因数与倍数教材分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《因数与倍数》教材分析

“因数与倍数”这一单元的知识是学生学习数学不可或缺的基础。之前,学生已经学习了一定的整数知识,如整数的认识、整数的四则混合运算及其应用。本单元将进一步认识整数的性质,主要学习内容包括:因数与倍数,2、5和3的倍数的特征,质数与合数。因数、倍数、质数、合数等概念以及最大公因数、最小公倍数等内容都是初等数论的基础知识。数学一直被誉为“科学的皇后”,而数论更被誉为“数学的皇后”。单元的知识作为数论知识的基础,是小学数学教材中的重要内容。一方面,学习分数,特别是学习约分、通分,需要以因数、倍数的概念为基础,进一步掌握公因数、最大公因数和公倍数、最小公倍数的概念,需以质数、合数的概念为基础,同时掌握2、5和3的倍数的特征。另一方面,学习了本单元的知识,能使学生加深对整数与整数除法的认识,加之这些知识比较抽象,而且概念间的联系非常紧密,所以也有助于发展学生的数学思维。

一、与实验教材(《义务教育课程标准实验教科书数学五年级》,下同)的主要区别

1.与实验教材相比,修订后的教材不再出现整除的概念,因数和倍数的概念由整数除法算式引出,而不是乘法,这样便

于学生感知因数与倍数的本质内涵,领悟这两个概念不是针对整数乘法,而是反映整数除法中余数为0的情况,为后页1 第

面找一个数的因数和倍数做准备。

2.与实验教材相比,修订后的教材更加明确了因数与倍数的相互依存的关系。

3.与实验教材相比,在学习2、5、3的倍数的特征时,修订后的教材均采用了百数表,这样使学生的探究学习更加开放,有利于提高学生独立学习的能力和发展学生的创造性思维。

4.与实验教材相比,修订后的教材增加了两数之和的奇偶性的探讨,让学生在探究过程中获得数学活动的经验,丰富解决问题的策略。

二、教材例题分析

(一)因数和倍数

例1:因数和倍数的概念

例1教材给出9个除法算式,让学生试着分类;接着出示以“商是整数且没有余数”为分类标准分成两类的一种结果。在此基础上由第一类中的整数除法,引出因数和倍数的概念,并举例说明。

从具体的整数除法等式到抽象的数学概念,再由抽象的概念回到具体,举例说明概念。这样的思维转换过程有利于学

生认知概念,切实掌握概念。通过让学生说一说第一类中每个算式,谁是谁的因数,谁是谁的倍数,进一步体会“因数和倍数是互相依存的”。

页 2 第

在例1的最后,教材指出了本单元中的数的研究范围是大于0的自然数。

例2:一个数的因数的求法

例2直接提出问题:“18的因数有哪几个?”引导学生利用因数的概念从小到大依次写出,然后再用集合图表示出一个数的全部因数,为后面用交集图表示两个数的公因数打下基础,并使学生初步体会一个数的因数个数是有限的。

例3:一个数的倍数的求法

例3教材直接提出问题:“2的倍数有哪些?”因为被除数相当于积,所以求2的倍数可将2和任意非零自然数相乘得到。学生在列乘法算式时就会发现这样的算式是列不完的,因此,2的倍数的个数是无限的。接着也用集合图表示出2的倍数,为后面学习交集图表示两个数的公倍数奠定基础。

最后引导学生抽象概括出一个数的最小、最大因数和最小倍数分别是什么,总结出一个数的因数、倍数的个数的结论,在其中渗透从个别到全体、从具体到一般的抽象归纳思想方法。

(二)2、5、3的倍数的特征

例1:2、5的倍数的特征

例1教材采用了百数表,让学生画圈、画框、观察、发现、总结。比如,将5的倍数圈起来,学生马上就能发现5的倍页 3 第

数都集中在两列上,特征也非常明显,一列个位都是5,另一列个位都是0,因此学生能顺利的归纳出5的倍数的特征。同样道理,将2的倍数框起来,也能够显而易见地发现其特征。

为了便于学生总结自己的发现,教材以学生对话的形式,给出5、2倍数的特征的不完整描述,让学生把特征填写完整。在总结了2的倍数的特征的基础上,教材引出了偶数、奇数的概念。完成了做一做,学生能够归纳出既是2的倍数也是5的倍数的数的特征。

例2:3的倍数的特征

例2教材仍采用百数表,让学生先圈数,再根据提示,观察、思考,回答问题,获得新的发现。3的倍数的特征比较隐蔽,且容易受2和5倍数特征的观察定式、思维定式的影响。为了尽量避免已学知识对新知识学习的负迁移,教材第(2)条指导语,提出两个问题,启发学生排除只看到个位的定式,然后通过第(3)条指导语,提示变换观察的角度。

两个女孩的对话,说出了探究过程中思维转换的关键内容。小精灵的提示,引导学生进一步验证规律。

(三)质数和合数

质数和合数的概念

教材首先让学生找出1—20各数的全部因数,然后按照每个数的因数的个数进行分类。在此基础上给出质数、合数的页 4 第

概念。同时指出1既不是质数,也不是合数。在小学阶段学生可以理解为1只有一个因数,质数有两个因数,合数有三个及多因数。

例1:找出100以内所有的质数

例1教材又采用了百数表,让学生找出100以内的所有质数。通过学生的对话,介绍了两种操作方法。其中依次划去每个质数本身之外的所有倍数的方法,叫做“筛法”,它是数论中有着广泛应用的一个初等方法。

由于小学用到的质数比较少,所以教材中只要求学生找出100以内的所有质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是必要的。

例2:探索两数之和的奇偶性

例2是以探索两数之和的奇偶性为例,让学生在探究过程中获得数学活动的经验,丰富解决问题的策略。

教材根据奇数、偶数相加的三种情况,提出了三个问题。“阅

读与理解”环节给出了三个问题的一种表征方式,即用算式表示。“分析与解答”环节提示了三种获取结论的方法,即举例、说理、图示。事实上,这三种方法结合使用,可以提高结论的可靠性,增强学生对结论的理解和确信感。“回顾与反思”环节给出了用大数试一试的检验方法,并提页 5 第出问题,请学生思考其他的验证方法。也就是启发学生联系加减法的关系想到:如果“奇数+偶数=奇数”是对的,那么一定有“奇数—奇数=偶数”“奇数—偶数=奇数”。这样既验证和的奇偶性,又获得了差的奇偶性的结论。作为教师必须清楚,举例验证本质上只是不完全归纳,不是证明。本单元的教学重点是:因数和倍数的概念;2、5、3的倍数的特征;质数和合数的概念。教学难点是概念之间的联系和区别,在建立概念、运用概念的过程中,逐步发展数学的抽象能力与推理能力。

页 6 第

相关文档
最新文档