第八章 凸轮机构第三节 凸轮机构的工作过程

合集下载

电子课件-《机械基础(第六版)》-A02-3658 8第八章 凸轮机构

电子课件-《机械基础(第六版)》-A02-3658 8第八章  凸轮机构

§8—2 凸轮机构的类型
3.平底从动件
4.曲面从动件
易于形成楔形 油膜,润滑较好
可避免因安装位置偏 斜或不对中而造成的表 面应力过大和磨损增大
第八章 凸轮机构
§8—3 凸轮机构工作过程 及从动件运动规律
一、凸轮机构工作过程
凸轮回转时,从动件作“升—停—降—停”的运动循环
1.升
2.停
3.降
4.停
§8—1 凸轮机构概述
二、凸轮机构的特点 1.优点
结构简单紧凑,工作可靠,设计适当的凸轮 轮廓曲线可使从动件获得任意预期的运动规律
2.缺点
凸轮与从动件(杆或滚子)之间以点或线接触, 不便于润滑,易磨损,只适用于传力不大的场合
第八章 凸轮机构
§8—2 凸轮机构的类型
一、凸轮的类型
1.盘形凸轮
2.移动凸轮
凸轮机构是由凸 轮、从动件和机 架三个基本构件 组成的高副机构
Hale Waihona Puke §8—1 凸轮机构概述自动车床走刀机构
当凸轮回转时,其曲线凹槽驱使从动件绕
O 点摆动。从动件另一端的扇形齿轮与刀架
下的齿条相啮合,使刀架实现进刀和退刀
§8—1 凸轮机构概述
靠模车削机构
当工件回转时,刀架向左运动,并且在凸轮(靠模板)的 推动下作横向运动,从而切削出与靠模板曲线一致的工件
知识链接
凸轮常用材料
在低速、中小载荷等一般场合下,凸轮材料常 采用45钢、40Cr,并进行表面淬火(硬度为40 ~50HRC)。也可采用15钢、20Cr、20CrMnTi ,并进行渗碳淬火(硬度为56~62HRC)
第八章 凸轮机构
制作:王希波
机械基础
第八章 凸轮机构
第八章 凸轮机构

机械原理凸轮机构设计

机械原理凸轮机构设计

凸轮机构的设计一、简介凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。

因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。

凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。

凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。

二、凸轮机构的工作原理由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。

凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。

尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。

为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。

具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。

一般情况下凸轮是主动的,但也有从动或固定的凸轮。

多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。

凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。

它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。

但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。

一、工作过程和参数在凸轮机构中最常见的运动形式为凸轮机构作等速回转运动,从动件往复移动。

以图6-8为例(对心外轮廓盘形凸轮机构)。

首先介绍一下本图中各构件的名称。

1,运动分析:停CA4ϕ2、参数①推程(升程)-- 从动件自最低位置升到最高位置的过程 ②推程角(升程角)--推动从动件实现推程时的凸轮转角(ϕ1) ③回程 -- 从动件自最高位置升到最低位置的过程 ④回程角 --从动件从最高位置回到最低位置时的 凸轮转角(ϕ3)⑤远停角(远休止角)从动件在最高位置停止不动,与此对应的凸轮转角。

凸轮机构的工作原理特点及应用

凸轮机构的工作原理特点及应用

凸轮机构的工作原理特点及应用一、凸轮机构的工作原理凸轮机构是一种将圆周运动转化为复杂直线运动的机械装置。

它包括凸轮和随之运动的从动件。

凸轮是一个具有不规则形状的旋转零件,通过凸轮的不规则形状,使从动件在运动过程中产生复杂的直线运动。

凸轮机构的工作原理可以简单描述为以下几个步骤:1.凸轮进行旋转运动;2.从动件由于凸轮的不规则形状而产生直线运动;3.从动件进行线性运动,完成特定的工作。

凸轮机构的工作原理主要基于凸轮的几何形状的变化。

通过不同形状的凸轮,可以实现不同的直线运动,从而适应不同的工作需求。

凸轮的几何形状可以通过计算和仿真进行设计,以确保从动件的运动满足特定的要求。

二、凸轮机构的特点凸轮机构具有以下几个特点:1.复杂的运动控制:凸轮机构可以通过设计不同形状的凸轮实现复杂的直线运动。

这使得凸轮机构在一些需要精确控制运动轨迹的应用中非常有用。

2.高效的能量转换:凸轮机构通过圆周运动转换为直线运动,实现了能量的高效转换。

相比于其他机械装置,凸轮机构能够更高效地利用能源。

3.稳定性和可靠性:凸轮机构的结构相对简单,因此具有较高的稳定性和可靠性。

凸轮的旋转运动相对平稳,从动件的直线运动也相对稳定,适用于长时间工作和高频率运动的场景。

4.易于维护和调整:凸轮机构的结构相对简单,凸轮和从动件相互作用的方式也比较清晰明了。

这使得凸轮机构在维护和调整方面较为便捷,可以快速进行修理和替换。

三、凸轮机构的应用凸轮机构在工业生产和日常生活中有广泛的应用。

以下列举了几个常见的凸轮机构应用场景:1.发动机气门控制:凸轮机构在内燃机中的应用非常常见。

凸轮机构通过控制气门的开闭动作,调节气门打开和关闭的时间和幅度,以实现燃油和空气的混合物进入和废气回收。

这对于内燃机的性能和燃烧效率非常重要。

2.彩铃制造:凸轮机构在手机和电子设备中的应用也比较常见。

通过凸轮机构,手机可以实现不同声音和音调的响铃,提供更加丰富多样的用户体验。

机械设计基础凸轮机构

机械设计基础凸轮机构

机械设计基础凸轮机构凸轮机构是机械设计中常见的一种机构,用于实现转动运动和直线运动的转换。

它由凸轮和连杆机构组成,具有简单、可靠、紧凑的优点。

本文将介绍机械设计基础凸轮机构的工作原理、应用领域以及设计要点。

一、凸轮机构的工作原理凸轮机构是通过凹凸轮运动对连杆机构施加力,使其发生直线运动。

凸轮的外轮廓形状决定了连杆机构的运动规律。

凸轮可以分为四种基本形状:圆形、椭圆形、心形和指字形。

不同形状的凸轮在工作过程中会给连杆机构带来不同的速度和加速度。

凸轮机构的工作过程可以分为四个阶段:进给段、暂停段、退出段和暂停段。

在进给段,凸轮逐渐使连杆机构向前运动,实现直线运动。

在暂停段,凸轮暂停与连杆机构接触,使连杆机构停止运动。

在退出段,凸轮逐渐使连杆机构向后运动,实现回程。

最后,在暂停段凸轮继续暂停与连杆机构接触,使连杆机构再次停止。

二、凸轮机构的应用领域凸轮机构广泛应用于机械设计中的各个领域。

以下是几个常见的应用领域:1. 发动机:凸轮机构用于气门控制,通过凸轮来控制气门的开闭,实现燃烧室内的气体进出,从而实现发动机的工作。

2. 压力机:凸轮机构用于控制压力机的上下运动,实现工件的压制或切割。

3. 包装机械:凸轮机构用于控制包装机械的送料、密封和分切等工作,实现自动化包装的功能。

4. 自动化流水线:凸轮机构用于控制流水线上的传送带、工作台等部件的运动,实现产品的加工和组装。

5. 机床:凸轮机构用于控制机床上的工作台、进给机构等部件的运动,实现加工工件的精确定位和运动控制。

三、凸轮机构的设计要点在设计凸轮机构时,需要注意以下几个要点:1. 凸轮的轮廓形状:根据实际需求选择合适的凸轮轮廓形状,确保连杆机构的运动规律符合设计要求。

2. 凸轮与连杆机构的配合方式:凸轮与连杆机构之间应具有良好的配合性能,避免偏差和间隙过大导致机构失效或运动不稳定。

3. 连杆机构的设计:根据实际应用需求设计连杆机构,包括长度、角度和材料等参数的选择,确保机构的工作性能满足要求。

第八章 凸轮机构第三节 凸轮机构的工作过程

第八章 凸轮机构第三节 凸轮机构的工作过程
图 7—8 等加速等减速运动规律位移曲线
式中 a 和ω都是常数,所以位移 s 和转角δ成二次函数的关系,所以,从动件作等加速 等减速运动的位移曲线是抛物线。因此,从动件在推程和回程中的位移曲线是由两段曲 率方向相反的抛物线连成。 (2)等加速等减速运动凸轮机构的工作特点 从动件按等加速等减速规律运动时,速度由零逐渐增至最大,而后又逐步减小趋近 零,这样就避免了刚性冲击,改善了凸轮机构的工作平稳性。因此,这种凸轮机构适合 在中、低速条件下工作。 当从动件运动规律选定后,即可根据该运动规律和其他给定条件(如凸轮转向、基 圆半径等)确定凸轮的轮廓曲线。确定凸轮轮廓曲线的方法有图解法和解析法。图解法 的特点是简便、直观,但不够精确,不过其准确度已足以满足一般机器的工作要求。
平罗县职业教育中心
二、从动件的运动规律
1.等速运动规律 当凸轮作等角速度旋转时,从动件上升或下降的速度为一常数,这种运动规律称为 等速运动规律。 (1) 位移曲线(S—δ曲线) 若从动件在整个升程中的总位移为 h,凸轮上对应的升程角为δ0,那么由运动学可 知,在等速运动中,从动件的位移 S 与时间 t 的关系为: S=v·t 凸轮转角δ与时间 t 的关系为: δ=ω·t 则从动件的位移 S 与凸轮转角δ之间的关系为: v 和ω都是常数,所以位移和转角成正比关系。因此,从动件 作等速运动的位移曲线是一条向上的斜直线。 从动件在回程时的位移曲线则与下图相反,是一条向下的斜直线。 (2)等速运动凸轮机构的工作特点 由于从动件在推程和回程中的速度不变,加速度为零,故运动平稳;但在运动开始 和终止时;从动件的速度从零突然增大到 v 或由 v 突然减为零,此时,理论上的加速 度为无穷大,从动件将产生很大的惯性力,使凸轮机构受到很大冲击,这种冲击称刚 性冲击。随着凸轮的不断转动,从动件对凸轮机构将产生连续的周期性冲击,引起强 烈振动,对凸轮机构的工作十分不利。因此,这种凸轮机构一般只适用于低速转动和 从动件质量不大的场合。 2.等加速、等减速运动规律

机械基础 第八章 凸轮机构

机械基础 第八章 凸轮机构
式分
滚子 从动
图8-5 内燃机的配气机构
凸轮机构概述
凸轮机构是依靠凸轮轮廓直接与从动件接触,迫使从动件作有规律的直线往复运动(直动)或 摆动。这种直动或摆动的运动规律决定了所需凸轮的轮廓形状。
图8-5 内燃机的配气机构
如图8-5所示,为内燃机的配气 机构。当主动件凸轮回转时,使得 气门杆按照一定的要求作上下往复 运动,控制气门的开启与关闭,保 证发动机在工作中定时将可燃混合 气充入气缸,并及时将燃烧后的废 气排出气缸。
式分
滚子 从动

平底 从动

表8-1
图例
凸轮机构的类型
特点
(续表)
从动件的尖端能够与任意复杂的凸轮轮廓保持接 触,从而使从动件实现任意的运动规律。
构造最简单,但易磨损,只适用于作用力不大和 速度较低的场合(如用于仪表等机构中)。
为减小摩擦磨损,在从动件端部安装一个滚轮, 把从动件与凸轮之间的滑动摩擦变成滚动摩擦。因此 ,摩擦磨损较小,可用来传递较大的动力,故这种形 式的从动件应用很广。
1.凸轮
图8-1 自动送料凸轮机构
这种自动送料凸轮 机构,能够完成输送毛 坯到达预期位置的功能, 但对毛坯在移动过程中 的运动没有特殊的要求。
凸轮机构概述
4.线轴
3.线
2.从动件
图8-2 绕线机构
1.凸轮
这种凸轮机构,在运 动中能够推动摆动从动 件2实现均匀缠绕线绳的 运动学要求。
凸轮机构概述
凸轮机构概述
如图8-6所示,为自动车床走刀机构,当具有曲线凹槽的 凸轮回转时,其曲线凹槽的侧面与从动件末端的滚子接触并驱 使从动件绕O点摆动,从动件另一端的扇形齿轮与刀架下的齿条 相啮合,使刀架实现进刀运动和退刀运动。

第八章 凸轮机构

第八章  凸轮机构

第五章 凸轮机构
上一页
下一页
返 回
结 束
§6—2 凸轮机构的工作原理
二、主要参数
1、转角
推程运动角δo:从动件从最近→最远时凸轮转过的角度 远休止角δs:从动件在最远处停止不动时,凸轮的转角。
回程运动角δo′:从动件从最远→最近时凸轮的转 角。
近休止角δs′:从动件在最近处停止不动时,凸轮的转角。
上一页
下一页
返 回
结 束
原理:靠半径的变化推动从动件产生平面运动。
从动件在⊥于凸轮轴线的平面内运动。 应用:一般用于从动件行程或摆动较小的场合。
(2)移动凸轮:盘形凸轮r→∞演变而成。
*移动凸轮通常作往复直线移动 *常用于靠模仿型机械中。
上一页
下一页
返 回
结 束
当盘形凸轮的回转中心趋于无穷远时,即 成为移动凸轮,移动凸轮通常作往复直线移动。
上一页 下一页 返 回 结 束
§8—2 凸轮机构的工作原理
一、凸轮机构的工作过程和有关参数 二、从动件的常用运动规律
第五章 凸轮机构
上一页
下一页
返 回
结 束
节目录
一、凸轮机构的工作过程和有关参数 推程(升程):从动件 从最近→最远的过程。
停程:从动件在最近或 最远处停止不动的过程。 回程:从动件从最远→ 最近的过程。
第八章 凸轮机构
§8—1 凸轮机构概述 §8—2 凸轮机构的工作原理
第五章 凸轮机构
上一页
下一页
返 回
结 束
章目录
教学要求
1.了解凸轮机构的分类、应用及特点。
2.了解凸轮轮廓曲线的画法,熟悉常用 位移曲线的画法。 3、掌握基圆半径、行程、压力角等基本 参数的概念和它们对工作的影响。 4、掌握凸轮从动件的常用运动规律及其 特点和应用。

机械基础凸轮机构教案

机械基础凸轮机构教案

机械基础凸轮机构教案第一章:凸轮机构概述教学目标:1. 了解凸轮机构的定义、分类和应用。

2. 掌握凸轮的形状、尺寸和运动特性的基本知识。

教学内容:1. 凸轮机构的定义和分类。

2. 凸轮的形状和尺寸。

3. 凸轮的运动特性和曲线。

4. 凸轮机构在实际应用中的例子。

教学方法:1. 采用多媒体课件进行讲解。

2. 展示凸轮机构的实物模型或图片。

3. 分析凸轮的运动特性和曲线。

教学活动:1. 引入凸轮机构的定义和分类。

2. 展示凸轮的形状和尺寸的图片。

3. 分析凸轮的运动特性和曲线。

4. 举例说明凸轮机构在实际应用中的例子。

作业与练习:1. 复习凸轮机构的定义和分类。

2. 练习分析凸轮的形状和尺寸。

3. 练习分析凸轮的运动特性和曲线。

第二章:凸轮的设计与制造教学目标:1. 掌握凸轮的设计原则和方法。

2. 了解凸轮制造的工艺和设备。

教学内容:1. 凸轮的设计原则和方法。

2. 凸轮制造的工艺和设备。

教学方法:1. 采用多媒体课件进行讲解。

2. 展示凸轮设计的实例。

3. 分析凸轮制造的工艺和设备。

教学活动:1. 介绍凸轮的设计原则和方法。

2. 展示凸轮设计的实例。

3. 分析凸轮制造的工艺和设备。

作业与练习:1. 复习凸轮的设计原则和方法。

2. 练习分析凸轮制造的工艺和设备。

第三章:凸轮机构的工作原理与分析教学目标:1. 掌握凸轮机构的工作原理。

2. 学会分析凸轮机构的运动特性和性能。

教学内容:1. 凸轮机构的工作原理。

2. 凸轮机构的运动特性和性能分析。

教学方法:1. 采用多媒体课件进行讲解。

2. 演示凸轮机构的运动。

3. 分析凸轮机构的运动特性和性能。

教学活动:1. 介绍凸轮机构的工作原理。

2. 演示凸轮机构的运动。

3. 分析凸轮机构的运动特性和性能。

作业与练习:1. 复习凸轮机构的工作原理。

2. 练习分析凸轮机构的运动特性和性能。

第四章:凸轮机构的应用与实例教学目标:1. 了解凸轮机构在实际应用中的例子。

2. 学会分析凸轮机构的优缺点和适用场合。

9—3凸轮机构工作过程及从动件运动规律

9—3凸轮机构工作过程及从动件运动规律
位移线图
1.等速运动规律(以推程为例)
从动件上升(或下降)的速度为一常数。
等速运动规律
2.等加速等减速运动规律
从动件在行程中先作等加速运动,后作等减速 运动。
等加速等减速运动规律
等加速等减速运动规律位移曲线画法
从动件运动规律的选择原则
当机械的工作过程只要求从动件实现一定的工作 行程,而对其运动规律无特殊要求时,所选择的运 动规律应使凸轮机构具有较好的动力性和易加工性。
当对从动件的运动规律有特殊要求,而凸轮转速 又不太高时,应首先从满足工作需要出发来选择从动 件的运动规律,其次考虑其动力性和是否便于加工。
选择从动件的运动规律时,除了要考虑其冲击特 性外,还应考虑其最大速度、最大加速度和最大位移, 因为它们会从不同角度影响凸轮机构 Nhomakorabea工作性能。
§9—3 凸轮机构工作过程及 从动件运动规律
了解凸轮机构工作过程及从动件运动规律。
若凸轮作等速转动,从动杆作何种运动? 凸轮机构
一、凸轮机构工作过程
凸轮机构中最常用的运动形式为凸轮作等速 回转运动,从动件作往复移动。
凸轮回转时,从动件作“升→停→降→停” 的运动循环。
凸轮机构工作过程
二、凸轮机构从动件常用运动规律

《机械基础》章节内容简介

《机械基础》章节内容简介

《机械基础》章节内容简介绪论【教学内容】1、课程概述2、机器、机构、机械、构件和零件3、运动副4、机械传动第一章带传动1-1带传动的组成、原理和类型【教学内容】1、带传动的组成与原理2、带传动的类型1-2V带传动【教学内容】1、V带传动的组成2、V带传动的主要参数3、V带传动的安装维护与张紧1-3同步带传动简介【教学内容】1、同步带传动的特点2、同步带传动的应用第二章螺旋传动2-1螺纹的种类和应用【教学内容】螺纹的种类和应用2-2普通螺纹的主要参数【教学内容】普通螺纹的主要参数2-3螺纹的代号标注【教学内容】普通螺纹的代号标注梯形螺纹的代号标注管螺纹的代号标注2-4螺旋传动的应用形式【教学内容】1、普通螺旋传动2、差动螺旋传动3、滚珠螺旋传动第三章链传动3-1链传动概述【教学内容】1、链传动的组成、原理2、链传动的传动比3-2链传动的类型【教学内容】1、滚子链的结构、参数2、齿形链的结构、参数第四章齿轮传动4-1齿轮传动的类型及应用【教学内容】1、齿轮传动的类型2、齿轮传动的应用特点4-2渐开线齿廓【教学内容】1、齿轮传动的基本要求2、渐开线的形成及性质4-3渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算【教学内容】1、直齿圆柱齿轮的几何名称2、直齿圆柱齿轮的基本参数3、直齿圆柱齿轮的啮合条件和连续传动条件4-4其他齿轮传动简介【教学内容】1、斜齿轮的形成、啮合条件2、直齿轮的啮合条件3、齿轮齿条传动4-5渐开线齿轮失效形式【教学内容】齿轮常见的失效形式第五章蜗杆传动5-1蜗杆传动概述【教学内容】1、蜗杆传动的组成2、蜗杆的分类3、蜗轮回转方向的判定5-2蜗杆传动的主要参数和啮合条件【教学内容】1、蜗杆传动的主要参数2、蜗杆传动的正确啮合条件5-3蜗杆传动的应用特点【教学内容】蜗杆传动的润滑与散热第六章轮系6-1轮系分类及其应用特点【教学内容】1、轮系的分类2、轮系的特点6-2定轴轮系传动比计算【教学内容】1、传动比的大小2、末轮的回转方向6-3定轴轮系中任意从动齿轮的转速计算【教学内容】从动轮的转速计算第七章平面连杆机构7-1平面连杆机构的特点【教学内容】平面连杆机构的基本介绍7-2铰链四杆机构的组成与分类【教学内容】1、曲柄摇杆机构2、双曲柄机构3、双摇杆机构【教学重点】曲柄摇杆机构的构成条件;双曲柄机构的构成条件;双摇杆机构的构成条件。

凸轮机构

凸轮机构

速度曲线也必须连续。
③尽量减小速度和加速度的最大值。
特点: amax 最小 → 惯性力小。

0
起、中、末点有软性冲击. 适于中低速、中轻载.
低速轻载凸轮机构:
采用圆弧、直线等易于加工的曲线作为凸轮轮廓
曲线,如气门开闭。
高速重载凸轮机构:
①首先考虑动力特性,以避免产生过
大的冲击。 ②为避免刚性冲击,位移曲线和速度 曲线必须连续;而为避免柔性冲击,加
s
2

S
s
2
O

S

O


S

(1)升-停-回-停型(RDRD型) (2)升-回-停型(RRD型)
s
2
s

2
O

S

O



(3)升-停-回型(RDR型)
(4)升-回型(RR型)
二、凸轮从动件的运动规律
• 常用的从动件的运动规律有等速运动规律 和等加速等减速运动规律。
一、等速运动规律 (直线位移运动规律、 一次多项式运动规律)
8.3凸轮机构工作过程及从动件运动规律
• 一、凸轮机构的工作过程 • 凸轮机构中最常用的运动形式为凸轮作 等速回转运动,从动件作往复移动。凸轮 回转时,从动件作升—停—降—停的运动 循环。
圆弧段
圆弧段
圆弧段
基圆(rmin)——以最短向径所作的圆
600 rmin 1200
1200 600
S2
对心尖顶直动从动件 盘形凸轮机构
偏置尖顶直动从动件 盘形凸轮机构
滚子摆动从动件盘形 凸轮机构
沟 槽 凸 轮 重力锁合凸轮
弹 力 锁 合 凸 轮

凸轮机构的工作原理及作用

凸轮机构的工作原理及作用

凸轮机构的工作原理及作用
凸轮机构是一种由凸轮、从动件和机架组成的高副机构,主要用于转换运动形式。

其工作原理主要基于凸轮的旋转或直线运动来驱动从动件进行预定的运动。

凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

凸轮机构常用于将主动构件的连续运动转变为从动构件的往复运动。

只要恰当的设计凸轮廓线,便可使从动构件实现各种复杂的运动要求。

例如,凸轮轴是发动机配气机构的重要组成部分,负责驱动气门按时开启和关闭,有些凸轮轴还具有驱动分电器转动的功能。

此外,凸轮机构也广泛应用于各种机械、仪器和操纵控制装置中。

第八章 凸轮机构

第八章 凸轮机构

第八章习题8-1 设一直动推杆的行程h =32mm,要求推程角,按余弦加速度运动,远停角,回程角,按等速运动,近休止角,计算后绘出推杆的位移曲线。

o 1200=ϕo 30s =ϕo 1500=′ϕo 60s =′ϕ8-2 已知对心尖顶从动件的行程h =50mm,推程角20ٛ=πϕ,凸轮转速min r 600=n 。

若从动件分别按等加速等减速、正弦加速度规律运动,试绘出其从动件位移曲线,并在该线图上标明最大速度的数值及其发生的位置。

8-3 在尖顶对心直动从动件盘形凸轮机构中,图8-33所示从动件的运动规律尚不完整。

试在图上补全各段的ϕϕϕ−−−a v s ,,曲线,并指出哪些位置有刚性冲击?哪些位置有柔性冲击?图8-33 图8-348-4 在对心直动从动件凸轮机构中,已知从动件重力为7.5N,行程h =50mm,从动件的推程时间为s 121,若①尖顶从动件以余弦加速度运动;②尖顶从动件以等加速、等减速规律运动,试比较以上两种运动规律所能达到的最大速度和保证从动件与凸轮接触所需最大的力。

8-5 设凸轮以角速度ω转动,其推程运动角0ϕ和从动件行程h 均为已知。

当从动件按二次多项式运动规律运动时,其最大和最小加速度出现在什么位置?的数值为多大?max a 8-6 在直动从动件盘形凸轮机构中,凸轮按顺时针方向转动,已知行程h =20mm,推程角,基圆半径o 450=ϕmm 50b =r ,偏距,且偏置于使推程压力角减小的一侧。

0mm 2=e 1)试计算等速运动规律时的最大压力角max α;2)假定最大压力角近似出现在从动件速度达到最大值时的位置,试计算等加速等减速、余弦加速度和正弦加速度运动规律时的最大压力角max α。

8-7 在图8-34所示对心平底直动从动件圆盘凸轮机构中,已知圆盘的半径,圆心与转轴中心的距离,试求从动件的运动方程。

当凸轮转速mm 50=R o 90,mm 30===′βO O l a min r 240=n ,试求其最大位移、速度和加速度。

凸轮机构工作过程及从动件运动规律

凸轮机构工作过程及从动件运动规律

提高传动效率,减小速 度波动。
选择凸轮轮廓形状、从 动件类型为优化设计变 量。
考虑制造工艺和使用环 境等方面的限制,制定 相应的优化设计约束条 件。
经过智能优化算法求解 ,得到满足性能要求的 最优解,即凸轮轮廓形 状和从动件类型的最优 组合。与优化前相比, 传动效率提高了10%, 速度波动降低了5%。
规律。
CHAPTER 04
凸轮机构性能评价与优化设 计
凸轮机构性能评价性 和传动精度等方面的指标,如传动比 、传动效率、速度波动等。
动力性能
评价凸轮机构在动力传递过程中的性 能,如驱动力、驱动力矩、动态响应 等。
耐久性能
评价凸轮机构在长期使用过程中的耐 磨性、抗疲劳性等方面的指标,如寿 命、磨损量等。
、减少振动和噪音。
02
采用先进的控制策略
引入先进的控制策略,如PID控制、模糊控制等,可以实现对从动件运
动规律的精确控制。通过调整控制参数,可以优化从动件的运动性能,
提高其响应速度和稳定性。
03
选用高性能材料
采用高性能材料制造从动件和凸轮,可以提高机构的耐磨性、抗疲劳性
和承载能力。这有助于延长凸轮机构的使用寿命,并改善从动件的运动
凸轮机构工作过程实例解析
01
以一个具体的凸轮机构为例,详细解析其工作过程 。
02
分析该凸轮机构的轮廓曲线设计、从动件运动规律 和影响因素等。
03
通过实例解析,加深对凸轮机构工作过程的理解和 掌握。
CHAPTER 03
从动件运动规律研究
从动件位移、速度和加速度变化规律
位移变化规律
在凸轮机构工作过程中,从动件的位移随着凸轮的转动而发生变化。通常,位移曲线呈现 周期性变化,其形状和幅值取决于凸轮的轮廓和尺寸。

解释凸轮运动的四个过程

解释凸轮运动的四个过程

解释凸轮运动的四个过程凸轮是一种机械传动元件,广泛应用于各种机械设备中。

它通过凸轮的旋转运动,能够带动其他零件实现各种复杂的运动功能。

凸轮运动的四个过程包括起始过程、上升过程、持续过程和下降过程。

下面将对这四个过程进行详细解释。

1. 起始过程凸轮运动的起始过程是指凸轮从初始位置开始旋转至起始点的过程。

在起始过程中,凸轮的转动速度逐渐增加,以达到适合后续过程的速度。

起始过程中的凸轮位置可以通过调节凸轮轴的位置和初始转速来控制。

起始过程的长度和速度是根据具体的机械运动需求来确定的。

2. 上升过程凸轮运动的上升过程是指凸轮从起始点开始,凸轮曲面与相关机构接触并开始推动机构上升的过程。

在上升过程中,凸轮曲面的形状决定了机构上升的速度和位移。

凸轮的凸点与机构接触后,机构将会受到凸轮的力推动并上升,直到凸点离开机构。

上升过程中,凸轮的曲面形状应根据机构需要的运动规律来设计,可以是直线上升、加速上升或匀速上升等。

凸轮上升过程的控制可以通过调整凸轮曲面的形状、凸点的位置和凸轮的转速来实现。

3. 持续过程凸轮运动的持续过程是指在凸轮上升过程完成后,凸轮曲面与机构始终接触并保持稳定的过程。

在持续过程中,凸轮的曲面形状和机构的设计决定了机构的运动特性。

通过凸轮曲面的形状设计,可以实现机构的任意曲线运动,如直线运动、圆周运动、椭圆运动等。

持续过程中,凸轮的转动速度和曲面形状的变化将直接影响机构的运动速度和位移。

通过合理设计凸轮曲面和控制凸轮的转速,可以实现复杂的机构运动,满足不同的功能需求。

4. 下降过程凸轮运动的下降过程是指凸轮接触机构结束后,凸轮继续旋转直到下降到初始位置的过程。

在下降过程中,凸轮的转动速度逐渐减小,直至停止。

凸轮下降过程的控制可以通过调节凸轮的转速和凸轮轴的位置来实现。

下降过程中凸轮曲面与机构不再接触,机构将恢复到初始状态或进入下一个阶段的运动。

凸轮的下降过程需要根据凸轮运动系统的需求来设计,以确保凸轮与机构之间的运动顺利结束。

1凸轮机构的工作原理和从动件的运动规律

1凸轮机构的工作原理和从动件的运动规律

分析从动件加 速度与凸轮轮 廓之间的关系
解释从动件加 速度变化对机 构运动的影响
总结从动件运 动规律加速度
特征的意义
从动件运动规律 的应用
在凸轮设计中的应用
确定从动件的运动 规律
选择合适的凸轮机 构类型
设计凸轮的轮廓曲 线
优化凸轮机构参数
在机械系统中的应用
凸轮机构广泛应 用于各种机械系 统中,如内燃机、 压缩机、印刷机 等。
优化方法:采用 新型材料、改进 设计参数、引入 智能控制技术等
实例分析:针对 具体凸轮机构, 分析其运动规律, 提出改进方案并 进行仿真验证
结论:优化后的 凸轮机构在传动 性能、稳定性及 可靠性等方面均 得到显著提升
运动规律的仿真与实验研究
仿真研究:通过计算机模拟技术, 对从动件的运动规律进行模拟分析, 预测其运动性能和优化方向。
从动件运动规律的选用
适用于低速轻载的从动件运动规律 适用于高速重载的从动件运动规律 适用于高精度要求的从动件运动规律 适用于低噪声低震动的从动件运动规律
从动件运动规律 的特性
运动规律的几何特征
运动规律的几何特征包括从动件在 凸轮推动下的位移、速度和加速度 变化。
速度变化则与从动件和凸轮的接触 点有关,该点在凸轮转动过程中的 速度决定了从动件的速度。
从动件的运动规律 可以实现精确的位 置控制和速度控制
在自动化生产线中 ,凸轮机构可以用 于实现工件的传送 、定位和装配等操 作
在机器人领域,凸轮机 构可以用于实现机器人 的手臂、手腕和手指等 关节的运动控制
从动件运动规律 的优化
运动规律的改进与优化
优化目标:提高 凸轮机构的传动 效率、减小振动 和噪声
从动件的常用运动规律

凸轮机原理

凸轮机原理

凸轮机原理
凸轮机是一种机械装置,通过凸轮的运动来传递力量或产生特定的运动。

凸轮机的工作原理是基于凸轮轴的旋转运动,凸轮轴上有一个或多个凸起的凸轮。

当凸轮轴转动时,凸轮与其他机械零件(如摇臂、推杆等)相连,通过凸轮的凸起部分对其他零件施加力,从而产生所需的运动。

内燃机中的凸轮机被广泛应用于控制气门的开闭。

通常,凸轮机通过凸轮轴的旋转运动带动凸轮,凸轮通过凸轮杆和凸轮摇臂连接到气门上。

当凸轮沿着凸轮轴旋转时,凸轮与凸轮摇臂接触,推动凸轮摇臂的运动,进而控制气门的开闭。

凸轮机的形状和凸轮轴的转速可以调整,以实现不同的气门工作模式和效果。

除了内燃机中的应用,凸轮机还可以用于其他机械领域,如机床、纺织机械、工程机械等。

凸轮机的特点是运动灵活可控,且可以根据需要进行设计和改变。

通过调整凸轮的形状和凸轮轴的转速,可以实现不同的运动轨迹和力量传递要求。

总之,凸轮机基于凸轮轴的旋转运动,通过凸轮的凸起部分对其他零件施加力,从而产生所需的运动。

通过调整凸轮的形状和凸轮轴的转速,可以实现不同的运动模式和效果。

凸轮机在各种机械装置中被广泛应用,是一种重要的力量传递和运动控制装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 凸轮机构的工作过程及从动件运动规律




一、凸轮机构工作过程
凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动 凸轮回转时,从动件作“升→停→降→停”的运动循环。
ห้องสมุดไป่ตู้
平罗县职业教育中心
s v

基圆:以凸轮轮廓最小半径 rb 所作的圆 推程:从动件经过轮廓AB段,从动件被推到最高位置 推程角:角δ0,这个行程称为,δ2称为 回程:经过轮廓CD段,从动件由最高位置回到最低位置; 回程角:角δ2 远停程角:角δ1 近停程角:角δ3
图 7—8 等加速等减速运动规律位移曲线
式中 a 和ω都是常数,所以位移 s 和转角δ成二次函数的关系,所以,从动件作等加速 等减速运动的位移曲线是抛物线。因此,从动件在推程和回程中的位移曲线是由两段曲 率方向相反的抛物线连成。 (2)等加速等减速运动凸轮机构的工作特点 从动件按等加速等减速规律运动时,速度由零逐渐增至最大,而后又逐步减小趋近 零,这样就避免了刚性冲击,改善了凸轮机构的工作平稳性。因此,这种凸轮机构适合 在中、低速条件下工作。 当从动件运动规律选定后,即可根据该运动规律和其他给定条件(如凸轮转向、基 圆半径等)确定凸轮的轮廓曲线。确定凸轮轮廓曲线的方法有图解法和解析法。图解法 的特点是简便、直观,但不够精确,不过其准确度已足以满足一般机器的工作要求。
平罗县职业教育中心
本章小结 1.凸轮机构的类型及其应用特点。 2.凸轮机构从动件常用运动规律的工作特点。 作业 p104 练习 1—3
在平时的教学中,要培养学生“问题提出”的意识及能力,我认为要注重做到以下 几点: 1.营造适合“问题提出”的民主环境。 2.减轻学生负担,留足发展“问题提出”能力的时空。 3.倡导多向怀疑。 教 学 反 思 4.鼓励大胆发问。 总之,在今后的教学中,要更好的考虑怎样培养学生提出有价值问题的能力,让 学生带着问题走进课堂,带着更深刻、甚至更多的问题走出课堂,这样才能更好地培 养学生的创新能力,而不把学生培养成为驯服的工具。
平罗县职业教育中心
二、从动件的运动规律
1.等速运动规律 当凸轮作等角速度旋转时,从动件上升或下降的速度为一常数,这种运动规律称为 等速运动规律。 (1) 位移曲线(S—δ曲线) 若从动件在整个升程中的总位移为 h,凸轮上对应的升程角为δ0,那么由运动学可 知,在等速运动中,从动件的位移 S 与时间 t 的关系为: S=v·t 凸轮转角δ与时间 t 的关系为: δ=ω·t 则从动件的位移 S 与凸轮转角δ之间的关系为: v 和ω都是常数,所以位移和转角成正比关系。因此,从动件 作等速运动的位移曲线是一条向上的斜直线。 从动件在回程时的位移曲线则与下图相反,是一条向下的斜直线。 (2)等速运动凸轮机构的工作特点 由于从动件在推程和回程中的速度不变,加速度为零,故运动平稳;但在运动开始 和终止时;从动件的速度从零突然增大到 v 或由 v 突然减为零,此时,理论上的加速 度为无穷大,从动件将产生很大的惯性力,使凸轮机构受到很大冲击,这种冲击称刚 性冲击。随着凸轮的不断转动,从动件对凸轮机构将产生连续的周期性冲击,引起强 烈振动,对凸轮机构的工作十分不利。因此,这种凸轮机构一般只适用于低速转动和 从动件质量不大的场合。 2.等加速、等减速运动规律
平罗县职业教育中心
平罗县职业教育中心教案
课 程 名 称 授课 时间 授课 对象
第八章 凸轮机构第三
节 凸轮机构的工作过程
2016 年 11 月 23 日 16 级 21 班
授课教师
任学兵
课时序号
51-52
掌握凸轮机构的从动件运动规律。 教学 目的
教 学 重 点 教学 难 点 教学 方式
从动件运动规律 从动件运动规律 黑板画图,PPT 教 挂 具 图
三、凸轮机构轮廓曲线的画法
1.“反转法”作图方法 凸轮轮廓曲线作图的方法是“反转法”。为了作图方便起见,可以看成凸轮在图纸 上不转动,而将从动件的位置看成是相反于凸轮的旋转方向转动,并以此方向作图,这 就是“反转法”。这种方法的优点是容易作图。 2.轮廓曲线画法步骤 (1)先画出从动件的位移曲线图。用凸轮转角作横坐标,以从动件的位移作纵坐标, 由从动件的运动规律作出位移曲线,如图 b 所示。 (2)再画凸轮轮廓曲线。在凸轮基圆上作等分角线,用“反转法”以与位移曲线相同 的比例截取各对应点(位移行程),连接各点,即可得凸轮轮廓曲线。如图 a 所示。
平罗县职业教育中心
s s 1a 2 2 at 2 2 2
当凸轮作等角速度旋转时,从动件在升程(或回程)的前半程作等加速运动,后半程 作等减速运动。这种运动规律称为等加速等减速运动规律。 (1)位移曲线(S—δ曲线) 由运动学可知,当物体作初速度为零 的等加速度直线运动时,物体的位移方程: 在凸轮机构中,凸轮按等角速度ω旋转, 凸轮转角δ与时间 t 之间的关系为 t=δ/ω 则从动件的位移 S 与凸轮转角δ之间的关 系为:
相关文档
最新文档