电路分析第一章
合集下载
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
课件-第1章 电路分析的基本概念
(1.2)
7 式中dW是电场力所作的功,单位是焦耳(J);dq为电荷量,单 位是C);电压U 的单位是伏特,简称伏(V)。电压也有恒定电 压和和时变电压之分,分别用符号U和 u 表示(直流量有时不 分大小写)。
图1-4 电压参考方向
电压参考方向(参考极性)的选择同样具有任意性,通常在 电路图上用“+”表示参考方向的高电位端,“-”表示参考方向 的低电位端,如图1-4所示。或用双下标表示电压的参考方向, 如uab 表示电压参考方向从a点指向b点。电压实际方向的判定 与电流的类似。
例1.2 电路如图1.12所示,各支路电流参考方向已标出, 已知 I1 = 8 A ,I2 = 3 A ,I3 = -1 A ,I5 = 2 A,求I4 。
13
解: 对于结点a ,根据KCL可得 I 1–I2 –I3 + I4 –I5 = 0 所以 I4 = -I1 + I2 + I3 + I5 = -8 + 3 +(-1)+ 2 = - 4 A I4为负值,说明I4的实际方向与参考方向相反,即I4实际流出 结点a 。
U、I间关联参考方向:今后在求电压电流时,必须事 先规定好参考方向,否则求出的值无意义。而且为了 分析方便,通常将某元件上电压电流参考方向选为一 致,即电流的参考方向由电压的“+”指向“-”,这 样选定的参考方向称为关联参考方向,简称关联方向。
电位的概念及计算: 将电路中任一点作为参考点, 把a点到参考点的电压称为a点电位,用符号Va(或Ua) 表示。电路中a、b两点间的电压与该两点电位有以 下关系: Uab = Va - Vb (1.3) 今后如未说明,通常选接地点作参考点,并且参 考点电位为零。引入电位概念后,两点间电压的实 际方向即由高电位指向低电位。
电路分析基础第1章
1-11 电路如图题1-9所示。 (1)图(a)中已知u=7cos(2t) V,求i;
4 i
-u + (a)
i u• 7 cos 2t 7 cos 2t A 444
(2)图(b)中已知u=(5+4e-6t) V ,i=(15+12e-6t)A ,求R;
iR
+u - (b)
R
u i
5 4e 6t 15 12e 6t
2A,求u4 。
•
i1 a
5
b
1
i4 c
(1)u1 5i1 5 4 20 V
+
+ u1 - +
+ u4 -
i2
-
i3
(2)u2 4i2 4 (2) 8 V uS-
u2 4 -
u3 3 +
d
(3)u3 3i3 3 2 6 V
(4)u4 i4 (2) 2 V
1-14 电路如图题1-12所示若u1=10V,u2=-5V,试电压源的
12V -
4
u=11V
-
1-16 求图题1-14所示电路中的uS 和i 。 uS
5A -
+
6A•
12
i1 15 18 3 A
3
i1
18A
15A
R
i 1
uS 18 3 12i1 54 12 3 90 V
i 651 A
1-20 电路如图题1-15所示,试求电流源电压u和电压源电流i,
i2/A 2
1
•
i3/A
1
o 1 2 3 t/s -1
o1 -1
2 3 t/s
对图1-9所示节点列KCL方程:
i1/A 1
i1 i2 i3
o1 -1
《电路分析基础》第一章:集总电路中电压(流)的约束关系
信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流
电路分析刘健版第一章课件
U AB U S 1 U1 U S 4 U 4
例
3A 1A 2A
3
I
U1
3V
图示电路, 求U 和 I。
U
2V
解: 3+1-2+I=0,I= -2(A)
U1=3I= -6(V) U+U1+3-2=0,U=5(V)
KCL、KVL小结
(1) KCL是对支路电流的线性约束,KVL是对支路电压 的线性约束。 (2) KCL、KVL与组成支路的元件性质及参数无关。
分(d)
拍(P)
飞(f)
十 (da )
艾(E)
皮(p)
百(h)
泽(Z)
能量 w
功率 p
焦耳J
纳 纳(n)
10-9
10-6
千(k)
103
106
尧(Y)
1024
——
瓦特W
微 (μ ) 兆 (M)
——
各物理量的关系
i dq dt
u
d dt
p
dw dt
1.2.1 电流及参考方向 1、电流
A、定义 i
(3) 回路(loop):由支路组成的闭合路径。 (4) 网孔(mesh):对平面电路,每个网眼即为网孔。网孔是回路, 但回路不一定是网孔。
例题1-2
例1-2
b
I1
I2 R3
支路:ab、bc、ca… (共6条) 结点:a、 b、c、d (共4个) 回路:abd、abcd … (共7 个) 网孔:abd、bcd … (共3 个)
A、概念
在分析计算电路时, 对电压任意假定的方向。
B、表示方法
a 正负号
双下标 箭标
+
例
3A 1A 2A
3
I
U1
3V
图示电路, 求U 和 I。
U
2V
解: 3+1-2+I=0,I= -2(A)
U1=3I= -6(V) U+U1+3-2=0,U=5(V)
KCL、KVL小结
(1) KCL是对支路电流的线性约束,KVL是对支路电压 的线性约束。 (2) KCL、KVL与组成支路的元件性质及参数无关。
分(d)
拍(P)
飞(f)
十 (da )
艾(E)
皮(p)
百(h)
泽(Z)
能量 w
功率 p
焦耳J
纳 纳(n)
10-9
10-6
千(k)
103
106
尧(Y)
1024
——
瓦特W
微 (μ ) 兆 (M)
——
各物理量的关系
i dq dt
u
d dt
p
dw dt
1.2.1 电流及参考方向 1、电流
A、定义 i
(3) 回路(loop):由支路组成的闭合路径。 (4) 网孔(mesh):对平面电路,每个网眼即为网孔。网孔是回路, 但回路不一定是网孔。
例题1-2
例1-2
b
I1
I2 R3
支路:ab、bc、ca… (共6条) 结点:a、 b、c、d (共4个) 回路:abd、abcd … (共7 个) 网孔:abd、bcd … (共3 个)
A、概念
在分析计算电路时, 对电压任意假定的方向。
B、表示方法
a 正负号
双下标 箭标
+
第1章 电路分析基础
Conclusion:支路电流法的一般解题步骤: 1. 确定电路的支路数,选定参考方向,设待求支路电流的 数为m。 2. 选定所有的独立结点(n-1),应用kcl列写n-1 个方程。 3. 选择独立回路并指定每个回路的绕行方向,应用kvl列写m(n-1)个方程。 4.联立求解方程,得出m个结果。 5. 应用欧姆定律求出各支路的电压。 例题:书19页例1.10、1.11
i1
u R1
R2 R1 R2
iS
i2
u R2
R1 R1 R2
iS
简单电阻电路的计算:18页例1.9
第40页,共58页。
1.3.3支路电流法
电路有m条电路,以m条支路电流作为未知量,应用
基尔霍夫定律列出m个独立的方程式,联立求解方程式 即可解出各支路电流。这就是支路电流法。
I1 U1
R1
a I2
b
电感(Inductance)等 为了对实际电路进行分析,可忽略负载的次要因素,将其近 似看作理想电路元件,简称为元件(Element ) 。 元件通过端子与外电路相连,按端子的数目可将元件分为 :二端元件、三端元件、四端元件等。
第4页,共58页。
实际情况中,电路由电源(信号源)、负载和中间环结组 成。
3、联立求解3个方程即可。
R1
b
3个方程如下: Il+I2+IS3-I4=0 I1R1-US1+US2-I2R2=0 I2R2-US2+I4R4=0
解之得:
Il=-22(A)
I2=14(A) I4=10(A)
第43页,共58页。
1.3.4结点电压法 以结点电压作为未知量,将各支路电流用结点电压表示
U4
R2
R3
U5
R4 R5
i1
u R1
R2 R1 R2
iS
i2
u R2
R1 R1 R2
iS
简单电阻电路的计算:18页例1.9
第40页,共58页。
1.3.3支路电流法
电路有m条电路,以m条支路电流作为未知量,应用
基尔霍夫定律列出m个独立的方程式,联立求解方程式 即可解出各支路电流。这就是支路电流法。
I1 U1
R1
a I2
b
电感(Inductance)等 为了对实际电路进行分析,可忽略负载的次要因素,将其近 似看作理想电路元件,简称为元件(Element ) 。 元件通过端子与外电路相连,按端子的数目可将元件分为 :二端元件、三端元件、四端元件等。
第4页,共58页。
实际情况中,电路由电源(信号源)、负载和中间环结组 成。
3、联立求解3个方程即可。
R1
b
3个方程如下: Il+I2+IS3-I4=0 I1R1-US1+US2-I2R2=0 I2R2-US2+I4R4=0
解之得:
Il=-22(A)
I2=14(A) I4=10(A)
第43页,共58页。
1.3.4结点电压法 以结点电压作为未知量,将各支路电流用结点电压表示
U4
R2
R3
U5
R4 R5
电路分析-第1章 电路的基本概念和基本定律
Uad=φa—φd=10—(—3)=13V
Ubd=Uba+Uad=—2+13=11V
以上用两种思路计算所得结果完全相同,由此可 (1) 两点之间的电压等于这两点之间路径上的
(2) 测Uab和Ubd的电压表应按图(b)所示跨接在 待测电压的两端,其极性已标注在图上。
§1-3 电功率与电能
一 、电功率 1. 定义 图中表示电路中的一部分 a 、 b 段,图中采 用了关联参考方向,设在 dt 时间内,由 a 点转移 到b点的正电荷量为dq,ab间的电压为u,在转移 过程中dq失去的能量为 d udq 因此,ab段电路所消耗的功率为
(a)开路状态;
(b)短路状态
§1-5电压源和电流源
例1.5 某电压源的开路电压 为30V,当外接电阻R后, 其端电压为25V,此时流经 的电流为5A,求R及电压源 内阻RS。 解: 用实际电压源模型表征该 电压源,可得电路如图所示。 即: 设电流及电压的参考方向如图 中所示,根据欧姆定律可得:
+ 30 V - RS R I + U -
U=U -R I S S
(a)
(b)
内阻
电阻Rs表示实际 电源的能量损耗
§1-5电压源和电流源
电路的两种特殊状态 开路状态。如图(a)所示。此时不接负载,电 流为零,端电压等于开路电压。可用开路电压 和内阻两个参数来表征。
+ US - RS - U=UOC + + US - RS ISC = UOC RS
§1-5电压源和电流源
U R I
根据
S S
U R I
25 5 5
U U R I
30 25 1 5
U S U 可得:R S I
§1-5电压源和电流源
电路分析基础课件(第1章)
§1-1 电路及集总电路模型 (c)分布参数元件与集总参数元件 集总参数元件:理想电阻、理想电感、理想电 容、理想电源等。 集总参数电路:由集总参数元件构成的电路, 简称集总电路。
21
§1-1 电路及集总电路模型
一个电路应该作为集总参数电路,还是作为分 布参数电路,或者说,要不要考虑参数的分布 性,取决于其本身的线性尺寸与表征其内部电 磁过程的电压、电流的波长之间的关系。 一个实际电路器件,在不同条件下可以有不 同的电路模型。
a b
+
+
元件
41
u 2V
§1-2 电路变量 电流、电压及功率 参考极性不一定就是电压的真实极性。 当电压为正值时,该电压的真实极性与参考 极性相同。 当电压为负值时,该电压的真实极性与参考 极性相反。
a b
元件
a
b
元件
+
-
-
+
42
u 2V
u= - 2V
§1-2 电路变量 电流、电压及功率
19
§1-1 电路及集总电路模型 (b)分布概念 参数的分布性指,当实际电路的尺寸可以与电 路工作时电磁波的波长相比拟(即高频)时, 电路中同一瞬间相邻两点的电位和电流都不相 同。这样的元件称为分布元件,而这样的电路 参数叫做分布参数。
这说明分布参数电路中的电压和电流除了是时 20 间的函数外,还是空间坐标的函数。
9
§1-1 电路及集总电路模型
例如
理想化
理想电阻元件 (模型)
理想化、抽象化即模型化的过程。
电阻器包含有电阻、电感、电容性质,但 电感、电容很小,可忽略不计,可用一个 电阻元件作为它的模型。
同样,请例举3个以上其他,模型的例子....
电路分析第1章 集总参数电路B
第一章 集总参数电路中电压、电流的约束关系
主要内容: 1.基本概念:电路及电路模型、集总假设、电路变量、电流、 电压、功率、独立电源、受控源、参考方向及关 联参考方向。 2.基本定律:基尔霍夫定律,欧姆定律。
§1-1
一、电路
电路及集总电路模型
若干个电气设备或电子器件按照一定的方式连接起来构成 电流的通路 叫作 电路 例如手电筒电路:
集总参数电路
<1>、集总假设:在器件的尺寸远小于正常工作频率所对 应的波长时,可将它所反映的物理现象分别进行研究,即用 三种基本元件表示其三种物理现象,这就是集总假设。 采用集总假设的条件:实际电路的尺寸远小于电路使用时 其最高工作频率所对应的波长。 例如,我国电力用电的频率为50Hz,对应的波长为
电路分析理论所研究的对象都是由理想电路元件组成 的实际电路的电路模型。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
§1-2电路变量、电流、电压及功率
电路分析:给定电路结构及电路参数,求各部分的 电压、电流叫电路分析。
一 电流(电流强度)
1.定义:带电粒子的定向运动(有秩序的运动)形成电流。 dq ? i(t)=dq/dt --电荷的变化率 方向:正电荷运动的方向 大小和方向都不随时间改 变的电流称为直流 。 i
PDF 文件使用 "pdfFactory Pro" 试用版本创建
干 电 池 开关 灯 泡
PDF 文件使用 "pdfFactory Pro" 试用版本创建
电路是电流的通路,它是为了某种需要由某些电工设备 或元件按一定方式组合起来的。 电路的作用 1 能量的输送与转换
发电机 升压 输电线 降压 变压器 变压器
电路分析第一章第7,8节 电压源、电流源和受控源
i1 + u1 -
+ - µu1
(a) VCVS
+ u2 -
+ u1 -
+ - ri1 (b)CCVS
+ u2 -
电压控制电压源(VCVS) 电压控制电压源 u1 ── 控制量; 控制量;
电流控制电压源(CCVS) 电流控制电压源 i1 ── 控制量; 控制量;
u2 ── 受控量; 受控量; u2 ── 受控量; 受控量; u2 = ri1 u2 = µu1 µ ── 控制系数 r ── 控制系数 转移电阻, (电压放大系数,无量纲 (转移电阻,量纲 ) 电压放大系数, 电压放大系数 无量纲) 转移电阻
U
i
+ u R
3.功率+ 功率
IS
+
U IS
关联参考方向下 关联参考方向下 P吸=ISU P发=-ISU
非关联参考方向下 非关联参考方向下 P发=ISU P吸= - ISU
例: +
5V
计算图示电路各元件的功率。 计算图示电路各元件的功率。
i
iS
2A
解: u
i = −2A
_
_
满足: ( )=P( 满足:P(发)= (吸)
i2 + u1 -
i1
i2
gu1
βi1
(c) VCCS 电压控制电流源(VCCS) 电压控制电流源 u1 ── 控制量; 控制量; i2 ── 受控量; 受控量; i 2 = gu1 g ── 控制系数 (转移电导,量纲 转移电导, 转移电导 量纲S)
(d) CCCS 电流控制电流源(CCCS) 电流控制电流源 i1 ── 控制量; 控制量; i2 ── 受控量; 受控量; i 2 = βi1
电路分析第1章
第1章 电路的基本概念和定律
练习与思考
1.1-1 结合自己所熟悉的一种家用电器, 谈谈对电路功能的 理解,并举出建立该电器设备的电路模型所需要的理想电路元 件种类。 1.1-2 实验室用的一种滑动式可变电阻器,是将铜线绕在圆 形骨架上,要建立它的电路模型只用理想电感元件行吗? 严格 地讲应该用哪几种理想电路元件?
1.1.1 电路及其功能 电路及其功能 电路是由电路元(器)件按一定要求连接而成,为电流的流 通提供闭合路径的集合体,复杂的电路也常称为网络。 实际应用中的电路种类繁多,用途各异,但按其功能可概 括为两个方面:一是对能量的传送、 转换与分配; 电力系统 中的输电电路就是典型实例。其二是完成电信号的产生、传输、 处理及应用; 手机、 电视机电路是这方面的典型实例。
q I= t
(1 - 2)
第1章 电路的基本概念和定律 虽然规定了电流的实际方向,但在电路问题中,特别是电 路比较复杂时,电流的实际方向往往难以确定,尤其是交流电 路中, 电流的方向随时间变化, 根本无法确定它的实际方向。 为此引入参考方向这一概念。 参考方向可以任意设定, 在电路 中用箭头表示,并且规定,如果电流的参考方向与实际方向一 致, 电流为正值; 反之, 电流为负值, 如图1.2所示。 这样就 可以把电流看成一个代数量了, 它既可以为正, 也可以为负。 由此看来,设定的参考方向是确定电流为正的标准, 因此参考 方向也称为正方向。除了用箭头表示电流的参考方向外,也可 用双下标表示,如Iab 就表示电流的参考方向是从a点指向b点。 当参考方向改变时有Iab=-Iba 。不设定参考方向而谈电流的正负 是没有意义的。
第1章 电路的基本概念和定律
电电电电
a
电电电电 元元
b a
第1章 电路分析基础
R0 US
+
U RL
U/V
U= US
电 流 源
_
_
0
b 电压源电路
I/A
理想电压源的外特性
当实际电压源的内阻 R0 0(相当于短路)时,U = US 为一定 值,此时通过电压源的电流I 则由负载电阻 RL 和 U 共同确定,这样 的电源称为理想电压源简称电压源。
电 流 源
a
I
I/A I=IS RL U/V
I1 R1 I6
b
I2
支路:共 ?条
节点:共 ?个
6条 4个
7个
a I4 I3
R6 I5 US4 +U
c
回路:共 ?个
R5
d _ R3
独立回路:?个
S3
有几个网眼就有几个独立回路
3. 基尔霍夫电流定律KCL
用来描述电路中各部分电压或各部分电流间的关系,其中包括 基氏电流定律(KCL)和基氏电压定律(KVL)两个定律。
所以,从 P 的 + 或 - 可以区分器件 的性质,或是电源,或是负载。
检验学习结果
1. 电路由哪几 部分组成?试 述电路的功能 。 2. 电路元件与实 体电路器件不何 不同?何谓电路 模型?
3. 为何要引入 参考方向?参 考方向与实际 方向有何联系 与区别?
4. 如何判别元件 是电源还是负载 ?
(2) 电压 ☆ 电压是电路中产生电流的根本原因。 ☆ 电压等于电路中两点电位之差。 ☆ 电路中a、b两点间的电压定义为单位正电
荷由a点移至b点电场力所做的功。
uab
dwab dq
或
U ab
Wab Q
大写 U 表示直流电压,小写 u 表示电压的一般符号 电压的单位及换算:1V=103mV=10-3KV
电工第一章电路分析基础
相当于电源
三、 电路的工作状态
全电路欧姆定律
1、电路的负载状态
1)电压电流关系
I a S
E I R0 R
U E R0 I E
电源外特性
R
R0
c E
-
.
U
b
负载状态
2)功率关系
如果将电压电流关系两端同时乘以I则可得:
IU IE I R0
2
P=UI——负载消耗功率; PE=IE——电源产生的功率;
二、用支路电流法分析电路的一般步骤
1)在电路图上,标出电流、 电压、电动势等各物理量的参 考方向。 2)对(n-1)个独立节点列写 KCL方程 对节点a列出
c
US1
R1 I1 I3
第一章
电路分析基础
8学时
1-1 电路的基本概念
一、电路的组成及作用
电源 中间环节 负载
强电电路:处理的是电 能,即实现电能的传输 与转换
信 号 源
弱电电路:处理的是信号, 即实现信号的传递与处 理
强、弱电电路中的物理量 都是电流、电压
即:电路由电源(信号源)、 负载、中间环节等组成
二、电路中的基本物理量与参考方向
任 意 电 路
I U c
任 意 电 路
I U d
任 意 电 路
P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W
相当于电源
相当于负载 相当于负载
电动势(电源)的实际方向:是由低电位指向高电位, 即电位升高的方向。正好与电压的实际方向相反。
E ——直流电动势
三、 电路的工作状态
全电路欧姆定律
1、电路的负载状态
1)电压电流关系
I a S
E I R0 R
U E R0 I E
电源外特性
R
R0
c E
-
.
U
b
负载状态
2)功率关系
如果将电压电流关系两端同时乘以I则可得:
IU IE I R0
2
P=UI——负载消耗功率; PE=IE——电源产生的功率;
二、用支路电流法分析电路的一般步骤
1)在电路图上,标出电流、 电压、电动势等各物理量的参 考方向。 2)对(n-1)个独立节点列写 KCL方程 对节点a列出
c
US1
R1 I1 I3
第一章
电路分析基础
8学时
1-1 电路的基本概念
一、电路的组成及作用
电源 中间环节 负载
强电电路:处理的是电 能,即实现电能的传输 与转换
信 号 源
弱电电路:处理的是信号, 即实现信号的传递与处 理
强、弱电电路中的物理量 都是电流、电压
即:电路由电源(信号源)、 负载、中间环节等组成
二、电路中的基本物理量与参考方向
任 意 电 路
I U c
任 意 电 路
I U d
任 意 电 路
P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W
相当于电源
相当于负载 相当于负载
电动势(电源)的实际方向:是由低电位指向高电位, 即电位升高的方向。正好与电压的实际方向相反。
E ——直流电动势
第一章 电路分析基础
u0
u
电流源不能开路!
例1.10: 计算各元件的功率。
i
解:
2A
i iS 2 A
u 5V
产生
5V
u
_
满足:P(产)=P(吸)
+
+
_
P2 A iS u 2 5 10W
P5V uS i 5 2 10W
吸收
实际电流源 i
伏安特性:
iS
i
u i iS RS
色码电阻
色别 黑 数字 0 误差 棕 1 红 2 橙 3 黄 4 绿 5 蓝 6 紫 7 灰 8 白 9 金 银 本色 I II III 5 10 20
有效数值 ‘0’的个数 1 2 3 4 误差等级 7 5 0
±5 %
6 8 0 0 = 6.8K
±10 %
二. 电阻元件的特性
参考方向与真实方向的关系
a
I(DC) i
(AC)
b b
I1 I2 b b
计算 结果
>0 一致 <0 相反
例1.1: 如何表示1A的电流从a点流向b点。
a
解:
a
a
I1=1A
I2= -1A 电流表
4.电流的测量 电流表要串联接入
被测量支路
电流表
二.电压
1. 电压的大小和极性
(1) 电压大小: 单位正电荷从 a点移到 b 点所获得的能量 u(t)=dw/dq (2) 电压极性: 高电位指向低电位,即电 压降方向。 (3) 电压的单位: 伏特(V) 1V=1000mV 1mV=1000uV
5i1 +
u+
1
解:
电路分析基础第一章
1.理想电压源
1.1 基本性质:(1)端电压是定值或是固定的时间函 数,与流过的电流无关;(2)流过电压源的电流 由与之相连接的外电路决定。
u
1.2 伏安特性
o
us
us
i
u
us
Us
+ -
i
i
i1
i2
输出电压u0 u s与电阻R1、R2无关, 但流过电源的电流i 与R1、R2 有关。
时变(time-varying),非时变(time-invariant) 非时变:伏安特性曲线不随时间而变化。
u
t1 t2
O
u
t1 t2
i
O
i
2.电压电流关系
A
i
u
30 20 10 -20 -10
v
i/mA
B
正向特性
二极管 二极管具有单向导电性。
-2 O 0.5 -4 -6 反向特性 i/uA
dq i (t ) dt
1.电流(current)及其参考方向
方向:正电荷流动的方向。 表示:箭头,双下标 iAB 。
A
i
元件
B
1.2 电流的参考方向(reference direction)
任意选定的方向(正方向)。
根据计算结果确定电流的真实方向
若 i0
真实方向与参考方向一致
i0
真实方向与参考方向相反
i1
A i2 B
i3
C
i6 i1 i3
对于D节点:
(1) (2)
i4
i5
D
i6
i4 i5 i6
电路分析第一章集总参数电路中电压、电流的约束关系
根据电流源的性质得电流i2a为求出电流源的功率必须首先计算电流源的端压u由kvl得电流源的端电压为u252v12v故电流源的功率为12v2a24w0为产生功率故电阻的功率5w20w0为吸收功率电压源的功率2v2a4w0为吸收功率求电流源的功率必须计算电流源的端电压2a小结恒压源恒流源ab的大小方向均是恒定的外电路对ab无影响
1.性质:入门性技术基础课。 2.内容:研究电路组成、定律、定理和分析方法。 3.授课时间:本学期 4.授课内容:一、总论和电阻电路的分析(1、2、3、4) 二、动态电路的时域分析(6、7、) 工三、动态电路的相量分析法和S域分析法(9、10) 3.实验地点:6号楼101电路实验室
三、学习方法:
重视听课;抓概念、抓规律;重视作业实验 作业要认真、规范(必须抄题,画电路图; 按解题步骤一步步求解)
◆在电路分析中,常将理想电路元件简称为电
路元件。常用的电路元件只有几种,它们可以 用来表征千千万万种实际器件。
2. 连线模型—— 理想导线 导线电阻、电感、电容近似为零。 3.理想电路元件的特点 (1)在不同的工作条件下,同一实际器件可 用一种或几种理想电路元件近似表征。 具有相近电磁性能的实际器件,也可用同 一种理想电路元件近似表征。 (2)理想电路元件都有各自精确的数学定义, 在电路图中用规定的符号表示。
1-2 电路变量 电流、电压及功率
一、电流 i
i
1. 定义:单位时间内流过导体横截面的电荷量。
dq 2. 定义式: i(t ) dt
电流 大小 方向
说明:
(1)方向:正电荷移动的方向。 (2)大小方向不随时间变化叫直流。DC 大小方向都随时间变化叫交流。AC (3)符号意义:大写 U、I ——表示直流 小写 u、i ——表示交流
1.性质:入门性技术基础课。 2.内容:研究电路组成、定律、定理和分析方法。 3.授课时间:本学期 4.授课内容:一、总论和电阻电路的分析(1、2、3、4) 二、动态电路的时域分析(6、7、) 工三、动态电路的相量分析法和S域分析法(9、10) 3.实验地点:6号楼101电路实验室
三、学习方法:
重视听课;抓概念、抓规律;重视作业实验 作业要认真、规范(必须抄题,画电路图; 按解题步骤一步步求解)
◆在电路分析中,常将理想电路元件简称为电
路元件。常用的电路元件只有几种,它们可以 用来表征千千万万种实际器件。
2. 连线模型—— 理想导线 导线电阻、电感、电容近似为零。 3.理想电路元件的特点 (1)在不同的工作条件下,同一实际器件可 用一种或几种理想电路元件近似表征。 具有相近电磁性能的实际器件,也可用同 一种理想电路元件近似表征。 (2)理想电路元件都有各自精确的数学定义, 在电路图中用规定的符号表示。
1-2 电路变量 电流、电压及功率
一、电流 i
i
1. 定义:单位时间内流过导体横截面的电荷量。
dq 2. 定义式: i(t ) dt
电流 大小 方向
说明:
(1)方向:正电荷移动的方向。 (2)大小方向不随时间变化叫直流。DC 大小方向都随时间变化叫交流。AC (3)符号意义:大写 U、I ——表示直流 小写 u、i ——表示交流
电路分析基础第一章
在电路分析过程中电流的参考方向是可以任意 假定的,通常将选定的参考方向称为电流的正方 向。
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dW dW d q p ui dt dq dt
(1 6)
与电压电流是代数量一样,功率也是一个代数量。当
p(t)>0时,表明该时刻二端元件实际吸收(消耗)功率;当
p(t)<0时,表明该时刻二端元件实际发出(产生)功率。
由于能量必须守恒,对于一个完整的电路来说,在任
一时刻,所有元件吸收功率的总和必须为零。若电路由b个
电路由电路元件相互连接而成。在叙述基尔霍夫定律
之前,需要先介绍电路的几个名词。
(1) 支路:一个二端元件视为一条支路,其电流和电 压分别称为支路电流和支路电压。下图所示电路共有6条支 路。
(2) 结点:电路元件的连接点称为结点。
图示电路中,a、b、c点是结点,d点和e点间由理想导线相 连,应视为一个结点。该电路共有4个结点。
电路中任一电流有两种可能的参考方向,当对同一电 流规定相反的参考方向时,相应的电流表达式相差一个负 号,即
iab iba
(1 2)
今后,在分析电路时,必须事先规定电流变量的参考 方向。所计算出的电流i(t)>0,表明该时刻电流的实际方向 与参考方向相同;若电流i(t)<0,则表明该时刻电流的实际 方向与参考方向相反。
在实际应用中感到这些 SI 单位太大或太小时,可以加
上表1-4中的国际单位制的词头,构成SI的十进倍数或分数 单位。
例如
2mA 2 10 3 A 2μ s 2 10 6 s 8kW 8 10 3 W
例1-1 ) 回路:由支路组成的闭合路径称为回路。
图示电路中 {1,2}、{1,3,4}、{1,3,5,6}、{2,3,4}、
{2,3,5,6}和{4,5,6}都是回路。
(4) 网孔:将电路画在平面上内部不含有支路 的回路,称为网孔。
图示电路中的{1,2}、{2,3,4}和{4,5,6}回路 都是网孔。
参考方向,也就是说,当电压的参考极性已经规定时,电 流参考方向从“ + ”指向“ - ” ,当电流参考方向已经 规定时,电压参考极性的“ + ”号标在电流参考方向的 进入端, “ - ”号标在电流参考方向的流出端。
三、电功率
下面讨论图示二端元件和二端网络的功率。
当电压电流采用关联参考方向时,二端元件或二端网 络吸收的功率为
电流参考方向
习惯上把正电荷移动的方向规定为电流方向(实际方
向)。在分析电路时,往往不能事先确定电流的实际方向,
而且时变电流的实际方向又随时间不断变动,不能够在电 路图上标出适合于任何时刻的电流实际方向。为了电路分 析和计算的需要,我们任意规定一个电流参考方向,用箭 头标在电路图上。若电流实际方向与参考方向相同,电流
电压参考方向或参考极性
习惯上认为电压的实际方向是从高电位指向低电位。将
高电位称为正极,低电位称为负极。与电流类似,电路中各
电压的实际方向或极性往往不能事先确定,在分析电路时, 必须规定电压的参考方向或参考极性,用“ + ”号和“ ”号分别标注在电路图的a点和b点附近。若计算出的电压 uab(t)>0,表明该时刻a点的电位比b点电位高;若电压 uab(t)<0,表明该时刻a点的电位比b点电位低。
参考书目
[1] 狄苏尔 C A ,葛守仁著,电路基本理论. 林争辉, 译․․北
京:人民教育出版社,1979年.
[2] Chua Leon O, Desoer C A, Kuh E S. Linear and
Nonlinear Circuits. McGraw-Hill Inc. , 1987
[3] Dorf Richard C, Svoboda James A. Introduction to Electric Circuits,John Wiley & Sons, Inc. , 1996 [4] 李瀚荪编․电路分析基础(第三版)․北京:高等教育出 版社, 1994.
图1-2 晶体管放大电路
(a)实际电路 (b)电原理图 (c)电路模型 (d)拓扑结构图
电路模型近似地描述实际电路的电气特性。根据实际 电路的不同工作条件以及对模型精确度的不同要求,应当 用不同的电路模型模拟同一实际电路。现在以线圈为例加 以说明。
图1-3 线圈的几种电路模型 (a)线圈的图形符号 (b)线圈通过低频交流的模型 (c)线圈通过高频交流的模型
取正值;若电流实际方向与参考方向相反,电流取负值。
根据电流的参考方向以及电流量值的正负,就能确定电流 的实际方向。
例如在图示的二端元件中,每秒钟有2C正电荷由a点移 动到b点。
当规定电流参考方向由a点指向b点时,该电流i=2A,如
图(a)所示;若规定电流参考方向由b点指向a点时,则电流i=2A,如图(b)所示。若采用双下标表示电流参考方向,则写 为iab=2A或iba=-2A。
dq i dt
电流的SI单位是安[培](A)。
(1 1) -
与电流有关的几个名词
恒定电流: 量值和方向均不随时间变化的电流,称为恒定电流, 简称为直流(dc或DC),一般用符号I表示。 时变电流: 量值和方向随时间变化的电流,称为时变电流,一般用 符号i表示。时变电流在某一时刻t的值i (t) ,称为瞬时值。 交流电流: 量值和方向作周期性变化且平均值为零的时变电流, 称为交流电流,简称为交流(ac或AC)。
将电路中任一点作为参考点,把a点到参考点的电压称 为a点的电位,用符号va或Va表示。在集总参数电路中,元 件端钮间的电压与路径无关,而仅与起点与终点的位置有
关。电路中a点到b点的电压,就是a 点电位与b点电位之差,
即
uab va vb
(1 4)
量值和方向均不随时间变化的电压,称为恒定电压或 直流电压,一般用符号U表示。量值和方向随时间变化的 电压,称为时变电压,一般用符号u表示。
[5] 胡翔骏主编․电路基础.․北京:高等教育出版社, 1996.
[6] 胡翔骏编著․计算机辅助电路分析. 北京:高等教育出版社
(中国),柏林:施普林格出版社( 德国),1998.
[7] 胡翔骏主编․电路分析教学指导书.․北京:高等教育出版社, 2002. [8] 胡翔骏编 电路基础简明教程. 北京:高等教育出版社, 2004. [9] 胡翔骏编 电路基础简明教程教学指导. 北京:高等教育出 版社,2004.
2.由电阻器、电容器、线圈、变压器、晶体管、运算 放大器、传输线、电池、发电机和信号发生器等电气器件 和设备连接而成的电路,称为实际电路。
电容器
根据实际电路的几何尺寸(d)与其工作信号波长(λ)的 电池关系,可以将它们分为两大类:
(1)集总参数电路:满足d<<λ条件的电路。 晶体管
(2)分布参数电路:不满足d<<λ条件的电路。 电阻器 说明: 线圈 运算放大器 本书只讨论集总参数电路,今后简称为电路。
§1-2 电路的基本物理量
电路的特性是由电流、电压和电功率等物理量来描述
的。电路分析的基本任务是计算电路中的电流、 电压和电
功率。
一、电流和电流的参考方向
带电粒子(电子、离子)定向移动形成电流。电子和负 离子带负电荷,正离子带正电荷。电荷用符号q或Q表示, 它的SI单位为库[仑]( C )。
单位时间内通过导体横截面的电荷定义为电流,用符 号i 或I表示,其数学表达式为
二端元件组成,且全部采用关联参考方向,则
u i
k 1
b
k k
0
(1 7)
二端元件或二端网络从t0到t时间内吸收的电能为
W (t 0 , t ) p( ) d u( )i ( ) d
t0 t0
t
t
(1 8)
功率的SI单位是瓦[特](W)。
表1-3 列出部分国际单位制的单位,称为SI单位。
网孔与平面电路的画法有关,例如将图示电路中的支
路1和支路2交换位置,则三个网孔变为
{1,2}、{1,3,4}和{4,5,6}。
{1,2}、{2,3,4}和{4,5,6}是网孔。
对于二端元件而言,电压的参考极性和电流参考方向
的选择有四种可能的方式,如图1-7所示。
(a)、(b) 关联参考方向
(c)、(d) 非关联参考方向
图1-7 二端元件电流、电压参考方向
(a)、(b) 关联参考方向
(c)、(d) 非关联参考方向
图1-7 二端元件电流、电压参考方向
为了电路分析和计算的方便,常采用电压电流的关联
低频信号发生器的内部结构
电容器
变压器
电阻器
3.电路分析与电路综合
电路分析 实际电路 电路模型 计算分析 电气特性
电路综合
4.目的:通过对电路模型的分析计算来预测实际电路
的特性,从而改进实际电路的电气特性和设计出新的电路。
5.任务:掌握电路的基本理论和电路分析的方法。
电路一词的两种含义: (1) 实际电路; (2) 电路模型。 6. 电路模型是实际电路抽象而成,它近似地反映实际 电路的电气特性。电路模型由一些理想电路元件用理想导
Uab 4V ~ 4V
§1-3 基尔霍夫定律
基尔霍夫定律是任何集总参数电路都适用的基本定律, 它包括电流定律和电压定律。基尔霍夫电流定律描述电路 中各电流的约束关系,基尔霍夫电压定律描述电路中各电
压的约束关系。
一、电路的几个名词 二、基尔霍夫电流定律 三、基尔霍夫电压定律
一、电路的几个名词
二、电压和电压的参考极性
电荷在电路中移动,就会有能量的交换发生。单位正 电荷由电路中a点移动到b点所获得或失去的能量,称为ab 两点的电压,即
dW u dq
(1 3)
其中dq为由a点移动到b点的电荷量,单位为库[仑](C), dW为电荷移动过程中所获得或失去的能量,其单位为焦 [耳](J),电压的单位为伏[特](V)。