2019年高二下学期期末考试(数学)

合集下载

2019学年高二数学下学期期末考试试题 理(含解析)(新版)新人教版

2019学年高二数学下学期期末考试试题 理(含解析)(新版)新人教版

学习资料专题2019学年度第二学期期末考试高二理数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内)1. 设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.【答案】A【解析】为纯虚数,所以,故选A.2. 下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A. ①②B. ③④C. ①④D. ②③【答案】D【解析】【分析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题3. 某校为了解高三学生学习的心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18,抽到的40人中,编号落在区间[1,200]的人做试卷A,编号落在[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为()A. 10B. 12C. 18D. 28【答案】B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.4. 某程序框图如图所示,则该程序运行后输出的值是()学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...A. 0B. -1C. -2D. -8【答案】B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出 .本题选择B选项.5. 在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A. 四边形一定为菱形B. 四边形在底面内的投影不一定是正方形C. 四边形所在平面不可能垂直于平面D. 四边形不可能为梯形【答案】D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B, 四边形在底面内的投影一定是正方形,故B错误;对于C, 当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D6. 已知随机变量满足,,且,若,则()A. ,且B. ,且C. ,且D. ,且【答案】B【解析】分析:求出,,从而,由,得到,,从而,进而得到. 详解:随机变量满足,,,,,,解得,,,,,,故选B.点睛:本题主要考查离散型随机变量的分布列、期望公式与方差公式的应用以及作差法比较大小,意在考查学生综合运用所学知识解决问题的能力,计算能力,属于中档题.7. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为.考点:三视图.8. 有一个偶数组成的数阵排列如下:2 4 8 14 22 32 …6 10 16 24 34 … …12 18 26 36 … … …20 28 38 … … … …30 40 … … … … …42 …… … … … …… … … … … … …则第20行第4列的数为()A. 546B. 540C. 592D. 598【答案】A【解析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.9. 已知一袋中有标有号码的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.10. 已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.【答案】A【解析】建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11. 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. 1 D.【答案】B【解析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.12. 已知定义在R上的函数f(x)的导函数为,(为自然对数的底数),且当时, ,则 ()A. f(1)<f(0)B. f(2)>e f(0)C. f(3)>e3f(0)D. f(4)<e4f(0)【答案】C【解析】【分析】构造新函数,求导后结合题意判断其单调性,然后比较大小【详解】令,,时,,则,在上单调递减即,,,,故选【点睛】本题主要考查了利用导数研究函数的单调性以及导数的运算,构造新函数有一定难度,然后运用导数判断其单调性,接着进行赋值来求函数值的大小,有一定难度二、填空题(本大题共4小题,每小题5分,共20分)13. 从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.14. 已知离散型随机变量服从正态分布,且,则__________.【答案】【解析】∵随机变量X服从正态分布,∴μ=2,得对称轴是x=2.∵,∴P(2<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为:.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.15. 已知展开式中只有第4项的二项式系数最大,则展开式中常数项为_______.【答案】61【解析】分析:根据题设可列出关于的不等式,求出,代入可求展开式中常数项为.详解:的展开式中,只有第4项的二项式系数最大,即最大,,解得,又,则展开式中常数项为.点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式.16. 已知函数,存在,则的最大值为____.【答案】【解析】试题分析:由题意得,,因为存在,,所以,所以令,所以,所以函数在上单调递增,在上单调递减,所以时,函数取得最大值,所以的最大值为.考点:分段函数的性质及利用导数求解函数的最值.【方法点晴】本题主要考查了分段函数的图象与性质、利用导数研究函数的单调性与极值、最值,着重考查了学生分析、解答问题的能力,同时考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,先确定的范围,构造新函数,求解新函数的单调性及其极值、最值,即可求解结论的最大值.三、解答题(本大题共6个小题,共70分)17. 2019年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.【答案】(1) 在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)【解析】分析:读懂题意,补充列联表,代入公式求出的值,对照表格,得出结论;(2)根据古典概型的特点,采用列举法求出概率。

2019-2020学年浙江省嘉兴市高二下学期期末数学试题(解析版)

2019-2020学年浙江省嘉兴市高二下学期期末数学试题(解析版)

2019-2020学年浙江省嘉兴市高二下学期期末数学试题一、单选题1.已知全集{}1,2,3,4,5,6U =,集合{}1,3A =,集合{}3,4,5B =,则集合()UA B =( )A .{}3B .{}2,6C .{}1,3,4,5D .{}1,2,4,5,6【答案】B【解析】利用并集和补集的概念即可得出答案. 【详解】{}1,3A =,{}3,4,5B =,∴ {}1,3,4,5A B =,又{}1,2,3,4,5,6U =,∴(){}U2,6A B =,故选B.2.已知复数()()1i a i -+为纯虚数(i 为虚数单位),则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】利用复数的乘法法则将复数()()1i a i -+化为一般形式,然后利用该复数为纯虚数可得出关于a 的等式与不等式,即可解得实数a 的值. 【详解】()()()()111i a i a a i -+=++-,由于该复数为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-.故选:A. 【点睛】本题考查利用复数的类型求参数,同时也考查了复数乘法法则的应用,考查计算能力,属于基础题.3.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln 1f x x =+,则()1f -=( )A .ln 2-B .1-C .0D .1【答案】B【解析】由函数的奇偶性可得()()11f f -=-,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数,当0x >时,()ln 1f x x =+,∴()()()11ln111f f -=-=-+=-.故选:B . 【点睛】本题考查函数奇偶性的应用,考查逻辑思维能力和运算求解能力,属于常考题. 4.已知物体位移S (单位:米)和时间t (单位:秒)满足:321S t t =-+,则该物体在1t =时刻的瞬时速度为( ) A .1米/秒 B .2米/秒C .3米/秒D .4米/秒【答案】A【解析】求出S 关于t 的导数,令1t =可得. 【详解】由题意232S t '=-,1t =时,321S '=-=. 故选:A . 【点睛】本题考查导数的物理意义,本题属于基础题.5.用数学归纳法证明:1232(21)n n n +++⋅⋅⋅+=+时,从n k =推证1n k =+时,左边增加的代数式是( ) A .43k + B .42k +C .22k +D .21k +【答案】A【解析】根据题设中的等式,当n k =时,等式的左边为1232k +++⋅⋅⋅+,当1n k =+时,等式的左边为122(21)2(1)k k k ++⋅⋅⋅+++++,即可求解. 【详解】由题意,可得当1n =时,等式的左边为12+, 当n k =时,等式的左边为1232k +++⋅⋅⋅+,当1n k =+时,等式的左边为1232(21)2(1)k k k +++⋅⋅⋅+++++,所以从k 到1k +时,左边需增加的代数式是(21)2(1)43k k k +++=+, 故选A . 【点睛】本题主要考查了数学归纳法的应用,其中解答中熟记数学归纳法的基本形式,合理、准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 6.在ABC 中,2CD DB =,AE ED =,则下列向量与BE 相等是( )A .5163AB AC - B .5163AB AC -+ C .2136AB AC -D .2136AB AC -+【答案】D【解析】根据向量的线性运算将BE 用AB ,AC 表示即可. 【详解】因为AE ED =,所以E 为AD 的中点, 所以111()()223BA B BE D BA BC =+=+11[()]23AB AC AB =-+- 14121()23336AB AC AB AC =-+=-+ 故选:D 【点睛】本题主要考查向量的线性运算及平面向量基本定理,属于基础题. 7.已知()0,2a ∈,随机变量ξ的分布列如下:ξa2P23a- 13 3a则()D ξ的最大值为( ) A .2 B .1C .23D .13【答案】C【解析】根据分布列求出期望,再得方差,根据二次函数性质可得最大值. 【详解】由已知12()33a E a a ξ=+=, ∴22221()(0)()(2)333a aD a a a a ξ-=⨯-+⨯-+⨯-22222(2)(1)333a a a =--=--+,∴1a =时,max 2()3D ξ=.故选:C . 【点睛】本题考查简单随机变量的分布列,均值与方差,掌握方差计算方法是解题关键. 8.某高一学生将来准备报考医学专业.该同学已有两所心仪大学A ,B ,其中A 大学报考医学专业时要求同时..选考物理和.化学,B 大学报考医学专业时要求化学和生物至少选一门.若该同学将来想报考这两所大学中的其中一所那么该同学“七选三”选考科目的选择方案有( ) A .21种 B .23种 C .25种 D .27种【答案】C【解析】报考A 大学的选择方案有15C 种,报考B 大学的选择方案有252C 种,最后利用分步计数原理计算即可得解. 【详解】A 大学报考医学专业时要求同时选考物理和化学,故报考A 大学的选择方案有15C 种;B 大学报考医学专业时要求化学和生物至少选一门,故报考B 大学的选择方案有252C 种;该同学将来想报考这两所大学中的其中一所那么该同学“七选三”选考科目的选择方案有1255225C C +=种.故选:C . 【点睛】本题考查排列组合的应用,考查逻辑思维能力和运算求解能力,属于常考题.9.已知数列{}n a 中,1a a =,212n n a a +=-,当3n ≥时,n a 为定值,则实数a 的不同的值有( ) A .5个 B .5个 C .6个 D .7个【答案】D【解析】由题可得,2332a a -=,求出3a ,再由递推关系212n n a a +=-去求出21,a a 即可. 【详解】由题可知,若要满足3n ≥时,n a 恒为定值,则只需满足2332a a -=,故31a =-或32a =.当31a =-时,解得21a =±,从而解得:11a =±,或1a =; 当32a =时,解得22a =±,从而解得:12a =±,或10a =; 故1a 的不同取值有7个. 故选:D 【点睛】本题主要考查了数列的递推公式的计算,考查了学生的运算求解能力. 10.设a ,b ∈R ,且0b ≠,函数()f x x a bx =--.若函数()()y f f x =有且仅有两个零点,则( ) A .0a <,01b << B .0a <,10b -<< C .0a >,01b << D .0a >,10b -<<【答案】B【解析】令()t f x =,则()0f t =.即t a bt -=时,方程x a bx t -=+有且仅有两个根.分别画y t a =-,y bt =的图像和y x a =-,1y bx t =+(2y bx t =+)的图像,观察得到. 【详解】 由题意知:方程()()0ff x =有且仅有两个根.令()t f x =,则()0f t =.即t a bt-=时,方程x a bx t -=+有且仅有两个根. 令()g t t a =- ,()h t bt = ,①当ab>⎧⎨>⎩时,由图可知,方程有1个或4个根;②当ab>⎧⎨<⎩时,由图可知,方程有0个或1个根;③当ab<⎧⎨>⎩时,由图可知,方程有0个或1个根;④当ab<⎧⎨<⎩时,由图可知,要使方程有2个根,必须满足10b-<<.直线y bt =与直线y t a =-+的交点横坐标11at b =+, 直线y bt =和直线y t a =-的交点横坐标21at b -=-,直线y bx t =+经过点(),0a 时,t ab =-,由题可知:11a a ab b b -<-<+-,即1b -<<.综上所述:01a b <⎧⎪⎨-<<⎪⎩时,函数()()y f f x =有两个零点.故选B.【点睛】此题的关键是分别以t 和x 作为自变量,作出y t a =-,y bt =和y x a =-,1y bx t =+(2y bx t =+)的图像,先确定1t ,2t 的值,再确定1y bx t =+(2y bx t =+)的图像,从图像观察得出结论,注意复合函数自变量的转化.二、双空题 11.已知复数21i z =+(其中i 为虚数单位),则z =______;z =______. 【答案】1i +【解析】由复数除法计算出z ,可得其共轭复数,再由模的计算公式计算模. 【详解】 由已知22(1)11(1)(1)i z i i i i -===-++-,∴1z i =+,z == 故答案为:1i -. 【点睛】本题考查复数的除法运算,考查共轭复数和模的概念,属于基础题.12.从1,2,3,4,5这五个数字中任取4个数组成无重复数字的四位数,则这样的四位数共有______个;其中奇数有______个. 【答案】120 72【解析】(1)直接利用排列数公式求解即可;(2)先确定个位数的种数,再确定千位、百位、十位的种数,然后根据分步计数原理直接求解即可. 【详解】(1)从1,2,3,4,5这五个数字中任取4个数组成无重复数字的四位数,共有45120A =种;(2)第一步,先从1, 3, 5三个数中选一个放在个位有13C 种方法; 第二步,再从剩余的4个数中选3个放在千位、百位、十位有34A 种方法;根据分步计数原理,可得133472C A =个.故答案为: 120;72 【点睛】本题主要考查了排列组合的应用,属于基础题.13.设()5234501234521x a a x a x a x a x a x -=+++++,则2a =______;12345a a a a a ++++=______.【答案】40- 2【解析】令()()521f x x =-,利用二项展开式通项可求得2a 的值,利用赋值法可得出()()1234510a a a a a f f ++++=-,即可得解.【详解】二项展开式通项为()()()5551552121rr rrr r r r T C x C x ---+=⋅⋅-=⋅⋅-⋅,令52r,可得3r =,则()332252140a C =⋅⋅-=-.令()()521f x x =-,则()()()()12345012345010112a a a a a a a a a a a a f f ++++=+++++-=-=--=.故答案为:40-;2. 【点睛】本题考查利用二项展开式求指定项的系数,同时也考查了利用赋值法求项的系数和,考查计算能力,属于中等题.14.袋子里有7个大小相同的小球,其中2个红球,5个白球,从中随机取出2个小球,则取出的都是红球的概率为______;若ξ表示取出的红球的个数,则()E ξ=______.【答案】121 47【解析】(1)求出随机取出2个小球的取法种数和2个小球是红球的种数,根据古典概型计算公式求解即可;(2)确定ξ的所有可能取值,再求出相应的概率,根据均值公式求解即可. 【详解】(1) 随机取出2个小球有2721C =种取法,取出的2个小球都是红球有1种取法,故取出的都是红球的概率121P =; (2)ξ的所有可能取值为0,1,2,252710(0)21C P C ξ===;11522710)121(C C P C ξ===;2711(2)21P ξC ===,所以ξ的分布列为所以1010140122121217()E ξ=⨯+⨯+⨯=. 故答案为:121;47【点睛】本题主要考查了古典概型的概率计算,随机变量的均值的求解,属于基础题.三、填空题15.已知ABC 中,π2C =,M 是BC 的中点,且π3AMC ∠=,则sin MAB ∠=______. 【答案】14【解析】作出图形,设CM x =,用x 表示AC 、AM 、MB ,在AMB 中利用正弦定理即可求得sin MAB ∠. 【详解】如图所示,已知π2C =,M 是BC 的中点,且π3AMC ∠=,设CM x =,则3AC x =,2AM x =,MB x =, 在AMB 中,23AMB π∠=,227AB AC AB x +,MB x =, 7sin sin 3x xMAB =∠,解得sin MAB ∠=21. 故答案为:2114【点睛】本题考查正弦定理解三角形、勾股定理,属于基础题.16.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______. 3【解析】根据平行四边形性质可得()22222a b a b a b ++-=+,再结合基本不等式即可求出b 的最小值. 【详解】由平行四边形性质可得:()22222a b a b a b++-=+,由基本不等式可得:()2222a b a b a b a b++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b a b a b++-+≥,即()224212b+≥, 所以3b ≥,所以b 的最小值为33【点睛】本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.17.若不等式224ln x x ax b x -≤++≤对任意的[]1,x e ∈恒成立,则实数b 的最大值为______. 【答案】2【解析】由224ln x x ax b x -≤++≤得:2224ln x x ax b x x -+-≤+≤-, 设2()2f x x x =-+-,2()4ln g x x x =-,()h x ax b =+ , 则()()()f x h x g x ≤≤ 在[]1,x e ∈上恒成立,且b 为()h x 的纵截距,利用()f x ,()g x ,()h x 的图像得到当()h x ax b =+过点A ,且与2()2f x x x =-+-相切时,b 有最大值,进而得到答案. 【详解】由224ln x x ax b x -≤++≤得:2224ln x x ax b x x -+-≤+≤-, 设2()2f x x x =-+-,2()4ln g x x x =-,()h x ax b =+ , 则()()()f x h x g x ≤≤ 在[]1,x e ∈上恒成立,且b 为()h x 的纵截距,易知,2()2f x x x =-+-在[]1,e 上单调递减,且(1)2f =- ,2()2f e e e =-+-,242(2)()2x g x x x x--'=-=,当()0g x '<时,x <或x >故()g x 在⎡⎣ 上单调递增,在e ⎤⎦上单调递减,且max ()2(ln 21)g x g ==- ,(1)1g =- ,2()4g e e =- ,如图,当()h x ax b =+过点A ,且与2()2f x x x =-+-相切时,b 有最大值, 设切点00(,)B x y ,则有002000(1)1()212h a b k a f x x x x ax b=+=-⎧⎪===-+⎨⎪-+-=+⎩' 解得:0232x a b =⎧⎪=-⎨⎪=⎩,故b 的最大值为2, 故答案为:2. 【点睛】此题因含有2个参数,采用分离参数法的话要很繁杂的参数讨论,会给做题增加很大难度,这个时候我们如果把不等式进行一定的变形,使含参数的部分变成一次函数,因为它的图像是一条直线,会比较容易找到需要的位置,使解题过程变的简单.四、解答题18.已知函数()2πsin 24cos 6f x x x ⎛⎫=-+ ⎪⎝⎭(x ∈R ).(1)求π6f ⎛⎫ ⎪⎝⎭的值; (2)求()f x 的最小正周期及单调递增区间.【答案】(1)72;(2)最小正周期为π;单调增区间为:5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈.【解析】(1)根据两角差的正弦公式、余弦的二倍角公式和辅助角公式将式子化简为π()223f x x ⎛⎫=++ ⎪⎝⎭,然后代值计算即可;(2)由2πT ω=计算最小正周期,令πππ2π22π232k x k -+≤+≤+,k Z ∈,解不等式即可得出函数的单调增区间. 【详解】(1)()11cos 23sin 2cos 242cos 2222222x f x x x x x +=-+⋅=++ π223x ⎛⎫=++ ⎪⎝⎭,∴π27π2632f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭; (2)2ππ2T ==, 令πππ2π22π232k x k -+≤+≤+,k Z ∈,∴5ππππ1212k x k -+≤≤+,k Z ∈,∴()f x 的单调增区间为:5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦,k Z ∈.【点睛】本题考查三角恒等变换的应用,考查正弦型函数的性质,考查逻辑思维能力和运算求解能力,属于常考题.19.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,且1AB =,2PA AD DC ===,E 是PD 的中点.(1)求证://AE 平面PBC ;(2)求直线AD 与平面PCD 所成角的正弦值. 【答案】(1)证明见解析;(2)217. 【解析】(1)取PC 中点F ,连结EF ,BF ,证明AEFB 是平行四边形,从而有线线平行得线面平行;(2)取CD 中点M ,连AM ,MP ,易知AM CD ⊥,证得CD ⊥平面PAM 后得面PCD ⊥面PAM ,过A 作AH PM ⊥,证明ADH ∠即为直线AD 与平面PCD 所成角,然后解得这个角的正弦即可. 【详解】解:(1)取PC 中点F ,连结EF ,BF .∵E 是PD 的中点,∴//EF CD 且12EF CD =,∵//AB CD 且2CD AB =,∴//AB EF 且AB EF =, ∴四边形ABFE 为平行四边形,∴//AE BF ,∵BF ⊂平面PBC ,AC ⊄平面PBC ,∴//AE 平面PBC .(2)取CD 中点M ,连AM ,MP ,ABCM 是平行四边形也是矩形,∴AM CD ⊥, ∵PA ⊥平面ABCD ,∴PA CD ⊥,∴CD ⊥平面PAM ,∵CD ⊂面PCD ,∴面PCD ⊥面PAM ,过A 作AH PM ⊥,连HD ,∴AH ⊥面PCD ,∴ADH ∠即为直线AD 与平面PCD 所成角, ∵2PA AD ==,∴AM =MP =, 在PAM △中,由等面积法知:7AH ==,∴sin 7AH ADH AD ∠==. 【点睛】本题考查证明线面平行,求直线与平面所成的角,证明线面平行的根据是线面平行的判定定理,求直线与平面所成的角关键是作出直线与平面所成的角,为此需要找平面的垂线,这可从线线垂直、线面垂直、面面垂直间的关系去寻找确定. 20.已知等差数列{}n a 中,11a =,且22a +,3a ,54a -成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足31212321n n nb b b b a a a a +++⋅⋅⋅+=-,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-;(2)()2323nn T n =-⋅+.【解析】(1)设等差数列的公差为d ,由22a +,3a ,54a -成等比数列可得关于d 的方程,解出d 后由等差数列的通项公式即可求得n a ; (2)根据条件可得2n ≥时,11222n n n nnb a --=-=,再由(1)可求得n b ,再验证1n =的情形,即可求得()1212n n b n -=-⋅,利用错位相减法即可求出n T .【详解】(1)因为22a +,3a ,54a -成等比数列,所以()()225324a a a +-=,所以()()()21112442a d a d a d +++-=+,因为11a =,所以()()()234321d d d +-=+,解得2d =, 所以21n a n =-.(2)①当2n ≥时,31212321n n nb b b b a a a a +++⋅⋅⋅+=-,所以13112123121n n n b b b b a a a a ---+++⋅⋅⋅+=-, 两式相减得11222n n n nnb a --=-=, ②当1n =时,111211b a =-=满足上式,所以()121n n nb n a -=≥, 由(1)可知,21n a n =-,所以()1212n n b n -=-⋅,所以()0121123252212n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⋅,①()1232123252212n n T n =⨯+⨯+⨯+⋅⋅⋅+-⋅,②由①-②得,()()12112222212n nn T n --=+⨯++⋅⋅⋅+--⋅()()12121221212n n n --=+⨯--⋅-()3223n n =-⋅-,所以()2323nn T n =-⋅+.【点睛】本题主要考查了等差数列,等比数列,数列通项的求法及错位相减法求和,属于中档题. 21.如图,已知抛物线C :24x y =的焦点为F ,设点()()22,1A t t t >为抛物线上一点,过点A 作抛物线C 的切线交其准线于点E .(1)求点E 的坐标(用t 表示);(2)直线AF 交抛物线C 于点B (异于点A ),直线EF 交抛物线C 于M ,N 两点(点N 在E ,F 之间),连结AM ,BN ,记FAM △,FBN 的面积分别为1S ,2S ,求12S S 的最小值.【答案】(1)1,1 E tt⎛⎫--⎪⎝⎭;(2)17122+.【解析】(1)利用导数的几何意义求出切线斜率,得切线方程后可得E点坐标;(2)写出直线AF方程与抛物线方程联立求得B点坐标,同样写出EF方程与抛物线方程联立解得,M N坐标,计算12SS为t的函数,可令1m t=-换元后应用基本不等式得最小值.【详解】解:(1)由214y x=求导,12y x'=,∴2x ty t='=.∴点()22,A t t处的切线方程为:2y tx t=-,准线方程:1y=-,代入切线方程得1x tt=-,∴点1,1E tt⎛⎫--⎪⎝⎭.(2)∵()0,1F,()22,A t t,∴AFl:2112ty xt-=+,联立221124ty xtx y⎧-=+⎪⎨⎪=⎩,得()222140tx xt---=,∴221,Bt t⎛⎫-⎪⎝⎭,易知EFl:2211ty xt=-+-,联立222114ty xtx y⎧=-+⎪-⎨⎪=⎩,得228401tx xt+-=-,即()()212111t tx xt t+-⎛⎫⎛⎫+-=⎪⎪-+⎝⎭⎝⎭,∴()211Mtxt+=--,()211Ntxt-=+,由上知1AF EFk k⋅=-,即AF EF⊥,∴2212112112A MB NAF MF x xS ttS x x tBF NF⋅+⎛⎫==⋅=⋅ ⎪-⎝⎭⋅,设()10t m m-=>,则()2222121233171S t t m S t m +⎛⎫⎛⎫=⋅=++≥=+ ⎪ ⎪-⎝⎭⎝⎭当且仅当m =,即1t =时,12S S取到最小值17+【点睛】本题考查直线与抛物线相交问题,考查导数的几何意义,本题中采取解析几何的最基本方程,求出直线方程,与抛物线方程联立方程组解得交点坐标.最后再计算面积比,求最值.22.已知函数()1x e f x x=-,()()()221g x ax a e x a =-++--∈R .(2.71828e =⋅⋅⋅为自然对数的底数.) (1)求()f x 的值域;(2)设()()()h x xf x g x =+,若()h x 在区间()0,1有零点,求实数a 的取值范围. 【答案】(1)()[),11,e -∞--+∞;(2)21e a -<<. 【解析】(1)求出导函数()'f x ,确定函数的单调性,同时注意0x <时函数值的变化趋势,从而可得函数值域;(2)求导函数()h x ',为了确定其正负,设()()k x h x '=,再求导()k x ',观察()k x '得需对a 分类:21a ≤,2a e ≥,12a e <<,通过得出()h x 的单调性,结合函数图象得出()h x 在(0,1)存在零点的条件. 【详解】 解:(1)()()21x x e f x x-'=,当()0f x '>时,1x >;当()0f x '<时,1x <且0x ≠,∴()f x 在区间(),0-∞,()0,1单调递减,()1,+∞单调递增.0x <时,0xe x<,()11x e f x x =-<-,又∵()11f e =-,由图可知()f x 的值域为()[),11,e -∞--+∞.(2)()()211xh x e ax a e x =-++--,()()21xh x e ax a e '=-++-,令()()2(1)x k x h x e ax a e '==-++-,则()2xk x e a '=-, ∵()0,1x ∈,∴()1,xe e ∈.①当21a ≤,即12a ≤时,()0k x '>,∴()k x 即()h x '在()0,1单调递增, 又∵()020h a e '=+-<,()110h a '=->,∴存在()10,1x ∈,使得()10h x '=, ∴()h x 在区间()10,x 单调递减,()1,1x 单调递增.又∵()00h =,()10h =,∴当()0,1x ∈时,()0h x <.故()h x 在区间()0,1内无零点. ②当2a e ≥,即2ea ≥时,()0k x '<,∴()k x 即()h x '在()0,1单调递减, 又∵()020h a e '=+->,()110h a '=-<,∴存在()20,1x ∈,使得()20h x '=, ∴()h x 在区间()20,x 单调递增,()2,1x 单调递减.又∵()00h =,()10h =,∴当()0,1x ∈时,()0h x >.故()h x 在区间()0,1内无零点.③当12a e <<,即122e a <<时,令()0k x '>,解得ln 2x a >,令()0k x '<,解得ln 2x a <,∴()k x 即()h x '在区间()0,ln 2a 单调递减,()ln 2,1a 单调递增,∴()()min ln 232ln 21h x h a a a a e ''==-+-,令()32ln 21t a a a a e =-+-,1,22e a ⎛⎫∈ ⎪⎝⎭,则()12ln 2t a a '=-, 当()0t a '>时,解得e a <;当()0t a '<时,解得e a >; ∴()t x 在区间1,22e ⎛⎫ ⎪ ⎪⎝⎭单调递增,,22e e ⎛⎫ ⎪ ⎪⎝⎭单调递减.∴()max 102e t x t e e ⎛⎫==+-< ⎪ ⎪⎝⎭,∴()()min ln 20h x h a ''=<.由图可知,只有满足()()020110h a e h a ⎧=+->⎪⎨=->''⎪⎩,即21e a -<<时,()h x 在()0,1有零点. 综上所述,21e a -<<.【点睛】本题考查用导数求函数值域,用导数研究函数零点问题,解题关键是分类讨论确定函数的单调性,考查学生的逻辑推理能力,分析问题解决问题的能力,转化与化归思想,分类讨论思想,难度大,要求高,本题属于困难题.解题中要注意我们用导函数的正负确定函数的单调性,而有时导函数的正负(导函数的零点)不明显,又需要对导函数或其中一部分(此时可引入新函数)求导,确定这部分函数的单调性,零点存在性,零点存在时的范围等性质.。

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。

2019年高二数学期末测试卷和答案

2019年高二数学期末测试卷和答案

2019年高二下学期期末试卷 数 学 试 题 (理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间为120分钟。

请在答题卡上作答,在试卷上做题无效。

第I 卷(选择题,共60分)一、选择题(本大题共12个小题,满分60分,每小题5分,每小题给出四个选项中,有且只有一项是符合题目要求的,请将正确选项的序号填入答题卡中) 1、已知集合{11}A x x =-≤≤,2{20}B x x x =-≤,则A B =( )A. [1,0]-B. [1,2]-C. [0,1]D. (,1][2,)-∞+∞2、设复数1z i =+(i 是虚数单位),则22z z+=( ) A. 1i + B. 1i - C. 1i -- D. 1i -+3、已知向量m 、n 满足||2=m ,||3=n,||-=m n ||+=m n ( )A.B. 3C.D.4、已知}{n a 为等差数列,若π=++951a a a ,则)cos(82a a +的值为( )A .21-B .23-C .21D .23 5、阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是( ) A. 6n = B. 6n < C. 6n ≤ D. 8n ≤6、 右图为一个半球挖去一个圆锥的几何体的三视图,则该几何体的表面积为( )A. 8(3π+B. 8(3π+C. (4π+D. (8π+正视图侧视图7、在平面直角坐标系中,若(,)P x y 满足44021005220x y x y x y -+⎧⎪+-⎨⎪-+⎩≤≤≥,则2x y +的最大值是( )A. 2B. 8C. 14D. 16()()()()=-MN N M y C B A 两点,则轴于的圆交,,,、过三点,7,124,318A .62B .8C 64D .109、若直线220(0)ax by a b +-=≥>,始终平分圆的周长,则( ) A 、1 B D .610、已知双曲线22221(0,0)x y a b a b-=>>与函数y =P ,若函数y =的图象在点P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是( )A. B. C.D. 3211、 函数2()sin ln(1)f x x x =⋅+的部分图像可能是( )Ox O yx O yx.Ox .C .D .12、过抛物线22y px =(0)p >的焦点F 作直线与此抛物线相交于A 、B 两点,O 是坐标原点,当OB FB ≤时,直线AB 的斜率的取值范围是( ) A. [(0,3]B. (,[22,)-∞-+∞C. (,[3,)-∞+∞D. [(0,22]-第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡相应题号的横线上)13、 已知等比数列的公比为2,且前四项之和等于1,则其前8项之和等于 . 14、若函数1()f x x x=+,则1()e f x dx =⎰____________.的取值范围为,则中,若、在B A B A ABC sin sin 3215+=+∆π16、 底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为R 的球的内接正三棱柱的体积的最大值为__________.082422=---+y x y x三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17、(本题满分10分)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且()2cos cos b c A a C -=.(Ⅰ)求角A 的大小;(Ⅱ)若a =3,2b c =,求△ABC 的面积.18、理(本小题满分12分)为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:(I )若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数; (II )根据茎叶图,分析甲、乙两校高三年级学生在这次联考中地理成绩;(III )从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.19、(本题满分12分)正项数列{}n a 满足02)12(2=---n a n a n n .(1)求数列{}n a 的通项公式; (2,求数列{}n b 的前n 项和n TEDCBA20、(本小题满分12分)如图,四边形DCBE 为直角梯形, 90=∠DCB,CB DE //,2,1==BC DE ,又1=AC ,120=∠ACB ,AB CD ⊥,直线AE 与直线CD 所成角为60.(Ⅰ)求证:平面⊥ACD 平面ABC ;(Ⅱ)求BE 与平面ACE 所成角的正弦值.21、(本小题满分12分)(1)求椭圆的方程;(2)不垂直与坐标轴的直线与椭圆交于两点,线段的垂直平分线交y 轴于点,求直线的方程.22、(本小题满分12(∈a R ). (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若至少存在一个[]01,x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.l AB ,A B C l C答案17、(Ⅰ) 由()2cos cos b c A a C -=得2sin cos sin cos sin cos B A A C C A =+ 得()2sin cos sin B A A C =+,∴ 2sin cos sin B A B = sin 0B ≠,又0A π<<,∴∴∴18、文科(Ⅰ)A B 据此估计B 班学生平均每周上网时间较长. 5分(Ⅱ)依题意,从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b 的取法共有12种,分别为: (9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),(20,11),(20,12),(20,21). 其中满足条件“a >b ”的共有4种,分别为:(14,11),(14,12),(20,11),(20,12).分18、理科【答案】(I )200;(I I )乙校学生的成绩较好.(III(I )因为每位同学被抽取的概率均为0.153分(I I )由茎叶图可知甲校有22位同学分布在60至80之间,乙校也有22位同学分布在70至80之间,乙校的总体成绩分布下沉且较集中即成绩的平均数较大,方差较小.所以,乙校学生的成绩较好. 7分(III )由茎叶图可知,甲校有4位同学成绩不及格,分别记为:1、2、3、4;乙校有2位同学成绩不及格,分别记为:5、6.则从两校不及格的同学中随机抽取两人有如下可能:(1,2)、(13)、(1,4)、(1,5)、(1,6)、(2,3)、(2,4)、(2,5)、(2,6)、(3,4)、(3,5)、(3,6)、(4,5)、(4, 6)、(5,6),总共有15个基本事件.其中,乙校包含至少有一名学生成绩不及格的事件为A ,则A 包含9个基本事件,如下:(1,5)、(1,6)、(2,5)、(2,6)、(3,5)、(3,6)、(4,5)、(4, 6)、(5,6). 10分考点:1.古典概型;2.茎叶图、方差. 19:(1)2(21)20,(2)(1)0,0,2.n n n n n n a n a n a n a a a n ---=∴-+=>∴=(211n n ++-+20、文科【解析】:(1)连BD 交AC 于点E ,则E 为BD 的中点,连EF , 又F 为1A D 的中点,所以EF ∥1A B , 3分 又EF ⊂平面AFC ,1A B ⊄平面AFC ,由线面平行的判断定理可得1A B ∥平面AFC 5分 (2)连1B C ,在正方体中11A B CD 为长方形, ∵H 为1A C 的中点 ,∴H 也是1B D 的中点, ∴只要证1B D ⊥平面ACF 即可 6分 由正方体性质得1,AC BD AC B B ⊥⊥,∴AC ⊥平面1B BD ,∴1AC B D ⊥ 9分又F 为1A D 的中点,∴1AF A D ⊥,又11AF A B ⊥,∴-AF ⊥平面11A B D , ∴1AF B D ⊥,又AF 、AC 为平面ACF 内的相交直线, 11分 ∴1B D ⊥平面ACF 。

2019年高中高二数学下学期期末考试试卷解析

2019年高中高二数学下学期期末考试试卷解析

2019年高中高二数学下学期期末考试试卷解析
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
xxxx年高中高二数学下学期期末考试试卷答案解析
[编辑推荐]高中学生在学习中或多或少有一些困惑,中国()的编辑为大家总结了xxxx年高中高二数学下学期期末考试试卷答案解析,各位考生可以参考。

因为存在,使得,所以不等式有解.
即,解得:或.-------------------------6分
因为“或为真”,“且为假”,所以与一真一假.--------
由得,因为------------------9分
所以是以为首项,以8为公比的等比数列,所以----12分
或,即原不等式的解集为.------------------12分
20.解:,由条件知,故.-------2分
21.解:因为函数的定义域为,,
当时,,-------------------2分
若,则;若,则.
所以是上的减函数,是上的增函数,故,
故函数的减区间为,增区间为,极小值为,无极大值.---6分
所以是上的增函数,是上的减函数.
故当且仅当时等号成立.
所以当且仅当时,成立,即为所求.--------14分
以上就是xxxx年高中高二数学下学期期末考试试卷答案解析的全部内容,更多高中学习资讯请继续关注中国()!
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

高中2019年高二数学第二学期期末考试卷解析

高中2019年高二数学第二学期期末考试卷解析

高中2019年高二数学第二学期期末考试卷解析各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢本文导航1、首页2、高二数学第二学期期末考试卷答案-2高中xxxx年高二数学第二学期期末考试卷答案解析[编辑推荐]中国()高中频道的编辑就为您准备了高中xxxx年高二数学第二学期期末考试卷答案解析一、选择题BABDBAcDBD二、填空题11、12、13、3514、15、三、解答题16.解:当z为实数时,则有,∴∴a=6,即a=6时,z为实数.-----6分当z为纯虚数时,有,∴.∴不存在实数a使z为纯虚数.-----12分17、解:试验次数X可取值1、2、3-----3分P=P=P=-----9分分布列为:X123P-----10分,-----12分18.解:,,.根据计算结果,可以归纳出.…………………………5分①当时,,与已知相符,归纳出的公式成立.………6分②假设当时,公式成立,即,……………8分那么,.所以,当时公式也成立.…………………………11分综上,对于任何都成立.…………………………12分19.解:证一:应用均值不等式,得:,故当且仅当,即时上式取等号。

证二:分析法要证即证即证显然它成立,所以原不等式成立且时上式取等号-6分本文导航1、首页2、高二数学第二学期期末考试卷答案-2由.当且仅当,即时上式取最小值,即-----12分20、解:分别记甲、乙、丙通过审核为事件………5分分别记甲、乙、丙获得自主招生入选资格为事件A,B,c,则P=P=P=分试验次数X可取值0、1、2、3-----8分………11分的分布列是0123………12分……13分或服从二项分布,21、解:因为,所以.由,可得,.经检验时,函数在处取得极值,所以.………2分∵,.时,……4分不等式对任意及恒成立,即,即对恒成立,令,,解得为所求 (7)分①∵在上单调递减②由①得令,得即.…14分以上就是小编为大家准备的高中xxxx年高二数学第二学期期末考试卷答案解析,希望给大家带来帮助。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析
9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )
A。 82。5B。 83C。 93D. 72
【答案】A
【解析】
【分析】
由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2。
【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是 ,即82。5
A. 3B. 4C。 6D。 7
【答案】B
【解析】
【分析】
类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一组进行检测,以此类推,即可得解.
【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测。继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测。继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测。选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测。所以,最终从这16人中认定那名感染者需要经过4次检测。
【解析】
【分析】
分析图形中火柴数 变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数。
【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为 ,则第100个图形所用火柴棒数为2×100+1=201.
故答案为:201
【点睛】本题考查合情推理的应用,属于基础题.
70 29 17 12 13 40 33 12 38 26 13 89 51 03

2019-2020学年江苏省淮安市淮阴中学高二(下)期末数学试卷

2019-2020学年江苏省淮安市淮阴中学高二(下)期末数学试卷

2019-2020学年江苏省淮安市淮阴中学高二(下)期末数学试卷1.(单选题,5分)集合A={x|-1≤x≤2},B={x|x<1},则A∩B=()A.{x|x<1}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-1≤x<1}2.(单选题,5分)已知x与y之间的一组数据:A.(2,2)B.(1.5,4)C.(1,2)D.(2.5,4),2},若幂函数f(x)=xα为奇函数,且在(0,+∞)3.(单选题,5分)已知α∈{-3,-2,13上单调递减,则α的值为()A.-3B.-2C. 13D.2的图象,只需把函数y=lgx的图象上所有的点4.(单选题,5分)为了得到函数y=lg x−310()A.向左平移3个单位长度,再向上平移I个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度>1的解集为()5.(单选题,5分)不等式x2−x−4x−1A.{x|x<-1或x>3}B.{x|x<-1或1<x<3}C.{x|-1<x<1或x>3}D.{x|-1<x<1或1<x<3}6.(单选题,5分)已知随机变量X~N(2,σ2),P(X≤4)=0.8,那么P(2≤X≤4)的值为()A.0.2B.0.3C.0.4D.0.87.(单选题,5分)用数字0,1,2,3,4这五个数字组成的无重复数字的四位偶数的个数为()A.64B.88C.72D.608.(单选题,5分)若存在实数x使得不等式|x+1|-|x-1|≤a2-3a成立,则实数a的取值范围为()A.(-∞,3−√172]∪[ 3+√172,+∞)B.(-∞,-2]∪[1,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)9.(单选题,5分)设a,b都是不等于1的正数,则“log a3>log b3>1”是“3a<3b”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.(单选题,5分)(x2+2)3(1x2-1)7展开式中常数项是()A.15B.-15C.7D.-711.(多选题,5分)下列说法正确的是()A.函数y= x2x与函数y=log33x是同一函数B.函数y= √16−4x的值域是(-∞,4]C.若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数D.函数y=|x|sinx为R上奇函数12.(多选题,5分)已知函数f (x )= {2x +1,x ≤0|log 2x |−1,x >0,则方程f 2(x )-2f (x )+a 2-1=0的根的个数可能为( )A.2B.6C.5D.413.(填空题,5分)函数f (x )= √1−log 2x 的定义域是 ___ .14.(填空题,5分)设函数f (x )=x 3+(a-1)x 2+ax 为奇函数,则曲线y=f (x )在点x=1处的切线方程为___ .15.(填空题,5分)设0<p <1,随机变量ξ的分布列是16.(填空题,5分)已知动抛物线y=x 2+ax+b (其中a∈R ,b≤0)与动直线y=t (t≥1)交于A 、B 两点且与动直线y=t+1交于C 、D 两点,ABCD 构成一个梯形,S 为这个梯形的面积,AD 为其一腰长,则 14 S 2+16AD 2的最小值为___ .17.(问答题,10分)设(1+2x )n =a 0+a 1x+…+a n x n ,其中n∈N*,a 0,a 1,……,a n ∈R .(1)若n=6,写出二项展开式第四项;(2)若n=8,求出a 0+a 2+a 4+a 6+a 8的值.18.(问答题,12分)现有大小相同的7只球,其中2只不同的红球,2只不同的白球,3只不同的黑球.(1)将这7只球排成一列且相同颜色的球必须排在一起,有多少种排列的方法?(请用数字作答)(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有多少种分堆的方法?(请用数字作答)(3)现取4只球,求各种颜色的球都必须取到的概率.(请用数字作答)19.(问答题,12分)设函数f(x)=a x+mb x,其中a,m,b∈R.(1)若a=2,b= 12且f(x)为R上偶函数,求实数m的值;(2)若a=4,b=2且f(x)在R上有最小值,求实数m的取值范围;(3)a∈(0,1),b>1,解关于x的不等式f(x)>0.20.(问答题,12分)设U=R,A={x||x+1|>1},B={x|x2+(m+1)x+3m<0}.(1)求集合A;(2)若B=∅,求实数m的取值范围;(3)若A∪B=R,求实数m的取值范围.21.(问答题,12分)江苏实行的“新高考方案:3+1+2”模式,其中统考科目:“3”指语文、数学、外语三门,不分文理:学生根据高校的要求,结合自身特长兴趣,“1”指首先在在物理、历史2门科目中选择一门:“2”指再从思想政治、地理、化学、生物4门科目中选择2门.某校根据统计选物理的学生占整个学生的34;并且在选物理的条件下,选择地理的概率为23;在选历史的条件下,选地理的概率为45.(1)求该校最终选地理的学生概率;(2)该校甲、乙、丙三人选地理的人数设为随机变量X.① 求随机变量X=2的概率;② 求X的概率分布表以及数学期望.22.(问答题,12分)已知函数f(x)=xlnx,函数g(x)=x3-ax2,a为实数.(1)若g(x)≥a2在[1,+∞)上恒成立,求实数a的取值范围;(2)求证:实数b>0时,f(x)-b在(1,+∞)仅有一个零点;(3)若h(x)=-g(x),是否存在实数x1,x2,其中x1>1,x2>0,使得f(x)在x1处的切线与h(x)在x2处的切线重合,若存在,求出a的取值范围;若不存在,请说明理由.。

河南省郑州市2019-2020学年高二下学期期末考试数学(理+文)试题

河南省郑州市2019-2020学年高二下学期期末考试数学(理+文)试题

c6
,得出矛盾,得到答案.
1
1
2,b
2,c
2
,故
c
a
11 1
1
1
1
而a
b
c 2a
2b
2c
6,
ab c
a
b
c
11 1
a b c1
a
6当
时等号成立,这与
矛盾,
b
c
ab c
故假设不成立,故至少有一个不小于 2,C 正确;

,计算排除 BD;取
,计算排除 A.
abc2
a b c1
故选:C.
【点睛】本题考查了反证法,意在考查学生的推断能力和计算能力,均值不等式的灵活运用
3
x2 ln x
y
9. 函数
的图象大致是(

x
A.
B.
C.
D.
【答案】D
【解析】
【分析】
根据函数为偶函数排除 ,当
Bx
时,利用导数得
0
1
1

上递减,在
f (x) (0, )
(,
e
e
上递增, )
A, C
D
根据单调性分析 不正确,故只能选 .
x2 ln | x |
( x) ln | x |
2
f (x)
是解题的关键.
y和x
xy x y
xy
3. 对两个变量
1, 1 , 2, 2 ,......, n, n
进行回归分析,得到一组样本数据:

则下列说法中不正确的是( )
A. 由样本数据得到的回归方程
x, y
必过样本中心

广西省玉林市2019-2020学年数学高二下期末经典试题含解析

广西省玉林市2019-2020学年数学高二下期末经典试题含解析

广西省玉林市2019-2020学年数学高二下期末经典试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知随机变量8X ξ+=,若()~10,0.6X B ,则()E ξ,()D ξ分别为( ) A .6和2.4 B .6和5.6C .2和2.4D .2和5.6【答案】C 【解析】 【分析】利用二项分布的数学期望和方差公式求出()E X 和()D X ,然后利用期望和方差的性质可求出()E ξ和()D ξ的值.【详解】()~10,0.6X B ,()100.66E X ∴=⨯=,()100.60.4 2.4D X =⨯⨯=.8X ξ+=,8X ξ∴=-,由期望和方差的性质可得()()()882E E X E X ξ=-=-=,()()()8 2.4D D X D X ξ=-==.故选:C. 【点睛】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用. 2.在三棱柱1111,ABC A B C AA -⊥面ABC ,23BAC π∠=,14AA =,AB AC ==,则三棱柱111ABC A B C -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】利用余弦定理可求得BC ,再根据正弦定理可求得ABC ∆外接圆半径r;由三棱柱特点可知外接球半径R =R 后代入球的表面积公式即可得到结果.【详解】AB AC ==23BAC π∠=22222cos363BC AB AC AB AC π∴=+-⋅= 6BC ∴=由正弦定理可得ABC ∆外接圆半径:622sin 2sin 3BC r BAC π===∠∴三棱柱111ABC A B C -的外接球半径:221112442R r AA ⎛⎫=+=+= ⎪⎝⎭ ∴外接球表面积:2464S R ππ==本题正确选项:C 【点睛】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.3.已知非空集合,A B ,全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃则( )A .MN M = B .M N ⋂=∅ C .M ND .M N ⊆【答案】B 【解析】分析:根据题意画出图形,找出M 与 N 的并集,交集,判断M 与 N 的关系即可 详解:全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃M N U ∴⋃=,M N ⋂=∅,M N ≠故选B点睛:本题主要考查的是交集,并集,补集的混合运算,根据题目画出图形是解题的关键,属于基础题。

2019学年高二数学下学期期末考试试题 理(含解析)

2019学年高二数学下学期期末考试试题 理(含解析)

2019学年高二数学下学期期末考试试题 理(含解析)考试时间:120分,满分150分一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在答题卡上)1.已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U AB ð等于(). A .{}1,2,3,4B .{}3,4C .{}3D .{}4【答案】{}1,2,3AB =∴{}()4U A B =ð. 选D .2.命题“若一个正数,则它的平方是正数”的逆命题是(). A .“若一个数是正数,则它的平方不是正数” B .“若一个数的平方是正数,则它是正数” C .“若一个数不是正数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是正数” 【答案】B【解析】逆命题为条件、结论互换,选B .3.设函数21,()2,1,x x f x x x⎧+⎪=⎨>⎪⎩≤1,,则((3))f f =().A .15B .3C .139D .23【答案】C 【解析】2(3)3f =2413((3))1399f f f ⎛⎫=== ⎪⎝⎭+.选C .4.设0a b <<,则下列不等式中不成立的是(). A .11a b> B .11a b a>-C .a b >-D【答案】不妨令2a =-,1b =-,B :111212=->--+不成立,选B .5.已知函数11,1()2,1x f x xx a x ⎧->⎪⎨⎪-+⎩≤在R 上满足:对任意12x x ≠,都有12()()f x f x ≠,则实数a 的取值范围是(). A .(],2-∞B .(],2-∞-C .[)2,+∞D .[)2,-+∞【答案】C 、【解析】按题意()f x 在R 上单调,而11x-在1x >时为减函数,∴()f x 为减函数, 1x =时,121x a x--≥+,2a -≥0+, ∴2a ≥. 选C . 6.复数2i12i+-的共轭复数是(). A .3i 5-B .3i 5C .i -D .i【答案】C 【解析】2i (2i)(12i)i 12i (12i)(12i)==--++++, ∴共轭复数为i -.选C .7.由直线π3x =-,π3x =,0y =与曲线cos y x =所围成的封闭图形的面积为().AB .1C .12D【答案】A【解析】π3π3π3cos d sin π3S x x x-⎛=⋅==-= ⎝⎭-⎰ 选A .8.函数()y f x =的图象是圆心在原点的单位圆的两段弧(如图),则不等式()()f x f x x <-+的解集为().A .|0x x ⎧⎪<<⎨⎪⎩或1x ⎫⎪<⎬⎪⎭≤B .|1x x ⎧⎪-<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤ C .|1x x ⎧⎪-<<⎨⎪⎩0x <<⎪⎭D.|x x ⎧⎪<<⎨⎪⎩}0x ≠ 【答案】A【解析】显然()f x 为奇数, ∴可等价转换为1()2f x x <,当1x =时,1()02f x =<.当01x <<时,()f x ∴22114x x -<,1x <.当10x -<≤时,12x,∴0x <, 综上:|0x x ⎧⎪<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤.二、填空题(本大题共6小题,每小题5分,共30分,将答案填在答题卡的横线上) 9.已知等差数列{}n a ,3510a a +=,2621a a =,则n a =__________. 【答案】1n a n =+【解析】设1(1)n a a n d =-+, ∴1111(2)(4)10()(5)21a d a d a d a d =⎧⎨=⎩++++, 解得:12a =1a =, ∴1n a n =+.10.已知二次函数2()4f x x ax =-+,若(1)f x +是偶函数,则实数a 的值为__________. 【答案】2a =【解析】2(1)(1)(1)4f x x a x =-++++ 2(2)5x a x a =--++为偶函数,有22()(2)5(2)5x a x a x a x a ----=--+++,2a =.11.若“1x m <-或1x m >+”是“2230x x -->”的必要不充分条件,则实数m 的取值范围为__________. 【答案】【解析】(1)2230x x -->,得:3x >或1x <-, 若1x m <-或1x m >+为2230x x -->的必要不充分条件. 则1311m m ⎧⎨--⎩≤≥+,即20m m ⎧⎨⎩≤≥, ∴02m ≤≤.12.已知定义在R 上的奇函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,2()32f x x x =-+,则(6)f = __________;12f ⎛⎫= ⎪⎝⎭__________.【答案】【解析】(2)()f x f x -=可知周期为2, (6)(2)0f f ==, ()f x 为奇函数, 113122224f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴答案为0,14.13.直线11x t y t =+⎧⎨=-+⎩(t 为参数)与曲线2cos 2sin x y αα=⎧⎨=⎩(α为参数)的位置关系是__________.【答案】【解析】121x tx y y t =⎧⇒-=⎨=-⎩++, 222cos 42sin x x y y αα=⎧⇒=⎨=⎩+,2x =.∴2d =.14.已知数列{}n a 中,n a =4S =__________.【答案】 【解析】n a12⎡⎤=⋅⎣⎦12n =⋅12⎡=⋅⎣ 12⎡=⋅⎣,∴1234110112a a a a ⎡+=-⎣+++ 1(32=.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分13分)已知数列{}n a 是等比数列,其前n 项和是n S ,1220a a +=,4218S S -=. (Ⅰ)求数列{}n a 的通项公式. (Ⅱ)求满足116n a ≥的n 的值. 【答案】【解析】(1)设11n n a a q -= 1220a a =+,2112a q a ==-, 4218S S -=,41111211112812a a ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦--= ⎪⎛⎫⎝⎭-- ⎪⎝⎭,11a =, ∴112n n a -⎛⎫=- ⎪⎝⎭.(2)116n a ≥, 111216n -⎛⎫- ⎪⎝⎭≥. 当n 为偶数不成立, 当n 为奇数,141122n -⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭≥ ∴5n ≤. 又∵*n ∈N , ∴{}1,3,5n =.16.(本小题满分13分)已知数列32()(,)f x ax x bx a b =++∈R ,g()()()x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式.(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[]1,2上的最大值与最小值. 【答案】【解析】(1)2()32f x ax x b '=++32()()()(31)(2)g x f x f x ax a x b x b '==++++++.∵()()g x g x -=-,∴对x ∀有3232()(31)()(2)()(31)(2)a x a x b x b ax a x b x b ---=-++++++++++. 解得:13a =-,0b =.17.(本小题满分13分)设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P . 【答案】,【解析】(1){}12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -=+++两根, ∴1x =-代入2(1)(31)2(1)0m m m -=++++, 12m =-.(2)[](2)(1)0x mx m -->+, 两根为2,1m m+, ①12m m=+,1m =时,2x ≠. ②12m m >+,01m <<时2x <或1m x m >+. ③12m m <+,1m >时,1m x m<+或2x >. 综上:01m <<时,{|2P x x =<或1}m x m>+, 1m =时,{},2P x x x =∈≠R , 1m >时,1{|m P x x m=<+或2}m >.18.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =-,74S a =.(Ⅰ)1a =__________,d =__________,n a =__________,当n =__________时,n S 取得取小值,最小值为__________.(Ⅱ)若数列{}n a 中相异..的三项6a ,6m a +,6n a +成等比数列,求n 的最小值. 【答案】【解析】(1)1(1)n a a n d =-+, 3122a a d -==+,1711(6)772132a a d S a d a d ===++++,∴11122618030a d a d a d =-⎧⎨=⇒=⎩+++, 解得2d =,16a =-, ∴6(1)228n a n n =--⋅=-+. 1(628)2n S n n =⋅--+27,*n n n =-∈N ,∴min 92112S =-=.(2)[][]22(6)842(6)8m n -=-++ 2(24)24m n =++,21(2)22n m =-+,6060m n +>⎧⎨+>⎩2m =-,2n =-, 13m -=-,n =分数, 04m =,0n =, 15m =-,n =分数, 26m --,6n =. 4 4- 4 6a 8a12a4 816综上,2m =时,n 的最小值6.19.(本小题满分13分)若实数x ,y ,m 满足x m y m -<-,则称x 比y 靠近m . (Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <.【答案】【解析】(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0. ②120n ->, 由①得: 2323ln()ln ln ln n n a a a a a a =+++12111ln(12)ln(12)ln(12)22n n -----=+++<+++++111112(12)211212n ------=<=--,∴23e n a a a <.又∵12a =, ∴1232e n a a a a <.20.(本小题满分14分)已知函数()f x 的图象在[],a b 上连续不断,定义:{}1()min ()|f x f t a t x =≤≤[](,)x a b ∈, {}2()max ()|f x f t a t x =≤≤[](,)x a b ∈,其中,{}min ()|f x x ∈D 表示函数()f x 在D 上的最小值,{}max ()|f x x ∈D 表示函数()f x 在D 上最大值.若存在最小正整数k ,使21()()()f x f x k x a =-≤对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的“k 阶收缩函数”. (Ⅰ)若()cos f x x =,[]0,πx ∈,试写出1()f x ,2()f x 的表达式.(Ⅱ)已知函数2()f x x =,[]1,4x ∈-,试判断()f x 是否为[]1,4-上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由.(Ⅲ)已知0b >,函数32()3f x x x =-+是[]0,b 上的2阶收缩函数,求b 的取值范围. 【答案】【解析】(1)1()cos f x x =,[]0,πx ∈,2()1f x =,[]0,πx ∈. (2)21,[1,0]()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩,22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,当[1,0)x ∈-,21(1)x k x -≤+,∴12k x -≥≥, (0,1]x ∈,1(1)k x ≤+,∴11k x ≥+, ∴1k ≥,[1,4]x ∈,2(1)x k x ≤+,21x k x ≥+ 综上,165k ≥. 即存在4k =,使()f x 是[1,4]-上4阶收缩函数.(3)2()363(2)f x x x x x '=-=--+,10x =,22x =,令()0f x =,3x =或0.(ⅰ)2b ≤时,()f x 在[]0,b 单调,∴2()()3f x f x x x ==-+, 1()(0)0f x f ==,因32()3f x x x =-+是[]0,b 上2阶收缩函数.①∴21()()2(0)f x f x x --≤对[]0,x b ∈恒成立. ②[]0,x b ∈,使21()()f x f x x ->成立. ①即3232x x x -≤+对[]0,b 恒成立. 解得01x ≤≤或2x ≥, ∴有01b <≤.②即[]0,x b ∃∈使2(31)0x x x -<+ ∴0x <x <, 只需b ,- 11 - (ⅱ)2b >时,显然[]30,2b ∈∴()f x 在[]0,2上单调递增, 232728f ⎛⎫== ⎪⎝⎭,1302f ⎛⎫= ⎪⎝⎭, ∴2133273232282f f ⎛⎫⎛⎫-=>⨯= ⎪ ⎪⎝⎭⎝⎭,此时21()()2(0)f x f x x --≤不成立. 综(ⅰ)1b ≤.。

2019-2020学年上海市复旦附中高二(下)期末数学试卷

2019-2020学年上海市复旦附中高二(下)期末数学试卷

2019-2020学年上海市复旦附中高二(下)期末数学试卷1.(填空题,4分)函数y=lg(10x-1)的定义域为___ .2.(填空题,4分)函数f(x)=x2+1(x≤-1)的反函数是f-1(x)=___ .3.(填空题,4分)已知a>0,b>0,且2a +3b=√ab,则ab的最小值是___ .4.(填空题,4分)已知(x-1)(2x-1)6=a0+a1x+a2x2+…+a7x7,则a2等于___ .5.(填空题,4分)将A,B,C,D,E这5名同学排成一排,则A与B相邻的排法共有___ 种.6.(填空题,4分)已知集合A={0,1,a},B=(0,2),若A∩B={1},则实数a的取值范围是___ .7.(填空题,5分)函数f(x)=9x+3x(t≤x≤t+1),若f(x)的最小值为2,则f(x)的最大值为___ .8.(填空题,5分)一个个四棱锥的三视图如图所示,则该几何体的体积为___ ,表面积为___ .9.(填空题,5分)一名工人维护甲、乙、丙3台独立的机床,在一小时内,甲、乙和丙需要维护的概率分别为0.9,0.8和0.85,则至少有一台机床不需要维护的概率为___ .10.(填空题,5分)某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为3:2,工艺品的体积为34πcm3.现设圆柱的底面半径为2xcm,工艺品的表面积为Scm2,半球与圆柱的接触面积忽略不计.试写出S关于x的函数关系式及x的取值范围 ___ .11.(填空题,5分)如图,在长方体ABCD-A1B1C1D1中,AA1=AB=2,BC=1,点P在侧面A1ABB1上.若点P到直线AA1和CD的距离相等,则A1P的最小值是___ .12.(填空题,5分)若函数y=f(x)对定义域D内的每一个x1,都存在唯一的x2∈D,使得f (x1)•f(x2)=1成立,则称f(x)为“自倒函数”.给出下列命题:① 单调函数一定是自倒函数;② 自倒函数f(x)可以是奇函数;③ 自倒函数f(x)的值域可以是R;④ 若y=f (x),y=g(x)都是自倒函数,且定义域相同,则y=f(x)•g(x)也是自倒函数.则以上命题正确的是___ (写出所有正确命题的序号).13.(单选题,5分)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:① 若m⊥α,n⊥α,则m || n;② 若m || α,n || α,则m || n;③ 若n || α,m || β,α || β,则m || n;④ 若m⊥α,n || β,α || β,则m⊥n.则以上命题中真命题的个数为()A.0B.1C.2D.314.(单选题,5分)已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)15.(单选题,5分)定义在R内的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4)时,f(x)= {−x2+4x,2≤x≤3x2+2x,3<x<4g(x)=ax+1,对∀x1∈[-2,0),∃x2∈[-2,1],使得g(x2)=f(x1),则实数a的取值范围为()A.(-∞,- 18]∪[ 18,+∞)B.[- 14,0)∪(0,18]C.(0,8]D.(-∞,- 14]∪[ 18,+∞)16.(单选题,5分)已知定义在R上的两个函数y=f(x)、y=g(x)的最大值,最小值分别为M f,m f与M g,m g.给出如下两个命题:① 若M f<m g,则不等式f(x)≤a≤g(x)对一切x∈R恒成立的充要条件是M f≤a≤m g;② 若m f<M g,则不等式f(x)≤a≤g(x)在x∈R上有解的充要条件是m f≤a≤M g.关于两个命题的真假,下面判断正确的是()A.命题① 、② 均为真命题B.命题① 为真命题,命题② 为假命题C.命题① 、② 均为假命题D.命题① 为假命题,命题② 为真命题17.(问答题,14分)设函数f(x)=log2(x+m)(m∈R).(1)当m=2时,解不等式f(1x)<1;(2)若m=10,且关于x的方程f(x)=√2x+λ在[-2,6]上有实数解,求实数λ的取值范围.18.(问答题,14分)用水清洗一份蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多,洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x)= 11+x2.(1)求f(0)的值,并解释其实际意义;(2)现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药0.比较少?说明理由.19.(问答题,14分)如图,在三棱锥P-ABC中,△PAC和△ABC均是等腰三角形,且∠APC=∠BAC=90°,PB=AB=4.(1)求证:直线AB与直线PC不垂直;(2)求直线PB与平面ABC所成角的正弦值.20.(问答题,16分)设函数y=f(x),x∈D.如果对任意一个三角形,它的三边长a,b,c∈D,且f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.(1)求证:g(x)=x2(x>0)不是“保三角形函数”;(2)试判断h(x)=x+ √x(x>0)是否为”保三角形函数”,并说明理由;(3)若p(x)=log4x,x∈[M,+∞)是“保三角形函数”,试求M的最小值.21.(问答题,18分)已知函数f a(x)=|x|+|x-a|,其中a∈R.(1)判断函数y=f a(x)的奇偶性,并说明理由;(2)记点P(x0,y0),求证:存在实数a,使得点P在函数y=f a(x)图象上的充要条件是y0≥|x0|;(3)对于给定的非负实数a,求最小的实数l(a),使得关于x的不等式f a(x+1)≥f a(x)对一切x∈[l(a),+∞)恒成立.。

【精品高二数学期末试卷】2019年成都高二(下)数学期末试卷1+答案

【精品高二数学期末试卷】2019年成都高二(下)数学期末试卷1+答案

1 / 16高二(下)数学期末试卷(学生版)一、单选题(60分)1.(5分)已知集合A={x|x>2},B={x|(x-1)(x-3)<0},则A∩B=( )2.(5分)当a>1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象为( )A. B.C. D.3.(5分)分别和两条异面直线平行的两条直线的位置关系是( )4.(5分)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程= x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( ) 5.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )6.(5分)已知函数,其图象相邻两条对称轴之间的距离为,且函数是偶函数,下列判断正确的是()7.(5分)已知,,y满足约束条件,若的最小值为1,则等于()8.(5分)“1<m<3”是“方程+=1表示椭圆”的()9.(5分)函数的图象大致是()A. B. C. D.10.(5分)已知方程的四个根组成一个首项为的等差数列,则|m-n|等于()11.(5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()12.(5分)设函数,其中,若有且只有一个整数使得,则a的取值范围是()二、填空题(20分)13.(5分)已知,则.14.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.15.(5分)关于x的方程有三个不相等的实数根,则实数a的值是.16.(5分)如图,在正方体ABCD-A1B1C1D1中,棱长为1,点P为线段A1C上的动点(包含线段端点),则下列结论正确的.①当时,D1P∥平面BDC1;②当时,A1C⊥平面D1AP;③∠APD1的最大值为90°;④AP+PD1的最小值为.三、解答题(70分)17.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式.(2)求和:b1+b3+b5+…+b2n-1.3 / 1618.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).19.(12分)如图,三棱柱ABC-A1B1C1中,点D为BC的中点.(1)求证:A1B∥平面AC1D.(2)若底面ABC为正三角形,AB=2,AA1=3,侧面A1ACC1⊥底面ABC,,求四棱锥B1-A1ACC1的体积.5 / 1620.(12分)已知双曲线渐近线方程为,O为坐标原点,点在双曲线上.(1)求双曲线的方程.(2)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.21.(12分)已知函数,.(1)当时,存在,使成立,求m的取值范围.(2)若在区间上,函数的图像恒在直线的下方,求实数a的取值范围.7 / 1622.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程.(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.高二(下)数学期末试卷(教师版)一、单选题(60分)1.(5分)已知集合A={x|x>2},B={x|(x-1)(x-3)<0},则A∩B=()【答案】B2.(5分)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象为()A. B.C. D.【答案】C3.(5分)分别和两条异面直线平行的两条直线的位置关系是()【答案】C4.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()【答案】B9 / 165.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()【答案】D6.(5分)已知函数,其图象相邻两条对称轴之间的距离为,且函数是偶函数,下列判断正确的是()【答案】D7.(5分)已知,,y满足约束条件,若的最小值为1,则等于()【答案】B8.(5分)“1<m<3”是“方程+=1表示椭圆”的()【答案】B9.(5分)函数的图象大致是()A. B. C. D.【答案】D10.(5分)已知方程的四个根组成一个首项为的等差数列,则|m-n|等于()11 / 16【答案】C11.(5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )【答案】C12.(5分)设函数 ,其中 ,若有且只有一个整数 使得 ,则a 的取值范围是( )【答案】C二、填空题(20分)13.(5分)已知 ,则.【答案】14.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .【答案】x 2+y 2-2x=0(或(x-1)2+y 2=1)15.(5分)关于x 的方程 有三个不相等的实数根,则实数a 的值是 . 【答案】116.(5分)如图,在正方体ABCD-A 1B 1C 1D 1中,棱长为1,点P 为线段A 1C 上的动点(包含线段端点),则下列结论正确的 .①当 时,D 1P ∥平面BDC 1; ②当 时,A 1C ⊥平面D 1AP ; ③∠APD 1的最大值为90°; ④AP+PD 1的最小值为.【答案】①②④三、解答题(70分)17.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式.(2)求和:b1+b3+b5+…+b2n-1.【答案】(1)解:等差数列{a n},a1=1,a2+a4=10,可得1+d+1+3d=10,解得:d=2,所以{a n}的通项公式为:a n=1+(n-1)×2=2n-1.(2)解:由(1)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9,可得b3=3或-3(舍去)(等比数列奇数项符号相同).所以q2=3,{b2n-1}是等比数列,公比为3,首项为1.∴=.18.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)解:C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)解:估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.甲=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.乙离子残留百分比的平均值为:乙19.(12分)如图,三棱柱ABC-A1B1C1中,点D为BC的中点.(1)求证:A1B∥平面AC1D.(2)若底面ABC为正三角形,AB=2,AA1=3,侧面A1ACC1⊥底面ABC,,求四棱锥B1-A1ACC1的体积.【答案】(1)证明:连接A1C,交AC1于点E,13 / 16∵四边形A1ACC1是平行四边形,则点E是A1C及AC1的中点.而D为BC的中点,∴连接DE,则DE∥A1B.因为DE⊂平面ADC1,A1B⊄平面ADC1,所以A1B∥平面ADC1.(2)解:因为侧面A1ACC1⊥底面ABC,所以正△ABC的高就是点B到平面A1ACC1的距离,也就是四棱锥B1-A1ACC1的高,由条件得h.因为,所以sin∠A1AC,所以四棱锥B1-A1ACC1的底面积S.所以四棱锥B1-A1ACC1的体积.20.(12分)已知双曲线渐近线方程为,O为坐标原点,点在双曲线上.(1)求双曲线的方程.(2)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.【答案】(1)解:∵双曲线的渐近线方程为,∴设双曲线方程为,∵点在双曲线上.∴,∴双曲线方程为,即.(2)解:设OP直线方程为y=kx,由,解得,∴∵OP⊥OQ,∴设OQ直线方程为以代替上式中的k,可得∴.21.(12分)已知函数,.(1)当时,存在,使成立,求m的取值范围.(2)若在区间上,函数的图像恒在直线的下方,求实数a的取值范围.【答案】(1)解:当时,,由,可得,所以在上单调递增,所以值域为,故存在,使成立,则,所以实数m的取值范围是.(2)解:在区间上,函数的图像恒在直线的下方,等价于恒成立.记,则,由;①若,即时,,函数在区间上递减,所以,即时,恒成立;②若时,令得,函数在区间上递减,在上递增,∈,不合题意;③若,即时,,函数在区间上递增,不合题意;综上可知:当时,在上函数的图像恒在直线的下方.22.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程.(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.【答案】(1)解:由曲线C1的参数方程为(θ为参数),消去参数θ得,曲线C1的普通方程得+=1.由ρcosθ-ρsinθ-4=0得,曲线C2的直角坐标方程为x-y-4=0.(2)解:设P(2cosθ,2sinθ),15 / 16则点P到曲线C2的距离为d==,当cos(θ+45°)=1时,d有最小值0,所以|PQ|的最小值为0.。

北京市西城区2019-2020学年数学高二第二学期期末考试试题含解析

北京市西城区2019-2020学年数学高二第二学期期末考试试题含解析

北京市西城区2019-2020学年数学高二第二学期期末考试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.9的展开式中有理项的项数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】求得二项式展开式的通项公式,由此判断出有理项的项数. 【详解】192(x 的展开式通项为2751962199()C (1)(1)C x r r r r r rr T x x --+=⋅-=⋅⋅⋅⋅-,当3r =或9r =时,为有理项,所以有理项共有2项. 故选:B 【点睛】本小题主要考查二项式展开式的通项公式,属于基础题.2.下列关于曲线24:14x y Γ+=的结论正确的是( )A .曲线Γ是椭圆B .关于直线y x =成轴对称C .关于原点成中心对称D .曲线Γ所围成的封闭图形面积小于4【答案】C 【解析】 【分析】A 根据椭圆的方程判断曲线24:14x y Γ+=不是椭圆;B 把曲线Γ中的(x ,y )同时换成(y ,x ),判断曲线Γ是否关于直线y x =对称; C 把曲线Γ中的(x ,y )同时换成(x -,y -),判断曲线Γ是否关于原点对称; D 根据||2x ,||1y ,判断曲线24:14xy Γ+=所围成的封闭面积是否小于1.【详解】曲线24:14x C y +=,不是椭圆方程,∴曲线Γ不是椭圆,A ∴错误;把曲线Γ中的(x ,y )同时换成(y ,x ),方程变为2414yx +=,∴曲线Γ不关于直线y x =对称,B 错误;把曲线Γ中的(x ,y )同时换成(x -,y -),方程不变,∴曲线Γ关于原点对称,C 正确;||2x ,||1y ,∴曲线24:14x C y +=所围成的封闭面积小于428⨯=,令x y =∴=所以曲线Γ上的四点,,(,(围成的矩形面积为4>, 所以选项D 错误. 故选:C . 【点睛】本题主要考查了方程所表示的曲线以及曲线的对称性问题,解题时应结合圆锥曲线的定义域性质进行解答,是基础题.3.利用数学归纳法证明不等式*n 1111...(n)(n 2,)2321f n N ++++<≥∈-的过程,由n k =到+1n k =时,左边增加了( ) A .1项 B .k 项C .12k -项D .2k 项【答案】D 【解析】 【分析】分别计算n k =和+1n k =时不等式左边的项数,相减得到答案. 【详解】n k =时,不等式左边:1111 (2)321k++++-共有21k - +1n k =时,:1111111 (2321221)k k k ++++++++--共有121k +- 增加了1(21)(21)2k k k +---=故答案选D 【点睛】本题考查了数学归纳法的项数问题,属于基础题型.4.已知定义在R 上的奇函数f (x )满足()32f x f x ⎛⎫-= ⎪⎝⎭,f (-2)=-3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .-2B .-3C .2D .3【答案】B 【解析】 【分析】 【详解】分析:利用函数的奇偶性和对称性推出周期,求出前三项的值,利用周期化简式子即可. 详解:定义在R 上的奇函数()f x 满足()32f x f x ⎛⎫-=⎪⎝⎭,故周期T 3=,()()()()()()213,300,523f f f f f f -==-==== 数列{}n a 是等差数列,若23a =,713a =,故21n a n =-,所以:()()()()()()1231350f f f f a f a f a ++=++=,()()()()()()1232018133f a f a f a f a f f +++⋯+=+=-点睛:函数的周期性,对称性,奇偶性知二推一,已知()y f x =奇函数,关于轴x a =对称,则()()()()f x f x 1f 2a x f x 2-=-+=-,,令x x 2a =-代入2式,得出()()f x f x 2a =--,由奇偶性()()()()()f 2a x f x f x f x 2a f x 2a ⎡⎤+=-=-=---=-⎣⎦,故周期T 4a =. 5.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .16【答案】C 【解析】 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y x y x⎧=⎪⎨=⎪⎩得(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S=正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A )3123120021()()|33x x dx x x =-=-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.6.在圆C 中,弦AB 的长为4,则AB AC ⋅=( ) A .8 B .-8C .4D .-4【答案】A 【解析】分析:根据平面向量的数量积的定义,老鹰圆的垂径定理,即可求得答案. 详解:如图所示,在圆C 中,过点C 作CD AB ⊥于D ,则D 为AB 的中点,在Rt ACD ∆中,122AD AB ==,可得2cos AD A AC AC ==, 所以2cos 48AB AC AB AC A AC AC⋅=⋅=⨯⨯=,故选A.点睛:本题主要考查了平面向量的数量积的运算,其中解答中涉及到圆的性质,直角三角形中三角函数的定义和向量的数量积的公式等知识点的综合运用,着重考查了分析问题和解答问题的能力. 7.如果函数在区间上存在,满足,,则称函数是区间上的“双中值函数”.已知函数是区间上的“双中值函数”,则实数的取值范围是( )A .(,)B .(,3)C .(,1)D .(,1) 【答案】C 【解析】 试题分析:,,所以函数是区间上的“双中值函数”等价于在区间有两个不同的实数解,即方程在区间有两个不同的实数解,令,则问题可转化为在区间上函数有两个不同的零点,所以,解之得,故选C.考点:1.新定义问题;2.函数与方程;3.导数的运算法则.【名师点睛】本题考查新定义问题、函数与方程、导数的运算法则以及学生接受鷴知识的能力与运用新知识的能力,难题.新定义问题是命题的新视角,在解题时首先是把新定义问题中的新的、不了解的知识通过转翻译成了解的、熟悉的知识,然后再去求解、运算.8.在一项调查中有两个变量x 和y ,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y a bx =+B .y c x =+C .2y m nx =+D .x y p qc =+(0q >)【答案】B 【解析】 【分析】根据散点图的趋势,选定正确的选项. 【详解】散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B . 【点睛】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( ) A .30个 B .42个C .36个D .35个【答案】C 【解析】 【分析】 【详解】解:∵a ,b 互不相等且为虚数,∴所有b 只能从{1,2,3,4,5,6}中选一个有6种, a 从剩余的6个选一个有6种,∴根据分步计数原理知虚数有6×6=36(个). 故选C10.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元 B .96.5万元C .95.25万元D .97.25万元【答案】C 【解析】 【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可 【详解】()19.59.39.18.99.79.35x =⨯++++=()19289898793905y =⨯++++=代入到回归方程为7.5ˆy x a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。

2019-2020学年浙江省宁波市慈溪市高二下学期期末数学试卷 (解析版)

2019-2020学年浙江省宁波市慈溪市高二下学期期末数学试卷 (解析版)

2019-2020学年浙江省宁波市慈溪市高二第二学期期末数学试卷一、选择题(共10小题).1.设全集U={0,1,2,3,4},集合A={0,1,4},则∁U A=()A.{1,4}B.{1,2,3}C.{2,3}D.{0,2,4}2.sin=()A.﹣B.﹣C.D.﹣3.若甲、乙、丙、丁四人排队照相,则甲、乙两人必须相邻的不同排法数是()A.6B.12C.18D.244.设的共轭复数为a+bi(a,b∈R),则a+b=()A.﹣1B.﹣C.D.15.已知函数f(x)=sin(x+φ),其中tanφ=m(m是常数),则“f(x)为奇函数”是“m=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在二项式的展开式中,含x5的项的系数等于()A.8B.﹣8C.28D.﹣287.若变量x,y满足约束条件,则x+y的最大值为()A.3B.2C.1D.08.已知实数x,y满足x2﹣|x|y+16=0,若x≤﹣8,则y的最小值为()A.8B.10C.12D.169.设λ∈R,若单位向量,满足:⊥且向量与﹣λ的夹角为,则λ=()A.B.﹣C.D.110.已知二次函数f(x)=x2+ax+b的图象经过四点:(x1,0),(x2,0),(1,p),(2,q),其中1<x1≤x2<2,则pq的最大值为()A.2B.C.D.二、填空题(共7小题,多空题每题6分,单空题每题4分,共36分.)11.已知lg3=a,则lg30=(用a表示),100a=.(用整数值表示).12.已知函数f(x)=4e x+e﹣x和点M(0,5),则导数f′(x)=,y=f(x)的图象在点M处的切线的方程是.13.若有恒等式(﹣5+5x﹣x2)3=a0+a1(2﹣x)+a2(2﹣x)2+a3(2﹣x)3+…+a6(2﹣x)6,则a6=,=.14.已知函数f(x)=,则=,函数f(x)在上的值域为.15.若有三个重症突击小分队,已知第一小分队人数多于第二小分队,第二小分队人数多于第三小分队,但第三小分队人数的两倍却要多于第一小分队.则这三个小分队人数的总和的最小值为.16.给出下列四组函数:①f(x)=|x|(x∈R),g(x)=(x∈R);②f(x)=x(0≤x≤1),g(x)=x2(0≤x≤1);③f(x)=x(x∈{0,1}),g(x)=|x﹣1|(x∈{0,1});④f(x)=x(x∈{0,1}),g(x)=x2(x∈{0,1});.其中,表示不同一个函数的组的序号是.(把你认为表示不同一个函数的组的序号都写上)17.已知集合A={(a,b)|3a+b﹣2=0,a∈N},B={(a,b)|k(a2﹣a+1)﹣b=0,a∈N},若存在非零整数,满足A∩B≠∅,则k=.三、解答题(共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.在△4BC中,已知内角A,B,C所对的边分别为a,b,c,且满足.(Ⅰ)求cos A的值;(Ⅱ)若a=5,b+c=10,求△ABC的面积S△ABC.19.如图,五面体ABCDEF中,平面EAD⊥平面ABCD,而ABCD是直角梯形,△EAD 等腰三角形,且AB∥CD,CD=EF,∠ABC=∠AED=90°,∠ADC=120°,AB=4,AE=2.(Ⅰ)求证:四边形CDEF为平行四边形;(Ⅱ)求二面角D﹣BC﹣F的平面角的余弦值.20.已知数列{a n}的前n项和为S n,且a n+1=4﹣|a n|(n∈N*).(Ⅰ)若a1>0,且a1,a2,a3成等比数列,求a1和S4;(Ⅱ)若数列{a n}为等差数列,求a1和S n.21.已知抛物线C:x2=2py(p>0),其焦点到准线的距离等于1,设动点,过M作C的两条切线MA,MB(A,B为切点).(Ⅰ)求p的值;(Ⅱ)求证:直线AB恒过定点Q;(Ⅲ)设圆(r>0),若圆E与直线AB相切,且切点正好是线段AB 的中点,求r的值.22.已知函数f(x)=kx﹣1﹣k+lnx,k∈R.(Ⅰ)当k=1时,求f(x)的单调区间;(Ⅱ)若f(x)≥0在x∈(0,+∞)上恒成立,求k的取值范围;(Ⅲ)当k=0时,对意b>c>0,若a=,求证:a<b.参考答案一、选择题(共10小题).1.设全集U={0,1,2,3,4},集合A={0,1,4},则∁U A=()A.{1,4}B.{1,2,3}C.{2,3}D.{0,2,4}【分析】进行补集的运算即可.解:∵U={0,1,2,3,4},A={4,1,4},∴∁U A={2,3}.故选:C.2.sin=()A.﹣B.﹣C.D.﹣【分析】原式中的角度变形后,利用诱导公式化简即可得到结果.解:sin=sin(4π﹣)=﹣sin=﹣.故选:D.3.若甲、乙、丙、丁四人排队照相,则甲、乙两人必须相邻的不同排法数是()A.6B.12C.18D.24【分析】甲、乙两人必须相邻,利用捆绑法(捆绑甲乙)与其余 2 人全排即可.解:由题意,利用捆绑法,甲、乙两人必须相邻的方法数为A A=12种.故选:B.4.设的共轭复数为a+bi(a,b∈R),则a+b=()A.﹣1B.﹣C.D.1【分析】利用复数代数形式的乘除运算化简,求其共轭复数,再由已知列式求得a,b的值,则答案可求.解:由=,得的共轭复数为i=a+bi,∴a+b=1.故选:D.5.已知函数f(x)=sin(x+φ),其中tanφ=m(m是常数),则“f(x)为奇函数”是“m=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】分别根据充分必要条件的定义,借助三角函数的性质即可判断.解:函数f(x)=sin(x+φ),若函数f(x)为奇函数,则φ=kπ,k∈Z,若m=0,则tanφ=0,即φ=kπ,k∈Z,∴f(x)为奇函数,故选:C.6.在二项式的展开式中,含x5的项的系数等于()A.8B.﹣8C.28D.﹣28【分析】在二项展开式的通项公式中,令x的幂指数等于5,求出r的值,即可求得含x5的项的系数.解:项式的展开式中,通项公式为T r+1=C8r•x8﹣r•(﹣1)r•x=(﹣1)r C8r•x,令=4,解得r=2,故含x5的项的系数是C82=28,故选:C.7.若变量x,y满足约束条件,则x+y的最大值为()A.3B.2C.1D.0【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+y对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=3且y=0时,z=x+y取得最大值3.解:作出变量x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(3,0),C(1,0).可得当l经过点A时,目标函数z达到最大值,故选:A.8.已知实数x,y满足x2﹣|x|y+16=0,若x≤﹣8,则y的最小值为()A.8B.10C.12D.16【分析】由已知方程可用x表示y,然后结合对勾函数的单调性即可求解.解:因为x≤﹣8,所以x2+xy+16=0,故y=﹣x﹣在(﹣∞,﹣8]时单调递减,故选:B.9.设λ∈R,若单位向量,满足:⊥且向量与﹣λ的夹角为,则λ=()A.B.﹣C.D.1【分析】根据题意即可设,从而可得出,然后根据与的夹角为即可得出关于λ的方程,解出λ即可.解:根据题意,设,∴,,故选:A.10.已知二次函数f(x)=x2+ax+b的图象经过四点:(x1,0),(x2,0),(1,p),(2,q),其中1<x1≤x2<2,则pq的最大值为()A.2B.C.D.【分析】先将二次函数f(x)写成与x轴交点的形式,然后将p,q用x1,x2来表示,再结合基本不等式或二次函数最值,即可求得答案.解:由于f(x)=x2+ax+b=(x﹣x1)(x﹣x2),则p=f(7)=(1﹣x1)(1﹣x2),q=f(2)=(2﹣x1)(3﹣x2),因此,故选:D.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)11.已知lg3=a,则lg30=1+a(用a表示),100a=9.(用整数值表示).【分析】直接根据对数的运算性质和指数式与对数式的互化即可求出.解:lg3=a,则lg30=lg(3×10)=lg3+lg10=a+1,∵lg3=a,则10a=3,故答案为:a+1,9.12.已知函数f(x)=4e x+e﹣x和点M(0,5),则导数f′(x)=4e x﹣e﹣x,y=f(x)的图象在点M处的切线的方程是y=3x+5.【分析】(1)利用导数公式和运算性质,即可求出f(x)的导数;(2)将x=0代入导数,求出切线斜率,再利用点斜式写出切线方程.解:易知f′(x)=4e x+e﹣x(﹣x)′=4e x﹣e﹣x.所以k=f′(0)=4﹣2=3,故答案为:4e x﹣e﹣x,y=3x+5.13.若有恒等式(﹣5+5x﹣x2)3=a0+a1(2﹣x)+a2(2﹣x)2+a3(2﹣x)3+…+a6(2﹣x)6,则a6=﹣1,=0.【分析】根据展开式中x的指数的特点,即可求出a6=﹣1,再分别令x=1和x=3,可求出a0+a2+a4+a6=0,即可求出结果.解:(﹣5+5x﹣x2)3中(﹣1)3C73(5﹣5x)3﹣3x3=﹣x6,则a6=﹣1;令x=1,可得:a0+a1+…+a6=﹣1,∴2(a0+a2+a4+a8)=0,∴=0,故答案为:﹣1,4.14.已知函数f(x)=,则=0,函数f(x)在上的值域为[﹣1,].【分析】利用倍角公式降幂,再由辅助角公式化积,然后取x=求解三角函数值;再由x的范围求得相位的范围,可得函数f(x)在上的值域.解:f(x)===cos(2x+).由x∈,得2x+∈[,],故答案为:0;[﹣5,].15.若有三个重症突击小分队,已知第一小分队人数多于第二小分队,第二小分队人数多于第三小分队,但第三小分队人数的两倍却要多于第一小分队.则这三个小分队人数的总和的最小值为12.【分析】首先可根据题意设出三个小分队的人数分别为x+2,x+1,x,然后根据第三小分队人数的两倍却要多于第一小分队,即可求出x的最小值,从而求出这三个小分队人数的总和的最小值.解:因为第一小分队人数多于第二小分队,第二小分队人数多于第三小分队,这三个小分队人数的总和最小,且人数只能为正整数,所以可设第三小分队的人数为x,第二小分队人数为x+1,第一小分队人数为x+2,所以2x>x+2,即x>2,故答案为:12.16.给出下列四组函数:①f(x)=|x|(x∈R),g(x)=(x∈R);②f(x)=x(0≤x≤1),g(x)=x2(0≤x≤1);③f(x)=x(x∈{0,1}),g(x)=|x﹣1|(x∈{0,1});④f(x)=x(x∈{0,1}),g(x)=x2(x∈{0,1});.其中,表示不同一个函数的组的序号是②③.(把你认为表示不同一个函数的组的序号都写上)【分析】通过判断函数解析式和定义域是否都相同,从而判断每组函数是否表示同一个函数,从而得出答案.解:①f(x)=|x|(x∈R),g(x)==|x|(x∈R),定义域和解析式都相同,表示同一个函数;②f(x)=x(0≤x≤1),g(x)=x2(7≤x≤1),解析式不同,不是同一函数;③f(x)=x(x∈{0,1}),g(x)=|x﹣1|(x∈{0,1}),解析式不同,不是同一个函数;④∵x=0时,f(x)=g(x)=5;x=1时,f(x)=g(x)=1,∴表示同一个函数.故答案为:②③.17.已知集合A={(a,b)|3a+b﹣2=0,a∈N},B={(a,b)|k(a2﹣a+1)﹣b=0,a∈N},若存在非零整数,满足A∩B≠∅,则k=﹣1.【分析】根据集合关系,集合集合的基本运算进行求解解:因为存在非零整数,满足A∩B≠∅,即有实数解且a∈N,整理得:ka2+(3﹣k)a+k﹣7=0(k≠0)有实数解且a∈N,解得经检验知,只有k=﹣1时才可以保证有自然数解a故答案为:k=﹣1三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.在△4BC中,已知内角A,B,C所对的边分别为a,b,c,且满足.(Ⅰ)求cos A的值;(Ⅱ)若a=5,b+c=10,求△ABC的面积S△ABC.【分析】(Ⅰ)由已知利用余弦定理,正弦定理化简可得cos A=,进而根据两角和的正弦函数公式,结合sin B≠0即可求解cos A的值.(Ⅱ)由(Ⅰ)可得b2+c2﹣a2=bc,进入可求得bc=25,根据三角形的面积公式即可求解.解:(Ⅰ)由已知利用余弦定理可得:cos A==,由正弦定理可得:cos A==,由于sin B≠0,(Ⅱ)由(Ⅰ)可得b2+c2﹣a2=bc,即(b+c)3﹣2bc﹣a2=bc,所以S△ABC=bc sin A==.19.如图,五面体ABCDEF中,平面EAD⊥平面ABCD,而ABCD是直角梯形,△EAD 等腰三角形,且AB∥CD,CD=EF,∠ABC=∠AED=90°,∠ADC=120°,AB=4,AE=2.(Ⅰ)求证:四边形CDEF为平行四边形;(Ⅱ)求二面角D﹣BC﹣F的平面角的余弦值.【分析】(Ⅰ)由线面平行的判定定理可证得CD∥面ABE,再利用线面平行的性质定理可知CD∥EF,而CD=EF,从而得证;(Ⅱ)取AD的中点N,连接BN、EN.利用面面垂直的判定定理与线面垂直的性质定理可推出EN⊥BN,在△ABN中,通过边长和角度的计算可推出AN⊥BN,于是以N为原点,NA、NB、NE分别为x、y、z轴建立如图所示的空间直角坐标系,然后根据法向量的性质求出平面BCF的法向量,而平面ABCD的法向量为,利用空间向量数量的坐标运算求出这两个法向量的夹角后即可得解.【解答】(Ⅰ)证明:在直角梯形ABCD中,AB∥CD,∵AB⊂面ABE,CD⊄面ABE,∴CD∥面ABE,又CD=EF,∴四边形CDEF为平行四边形.∵面ADE⊥面ABCD,面ADE∩面ABCD=AD,∴EN⊥面ABCD,∴EN⊥BN.以N为原点,NA、NB、NE分别为x、y、z轴建立如图所示的空间直角坐标系,∴,,令y=,则x=﹣1,z=1,∴=(﹣1,,4),由题知,二面角D﹣BC﹣F为锐角,故二面角D﹣BC﹣F的平面角的余弦值为.20.已知数列{a n}的前n项和为S n,且a n+1=4﹣|a n|(n∈N*).(Ⅰ)若a1>0,且a1,a2,a3成等比数列,求a1和S4;(Ⅱ)若数列{a n}为等差数列,求a1和S n.【分析】(Ⅰ)由已知结合数列递推式可得a2=4﹣|a1|=4﹣a1,a3=,再由a1,a2,a3成等比数列,得,然后对a1的范围分类求解a1及S4;(Ⅱ)a2=4﹣|a1|,a3=4﹣|a2|=4﹣|4﹣|a1||,由等差数列的定义得:2a2=a1+a3,即2(4﹣|a1|)=a1+4﹣|4﹣|a1||,再对a1分类求解公差d,即可求得a1和S n.解:(Ⅰ)∵a1>0,∴a2=4﹣|a1|=3﹣a1,a3=5﹣|a2|=4﹣|4﹣a1|=.①0<a1≤8时,有,得a1=2;②a4>4时,有,得(舍)或.综①②可知,a1=2或.当时,a2=4﹣a4<0,a3=5﹣a1>0,a3=4﹣|a3|=a1﹣4,得S4=8.(Ⅱ)∵a2=4﹣|a1|,a3=4﹣|a2|=4﹣|7﹣|a1||,当a1>7时,可得a1=0,矛盾;当a1≤0时,∵公差d=a2﹣a3=4>0,∴必存在m≥2,使得a m=a7+4(m﹣1)>4,综上可知,只有a1=2时符合条件且此时公差d=a2﹣a8=0.∴a n=2,则a5=2,S n=2n.21.已知抛物线C:x2=2py(p>0),其焦点到准线的距离等于1,设动点,过M作C的两条切线MA,MB(A,B为切点).(Ⅰ)求p的值;(Ⅱ)求证:直线AB恒过定点Q;(Ⅲ)设圆(r>0),若圆E与直线AB相切,且切点正好是线段AB 的中点,求r的值.【分析】(Ⅰ)由抛物线的方程可得焦点坐标及准线方程,再由焦点到准线的距离等于1可得p的值;(Ⅱ)设A,B的坐标,将抛物线的方程求导可得在A,B的切线的斜率,进而求出在A,B处的切线的方程,由M点在两条切线上,可得AB所在的直线方程:tx﹣y+=0,进而可得AB恒过的定点;(Ⅲ)因为直线AB与圆相切,AB的中点D又是切点,所以圆心E到D的距离为半径,由(Ⅱ)可得直线AB的方程,与抛物线联立求出两根之和,进而可得AB的中点D的坐标,分t是否为0分别求出相应的r的值.解:(Ⅰ)由抛物线的方程可得焦点坐标和准线方程分别为:(0,),y=﹣,由焦点到准线的距离等于1可得:﹣(﹣)=5,解得p=1;设A(x1,y1),B(x2,y2),则y3=,y2=,同理可得在B处的切线方程为:y=x2x﹣x62=x2x﹣y2,所以AB所在的直线方程为:tx﹣y+=6,即直线AB恒过定点(0,);抛物线的方程为:x2=2y,所以AB的中点D为:(t,t8+),由圆E与直线AB相切,且切点正好是线段AB的中点,①当t≠0时=﹣,解得:t8=1,这时r=|DE|==②当t=8时,AB的中点D(0,),圆心E为:(0,),所以r=|DE|=﹣=2,综上所述:圆的半径r的值为或5.22.已知函数f(x)=kx﹣1﹣k+lnx,k∈R.(Ⅰ)当k=1时,求f(x)的单调区间;(Ⅱ)若f(x)≥0在x∈(0,+∞)上恒成立,求k的取值范围;(Ⅲ)当k=0时,对意b>c>0,若a=,求证:a<b.【分析】(Ⅰ)代入k的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的导数,通过讨论k的范围,求出函数f(x)的最小值,得到关于k的不等式,解出即可;(Ⅲ)代入k=0,根据=以及ln≥,证明结论即可.解:(Ⅰ)当k=1时,f(x)=x﹣1﹣1+lnx,故f′(x)=﹣=,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<7,(Ⅱ)由已知得:f′(x)=﹣=,x∈(0,+∞),当k>0时,若5<x<k,f′(x)<0,f(x)递减,若x>k,f′(x)>0,f(x)递增,故f(k)=lnk+1﹣k≥0(6),故0<x<1时,g′(x)>0,g(x)递增,当x>1时,g′(x)<7,g(x)递减,故lnk+1﹣k≤0(2),综上可得k的范围是{8};由(Ⅱ)可知lnx+﹣1≥0,故lnx≥1﹣(当且仅当x=1时“=”成立),故由①②得>即a<b.。

2019-2020学年江苏省南京师大附中高二(下)期末数学试卷

2019-2020学年江苏省南京师大附中高二(下)期末数学试卷

2019-2020学年江苏省南京师大附中高二(下)期末数学试卷1.(单选题,5分)已知集合A={x|0<x<2},集合B={x|1<x<3},则()A.A∩B={x|0<x<1}B.A∩B={x|0<x<3}C.A∪B={x|1<x<2}D.A∪B={x|0<x<3}2.(单选题,5分)若复数z满足(3-i)z=2+6i(i为虚数单位),则|z|=()A.1B.2C.3D.43.(单选题,5分)函数f(x)= √2x−1+1x−4的定义域为()A.[0,4)B.(4,+∞)C.[0,4)∪(4,+∞)D.(-∞,4)∪(4,+∞)4.(单选题,5分)已知随机变量X~N(2,σ2),P(X≥0)=0.84,则P(X>4)=()A.0.16B.0.32C.0.66D.0.685.(单选题,5分)已知离散型随机变量X的分布列如下:A.E(X)=1.4,D(X)=0.2B.E(X)=0.44,D(X)=1.4C.E(X)=1.4,D(X)=0.44D.E(X)=0.44,D(X)=0.26.(单选题,5分)已知函数f(x)=e|x|+|x|,则满足f(2x-1)<f(13)的x取值范围是()A. (13,23)B. [13,23)C. (12,23) D. [12,23)7.(单选题,5分)某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于 67的是( ) A.至少有1个深度贫困村 B.有1个或2个深度贫困村 C.有2个或3个深度贫困村 D.恰有2个深度贫困村8.(单选题,5分)对于∀x 1∈(1,2),∃x 2∈(1,2),使得 4x 12−8x 1+5x 1−1 = mx 2−m+2x 2−1,则实数m 的取值范围( ) A.[0,2] B.(-∞,2] C.(0,2) D.(-∞,2)9.(多选题,5分)甲、乙两人练习射击,命中目标的概率分别为0.5和0.4,且互不影响,现甲、乙两人各射击一次,下列说法正确的是( ) A.目标恰好被命中一次的概率为0.5+0.4 B.目标恰好被命中两次的概率为0.5×0.4 C.目标被命中的概率为0.5×0.6+0.5×0.4 D.目标被命中的概率为1-0.5×0.610.(多选题,5分)已知函数f (x )= 2x −12x +1 ,下面说法正确的有( ) A.f (x )图象关于原点对称 B.f (x )的图象关于y 轴对称 C.f (x )的值域为(-1,1) D.∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立11.(多选题,5分)若a >0,b >0,则下面几个结论正确的有( ) A.若a≠1,b≠1,则log a b+log b a≥2 B.√a 2+b 2a+b ≥√22C.若 1a + 4b =2,则a+b≥ 92 D.若ab+b 2=2,则a+3b≥412.(多选题,5分)已知函数f (x )满足:当-3≤x <0时,f (x )=e x (x+1),下列命题正确的是( )A.若f (x )是偶函数,则当0<x≤3时,f (x )=e x (x+1)B.若f (-3-x )=f (x-3),则g (x )=f (x )+ 2e 3 在x∈(-6,0)上有3个零点 C.若f (x )是奇函数,则∀x 1,x 2∈[-3,3],|f (x 1)-f (x 2)|<2D.若f (x+3)=f (x ),方程[f (x )]2-kf (x )=0在x∈[-3,3]上有6个不同的根,则k 的范围为- 1e 2<k <−2e 313.(填空题,5分)已知复数z 在复平面内对应的点位于第一象限,且满足|z|=5,z+ z =6,则z 的实部为___ ,虚部为___ . 14.(填空题,5分)设函数f (x )= {lnx ,x ≥1,1−x ,x <1,则f (f (0))=___ ,若f (m )>1,则实数m 的取值范围是___ .15.(填空题,5分)某校在高二年级开设校本课程选修课,有5名同学要求改选中国文化史,现中国文化史开有三个班(A 班、B 班、C 班),若A 班至少接收2名同学,其余两班每班至少接收1名同学,则不同的接收方案共有___ 种.16.(填空题,5分)已知函数f (x )= {e x ,x ≤1,−x 2+4x −3,1<x <3, ,若函数g (x )=f (x )-k|x+1|有三个零点,则实数k 的取值范围是___ .17.(问答题,10分)已知p :对于∀x∈R ,x 2+kx+k >0成立,q :关于k 的不等式(k-m )(k-2)≤0(m <2)成立.(1)若p 为真命题,求k 的取值范围;(2)若p 是q 的必要不充分条件,求m 的取值范围.18.(问答题,12分)已知(1+λx )n =a 0+a 1x+a 2x 2+…+a n x n ,其中λ∈R . (1)若n=8,a 7=1024.求λ的值;(2)若λ=-2,n=2020,求a 0+a 2+a 4+…+a 2020的值.19.(问答题,12分)近年来,国家对西部发展出台了很多优惠政策,为了更有效促进发展,需要对一种旧能源材料进行技术革新,为了了解此种材料年产量x (吨)对价格y (万元/吨)和年利润:(万元)的影响,有关部门对近五年此种材料的年产量和价格统计如表,若 y =5.5.(2)求y 关于x 的线性回归方程 y ̂ = b ̂ x+ a ̂ ;(3)若每吨该产品的成本为2万元,假设该产品可全部卖出,预测当年产量为多少时,年利润z 取得最大值?参考公式: b ̂ = ∑x i ni=1y i −nxy∑x i 2n i=1−nx2 , a ̂ = y - b ̂ x .20.(问答题,12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取100名观众进行调查,将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷“,数据统计如表:(2)该体育类节目为了提升收视率,规定“体育迷”每天奖励积分2分,“非体育迷”每天奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的物品.用表中的样本频率作为概率的估计值.某日3名观众来领取积分,记此3人当日的积分总和为随机变量ξ,求ξ的分布列和数学期望.附:K 2= n (ad−bc )2(a+b )(c+d )(a+c )(b+d ) ,其中n=a+b+c+d .21.(问答题,12分)已知函数f (x )= 2m 3x 3−m+22x 2+x ,其中m 为正实数. (1)试讨论函数f (x )的单调性;,1],使得不等式g(x)<-2成立,求m (2)设g(x)=f′(x)+lnx-mx2-1,若存在x∈[ 12的取值范围.22.(问答题,12分)已知函数f(x)=xlnx+ax+b在点(1,f(1))处的切线为3x-y-2=0.(1)求函数f(x)的解析式;(2)是否存在k∈Z,对任意x>0,使得2f(x+1)-kx>0成立,若存在,求k的最大值;若不存在,说明理由.(参考数据:e2=7.39,e3=20.1)。

2018-2019学年高二(下)期末数学试卷(含答案)

2018-2019学年高二(下)期末数学试卷(含答案)

高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。

高二下学期数学期末考试试卷2019年

高二下学期数学期末考试试卷2019年

高二下学期数学期末考试试卷2019年各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢本文导航1、首页2、高二下学期数学期末考试试卷-2以下就是中国()为同学们搜集的高二下学期数学期末考试试卷xxxx年资料。

希望同学们学习进步。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

.1.已知集合,集合,则集合有几个元素[来2.在对分类变量X,y进行独立性检验时,算得=7有以下四种判断=)有99﹪的把握认为X与y有关;有99﹪的把握认为X与y无关;在假设H0:X与y无关的前提下有99﹪的把握认为X与y有关;在假设H1:X与y有关的前提下有99﹪的把握认为X与y无关.以上4个判断正确的是A.、B.、c.、D.、3.若则的最大值是-1D.4.下面几种推理是类比推理的是A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则B.由平面向量的运算性质,推测空间向量的运算性质c.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员D.一切偶数都能被2整除,是偶数,所以能被2整除5.函数的零点所在的区间是6.回归分析中,代表了数据点和它在回归直线上相应位置的差异的是A.总偏差平方和B.残差平方和c.回归平方和D.相关指数R27.定义两种运算:=ab,=a2+b2,则函数为A.奇函数B.偶函数c.奇函数且为偶函数D.非奇非偶函数8.如图,第n个图形是由正n+2边形“扩展”而来,则在第n个图形中共有个顶点.9.+b10.已知f=ax-2,,若f•g0得n2-20n+49高二下学期数学期末考试试卷xxxx年,希望可以更好的帮助到您!各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高二下学期期末考试(数学)
本试卷共4页,分第Ⅰ卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题共60分
注意事项:
1.第Ⅰ卷共60小题,全部为单项选择题。

2.每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上不得分。

一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1. 设全集为R,集合,,则等于
A.B.C.D.
2. 已知命题,;命题,,则下列判断
正确的是
A. 是真命题
B. 是假命题
C. 是假命题
D. 是假命题
3. 下列推理是归纳推理的是
A.已知为定点,动点满足,得动点的轨迹为椭圆
B. 由求出,猜想出数列的前项和的表达式
C. 由圆的面积为,猜想出椭圆的面积为
D. 科学家利用鱼的沉浮原理制造潜水艇
4. 函数的图象关于直线对称的充要条件是
A. B. C. D.
5. 已知函数,则曲线在点处的切线方程是
A.B.C.D.
6. 已知正数满足,则的最大值是
A. 21
B. 18
C. 14
D. 10
7. 函数的部分图象是
8. 已知是上的偶函数,且当时,,是函数的正零点,则,,的大小关系是
A. B.
C. D.
9. 设,则不等式的解集为
A. B. C. D.
10. 已知函数是定义在R上的奇函数,最小正周期为3, 且时,
等于
A.4 B.C.2 D.-2
11. 设函数的图象如图所示,则的大小关系是
A. B. C. D.
12.已知且,函数,当时,均有,则实数的取值范围是
A. B.
C. D.
高二新课程实施教学质量调研抽测
数学
第Ⅱ卷非选择题(共90分)
二、填空题(本题共4小题,每小题4分,共16分,把答案填写在题后
横线上)
13. 命题“若是奇函数,则是奇函数”的否定是.
14. 不等式的解集 .
15. 已知23 000200.1(0240,)y x x x x *
=+-<<∈N 是某产品的总成本(万元)与产量(台)之间的函数关系式,若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 .
16. 在平面直角坐标系中,若不等式组(为常数)所表示的平面区
域的面积等于,则等于 .
三、解答题(本题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)
解关于的不等式,其中,且.
18.(本小题满分12分)
已知正方形的中心在原点,四个顶点都在函数图象上,且正方形的一个顶
点为.
(Ⅰ)试写出正方形另外三个顶点的坐标,并求,的值; (II )求函数的单调增区间.
19.(本小题满分12分)
已知铁矿石和的含铁率为,冶炼每万吨铁矿石的的排放量及每万吨铁矿石
,求所需费用的最小值,并求此时铁矿石或分别购买多少万吨.
20.(本小题满分12分) 已知函数. (Ⅰ)当时,求的极小值;
(Ⅱ)若直线对任意的都不是...曲线的切线,求的取值范围.
21.(本小题满分12分) 已知定义域为的函数同时满足以下三个条件:
①对任意,总有; ②;
③若,则有成立. (I )求的值;
(II )判断函数在区间上是否同时适合①②③,并给出证明.
22.(本小题满分14分)
已知函数,,且.
(1)试求所满足的关系式;
(2)若,方程有唯一解,求的取值范围.
高二新课程实施教学质量调研抽测
数学评分标准及参考答案
一、选择题:ADBBA BDACC BC
二、填空题:13. 若是奇函数,则不是奇函数;14.;
15.150;16.
三、解答题:
17. 解:(1)若,则原式等价于,解得或;
……………………………………………………….3分
(2)若,原式等价于,(※)……………………….4分
当时,不等式(※)无解,解集为;
当时,由不等式(※)解得;
当时,由不等式(※)解得. …………………………….10分
综上,当时,不等式的的解集为;当时,不等式的的解集为;当时,不等式的解集为;当时,不等式的解集为. …………………………………………….12分
18.解:(Ⅰ)因为正方形的四个顶点都在函数的图象上,且函数为奇函数,所以另三个顶点必为,,. ………………………………4分(Ⅱ)将,代入,.
所以.…………………………………………………………6分
因为,令,得或. ………10分
所以函数单调增区间为及. …………………….12分
19.解:设铁矿石购买了万吨,铁矿石购买了万吨,购买铁矿石的费用为百万元,则由题设知,
实数满足约束条件
50%70% 1.9
0.52
x y
x y
x
y
+

⎪+



⎪⎩






5719 24
x y
x y
x
y
+

⎪+



⎪⎩




评卷人
(*) …………………………………………………4分 问题即为在条件(*)下,求的最小值.
作不等式组(*)对应的平面区域,如图阴影部分所示.则直线,即经过点时,取得最小值. ………………………………………8分 解方程组得点坐标为. 故,此时,,. …………………………11分
答:购买铁矿石的最少费用为1500万元,且铁矿石A 购买1万吨,铁矿石B 购买2万吨. ………………………………………12分 20. 解:(Ⅰ)因为当时,,令,得或.
…………………………………………………………….3分
当时,;当时,.
所以在上单调递减,在上单调递增. ……………5分
所以的极小值为. ……………………………………7分 (Ⅱ)因为, ……………………………………9分
所以,要使直线对任意的总不是曲线的切线,当且仅当,即. …………………………………12分 21. 解;(I )由①知,; 由③知:,即.
所以. ……………………………………………………………..4分 (Ⅱ)由题设知,. 由知,,得,有 ………………………6分 设,则,.
所以12
121212()[()](21)[(21)(21)]x x x x g x x g x g x ++-=---+-+()
. 即.
所以函数在区间上同时适合①②③. ………………………12分 22. 解:(Ⅰ)由,得.
所以b 、c 所满足的关系式为. …………………………………3分 (Ⅱ)由,,可得. ……………………………5分 方程,即,可化为.
令,则由题意可得,在上有唯一解. 令,由,可得.
当时,由,可知是增函数;当时,由,可知是减函数.故当时,取极大值.………………..11分 由函数的图象知,当或时,方程有且仅有一个正实数解. 故所求的取值范围是 ………………………………..14分。

相关文档
最新文档