超超临界660MW机组热平衡图
660MW超临界空冷汽轮机
![660MW超临界空冷汽轮机](https://img.taocdn.com/s3/m/bc544cae162ded630b1c59eef8c75fbfc77d9488.png)
迷宫式汽封中蒸汽压力下降图
蒸汽在迷宫式汽封中的膨胀过程
各汽源的调节阀压力整定值
在正常运行时,靠高中压缸两端轴封 漏汽作为低压缸两端的轴封供汽,不 需另供轴封用汽,这种系统叫做自密 封系统。
下降,油膜将难以形成;
但粘度太大,会使油的
分布不均匀,增大摩擦
二、径向支撑轴承
损失 ,减小偏心距。
F
G为重力; F为油膜
F’ F2 F1
o
支撑的合
力。
o1
G=F
G
G
一旦出现扰动,则合垂直方向,前者使轴回到原中心 位置,而后者使轴颈绕原中心位置o涡动,经计算其涡动 频率为转速的一半
大型汽轮机汽缸结构
一、采用双层缸结构
双层缸的优缺点: 缸壁内外表面之间的温度差较小。 气缸壁和法兰厚度较薄。 贵重金属材料消耗少。 结构复杂,零件增多。 内缸承受蒸汽的温差小、压差大,而外缸承受的温差大、压
差小。因此内缸壁中温度梯度不大,引起的热应力较小;外 缸承受大温差,但由于缸壁承压小,在工况变化过程中,能 承受较大的热应力。 将一定压力的蒸汽引入夹层,使蒸汽的总压差、温差分别由 内、外壁承担。减小单层汽缸壁厚、法兰厚度,减小热应力
汽缸
汽缸的作用是将汽轮机的通流部分与大气隔开,将蒸 汽包容在汽缸中膨胀做功,完成其能量转换过程。
汽缸内部装有喷嘴室、喷嘴、隔板套、隔板和汽封等部 件。分成高压缸、中压缸和低压缸。
一般汽缸都是上下缸结构,中间通过法兰螺栓连接 但大机组、尤其是超临界机组高压缸为了减小热应力,采用 了一些其它方式。 西门子公司: 外缸为圆筒形结构;内缸有中分面,用螺栓固 定;内缸受外缸约束、定位。 石洞口二电厂(ABB)、元宝山电厂等 内缸无法兰螺栓,而采用7只钢套环将上下缸热套紧箍成一圆 筒,仅在进汽部分加四只螺栓来加强密封。 同时外缸可采用较薄的法兰和细螺栓,减小对汽机启停的限 制。
660MW超临界火力发电热力系统分析
![660MW超临界火力发电热力系统分析](https://img.taocdn.com/s3/m/d50a74426edb6f1aff001f8d.png)
1 绪论1.1 课题研究背景及意义我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。
根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球范围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。
根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。
由此看来,煤炭消耗量还是最主要的能源消耗[1]。
电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供[2]。
自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长[3]。
飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从2.648×108kW几乎翻2.5倍的增长为到了6.52×108kW,煤耗的消耗量增加了13亿吨。
预计到2020年,火电装机的容量还会增长到11.32×108kW,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%[4],[5]。
随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。
2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。
660MW机组介绍ppt (3)
![660MW机组介绍ppt (3)](https://img.taocdn.com/s3/m/f5c27eb2960590c69ec376fa.png)
各控制站调节阀整定和运行情况
汽封母管 压力 MPa 0.124 0.127 0.130 0.118 0.118 高压汽源 控 制站 关闭 关闭 关闭 打开并调 节 打开并调 节 辅助汽源 控 制站 打开并调 节 打开并调 节 关闭 关闭 关闭 溢流控制 站 关闭 关闭 打开并调 节 关闭 关闭
运行状态
约95~99kPa(a)
高低压缸轴端密封示意图
低压缸轴端平齿汽封
高中压间轴封
高压后轴封
4.自密封系统及运行 系统组成及主要设备 : 轴封系统对辅助蒸汽参数的要求: 蒸汽压力:0.588~0.784 MPa 温度:冷态启动约150~260℃;热态启动约 208~375℃ 轴封系统的启动 : 1)盘车、冲转及低负荷阶段 :汽封供汽来自辅 汽,供汽母管压力维持在0.124MPa(a) 2)25%-60%TRL负荷阶段 :由再热冷段提 供,也可以继续使用辅助蒸汽,并自动维持供汽 母管压力0.127MPa(a)。
欧共体制定了“THERMIE AD 700” 先进燃煤火电机组的发展计 划,联合开发 37.5MPa/700/700℃的超超临界火电机组,其效 率达52-55%。重点是高温镍基合金的研发,解决高温强度、高温 腐蚀、高温氧化难题 。
超临界机组的经济性 • 16.7/538/538 亚临界机组供电热效率为38%,发 电煤耗为325 g/KW.h • 24.1/538/538 超临界机组供电热效率为41%,发 电煤耗为310 g/KW.h • 玉环 26.25/600/600 超超临界机组供电热效率为 45.4%,发电煤耗为270.6 g/KW.h 。
3)60%TRL以上 :当蒸汽母管压力升至 0.130MPa(a)时,所有供汽站的调节阀自动关闭, 溢流站调节阀自动打开,将多余的蒸汽通过溢流 控制站排至汽机侧8#低压加热器。若8#低压加热 器事故或停运,可将多余蒸汽排至凝汽器。至此, 汽封系统进入自密封状态,母管压力维持在 0.130MPa(a),正常运行时应关闭再热冷段管路上 电动截止阀。 4)机组甩负荷时 :用符合温度要求的备用辅助 汽源 ,否则用主汽汽源 。 5)所有运行工况下的温度调节:维持低压汽封 温度在121~177℃。
660MW锅炉本体解析
![660MW锅炉本体解析](https://img.taocdn.com/s3/m/aa70dc75af1ffc4ffe47ac62.png)
660MW机组锅炉 本体
湖南华电常德发电有限公司
设备维护部
目录
锅炉总体简介 锅炉本体布置 防磨防爆检查 锅炉重要辅机介绍
湖南华电常德发电有限公司
设备维护部
锅炉总体简介
湖南华电常德发电有限公司
锅炉型式
设备维护部
本厂锅炉为超超临界参数变压运行螺旋管圈直流炉, 单炉膛、一次再热、采用四角切圆燃烧方式、平衡 通风、锅炉采用露天布置、固态排渣、全钢构架、 全悬吊结构П型锅炉 炉后尾部布置两台转子内径为Φ14236mm的三分仓 容克式空气预热器
Mpa.g
299
30.05
297
29.86
292
29.20
湖南华电常德发电有限公司
锅炉热力特性
项目 干烟气热损失 燃料含水分热损失 氢的燃烧损失 空气含水分热损失 未完全燃烧热损失 辐射热损失 其他热损失 制造厂裕度 高位热效率 数值 4.39% 0.08% 0.23% 0.09% 0.56% 0.17% 0.3% 0.2% 90.16% 项目 排烟温度(修正前) 排烟温度(修正后) 过热器喷水温度 过热器喷水量(一级) 过热器喷水量(二级) 低位热效率 炉膛容积热负荷 炉膛断面热负荷 低位热效率(保证) 数值 128℃ 125℃ 299℃ 56t/h 25.4t/h 94.17% 80.64kw/m3 4.607Mw/m2 94%
锅炉除渣采用干式排渣系统,装于冷灰斗下部。
湖南华电常德发电有限公司
主要参数
名 称 单 位 t/h BMCR 2035 ECR 1976 过热蒸汽流量
设备维护部
BRL 1833
过热蒸汽出口压力
过热蒸汽出口温度 再热出口蒸汽流量 再热进口蒸汽流量 再热蒸汽进口压力 再热蒸汽出口压力 再热蒸汽进口温度 再热蒸汽出口温度
660MW超超临界汽轮机设备及系统介绍
![660MW超超临界汽轮机设备及系统介绍](https://img.taocdn.com/s3/m/a6b4fa5e33687e21ae45a911.png)
机组外形布置图
发电机 低压缸
中低压连通管
中压缸
中调门
高压缸
中主门 高调门 补汽阀管 主汽门
主要设计参数
• 单流高压缸通流为20级反动式,包括1 级 低反动度级和19级扭转叶片级 • M型双流中压缸: 发电机侧:通流为16级 反动式,包括1 级低反动度和15级扭转叶 片级。 汽机侧:通流为16级反动式,包括 1级 低反动度和15级扭转叶片级 • 双流低压缸每侧通流为5级反动式,包 括2 级扭转叶片级和标准低压末3级
(2)辐(周)流式:蒸汽沿着转子轮周方向流动;
二、汽轮机型号 Δ ×××—×××/×××/×××
例如:NJK660-27/600/610
额定功率为600MW的间接空冷凝汽式汽轮机,主 蒸汽压力为27MPa,温度为600ºC,再热蒸汽温 代 。 度610ºC 型式 代号 型式 号 N 凝汽式 CB 抽汽背压式
超超临界660MW汽轮机设备及 系统介绍培训课件
生产准备部
2016.12.31
汽轮机设备介绍
火电厂概述分类 电力生产过程 汽轮机的基本概念 汽轮机工作原理 汽轮机组成 本厂汽轮机介绍
火力发电厂的分类
火力(热力)发电厂:通过燃料燃烧将化学能变为电能。
1
按火电厂供电、供热的产品分 按使用的一次能源分 按火电厂的服务规模分
高加内部结构图一
高加内部结构图二
660MW机组本体结构及主要部件
• 1-1汽轮机简介: ####发电有限公司2×660MW超超临界汽轮 机由上海汽轮机有限公司(STC)与西门子西屋 公司联合设计制造。本汽轮机型号为:NJK66027/600/610型间接空冷汽轮机,汽轮机型式:超 超临界、一次中间再热、三缸两排汽、单轴、间 接空冷凝汽式机组、八级回热抽汽;额定出力 660MW;机组设计寿命不少于30年。机组采用复 合变压运行方式,汽轮机的额定转速为3000转/分。 机组外形图演示。
中电国际芜湖电厂超超临界660MW介绍
![中电国际芜湖电厂超超临界660MW介绍](https://img.taocdn.com/s3/m/c09cfe4ecf84b9d528ea7a8c.png)
锅炉汽水系统 锅炉启动系统
To Turbine
Furnace Roof
Convection Pass Superheater Superheater Enclosure Interstage Attemperat Vertical or (three Seperator stages) s
LT
Water Collecti ng Tank
(1)高加进口三通阀机构损坏。原因为高加进口阀前 的压力波动太大,做连锁试验,使该阀突然关闭,之后 发现操作机构损坏。 现已用#2机的阀进行更换。 (2)厂用6kV母线应保护据动而越级跳闸。原因为二 次保护接线存在问题所致。 (3)大幅度降负荷时,由于没有及时开高缸通风阀, 使得在低负荷切缸时,高压缸排汽温度高而跳机。 (4)机组跳闸后,启动阶段用直接使用等离子点火时 由于磨煤机内存煤太多,直接点火后发生爆燃,炉膛压 力高MFT。 (5)因干式捞渣机冷却风调节不当,使得炉底漏风太 大,锅炉在480MW负荷时分离器过热度温度只有3℃, 进行调整后参数正常。
与 平 电 二 期 相 比 区 别
(1)、凝泵一拖二方式,且在45HZ左右泵 体几乎没有异常的振动发生; (2)、过热器有三级减温水,炉水泵在锅炉 3米层,分离器有给水泵出口母管去的过冷水 且分离器溢流能到过热器二级减温器; (3)、等离子燃烧器的机构已简化,且点火 燃烧非常容易,捞渣机采用干式密封,不容 易卡塞。汽机高低加阀门是气动装置,操作 不卡塞;
序号单位数据发电功率mw660年发电量10kwh363汽轮发电机组保证热耗tha工况kjkwh7414发电厂热耗率kjkwh799156发电设计标准煤耗gkwh273010供电效率426111供电设计标准煤耗gkwh288612每万千瓦容量的发电厂人数包括脱硫人mw026513每百万千瓦容量耗水量含脱硫系统时s1000mw0099电厂设计运行指标数据1凝泵一拖二方式且在45hz左右泵体几乎没有异常的振动发生
660MW超临界锅炉暖风器疏水系统节能优化
![660MW超临界锅炉暖风器疏水系统节能优化](https://img.taocdn.com/s3/m/7472ff48be1e650e52ea997c.png)
660MW超临界锅炉暖风器疏水系统节能优化呼博郝春元谷军生(河北国华定洲发电有限责任公司,河北定州 073000)摘要:本文讨论了锅炉暖风器水侧和汽侧调节的优劣,同时介绍了对暖风器疏水系统的设计优化,将暖风器的疏水改造为回收至凝汽器,在设计和应用上使暖风器疏水的回收利用更趋于合理,从而达到节能降耗、提高电厂经济效益的目的。
关键词:暖风器疏水设计优化1 概述电站锅炉暖风器一般是在我国北方电厂普遍使用,运行方式基本是冬季投运,夏季解列。
目前国内电站锅炉使用的暖风器大多是利用蒸汽作为热源来加热空气,目的是提高锅炉空气预热器一、二次风的进风温度,避免空气预热器冷端换热元件发生低温腐蚀,防止换热元件表面因积灰、结垢,造成空预器堵灰,导致烟风系统阻力的增加。
在实际运行中暖风器及其疏水系统存在着较多的问题,对电厂的节能减排、设备投入率以及补给水率等指标有一定影响。
特别是疏水系统,一旦出现故障,大量疏水无法回收,造成除盐水和热量的很大浪费。
同时疏水系统的问题还可能引起由于疏水不畅导致汽水共存,出现暖风器内部水击撞管产生机械振动及腐蚀,从而发生暖风器开裂、泄漏等事故。
定洲电厂一期暖风器系统调节方式是利用蒸汽侧进行控制调节,疏水方式选择了高压疏水,即通过疏水泵将暖风器疏水回收至除氧器。
二期工程是利用控制疏水进行调节,疏水方式选择了低压疏水,即直排至凝汽器热井。
本文将针对定洲电厂一期暖风器系统在实际运行过程中的经验教训进行总结分析,在二期工程中对暖风器及其疏水系统的优化改造前后效果的对比,为电厂节能减排工作,提高电厂经济效益做出了有益的尝试。
2 暖风器主要技术参数2.1 用汽参数暖风器由辅助蒸汽供汽,额定压力:1.037 MPa,工作温度378.4 ℃;最大压力:1.173 MPa,工作温度378.4℃。
2.2 风温控制要求为防止空气预热器冷端低温腐蚀,要求控制空气预热器冷端综合温度(即烟气出口温度+空气入口温度)在任何工况下等于148±2 ℃。
660MW超超临界锅炉燃烧控制 18页
![660MW超超临界锅炉燃烧控制 18页](https://img.taocdn.com/s3/m/61cf8c99aef8941ea66e052c.png)
温
再热器主要采点用温烟度气的挡变板化调能温快、速并反辅应以水摆煤动比燃变烧化器,调维温持,
调 整
再 热
喷锅水炉减温仅用该于点事温故度减稳温定和才锅能炉保启证动主阶蒸段汽。温度的稳定。 直流 手运动行方式调节一再、热二蒸、汽三温级度减,温不水要是猛主开汽、温猛度关调烟节气的挡辅板助,
汽 温 调 整
不要大幅度上手下段摆,动减燃温烧水器流摆量角不,可事大故幅减度温波水动的,调防节止注汽意 减燃温烧器器后处蒸于汽温温急度剧变波化燃动,烧。防器止角再度热蒸汽温度燃振烧荡器过角调度。 调在水整加平主减位蒸负置汽荷温、度启过停程制中粉向要系上加统摆强、动受投热停面高金加属、温煤向度质下监发摆视生动,改以变金、 属吹温灰度除不焦超等限情为况前下提,进都行将调对整再。热蒸汽温度产生扰动,要特 别注意对再热蒸汽温度的监视和调整。
汽水 分离器
后屏
锅 炉 示 意 图
660 MW
分 隔 屏 储水箱
燃烧器
末过
高再
低 过 低 再
省煤器
空预器
水冷壁
端部风 轻油枪
辅助风 偏置风 偏置风 偏置风 周界风
紧凑燃尽风
紧凑燃尽风
二次风喷 嘴的摆动
范围为 ±30 °
煤粉喷嘴 的摆动范
围为 ±20°
偏置风
B一次风
油二次风
A一次风
端部风
火下风
五层分离 燃尽风
和保持给水流量的稳定。
压
给水流量的变化会直接影响汽压的变化,给水流
调
量增加汽压上升。
整
锅炉直 流运行
当汽压低,温度高时应增加给水量,将汽压升到 正常范围运行,如果汽压低、温度低,应适增加
给煤量,将汽压维持在正常范围。
某660MW超超临界纯凝火电机组供热改造方案探讨
![某660MW超超临界纯凝火电机组供热改造方案探讨](https://img.taocdn.com/s3/m/267443009ec3d5bbfc0a743d.png)
某660MW超超临界纯凝火电机组供热改造方案探讨摘要:本文以某工业园区附近已建成的660MW超超临界凝汽式机组为分析对象,对压力匹配器供热改造方案和低温再热蒸汽减温减压供热改造方案进行了技术经济对比。
计算结果表明,在机组拟定的运行模式和现有热负荷情况下,压力匹配器供热方案相比减温减压供热方案年平均发电标煤耗可降低0.033g/kWh,每年可节省标煤约195t,折合运行费用19.4万元,运行一年即可回收压力匹配器与减温减压装置之间的差价,因此推荐采用压力匹配器供热改造方案。
关键词:超超超临界机组供热改造技术经济比较年平均发电标煤耗城市集中供热是城市重要基础设施之一,是节约能源、减少环境污染的重要措施。
热电联产集中供热具有能源综合利用效率高、节能环保等优势,是典型的资源节约、环境友好型的能源生产方式和消费模式,近年来一直备受青睐。
与分散型供热相比,热电联产集中供热优势显著,不仅热效率高、供热成本低、经济效益明显,而且配备完善的烟气后处理系统,污染物排放浓度低,有利于改善大气环境质量。
1某电厂供热改造背景某电厂位于某工业园区附近,已建成2台660MW超超临界凝汽式汽轮发电机组,汽轮机为超超临界、一次中间再热、单轴、三缸四排汽、双背压、凝汽式机组;锅炉为超超临界参数变压直流炉、单炉膛、一次中间再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构П型锅炉。
该工业园区热用户有较稳定的热负荷,目前均采用自备燃煤或燃生物质锅炉供热。
为满足节能减排及当地环保要求,拟通过对该660MW机组进行供热改造,以实现对工业园区热用户集中供热的目标。
根据工业园区热负荷实际调查情况,工业园区热用户近期工业热负荷约23.75万吨/年,热负荷折算到电厂侧蒸汽参数为1.2MPa.a、270℃,年供热小时数为7920h。
2供热方案分析2.1供热方案根据该电厂机组热平衡图,本工程机组各工况下蒸汽参数如表2.1-1所示:表2.1-1某电厂660MW超超临界机组蒸汽参数由上表中机组各工况下蒸汽参数及热负荷需求,本次供热改造可采用如下两个方案:方案一:采用低温再热蒸汽引射四段抽汽的压力匹配器供汽;方案二:采用低温再热蒸汽减温减压后供汽[1]。
660MW超超临界机组磨煤机运行分析..
![660MW超超临界机组磨煤机运行分析..](https://img.taocdn.com/s3/m/3c18ad742bf90242a8956bec0975f46527d3a721.png)
磨煤机结构
加载架
磨盘
磨辊 装配
电 动 机
拉 杆 辊 支 架
液压缸
行星伞齿 轮减速机
磨煤机工作原理图
✓ 磨煤机是具有三个固 定磨辊的外加力型辊 盘式磨煤机
墙悬吊管温度情况,防止悬吊管超温。
3.2 低负荷燃烧时磨运方对机组运行的影响: :
• 3.2.1、当负荷一定时给煤量也确定了,若磨组增多则分 配到各台磨的给煤量减少,磨出口煤粉浓度降低,不利于 燃烧稳定,若磨组减少,磨出口煤粉浓度增加但考虑运行 磨组突然出现跳闸等异常时,燃烧也会变得不稳定,综合 考虑低负荷时采用四台磨运行为佳,且下层AB磨给煤量 尽量不低于30T/H。
4.2 磨石子煤量大原因及处理:
• 4.2.1石子煤量多,致使磨出力下降,为满足电网对机组负 荷的要求,必须加大磨煤机一次风量、提高风速,这将使 风煤比提高,煤粉细度大大下降,从而使锅炉效率下降。
• 4.2.2石子煤量大主要有这几个原因: • 4.2.2.1磨辊与磨盘磨损,磨辊磨损间隙大,磨碗刮板损坏
二、磨煤机运行特点
• 2.1磨运行三大出力。
• 2.1.1干燥出力:是指干燥剂对煤的干燥能力,制粉系统的 干燥出力在给煤量一定时,取决于干燥剂的温度、通流量、 原煤的水份。
• 2.1.2制粉出力:是指磨煤机碾磨装置对磨的碾磨能力、 MPS型磨煤机碾磨能力主要取决于碾磨部件的结构尺寸、 工作转速、加载力、磨的碾磨性能、所要求的煤粉细度以 及碾磨部件的磨损程度。
或脱落。 • 4.2.2.2风环磨损, • 4.2.2.3煤质太差,可磨性系数小 • 4.2.2.4风量太小,大部分煤粉不能被不带出。 • 4.2.2.5磨煤机加载油压工作不正常、碾磨力不够。 • 4.2.2.6输煤碎煤机故障,以至于落入磨煤机煤颗粒度偏大,
660MW超超临界机组制粉系统讲义
![660MW超超临界机组制粉系统讲义](https://img.taocdn.com/s3/m/c2f8dd916037ee06eff9aef8941ea76e59fa4a1f.png)
给煤机的结构
3、堵煤及断煤信号装置 • 断煤信号装置安装在胶带上方,当胶带上无煤时,由于信
号装置上挡板的摆动,使信号装置轴上的凸轮触动限位开 关从而控制皮带驱动电机,或起动煤仓振动器,并返回 DCS显示胶带上无煤。 • 堵煤信号装置安装在给煤机出口处,其结构与断煤信号装 置相同,当煤流堵塞至排出口时,限位开关发出信号,并 停止给煤机。
断煤信号装置
挡板(断煤状态) 胶带
挡板(有煤状态) 调试垫块
风系统启动 吹扫及暖磨
驱动装置 启动
负荷控制 切自动
停
磨辊
给煤机 降磨辊
提升
启动 就位
给煤机 风量 碾压力
分离器 出口温度
反压力 时间
液压加载ZGM型磨煤机碾压力在负荷快速变 化时的自动调节曲线
负荷快速增加
负荷快速减小
碾压力 bar) 给煤量 (%)
碾压力 bar) 给煤量 (%)
120 80 40
• 在磨碗上面吹起的较轻煤粒经历一个三级分离过程。由于 应用了安装在分离器体上的固定的空气折向器,第一级分 离正好在磨碗水平面上发生。在此,最重的煤粒直接返回 磨碗进一步碾磨成更小的颗粒。而较轻的颗粒被气流携带 至分离器顶盖进行第二级分离,此处弯曲的可调叶片使风 粉混合物产生旋风运动导致重颗粒失去动量而从煤流中降 落。此后,风粉混合物通过称之为文丘利套管的垂直插管 进一步进行分离,达到所要求的煤粉细度。在分离器叶片 和文丘利套管里分离出来的较重煤粒经过内锥体返回到磨 碗的研磨区域。锥体把磨煤机的紊流区域从分离颗粒分离 出来。无紊流区域的煤粒在重力作用下返回磨碗。
660MW汽轮机概述(精品PPT课件)
![660MW汽轮机概述(精品PPT课件)](https://img.taocdn.com/s3/m/54ca49c7c8d376eeafaa313c.png)
660MW汽轮机——东汽600MW超临界机组汽缸、 隔板和滑销系统
东方超超临界660MW汽轮机为单轴三缸四排汽 型式,从机头到机尾依次串联高中压缸(逆流高压 缸、顺流中压缸)及两个双流低压缸。高压缸呈反 向布置(头对中压缸),由一个单流调节级与7个单 流压力级组成。中压缸共有6个压力级。两个低压缸 压力级总数为2×2×7级。末级叶片高度为1016mm (40″),采用一次中间再热,汽轮机总长为27.70m, 汽轮发电机组总长41.3m。其纵剖面图如下图所示。
高、中压缸共用一个外缸,高压缸为双层结构。
高、中压内缸铸成一体,由下缸前后两侧的两对猫爪支 撑在下外缸的中分面的凸台上。
(二)进汽部分
高、中压导汽管焊接在外缸的进汽口,由于采用双层汽 缸,蒸汽要穿过内缸进入喷嘴室,而运行时外缸、内缸和喷 嘴室金属温度不同,膨胀量不同,不能用管道刚性连接,采 用进汽短管垂直插入内、外缸和喷嘴室进口管,通过弹性密 封环(10mm)滑动连接,以补偿它们之间的膨胀差。
4、汽轮机能承受可能出现的运行工况 1)汽轮机轴系,能承受发电机及母线突然发生两 相、三相短路、线路单相短路快速重合闸、非同 期合闸时所产生的扭矩。 2)机组甩去外部负荷时在额定转速下空转(即不 带厂用电)持续运行的时间不大于15分钟。 3)汽轮机冷态启动并网前能在额定转速下空转运 行,其允许持续运行的时间,至少能满足汽轮机 启动后进行发电机试验的需要。 4)汽轮机能在低压缸排汽温度不高于90℃下长期 运行。高压缸排汽温度报警值410℃、停机值 427℃;低压缸排汽温度报警值90℃、停机值 121℃。
(2)由于初压增高,水的沸点也增高,增加了凝结 水加热到饱和状态所需热量,从而扩大了使用回热的 范围,进一步改善了循环热效率。一般超临界汽轮机 的回热级数为8~9级。 2.蒸汽容积流量降低 高压时蒸汽比容显著减小,从而可以减小装置的尺寸 和重量,特别是管道、阀门等部件的尺寸和重量。
上汽660mw超超临界汽轮机X温度准则详解
![上汽660mw超超临界汽轮机X温度准则详解](https://img.taocdn.com/s3/m/756558b6f111f18582d05a58.png)
1DEH温度准则(1)X准则一方面,为了提高机组的经济性,应尽可能快的启动;另一方面,蒸汽参数及汽轮机热应力必须保持在规定值内,以延长汽轮机使用寿命。
运行状态改变时,进入汽轮机的蒸汽参数及传热量也会相应改变。
温差可以线性地反映热应力的大小,因此汽轮机热应力计算主要依据汽轮机不同部位的温差;为了限制汽轮机的热应力,西门子采用了可调整的温度准则——X 准则和汽轮机应力评估TSE。
X准则是控制主汽温、主汽压、再热汽温与主汽门、调门、高压外缸中间层温度或高、中压转子平均温度间的允许温差;应力评估TSE是控制主汽门、调门、高压外缸中间层温度或高、中压转子平均温度与表面温度间的允许温差。
X准则判断机组是否能够接受运行方式的改变,并将判断后的结果作为允许条件送到汽轮机启动顺控子组SGC,以决定汽轮机是否能够进行相应的操作。
X准则各功能组作用如下:1)X1准则和X2准则用于判断是否允许打开主汽门对高压调门进行暖阀;2)X4、X5和X6准则用于判断是否允许打开高压调门并冲转至360r/mim进行低速暖机;3)X7A和X7B准则用于判断在360 r/mim时汽轮机暖机程度是否合适、是否允许继续升速至3000r/mim;4)X8准则用于判断在3000r/mim时汽轮机暖机程度是否合适、是否允许汽轮机并网。
X1准则是在冷态启动时使主蒸汽温度高于汽轮机阀体温度,避免汽轮机阀体被主蒸汽冷却。
即在打开汽轮机主汽门对高压调门暖阀时,主蒸汽温度要比高压调门阀体温度高一定值。
而在极热态启动时,允许主蒸汽温度低于主调门阀体温度。
X1准则为:X1=实际主汽温度-允许开启高压主汽门时最低主汽温度θMS>=0式中:◆实际主汽温度为从A、B侧主蒸汽管道蒸汽温度4 个测点(LBA11CT002A 高压旁路前主汽温度、LBA12CT002A 高压旁路前主汽温度、LBA11CT007A 主汽门1 前主汽温度、LBA12CT007A 主汽门2 前主汽温度)选小值得出;◆允许打开高压主汽门时最低主汽温θMS为从A\B侧高压调门阀体中间温度(MAA12CT022A 高调门阀壁平均温度)选大值θmCV,并依据X1准则图对应得出。
660MW机组超(超)临界与超临界分析比较
![660MW机组超(超)临界与超临界分析比较](https://img.taocdn.com/s3/m/ee92524fa8956bec0975e37c.png)
超临界 ( 2 4 . 2 / 5 6 6 / 5 6 6 ) 机 组 热耗 约 7 5 9 0 k J / k W. h , 发 电煤 耗 约 2 8 3 g / k W. h ; 超 超 临界 ( 2 5 / 6 0 0 / 6 0 0 ) 机组热耗约 7 3 5 0 k J / k W. h , 发 电煤 耗 约 2 7 3 g / k W. h 。从 调研 的情 况 来 看 , 6 0 0 MW 等 级 超 临 界 机
虽然采用性能等级更好的材料和做喷电厂工程前期针对锅炉受热面高温硫腐蚀的问题与涂防护处理可以阻止高温复合硫酸盐对管壁的腐蚀西安热工研究院合作研究了锅炉受热面热喷涂用但是国内外尚无类似防高温腐蚀的业绩且选择更高于防止高温硫腐蚀的实验性研究并已经通过国内专等级的材料配套建设洗选煤厂受热面高温防腐喷涂家评审该研究方案是通过热喷涂技术将锅炉水冷都会极大地增加投资成本无论在安全可靠性还是经壁高温过热器高温再热器喷涂一层合金涂层隔济生方面都是不划算的
四项 可 以 不 用 考 虑 , 那 么 建 设 2×6 6 0 MW 超 超
临界机组 年运 行 费 用 可 以节约 5 0 2 5万 元 , 初 投
资增 加 3 2 4 2 7万 元 , 按 照机 组 运 行 年 限 2 0年 , 2 0 1 1年 企 业 贷 款 利 率 6 . 6 %, 通 过 费 用 现 值 比较
种, 建 设超 超 临界 机组需 配 套建设 洗 选煤 场 , 预计 将
组 工 程静 态投 资 比较 , 超 超 临界 比超 临 界 增 加 投 资
硫 份 至少 降低 到 2 %水 平 , 才 能 保 证 锅 炉运 行 安 全 性 。这部 分要 增加 初投 资 和运行 成 本 。详见 下表 来 具 体分 析 。
660MW超临界火力发电热力系统分析
![660MW超临界火力发电热力系统分析](https://img.taocdn.com/s3/m/662da820eefdc8d376ee321b.png)
1 绪论1.1 课题研究背景及意义我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。
根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球范围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。
根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。
由此看来,煤炭消耗量还是最主要的能源消耗[1]。
电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供[2]。
自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长[3]。
飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从2.648×108kW几乎翻2.5倍的增长为到了6.52×108kW,煤耗的消耗量增加了13亿吨。
预计到2020年,火电装机的容量还会增长到11.32×108kW,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%[4],[5]。
随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。
2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。
660MW超超临界机组直流锅炉烟气高效利用设计优化 蔡龙挥
![660MW超超临界机组直流锅炉烟气高效利用设计优化 蔡龙挥](https://img.taocdn.com/s3/m/6b174838102de2bd960588f3.png)
660MW超超临界机组直流锅炉烟气高效利用设计优化蔡龙挥发表时间:2019-03-26T11:53:38.060Z 来源:《电力设备》2018年第30期作者:蔡龙挥[导读] 摘要:本文在研究中以660MW超超临界机组为核心,列举真实案例,对660MW超超临界机组直流锅炉进行优化设计,提高直流锅炉烟气的利用效率,降低热量损失和烟气排放量,实现最大经济效益,并为相关研究人员提供一定的借鉴和帮助。
(国电福州发电有限公司福建福州 350001)摘要:本文在研究中以660MW超超临界机组为核心,列举真实案例,对660MW超超临界机组直流锅炉进行优化设计,提高直流锅炉烟气的利用效率,降低热量损失和烟气排放量,实现最大经济效益,并为相关研究人员提供一定的借鉴和帮助。
关键词:660MW超超临界机组;直流锅炉;烟气排放;优化设计在660MW超超临界机组运行中,直流锅炉排烟损失较大,占据着锅炉热损失中的较大比例,即为燃料热量的8%左右,而如何有效控制排烟损失就是实现直流锅炉热效率最大化的关键。
从电力企业可持续发展的角度上看,由于燃煤机组的容量大、参数高,不仅要控制发电耗煤程度,还要加强系统优化设计工作,实现660MW超超临界机组直流锅炉的超低排放。
对此,本文深入分析660MW超超临界机组直流锅炉的运行现状,根据运行需求和工作现状,对660MW超超临界机组直流锅炉进行二次改造,将两级低温省煤器替换成以及前置式烟气换热器,提高烟气热量的利用率,降低烟气排放,进而提高系统的运行效率。
在这样的环境背景下,探究660MW超超临界机组直流锅炉烟气高效利用设计优化具有非常重要的现实意义。
一、660MW超超临界机组直流锅炉运行现状某发电厂采用煤电一体化供应方式,拥有两台660MW超超临界机组,分别处于1000kv特高压交流输电工程项目中,机组运行中配以SCR脱硝设施与石灰石湿法脱硫设施,其中除尘系统以双室五电场高效静电除尘器为主。
660MW超超临界机组-教材
![660MW超超临界机组-教材](https://img.taocdn.com/s3/m/338d0726910ef12d2af9e7ed.png)
蒸汽参数 25.1MPa,560/560°C 25MPa,540/560°C
25MPa,540/560°C
24MPa,538/538°C
机组效率% 投运年份
45.3
1992
42.5
1992
42.5
1994
41
石洞口二厂600MW
24.2MPa,538/566°C
41.09
西门子设计400~1000MW 27.5MPa,589/600°C
500
94(1985年) 连续运行607天 平均EAF=83.3 88.92(1994)
中国
石洞口二厂 2×600 华能南京电厂 2×300
91.47(1994) 连续运行1700多天(到2019年底
部分超临界机组经济性举例
电厂\项目 丹麦Vesk电厂407MW
法国STAUDINGE厂 550MW 德国ROSTOCK电厂 559MW 韩国500MW
敏感性较强,当采用四角切园燃烧方式时必须采 取有效的消除烟气温度偏差的措施(锅炉出口两 侧最大烟温差不得大于50℃)。沁北电厂采用前 后墙对冲燃烧的方式。
(2)汽轮机部分 ①对于汽轮机本体来说,由于超临界压力机
组是由直流炉供汽,溶解于蒸汽中的其他物质较 多,蒸汽在汽轮机的通流部分做功后压力降低, 原先在高压下溶解的物质会释放出来,产生固体 硬粒冲蚀。针对超临界机组固体硬粒冲蚀这一突 出问题哈尔滨汽轮机厂采取了对通流部件进行表 面硬化处理;从防磨角度优化通流部分进汽角度, 减轻对叶片的冲蚀;采用全周进汽和调节汽门合 理管理系统AMS以降低启动流速,减小硬粒冲击 能量等。
超临界机组发展现状
美国是发展超临界发电技术最早的国家。世界第一 台超超临界参数机组(125MW,31.03MPa, 621/565/538℃)于1957年在美国投运。美国投运 的超临界机组占大型火电机组的30%以上,容量以 500~800MW为主。美国拥有超临界机组两个世界 之最,即最大单机容量1300MW和最高蒸汽参数 (费城电力公司EDDY-STONE电厂的#1机组,蒸 汽参数为34.5MPa,649/566/566℃)。近年来, 美国GE公司还为日本设计制造了蒸汽参数分别为 26.6Mpa/577℃/600℃和25Mpa/600℃/610℃的超 超临界机组。