斜面向上推进了s.() A.③做功最多B.②做功最多 C.做功相等 D.不能确定 6.在以下过程中,重力做功越来越快的是() A.跳水运动员在空中下落 B.杠铃被举起后静止不动 C.足球在水平场地上滚动 D.滑翔伞在空中匀速下降7.质量为0.7Kg的足球,以4m/s的速度水平飞来,运动员以5m/s 的速度将球反方向顶出,则运动员在顶球的过程中对球做的功为. 8.用一个大小恒定、方向始终与运动方向相同的水平力F推小车沿半径为R的圆周运动一周,则人做的功为() A.0 B.2πR F C.2R F D.无法确定 9.下列关于功的叙述中,正确的是() A.力和位移是做功的二要素,只要有力、有位移、就一定有功 B.功等于力、位移、力与位移夹角的正弦三者的乘积 C.因为功是矢量,所以功有正负 D.一对作用力和反作用力所做的功代数和可以不为零 10.物体在两个相互垂直的力作用下运动,力F1对物体做功6J,物体克服力F2做功8J,则F1、F2的合力对物体做功为() A.14J B.10J C.2J D.�2J参考答案: 1.答案: .1000、0.5 解析: 2.答案: 6000J 解析: 3.答案: 0J 解析: 4.答案: C 解析: 5.答案: C 解析:①用水平推力F推质量是m的物体在光滑水平面上前进了s.W1=Fs ②用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s.W2=Fs ③斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿斜面向上推进了s. W3=Fs 6.答案: A 解析: A、跳水运动员在空中下落,运动员的重力不变,速度越来越快,由P=Gv可得,重力做功越来越快;故符合题意; B.杠铃被举起后静止不动,重力不变,速度为零,因此重力的功率为零;故不合题意; C.足球在水平场地上滚动,重力不变,并且足球在重力方向上的速度为零,故重力的功率为零;故不合题意; D.滑翔伞在空中匀速下降,其重力不变,速度不变,由P=Gv可得,重力做功的快慢不变;故不合题意 7.答案: 3.15J 8.答案: B 解析:考点:功的计算.专题:功的计算专题.分析:由于在圆周转动时可以将圆周分解成一条直线,周长为2πR.然后根据恒力做功即可求解.解答:解:可以把圆周分解成一条长度为周长的直线,根据恒力做功的公式,W=FS S=2πR,所以得:W=2πRF 故选:B 点评:此题注意需要把圆的模型转化为直线模型,得到力的方向的位移,根据恒力做功即可求解. 9.答案: D 解析:考点:功的计算. 专题:功的计算专题.分析:恒力做功的表达式为:W=FLcosα;一对作用力和反作用力做功的代数和不一定为零.解答:解:A、力和力的方向上的位移是做功的二要素,只要有力、力的方向上有位移,就一定做功,但有位移与力的方向有位移不同,故A错误; B.功等于力、位移、力与位移夹角的余弦三者的乘积,即W=FLcosα,即B 错误; C.功是标量,有正负之分,正负表示对应的力是动力还是阻力,故C错误; D.一对作用力和反作用力等大、方向;但物体间可能有相对运动,故位移不一定相同;故一对作用力和反作用力做功的代数和不一定为零;故D正确故选:D.点评:本题关键明确恒力做功的表达式W=FLcosα,同时明确一对相互作用力做功的代数和不一定为零. 10.答案: D 解析:考点:功的计算. 专题:功的计算专题.分析:功是能量转化的量度,做了多少功,就有多少能量被转化.功是力在力的方向上发生的位移乘积.功是标量,没有方向性.求合力的功有两种方法:先求出合力,然后利用功的公式求出合力功;或求出各个力做功,之后各个功之和.解答:解:求合力的功有两种方法,此处可选择:先求出各个力做功,之后各个功之和.力F1对物体做功6J,物体克服力F2做功8J,即�8J.虽然两力相互垂直,但两力的合力功却是它们之和=6J+(�8J)=�2J 故为:�2J 点评:克服力做功,即为此力做负功;同时体现功的标量性.。
2018年高考物理一轮复习专题18功和功率(练)(含解析)
专题18 功和功率1.如图所示,小明用力拉车水平前进时,下列说法正确的是:()A.重力做了正功 B.拉力不做功C.地面支持力做了正功 D.地面摩擦力做了负功【答案】D【解析】重力和地面的支持力的方向与位移都垂直,故重力和支持力都不做功,选项AC错误;拉力的方向与位移成锐角,故拉力做正功,选项B错误;摩擦力的方向与位移的方向相反,故地面摩擦力做了负功,故选D.【名师点睛】此题是对做功的两个因素的考查;首先要掌握功的概念及求解公式W=Fxcosθ,并且要理解θ的含义;知道三种下不做功的情况:有力无位移;有位移无力;位移和力垂直. 2.关于功率,下列说法中正确的是:()A、力对物体做的功越多,功率就越大B、功率是描述物体做功多少的物理量C、单位时间内做功越多功率一定越大D、汽车行使时,当牵引力与阻力相等时合力为零,此时发动机的实际功率为零【答案】C【名师点睛】本题考查功率的概念,重点掌握单位时间内所做的功叫做功率,功率是表示做功快慢的物理量,记住功率的表达式WPt 。
3.两个相互垂直的力F1和F2作用在同一物体上,使物体运动,如图所示,物体通过一段位移时,力F1对物体做功6J,F2对物体做功8J,则F1和F2的合力对物体做功为:()A.-2J B.2J C.10J D.14J【答案】D【解析】当有多个力对物体做功的时候,总功的大小就等于用各个力对物体做功的和;由于力F1对物体做功6J,力F2对物体做功8J,所以F1与F2的合力对物体做的总功就为6J+8J=14J,故选D.【名师点睛】因为功是标量,几个力对物体做的总功,就等于各个力单独对物体做功的代数和;求标量的和,几个量直接相加即可.这是求总功的方法之一,要注意掌握。
4.(多选)物体沿直线运动的v-t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是:()A.从第1秒末到第3秒末合外力做功为WB.从第3秒末到第5秒末合外力做功为-2WC.从第1秒末到第3秒末合外力做功为0D.从第3秒末到第4秒末合外力做功为-0.75W【答案】CD【名师点睛】此题是对v-t图线及功的考查;解本题的关键是要找出物体在不同的时间段内的合力即位移之间的关系;v-t线的斜率等于物体的加速度,图线与坐标轴围成的面积等于物体的位移.5.质量为2×103 kg的汽车,发动机输出功率为30×103 W.在水平公路上能达到的最大速度为15 m/s,设阻力恒定。
2018年高考物理一轮复习专题18功和功率(讲)(含解析)
专题18 功和功率1.掌握做功正负的判断和计算功的方法.2.理解tWP =和P =Fv 的关系,并会运用. 3.会分析机车的两种启动方式.一、功1.做功的两个要素 (1)作用在物体上的力.(2)物体在力的方向上发生的位移. 2.公式:W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. (3)功是标(标或矢)量. 3.功的正负(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或者说物体克服这个力做了功. (3)α=90°,力对物体不做功. 二、功率1.定义:功与完成这些功所用时间的比值. 物理意义:描述力对物体做功的快慢. 2.公式 (1) tWP =,P 为时间t 内的平均功率. (2)P =Fv cos α(α为F 与v 的夹角) ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.考点一 正、负功的判断及计算 1.判断力是否做功及做功正负的方法(1)看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形.(2)看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.(3)根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W 合=E k 末-E k 初,当动能增加时合外力做正功;当动能减少时,合外力做负功. 2.计算功的方法 (1)恒力做的功直接用W =Fl cos α计算. (2)合外力做的功方法一:先求合外力F 合,再用W 合=F 合l cos α求功.方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合外力做的功. (3)变力做的功 ①应用动能定理求解.②用W =Pt 求解,其中变力的功率P 不变.③常用方法还有转换法、微元法、图象法、平均力法等,求解时根据条件灵活选择. ★重点归纳★ 1.计算做功的一般思路2.变力做功的计算方法 (1) 平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即221F F F +=再利用功的定义式W =F l cos α来求功. (2) 用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.(3) 用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.(4) 利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的这一条件.(5) 利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.★典型案例★如图是质量为1kg的质点在水平面上运动的v-t图像,以水平向右的方向为正方向。
2018年高考物理一轮复习第5章机械能第1讲功功率习题新人教版
第五章第1讲功功率1.(2017·全国卷Ⅱ,14)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力导学号 21992323( A )A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心[解析] 由于大圆环是光滑的,因此小环下滑的过程中,大圆环对小环的作用力方向始终与速度方向垂直,因此作用力不做功,A正确,B错误;小环刚下滑时,大圆环对小环的作用力背离大圆环的圆心,滑到大圆环圆心以下的位置时,大圆环对小环的作用力指向大圆环的圆心,C、D错误。
2.(2016·天津理综)(多选)我国高铁技术处于世界领先水平。
和谐号动车组是由动车和拖车编组成的,提供动力的车厢叫动车,不提供动力的车厢叫拖车。
假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平轨道上运行过程中阻力与车重成正比。
某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组导学号 21992324( BD )A.启动时乘客受到车厢作用力的方向与车运动的方向相反B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3︰2C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D.与改为4节动车带4节拖车的动车组最大速度之比为1︰2[解析] 启动时,动车组做加速运动,加速度方向向前,乘客受到竖直向下的重力和车厢对乘客的作用力,由牛顿第二定律可知,这两个力的合力方向向前,所以启动时乘客受到车厢作用力的方向一定倾斜向前,A错误;设每节车厢质量为m,动车组在水平直轨道上运行过程中阻力与车重成正比,则有每节车厢所受阻力f =kmg 。
设动车组匀加速直线运动的加速度为a ,每节动车的牵引力为F ,对8节车厢组成的动车组整体,由牛顿第二定律,2F -8f =8ma ;设第5节车厢对第6节车厢的拉力为F 5,隔离第6、7、8节车厢,把第6、7、8节车厢作为整体进行受力分析,由牛顿第二定律得,F 5-3f =3ma ,解得F 5=3F4;设第6节车厢对第7节车厢的拉力为F 6,隔离第7、8节车厢,把第7、8节车厢作为整体进行受力分析,由牛顿第二定律得,F 6-2f =2ma ;解得F 6=F2;第5、6节车厢与第6、7节车厢间的作用力之比为F 5︰F 6=3F 4︰F2=3︰2,B 正确;关闭发动机后,动车组在阻力作用下滑行,由匀变速直线运动规律,滑行距离x =v 22a,与关闭发动机时速度的二次方成正比,C 错误;设每节动车的额定功率为P ,当有2节动车带6节拖车时,2P =8f ·v 1m ;当改为4节动车带4节拖车时,4P =8f ·v 2m ;联立解得v 1m ︰v 2m =1︰2,D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功 (5)
1.用水平推力是200牛的力,将一木箱在水平方向上匀速地椎动了5米,水平推力所做的功是_______ J。
用500牛顿的举力,将杠铃匀速地举高,若所做的功为250焦耳,那么举高的高度是__________。
2.一人坐在雪橇上,从静止开始沿着高度为15m的斜坡下滑,到达底部时速度为10m/s。
人和雪橇的总质量为60kg求人下滑过程中克服阻力做功等于多少”(取g=10m/s2)
3.一个人从4m深的水井中匀速提取50N的水桶至地面,又提着水桶在水平道路上行走12m,再匀速走下4m深的地下室,则此人提水桶的力所做的功为。
4.将一小球在有空气阻力(大小恒定)的情况下以初速度v0竖直向上抛出,当落回原地时速度大小为v1若上升过程时间为t1,加速度大小为a1,克服空气阻力做功为W1,下落过程时间为t2,加速度大小为a2,克服空气阻力做功为W2,则有()
A. v1= v0 B. t1> t2 C. a1> a2 D. W1> W2
5.讨论力F在下列几种情况下做功的多少
①用水平推力F推质量是m的物体在光滑水平面上前进了s.
②用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s.
③斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿斜面向上推进了s.()
A.③做功最多B.②做功最多C.做功相等D.不能确定
6.在以下过程中,重力做功越来越快的是()
A.跳水运动员在空中下落
B.杠铃被举起后静止不动
C.足球在水平场地上滚动
D.滑翔伞在空中匀速下降
7.质量为0.7Kg的足球,以4m/s的速度水平飞来,运动员以5m/s的速度将球反方向顶出,则运动员在顶球的过程中对球做的功为.
8.用一个大小恒定、方向始终与运动方向相同的水平力F推小车沿半径为R的圆周运动一周,则人做的功为()
A.0 B.2πR F C.2R F D.无法确定
9.下列关于功的叙述中,正确的是()
A.力和位移是做功的二要素,只要有力、有位移、就一定有功
B.功等于力、位移、力与位移夹角的正弦三者的乘积
C.因为功是矢量,所以功有正负
D.一对作用力和反作用力所做的功代数和可以不为零
10.物体在两个相互垂直的力作用下运动,力F1对物体做功6J,物体克服力F2做功8J,则F1、F2的合力对物体做功为()
A.14J B.10J C.2J D.﹣2J
参考答案:
1.答案: .1000、0.5
解析:
2.答案: 6000J
解析:
3.答案: 0J
解析:
4.答案: C
解析:
5.答案: C
解析:①用水平推力F推质量是m的物体在光滑水平面上前进了s.
W1=Fs
②用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s.
W2=Fs
③斜面倾角为θ,与斜面平行的推力F,推一个质量为2m的物体沿斜面向上推进了s.
W3=Fs
6.答案: A
解析: A、跳水运动员在空中下落,运动员的重力不变,速度越来越快,由P=Gv可得,重力做功越来越快;故符合题意;
B.杠铃被举起后静止不动,重力不变,速度为零,因此重力的功率为零;故不合题意;C.足球在水平场地上滚动,重力不变,并且足球在重力方向上的速度为零,故重力的功率为零;故不合题意;
D.滑翔伞在空中匀速下降,其重力不变,速度不变,由P=Gv可得,重力做功的快慢不变;故不合题意
7.答案: 3.15J
8.答案: B
解析:考点:功的计算.
专题:功的计算专题.
分析:由于在圆周转动时可以将圆周分解成一条直线,周长为2πR.然后根据恒力做功即可求解.
解答:解:可以把圆周分解成一条长度为周长的直线,
根据恒力做功的公式,W=FS
S=2πR,
所以得:W=2πRF
故选:B
点评:此题注意需要把圆的模型转化为直线模型,得到力的方向的位移,根据恒力做功即可求解.
9.答案: D
解析:考点:功的计算.
专题:功的计算专题.
分析:恒力做功的表达式为:W=FLcosα;一对作用力和反作用力做功的代数和不一定为零.解答:解:A、力和力的方向上的位移是做功的二要素,只要有力、力的方向上有位移,就一定做功,但有位移与力的方向有位移不同,故A错误;
B.功等于力、位移、力与位移夹角的余弦三者的乘积,即W=FLcosα,即B错误;
C.功是标量,有正负之分,正负表示对应的力是动力还是阻力,故C错误;
D.一对作用力和反作用力等大、方向;但物体间可能有相对运动,故位移不一定相同;故一对作用力和反作用力做功的代数和不一定为零;故D正确
故选:D.
点评:本题关键明确恒力做功的表达式W=FLcosα,同时明确一对相互作用力做功的代数和不一定为零.
10.答案: D
解析:考点:功的计算.
专题:功的计算专题.
分析:功是能量转化的量度,做了多少功,就有多少能量被转化.功是力在力的方向上发生的位移乘积.功是标量,没有方向性.求合力的功有两种方法:先求出合力,然后利用功的公式求出合力功;或求出各个力做功,之后各个功之和.
解答:解:求合力的功有两种方法,此处可选择:先求出各个力做功,之后各个功之和.力F1对物体做功6J,物体克服力F2做功8J,即﹣8J.虽然两力相互垂直,但两力的合力功却是它们之和=6J+(﹣8J)=﹣2J
故为:﹣2J
点评:克服力做功,即为此力做负功;同时体现功的标量性.。