【2020精编】广西贵港市2018年中考数学试题(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广西贵港市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.
1.(3.00分)﹣8的倒数是()
A.8 B.﹣8 C.D.
2.(3.00分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()
A.2.18×106B.2.18×105C.21.8×106D.21.8×105
3.(3.00分)下列运算正确的是()
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5
4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.
5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1
6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3
7.(3.00分)若关于x的不等式组无解,则a的取值范围是()
A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
8.(3.00分)下列命题中真命题是()
A.=()2一定成立
B.位似图形不可能全等
C.正多边形都是轴对称图形
D.圆锥的主视图一定是等边三角形
9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()
A.24°B.28°C.33°D.48°
10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()
A.16 B.18 C.20 D.24
11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()
A.6 B.3 C.2 D.4.5
12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()
A.1 B.2 C.3 D.4
二、填空题(本大题共6小题,每小题3分,共18分
13.(3.00分)若分式的值不存在,则x的值为.
14.(3.00分)因式分解:ax2﹣a=.
15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.
16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.
17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).
18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().
三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;
(2)解分式方程:+1=.
20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.
(1)求k和n的值;
(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y 的取值范围.
22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;
(2)将条形统计图补充完整;
(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.
23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但
有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.
(1)这批学生的人数是多少?原计划租用45座客车多少辆?
(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?
24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;
(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.
25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.
(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;