化工原理 固体干燥知识点

合集下载

化工原理 固体干燥知识点

化工原理 固体干燥知识点

减少干燥过程的各项热损失。

采用部分废气循环操作,一般废气循环量为总气量的20%~30%。

4. 干燥器
(1) 常用干燥器:厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等
(2) 几种干燥器的特点
①喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。

②气流干燥器:颗粒在管内的停留时间很短,一般仅2s左右。

在加料口以上1m左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。

③流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。

固体干燥.

固体干燥.

第14章固体干燥14.1、概述14.1.1干燥的目的在化工生产中,干燥应用很广,其主要目的是除去固体产物中的湿分,使其便于贮藏、使用或进一步加工。

干燥作业的良好与否直接影响产品的使用质量和外观,因此干燥的研究及学习对化工生产过程极为重要。

14.1.2固体物料的去湿方在日常的化工生产中,去除固体物料中湿分的方法有以下几种:(1)机械去湿当物料带水较多,可先用离心过滤等机械分离方法以除去大量的水。

(2)吸附去湿(物理化学去湿)用某种平衡水汽分压很低的干燥剂(如石灰,CaCl2,硅胶)与湿物料并存使物料中的水分经气相而转入干燥剂内。

(3) 供热去湿(对流干燥)向物料供热以汽化其中的水份。

本章主要讨论空气为干燥介质、湿分为水的对流干燥简称干燥。

14.1.3干燥过程的特点(1)干燥是一热质反向传递的过程。

传热推动力Δt=t-θ,传质推动力Δp=ps-p水汽,热质传递不仅同时发生,且相互制约。

(2)干燥的必要条件是:空气中水汽分压p水汽<湿物料表面水的分压ps,即Δp>0。

(3)湿物料中水分汽化所需热量(潜热)是由于干燥介质降温(放出显热)所提供的,即t>0。

(4)作为干燥介质的热空气,既是载热体,又是载湿体,在干燥过程中空气的状态不断地变化。

(5)对流干燥可以是连续过程也可以是间歇过程,但其干燥操作的经济性主要取决于能耗和热的利用率14.1.4干燥流程及其经济性右图是典型的对流干燥示意图,空气经预热器加热至适当温度后,进入干燥器。

在干燥器内,气流与湿物料直接接触。

沿其行程气体温度降低,湿含量增加,废气自干燥器另一端排出。

若为间歇过程,湿物料成批放入干燥器内,待干燥至指定的含湿要求后一次取出。

若为连续过程,物料被连续的加入与排出,物料与气流可呈并流,逆流或其它形式的接触。

双流干燥流程示意图14.2 固体干燥静力学干燥静力学考察气固两相接触时过程的方向与极限。

14.2.1湿空气的状态参数湿空气是干空气和水汽的混合物,干燥中常作为理想气体处理。

化工原理-第14章 固体干燥 知识点

化工原理-第14章 固体干燥 知识点

如图 14-2 所示,湿空气经风机送入预热器,加热到一定温度后送入干燥器与湿物料直接接触,进行传 质、传热,最后废气自干燥器另一端排出。
干燥若为连续过程,物料被连续的加入与排出,物料与气流接触可以是并流、逆流或其它方式。若为 间歇过程,湿物料被成批放入干燥器内,达到一定的要求后再取出。
经预热的高温热空气与低温湿物料接触时,热空气传热给固体物料,若气流的水汽分压低于固体表面 水的分压时,水分汽化并进入气相,湿物料内部的水分以液态或水汽的形式扩散至表面,再汽化进入气相, 被空气带走。所以,干燥是传热、传质同时进行的过程,但传递方向不同。
I = (cpg + cpv H )t + r0 H
式中 cpg ——干气比热容,空气为 1.01kJ/(kg•℃);
cpv ——蒸汽比热容,水汽为 1.88 kJ/(kg•℃);
r0 ——0℃时水的汽化热,取 2500 kJ/(kg•℃);
对空气-水系统有
cpH = cpg + cpv H I = (1.01 + 1.88H )t + 2500H
方向 推动力
传热 从气相到固体
温度差
传质 从固体到气相
水汽分压差
(2)干燥过程进行的必要条件: ①湿物料表面水汽压力大于干燥介质水汽分压; ②干燥介质将汽化的水汽及时带走。
-1-
1
为确定干燥过程所需空气用量、热量消耗及干燥时间,而这些问题均与湿空气的性质有关。为此,以下介 绍湿空气的性质。
-2-
2
汽量,单位是 kg/kg 干气,即
式中 p 为总压。
H = M 水 • p水汽 = 0.622 p水汽
M 气 p − p水汽
p − p水汽

第十四章 固体干燥-第一节-概述

第十四章 固体干燥-第一节-概述

西北大学化工原理
2、湿度H:每千克干空气所带有的水汽量。
湿空气中蒸汽量 H = 湿空气中干空气量 = M H 2O ⋅ n w M g ⋅ ng
18 p w p = ⋅ = 0 .622 29 p g P− p
p H = 0.622 P− p
H也叫绝对湿度或湿含量 。
西北大学化工原理
3、相对湿度:指在一定温度及总压下, 湿空气的水汽分压p与饱和空气中水汽分压ps 之比的百分数。
西北大学化工原理 西北大学化工原理
西北大学化工学院化工原理教学组
西北大学化工原理
第一节
概述
一、固体去湿方法和干燥过程 1、干燥的应用 在化工生产过程中,为使物料便于 加工、运输、储藏和使用等,需要从含 有水分的固体中除去水分。 把固体物料中多余的湿分去掉的操 作过程称作去湿或干燥。
西北大学化工原理
西北大学化工原理
8、湿球温度tw:即大量空气与少量水长时 间接触后的水面温度。
tw = t − kH
α
rw ( H w − H ) 温度不太高、
对空气 − − 水系统,当被测气流的 rw =t− (H w − H ) 1 . 09
流速大于 5 m / s , α / k H = 1 . 09 KJ / Kg ⋅ tw
西北大学化工原理
2、平衡蒸汽压曲线
p e=p
s
p
e
0
Xt
物料中只要有非结合水 存在,不论其数量多少,其 平衡蒸汽压不会变化.在干 燥过程中,首先除去的是非 结合水,其次除去的是结合 较弱的水。此时,蒸汽压逐 渐开始下降。 结论:测定平衡蒸汽压曲 线就可知道固体中有多少水 分属结合水,多少水分属非 结合水。
p ϕ = ⋅ 100 % ps

第十四章--固体干燥(化工原理)

第十四章--固体干燥(化工原理)

tas
t
ras c pH
(H as
H)
tw
t
rw 1.09
(Hw
H)
t
ras c pH
(Has
H)
tas
14.2.2 湿空气状态的变化过程
补充说明:
1)对于一定t、H的空气tas为一定值,故tas是 空气的状态函数。
2)对于空气-水系统,对照tw的定义式 α/kH≈1.09≈cpH,而ras ≈rw,故tas =tw
(1)物料的去湿方法
①机械去湿
物料带水较多时,可先用离心过滤等机械分离方法
以除去大量的水。
②吸附去湿
用某种平衡水汽分压很低的干燥剂(如CaCl2、硅胶
等)与湿物料并存,使物料中的水分相继经气相而转入
干燥剂内。

③供热干燥
向物料供热以汽化其中的水分。供热方式又有多种。
※去湿方法中较为常用的方法是供热干燥。
保持湿润,这支温度计为湿球温度计。
22
14.2.1 湿空气的状态参数
5)湿球温度tw
(t tw ) kH (Hw H )rw
空气传给水的显热 水汽化带走的潜热
湿球温度tw计算公式(推导过程见P221):
式中:
tw
t
k H rw
(H w
H)
:空气至湿纱布的对流传热系数,W/m2 •℃;
=1,空气饱和,tw = t
②tw虽测的是湿纱布的温度,但它是由空气的H和 t 决定。即tw是空气的状态参数。
tw= f (H,t),可由测定 tw后,由上式计算空气的H。
14.2.1 湿空气的状态参数
(2)与过程计算有关的参数 上述参数尚不足以满足干燥过程的计算

化工原理 第八章 固体干燥.

化工原理 第八章 固体干燥.

第八章固体干燥第一节概述§8.1.1、固体去湿方法和干燥过程在化学工业,制药工业,轻工,食品工业等有关工业中,常常需要从湿固体物料中除去湿分(水或其他液体),这种操作称为”去湿”.例如:药物,食品中去湿,以防失效变质,中药冲剂,片剂,糖,咖啡等去湿(干燥) 塑料颗粒若含水超过规定,则在以后的注塑加工中会产生气泡,影响产品的品质. 其他如木材的干燥,纸的干燥.一、物料的去湿方法1、机械去湿:压榨,过滤或离心分离的方法去除湿分,能耗底,但湿分的除去不完全。

2、吸附去湿:用某种平衡水汽分压很低的干燥剂(如CaCl2,硅胶,沸石吸附剂等)与湿物料并存,使物料中水分相续经气相转入到干燥剂内。

如实验室中干燥剂中保有干物料;能耗几乎为零,且能达到较为完全的去湿程度,但干燥剂的成本高,干燥速率慢。

3、供热干燥:向物料供热以汽化其中的水分,并将产生的蒸汽排走。

干燥过程的实质是被除去的湿分从固相转移到气相中,固相为被干燥的物料,气相为干燥介质。

工业干燥操作多半是用热空气或其他高温气体作干燥介质(如过热蒸汽,烟道气)能量消耗大,所以工业生产中湿物料若含水较多则可先采用机械去湿,然后在进行供热干燥来制得合格的干品。

二、干燥操作的分类1、按操作压强来分:1)、常压干燥:多数物料的干燥采用常压干燥2)、真空干燥:适用于处理热敏性,易氯化或要求产品含湿量很低的物料2、按操作方式来分:1)、连续式:湿物料从干燥设备中连续投入,干品连续排出特点:生产能力大,产品质量均匀,热效率高和劳动条件好。

2)、间歇式:湿物料分批加入干燥设备中,干燥完毕后卸下干品再加料如烘房,适用于小批量,多品种或要求干燥时间较长的物料的干燥。

3、按供热方式来分:1)、对流干燥:使干燥介质直接与湿物料接触,介质在掠过物料表面时向物料供热,传热方式属于对流,产生的蒸汽由干燥介质带走。

如气流干燥器,流化床,喷雾干燥器。

2)、传导干燥:热能通过传热壁面以传导方式加热物料,产生的蒸汽被干燥介质带走,或是用真空泵排走(真空干燥),如烘房,滚筒干燥器。

化工原理 第8章 干燥

化工原理 第8章 干燥

干燥:利用热能除去固体物料中的湿分(水或其他溶剂)的单
元操作。
2
8.1 概 述
8.1.2 干燥分类
操作压力
常压干燥 真空干燥
操作方式
间歇干燥 连续干燥
加热方式
传导干燥—加热壁面导热 对流干燥—气、固相对运动 辐射干燥—高温壁面热辐射 介电加热干燥 —高频电场的交互作用
以空气为干燥介质,湿分为水的干燥过程。
18
8.2 湿空气的性质及湿焓图
2、湿空气状态点的确定 通常根据下述已知条件之一来确定湿空气的状态点。
(a)湿空气t和tw
(b)湿空气t和td (c)湿空气t和φ
(d)湿空气的t和H:t线和H线的交点 19
Q

N
pw
pv
δ
热空气与物料间传热和传质
热量传递: 由气相到固相,以温 度差为推动力。
质量传递:湿分的转移,由固相 到气相,以蒸汽分压为推动力。
干燥操作的必要条件:物料表面的水汽压力大于干燥介质中的水汽分压。
8.1 概 述
典型的对流干燥流程:
蒸气
湿物料 干燥器
空气 风机
预热器
对流干燥流程示意图
干燥产品
保持空气的H不变,降低温度,使其达到饱和 状态时的温度。用符号td 表示。
露点是湿空气的一个物理性质,当达到露点时, 空气的湿度为饱和湿度。H=Hs
当空气从露点继续冷却时,其中部分水蒸气便 会以水的形式凝结出来。
15
8.2 湿空气的性质及湿焓图
9、绝热饱和温度 tas
绝热饱和过程: 系统与外界绝热,不 饱和气体与液体长时间接触,传热传 质达平衡态时,则:
8.2 湿空气的性质及湿焓图
4、湿比体积(湿容积)vH

化工原理干燥现象的原理

化工原理干燥现象的原理

化工原理干燥现象的原理
干燥是指将湿物质中的水或其他溶剂除去的过程。

化工原理中的干燥现象主要涉及到物质传质、热传导和质量平衡等原理。

1. 物质传质:湿物质中的水分子存在着与固体或其他溶质之间的相互作用力。

在干燥过程中,水分子需要克服这些相互作用力,才能从湿物质中逸出到气相中,实现传质过程。

传质通常是由高浓度到低浓度的方向进行,即从湿物质表面到气相中。

2. 热传导:在干燥过程中,通过向湿物质提供热量,可以提高物质的温度,促进水分子的蒸发和传质过程。

热传导的速度取决于热传导系数、温度梯度和物质的热容等因素。

3. 质量平衡:在干燥过程中,湿物质中的水分子通过蒸发从湿物质中逸出,同时空气中的水分子通过扩散等方式进入湿物质。

这种水分子的进出平衡使得湿物质中的水分子的含量逐渐减少,直到达到物料表面的饱和度。

综上所述,干燥现象主要是通过物质传质、热传导和质量平衡等原理来实现湿物质中水分子的从湿物质中蒸发并逸出的过程。

《化工原理》干燥

《化工原理》干燥

《化工原理》第九章干燥§1 概述一、概念干燥是利用热能除去湿固体物料中湿份(水分或其它液体)的操作。

二、干燥与蒸发的区别蒸发:溶剂分子从料液表面进入气相。

料液表面溶剂蒸汽分压始终是饱和蒸汽压,蒸发速率由传热速率控制。

干燥:溶剂分子从湿物料表面进入气相。

湿物料表面溶剂蒸汽分压不一定是饱和蒸汽压,干燥速率同时由传热速率和传质速率所控制。

三、干燥操作进行的必要条件干燥是热质同时传递过程,干空气将热量传给湿物料;湿物料将湿份传给干空气。

湿物料表面水汽(或其它蒸汽)的分压大于干燥介质中水汽(或其它蒸汽)的分压→干燥湿物料表面水汽(或其它蒸汽)的分压等于干燥介质中水汽(或其它蒸汽)的分压→平衡湿物料表面水汽(或其它蒸汽)的分压小于干燥介质中水汽(或其它蒸汽)的分压→增湿(回潮)干燥操作进行的必要条件:湿物料表面水汽(或其它蒸汽)的分压必需大于干燥介质中水汽(或其它蒸汽)的分压。

四、干燥分类1、按操作压力的大小分类常压干燥和真空干燥2、按操作方式分类1) 传导干燥(间接加热干燥)2) 对流干燥(直接加热干燥)3) 辐射干燥4) 介电加热干燥(高频加热干燥)3、按操作流程分类连续干燥间歇干燥§2 湿空气的性质一、水蒸气分压P w湿空气 P 总 = P a + P w饱和湿空气 P 总 = P a + P S二、湿度(湿含量)H定义:单位质量绝干空气中所含水分的质量。

w w a w a w a a w w p P p p p M M n M n M H -⋅=⋅=⋅⋅==2918量湿空气中绝干空气的质湿空气中水蒸气的质量湿空气的湿度:w w p P p H -⋅=622.0饱和湿空气的湿度:S S S p P p H -⋅=622.020o C 233.2m kN p S =,绝干空气水kg kg H S 015.033.23.10133.2622.0=-⨯=80o C 24.47m kN p S =,绝干空气水kg kg H S 55.04.473.1014.47622.0=-⨯=例:求20o C 下mmHg p w 54.17=时的H 和H S 及50o C 下mmHgp w 35=时的H 和H S 。

化工原理知识点总结干燥

化工原理知识点总结干燥

化工原理知识点总结干燥干燥是指将含水物质中的水分除去的过程,广泛应用于化工、冶金、食品、药品、农业等行业中。

干燥工艺可以提高产品质量,延长产品保存期限,增加产品附加值。

本文将从干燥的基本原理、传热传质机理、常见的干燥设备和干燥过程中的控制因素等方面对干燥做出总结。

一、基本原理1.1水分除去过程干燥的基本原理是将物质中的水分除去,水分从物质中逸出,物质变得更干燥。

水分除去的方式分为蒸发和挥发两种。

蒸发是指物质表面的水分被热能所吸收,转化为水蒸气散发出去;挥发是指水分通过物质内部的孔隙、裂缝等介质被蒸发并逸出。

1.2干燥速率干燥速率是指在干燥过程中,单位时间内从物质中脱除的水分量。

干燥速率受温度、湿度、空气流速等因素的影响。

1.3干燥曲线干燥曲线是指在干燥过程中,物质含水量随着时间变化的曲线。

常见的干燥曲线有初始下降期、常速期和末速期。

二、传热传质机理2.1传热机理干燥中传热主要通过对流传热和辐射传热两种方式实现。

对流传热是指通过对流换热将热量传递给物质表面,将水分蒸发出去;辐射传热是指通过辐射换热将热能传递给物质表面,促使水分蒸发。

2.2传质机理干燥中传质主要通过扩散传质实现,即水分从物质内部向外部扩散传递。

传质速率受物质的性质、温度、湿度、压力等因素的影响。

三、常见的干燥设备3.1流化床干燥流化床干燥是指将物料通过气体流化,使得气体均匀地穿透物质,从而提高传热传质效率。

流化床干燥适用于颗粒状、粉末状的物料。

3.2喷雾干燥喷雾干燥是指通过将液态物料雾化成细小颗粒,然后与热空气接触,使得水分蒸发,从而实现干燥。

喷雾干燥适用于液态物料的干燥。

3.3真空干燥真空干燥是指在低压条件下进行的干燥过程。

通过减压降低水的沸点,从而实现水分的除去。

真空干燥适用于对热敏感物料的干燥。

3.4离心干燥离心干燥是指将物料通过高速旋转的离心机,使得水分被甩出物料的表面,从而达到干燥的目的。

离心干燥适用于颗粒状、液态的物料。

化工原理7固体干燥

化工原理7固体干燥

化工原理7:固体干燥1. 简介固体干燥是化工过程中常用的一种技术,在许多行业中都有广泛的应用。

固体干燥的目的是去除固体材料中的水分或其他溶剂,以提高其保存性、稳定性和使用性能。

本文将介绍固体干燥的原理、常用的干燥方法以及干燥过程中需要注意的问题。

2. 固体干燥的原理固体干燥的原理是基于蒸发的原理,即将液体中的水分或溶剂蒸发掉,使固体材料中的水分含量降低。

固体干燥的过程中主要发生三个阶段的变化:加热阶段、干燥阶段和冷却阶段。

加热阶段:在这个阶段,固体材料被暴露在高温环境中,使其表面的水分开始蒸发。

同时,固体材料内部的水分也会通过温度梯度的传导逐渐向表面迁移。

干燥阶段:在加热阶段之后,固体材料的表面水分已经蒸发光了,此时需要继续加热,使固体内部的水分逐渐排出。

这个阶段需要维持一个适当的温度和湿度条件。

冷却阶段:在固体材料的内部水分排除后,需要将温度逐渐降低,使固体完全干燥。

冷却阶段也是干燥过程中的最后一个阶段。

3. 常用的固体干燥方法固体干燥有许多不同的方法,下面介绍几种常见的固体干燥方法:3.1 自然干燥自然干燥是最简单直接的干燥方法之一,它利用自然环境中的风力和阳光将固体材料中的水分蒸发掉。

自然干燥的优点是成本低廉,但缺点是速度较慢,无法控制干燥的速度和温度。

3.2 通风干燥通风干燥是通过将空气吹入干燥室,利用空气中的热量和携带的湿度将固体材料中的水分蒸发掉。

通风干燥的优点是干燥速度较快,可以通过控制风速和温度来控制干燥的速度和效果。

3.3 热空气干燥热空气干燥是将热空气通过固体材料中,以提高固体材料表面的温度,从而使水分蒸发。

热空气干燥的优点是速度快,可以精确控制干燥速度和温度,缺点是需要大量的能源。

3.4 微波干燥微波干燥是将微波辐射传递到固体材料中,利用微波辐射的加热效应使固体材料中的水分蒸发。

微波干燥的优点是速度快,能耗低,但需要对固体材料的形状和尺寸进行适当的调整。

4. 注意事项在进行固体干燥过程中,需要注意以下几点:•确定干燥的目标,即需要达到的水分含量或溶剂含量。

化工原理第十四章-固体干燥.

化工原理第十四章-固体干燥.

(1)湿度 又称湿含量 kg 水/kg 干空气
H

水气的质量 绝干空气的质量
水气的摩尔数 绝干空气的摩尔数
M M
v a

p水汽 P p水汽
18 29
H 0.622 p水汽 P p水汽
饱和湿度
Hs

0.622
P
ps ps
(2)相对湿度


p水汽 ps
100 %(当ps
P)
(1)湿度图
不饱和湿空气性质:P、H、pe、、cH、IH、t、tW、tas、td
自由度数 F C 2 2 1 2 3
给定不饱和湿空气的三个独立参数,就能确定不饱和湿空 气的状态。工程上,常在总压P一定时,再任意规定两个独立 参数,这样就把湿空气的状态唯一确定。如t-H图;I-H图
平衡水分:
在一定空气状态下,湿物料中 的恒定含水量称为该物料的 ~ 。
也就是在一定空气状态下物料中 不能除去的水分。 用X*表示,单位kg水/kg干料。 -------在一定空气状态下的干燥极限
t, p H
ps> p
空气 p= p
自由水分:物料总水分中,除了平衡水分以外的那部分水
影响平衡水分大小的因素:
常压下: H 2.83 103 4.56 103 H (273 t)
3.湿比热cH kJ/(kg 干气K)
(1+H)kg 湿空气
Cpg干空气的比热,k J/(kg· K) 1.01kJ/(kg·K) Cpv水气的比热,kJ/(kg·K) 1.88kJ/(kg·K)
tw
传热
传质ps
t, H
At tw N w Arw k H AH w H rw

化工原理8章固体物料的干燥

化工原理8章固体物料的干燥
tas、Has
r
t t as ( H H )
as
c
as
H
② 绝热饱和温度是状态函数
t、H
空气 补充水
tas f (t, H )
③ 绝热饱和过程可当作等焓处理
绝热饱和塔示意图
即空气的入口焓近似等于空气的出口焓。
(7) 干、湿球温度 ① 干球温度与湿球温度 干球温度:普通温度计测出的空气温度;
(4) 湿比热容 cH ( kJ/kg干空气C )
c c c H 1.011.88H
H
a
V
ca: 干空气比热容,约1.01 kJ/kg干空气·C; cv: 水蒸汽比热容,约1.88kJ/kg干空气·C。
(5) 湿比焓I ( kJ/kg干空气) 基准: 0C干空气、 0C时液态水的焓为零。
I cat (r0 cV )H (1.01 1.88H )t 2490H
或 qmW qmC ( X1 X 2 ) qm1w1 qm2w2
又 qm C qm1 (1 w1 ) qm 2 (1 w2 )
所以
q mW
qm1
w1 w2 1 w2
qm2
w1 w2 1 w1
(2)空气用量
进入和排出干燥器的湿分相等,故有:
qm C X 1 qmL H1 qm C X 2 qmL H 2
干燥过程: 利用热能除去固体物料中的湿分(水或其他溶剂)的单元操作。
机理 : 质量传递:湿份的转移,由固相到气相,以蒸汽分压为推动力。
热量传递: 由气相到固相,以温度差为推动力。
8.1.2 干燥过程的分类
常压干燥 操作压力 真空干燥
热空气
物料
t
间歇干燥 操作方式
连续干燥

固体物料的干燥PPT(化工原理)

固体物料的干燥PPT(化工原理)

应用实例
介绍固体物料干燥技术在化工、食品、制药等领域的 应用实例,如活性炭的制备、食品添加剂的干燥等, 说明干燥技术在工业生产中的重要性和实际应用价值 。
05
固体物料的干燥工业应用 与发展趋势
固体物料的干燥在各行业的应用现状
农业
谷物、种子、果蔬等农 产品的干燥,确保食品
质量和延长保质期。
制药
中药材、原料药、药片 的干燥,确保药品质量
发展多种形式的干燥技术,满 足不同物料和工艺的干燥需求

环保要求
严格控制干燥过程中的环境污 染,实现绿色生产。
未来干燥技术的研究方向与展望
新材料在干燥技术中的应用
热泵干燥技术的研究
探索新型材料在干燥过程中的作用和应用 前景。
研究热泵干燥技术的原理和应用,提高能 源利用效率。
微波与远红外干燥技术的研究
02
干燥技术与方法
自然晾干
优点
简单易行,成本低,不需特殊设备。
缺点
干燥时间长,受天气和环境影响较大,不适用于大量物料的干燥。
热风干燥
优点
干燥效率高,适用于大量物料的干燥。
缺点
能源消耗较大,干燥过程中可能会对物料产生一定的热损伤。
红外线干燥
优点
干燥效率高,对物料损伤小,适用于敏感物料的干燥。
缺点
实验步骤
准备实验器材和物料、搭建实验装置、测量湿空气参数、 开始干燥实验、记录数据、结束实验、清理现场。
要点二
实验操作
将待干燥物料置于干燥器内,加热空气至一定温度和湿度 ,通过湿空气与物料的热湿交换,使物料中的水分蒸发并 随空气排出。操作过程中需注意控制干燥温度、湿度和空 气流量等参数。
实验结果与数据分析

化工原理-8章固体物料的干燥

化工原理-8章固体物料的干燥

化工原理-8章固体物料的干燥概述干燥是化工过程中常见的一种操作,用于除去固体物料中的水分或其他溶剂。

固体物料的干燥可以提高品质、耐久性以及减少储存和运输过程中的重量。

本文将介绍固体物料干燥的原理、方法和设备。

干燥原理固体物料的干燥是通过将物料暴露在热空气中,使其表面的水分蒸发,从而实现水分的除去。

下面是几种常见的干燥原理:1. 自然干燥自然干燥是指将物料暴露在自然环境下,利用自然空气的热量和湿度来除去水分。

这种方法适用于气候干燥、温度适宜的环境中,例如阳光充足的地区。

然而,自然干燥速度较慢,且受到天气条件的限制。

2. 对流干燥对流干燥是通过将热空气通过物料层进行流动,加速水分的蒸发和除去。

对流干燥可以使用多种方法实现,包括气流在固体颗粒之间自由冲洗和气流通过固体床进行传导。

3. 辐射干燥辐射干燥是利用电磁波(通常是红外线)的能量来加热物料表面,从而除去水分。

辐射干燥适用于需要低温干燥的物料,因为它可以避免由于高温而导致的品质降低或热解反应发生。

干燥方法固体物料的干燥可以使用多种方法实现。

以下是几种常见的干燥方法:1. 批处理干燥批处理干燥是将物料放置在干燥器中,在一定的时间内进行干燥。

这种方法适用于小规模生产或试验室规模,但效率相对较低。

2. 连续干燥连续干燥是通过将物料从干燥器的一端输入,经过干燥器内部的输送装置传送,最后从另一端输出。

这种方法适用于大规模生产,具有高效率和连续操作的优势。

3. 喷雾干燥喷雾干燥是将物料转化为液滴,通过将热空气通过喷雾器进行喷射,使液滴迅速蒸发并转化为固体颗粒。

这种方法适用于液态物料的干燥,可以实现快速、均匀的干燥。

干燥设备干燥设备是实现固体物料干燥的关键。

以下是几种常见的干燥设备:1. 滚筒干燥器滚筒干燥器是最常用的干燥设备之一,适用于大多数固体物料的干燥。

它由一个旋转的筒体和加热装置组成,物料通过旋转筒体的内部,与热空气进行热交换实现干燥。

2. 流化床干燥器流化床干燥器是一种在物料层中通过气流的冲击使物料悬浮起来的干燥器。

化工原理固体物料的干燥

化工原理固体物料的干燥

化工原理固体物料的干燥干燥是化工过程中非常重要的步骤之一,广泛应用于化工、制药、食品等行业中。

固体物料的干燥是指将含有水分的固体物质通过各种方式去除水分,以达到干燥的目的。

本文将探讨固体物料的干燥原理、常用的干燥方法以及干燥过程中需要注意的问题。

一、固体物料的干燥原理固体物料的干燥原理主要涉及水分迁移、传递和蒸发三个方面。

1. 水分迁移水分迁移是指水分从高浓度区域向低浓度区域的移动。

当固体物料表面的水分含量大于内部水分含量时,水分会向外界扩散,直到达到平衡状态。

水分迁移的速度受到温度、湿度、气流速度等因素的影响。

2. 水分传递水分传递是指水分从固体物料内部向表面运动的过程。

它是通过温度差和浓度差来驱动的。

温度差会导致物料内部水分的蒸发,而浓度差则会导致物料内部水分向表面迁移。

3. 水分蒸发水分蒸发是指固体物料中的水分在加热的条件下转化为水蒸气并从物料表面蒸发出去的过程。

水分蒸发的速度与温度、湿度、气流速度等因素有关。

二、常用的干燥方法在化工领域,常见的固体物料干燥方法包括自然干燥、加热干燥、真空干燥和喷雾干燥等。

1. 自然干燥自然干燥是指将固体物料暴露在自然环境下,利用环境中的风力、太阳光、自然对流等因素将水分蒸发。

不过,由于自然环境的变化不稳定,自然干燥往往需要较长的时间。

2. 加热干燥加热干燥是指通过加热的方式将固体物料中的水分转化为水蒸气,从而达到干燥的目的。

常用的加热干燥方法有风干法、传导法、辐射法和对流法等。

其中,对流法是最常用的加热干燥方法,它通过热空气或其他气体对固体物料进行热交换,将物料中的水分蒸发出去。

3. 真空干燥真空干燥是指在低压条件下将固体物料中的水分蒸发出去的方法。

真空干燥常用于需要低温干燥的物料,例如热敏性物料。

在真空状态下,水的沸点降低,可以在较低的温度下将水分蒸发出去,避免物料的热敏性。

4. 喷雾干燥喷雾干燥是指将固体物料转化成细小颗粒,并通过高温气流将颗粒中的水分蒸发出去的方法。

第七章 固体干燥(化工原理王志魁版)

第七章 固体干燥(化工原理王志魁版)

H f ( pV )
HS
0.622 P
pS pS
H与φ的关系: H 表示空气中水汽含量的绝对值, 而φ反映湿空气水气含量的相对大小,不饱和程度, 吸收水汽的能力, φ ↓→能力↑。
H 0.622 ps P ps
f (H,t)
(二)湿空气的比体积、比热容和焓
1. 湿空气的比体积υH [m3湿空气/kg干气] 定义:1kg绝干空气为基准,湿空气的总体积。
H g V H
g
22.41 29
273 273
t
101.33 P
0.773
T 273
101.33 P
V
22.41 18
273 273
t
101.33 P
1.244
T 273
101.33 P
H
(0.773
1.244
H
)
T 273
101.33 P
P一定, H f (t,H)
t
H
H
2. 湿空气的比热容cH
2.干燥介质要将汽化的水分及时带走。
第二节 湿空气的性质与湿度图 一、 湿空气的性质 二、湿空气的湿度图及其应用
一、 湿空气的性质
(一)湿空气中湿含量的表示方法
1. 湿空气中水汽分压pV
pV py
2. 相对湿度 φ 定义:一定T、P,pV与同温度下pS之比的百分数。
pV 100%
pS
饱和空气, pV = ps, φ =1,不可作为干燥介质; 不饱和空气, pV < ps ,φ <1,可作为干燥介质。
三、恒定干燥条件下的干燥速率与干燥时间
(一)间歇干燥过程和干燥速率曲线
干燥速率: 单位时间、单位干燥面积汽化水分量。

化工原理第8章 固体干燥

化工原理第8章  固体干燥
当固体物料中的含湿量较高时,可先采用沉降、过滤、 离心分离等机械分离法,除去其中的大部分湿分。这种去湿 过程中没有相变化,能耗较少,费用较低,但去湿不彻底, 一般用于初步去湿。
2
2.加热去湿法 对固体物料加热,使所含的湿分汽化,并及时移走所生
成的蒸汽,使固体物料中的含湿量达到规定要求,这种去湿 方法称为固体干燥。固体干燥过程中湿分发生相变化,故其 热能消耗较多。
15
图8-5 湿空气的t—H图(总压101.3kPa)
16
图中各线的意义如下: (1)等温线,简称等t线,是与纵坐标平行的一组直线。在同一 根等t线上都具有相同的温度值。 (2)等湿线,简称等H线,是与横坐标平行的一组直线。在同一 根等H线上都具有相同的湿度值。 (3)等相对湿度线,简称等φ线,是一组从坐标系原点(t=0,H =0)的附近散发出来的曲线,它是根据式(8-7)绘制的,当P一 定时,对于某一定值的φ,已知温度t(即ps),就可以算得一个对 应的湿度H。将许多(t,H)点连接起来,就成为某一百分数的等 线。
图8-4 绝热饱和器
12
因在绝热情况下,故水向空气中气化时所需的潜热, 只能取自空气中的显热,即空气的湿度在增加,而温度则 在下降,但空气的焓是不变的。这一过程称为绝热冷却增 湿过程。
绝热冷却过程进行至空气被水汽所饱和,即达到稳定 状态,此时空气的温度不再下降,而等于循环水的温度, 此稳定状态的温度即为上述空气的绝热饱和温度。
21
由A点沿等t线向上与φ=100%线相交于B点,再由B点沿 等H线向右,在纵坐标上可查得在干球温度下达到饱和时的 饱和湿度Hs;由A点沿等H线向左与湿热线相交于E点,由E 点沿等t线向上,在图上边的湿热数标线上可查得湿比热cH; 由A点沿等t线向上与湿容积线相交于G点,再由G点沿等H线 向左,在图左边的湿容积数标线上可查得对应的湿容积vH; 由A点作相邻两条绝热冷却线的平行线向左上方或右下方与 图左边或右边湿空气的焓值数标线相交,可得对应的焓值; 由A点沿等H线向左与水蒸汽分压线相交于K点,再由点K垂 直向上,可在图上边的蒸汽分压数标线上查得对应的水蒸汽 分压P。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减少干燥过程的各项热损失。

采用部分废气循环操作,一般废气循环量为总气量的20%~30%。

4. 干燥器
(1) 常用干燥器:厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等
(2) 几种干燥器的特点
①喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。

②气流干燥器:颗粒在管内的停留时间很短,一般仅2s左右。

在加料口以上1m左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。

③流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。

相关文档
最新文档