《圆锥的侧面展开图》教案

合集下载

圆锥侧面展开图教案

圆锥侧面展开图教案

圆锥的侧面展开图(一)知识目标1.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。

2.使学生会计算圆锥的侧面积或全面积。

(二)能力目标1.通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;2.通过圆锥的面积计算,培养学生正确迅速的运算能力;3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.(三)德育渗透点1.通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;2.通过应用圆锥展示图的计算解决实际问题,向学生渗透理论联系实际的观点;3.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;重点·难点·疑点及解决办法1.重点:(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.2.难点:准确进行圆锥有关数据与展开图有关数据的转化.3.疑点及解决方法:由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.教学步骤(一)明确目标在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课圆锥的侧面展开图”所要研究的内容.(二)整体感如和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.(三)教学过程[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。

九年级数学教案圆柱和圆锥的侧面展开图

九年级数学教案圆柱和圆锥的侧面展开图

九年级数学教案圆柱和圆锥的侧面展开图一、教学目标素质教育目标(一)知识教学点1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.2.使学生会计算圆柱的侧面积或全面积.(二)能力训练点1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.(三)德育渗透点1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;3.通过圆柱侧面展开图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.(四)美育渗透点重点·难点·疑点及解决办法1.重点:(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;(2)会用展开图的面积公式计算圆柱的侧面积和全面积.2.难点:对侧面积计算的理解.3.疑点及解决方法:学生对圆柱侧面展开图的长为什么是底面圆的周长有疑虑,为此教学时用模型展开,加强直观性教学.二、教学步骤(一)明确目标在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢这就是今天“7.21圆柱的侧面展开图”要研究的内容。

(二)整体感知圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积为了回答上述问题,首先在小学已具有直观感知的基础上,用矩形旋转、运动的观点给出圆柱体有关的一系列概念,然后利用圆柱的模型将它的侧面展开,使学生认识到圆柱的侧面展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.〔三〕教学过程(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)(教师演示模型并讲解):大家观察矩形ABCD,绕直线AB旋转一周得到的图形是什么(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的(安排中下生回答:上底是以A为圆心,AD旋转而成的,下底是以B为圆心,BC旋转而成的.)上、下底面圆为什么相等(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形ABCD的哪条线段旋转而成的(安排中下生回答:侧面由DC旋转而成的.)矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边AD、BC是上、下底面的半径。

九年级数学下册74圆锥的侧面展开图教案版

九年级数学下册74圆锥的侧面展开图教案版

7.4 圆锥的侧面展开图【教学目标】1.了解圆锥的有关概念,会画出它的侧面展开图,会计算侧面积和表面积;2.能让学生通过动手操作,合作探究,掌握圆锥与其侧面展开图的对应关系,体会数学中的转化思想;3.发展学生的空间观念,体会数学来源于生活,服务于生活.【教学重难点】重点:圆锥的侧面展开图及其侧面积的计算.难点:空间图形与平面图形的相互转化.【课时安排】1课时【教学过程】一、导入环节(2分钟)(一)导入新课,板书课题1.导入语:前面我们已经学习了弧长和扇形的面积的计算,本节课我们在此基础上学习圆锥的侧面展开图.下面我们一起来看本节课的学习目标.2.教师板书课题(二)出示学习目标1.了解圆锥的有关概念,会画出它的侧面展开图,会计算侧面积和表面积;2.能通过动手操作,合作探究,掌握圆锥与其侧面展开图的对应关系,体会数学中的转化思想;3.发展空间观念,体会数学来源于生活,服务于生活.过渡语:让我们带着目标,根据自主学习要求,进入自主学习环节.二、先学环节(15分钟)(一)自学指导自学课本149页---152页的内容,在课本上画出与圆锥有关的概念.并结合自学情况,完成下列练习.1.如图是一个圆锥,请标出相应部分的名称:此圆锥可看作是Rt△OBC以它的一条直角边OC为轴旋转一周所得到的立体图形.另一条直角边OB旋转所成的面是圆锥的_______,斜边BC旋转所成的面是圆锥的_______,点C叫做圆锥的_______,线段BC叫做圆锥的_________,线段CO叫做圆锥的__ _ __.2.圆锥的高h、底面半径r与母线R之间有什么关系?_______________________________3.用圆锥模型进行操作,将圆锥的侧面沿母线展开,然后铺在平面上,得到一个怎样的图形?___________________________ (二)自学检测反馈1.如图所示的平面图形中不可能围成圆锥的是()2.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( ) A.215cm π B. 230cm π C. 260cm π D. 2391cm 3.已知一圆锥的侧面积为215cm π,其底面半径为4cm ,则该圆锥的高为____________cm. 点拨:1.了解圆锥的侧面积公式同时能利用直角三角形求圆锥的母线长;2.底面周长与展开图扇形的弧长相等求母线长;3.公式变形应用360r=nR,理解公式的推导;4.底面周长等于展开图扇形的弧长.(三)质疑问难:学生将自学和检测过程中的疑惑记录在学案上,准备共同解答. 过渡语:你在自主学习中还有什么疑惑?请把你的疑惑记录在学案上,准备交流释疑. 三、后教环节(15分钟) 第一:生生合作,互相纠错要求:将自主学习和自主检测中的疑难问题进行交流、释疑. 第二:合作探究,展示交流探究一:利用手中的圆锥模型动手操作:(1)圆锥的侧面展开图是: ;(2)比较圆锥和它的侧面展开图,你发现圆锥的母线与侧面展开图的半径有什么关系? ;(3)圆锥的底面周长C 与侧面展开图中的扇形的弧长L 有怎样的关系?___________ ___ __ ___. (4)圆锥的侧面积s 与侧面展开图中的扇形的面积有怎样的关系?(5)如果已知圆锥的底面半径为r ,母线长为R ,那么圆锥的侧面积等于多少?_______________;圆锥的全面积等于_________________________;圆锥的体积是 .(6)注意组成直角三角形的三边:直角边是 和 ;斜边是: ;探究二:如图,已知圆锥形工件的底面直径是80cm ,母线长是50cm. (1)求侧面展图的圆心角,并画出侧面展开图;(2)求圆锥的侧面积(结果保留π)拓展:在探究二的基础上,若一只蚂蚁从点A出发,绕圆锥的侧面爬行一周,你能求出它所经过的最短路线吗?点拨:引导学生利用扇形纸片推导和理解C=L,并板书公式,渗透转化的思想方法;注重对题目的分析和公式及其变式运用.三、当堂训练认真规范完成训练题目,书写认真,步骤规范,成绩计入小组量化.1.如图所示,R=2,r=1,则h=________.2.一个底面半径为5cm,母线长为15cm的圆锥,它的侧面展开图的圆心角是________,圆锥的侧面积是_______________cm2.3.一个扇形的半径为60cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5 cm B.25 cm C.50 cm D.75 cm4.如图所示,一个圆锥的高为33cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积.(结果保留 )课堂小结:本节课学习圆锥的侧面展开图,理解基本概念的同时推导有关公式,并注重公式的变形;强调学生经历公式的推导过程,和动手操作验证,强调小组的合作探究,帮助组内的学困生,加强知识的落实.【板书设计】【教学反思】中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A. B.C.D.【答案】B【解析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.2.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【解析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°, 解得:n=1.则这个正多边形是正七边形. 所以,从一点引对角线的条数是:1-3=4. 故选B 【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.3.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 【答案】C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质. 4.下列调查中,调查方式选择合理的是( ) A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查 【答案】D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意; 故选D .5.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为( )A .31cmB .41cmC .51cmD .61cm【答案】C【解析】∵DG 是AB 边的垂直平分线, ∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm , ∴△ABC 的周长=AC+BC+AB=51cm , 故选C.6.下列运算正确的是( ) A .624a a a -= B .()222a b a b +=+ C .()232622ab a b = D .2326a a a =【答案】D【解析】分别根据合并同类项、完全平方公式、积的乘方、单项式的乘法法则进行计算即可. 【详解】A 、a 6和a 2不是同类项,无法合并,故本项错误;B 、()2222a b a ab b +=++,故本项错误;C 、()232624ab a b =,故本项错误;D 、23?26a a a =,故本项正确; 故本题答案应为:D. 【点睛】合并同类项、完全平方公式、积的乘方、单项式的乘法是本题的考点,熟练掌握运算法则是解题的关键.7.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.8.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2 【答案】C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx1+mx﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×102【答案】C【解析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).10.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+【答案】A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】解:大正方形的面积-小正方形的面积=22a b -,矩形的面积=()()a b a b +-, 故22()()a b a b a b +-=-, 故选:A . 【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键. 二、填空题(本题包括8个小题)11.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.【答案】1【解析】在△AGF 和△ACF 中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠, ∴△AGF ≌△ACF , ∴AG=AC=4,GF=CF , 则BG=AB−AG=6−4=2. 又∵BE=CE ,∴EF 是△BCG 的中位线, ∴EF=12BG=1.故答案是:1.12.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .【答案】(7+63)【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m , ∴DC=EF=2m ,EC=DF=6m , ∵α=30°, ∴BE=63tan30EC=︒(m ),∵背水坡的坡比为1.2:1, ∴1.2 1.21DF AF AF ==, 解得:AF=5(m ),则AB=AF+EF+BE=5+2+63=(7+63)m , 故答案为(7+63)m . 【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解. 13.计算(+1)(-1)的结果为_____.【答案】1【解析】利用平方差公式进行计算即可. 【详解】原式=()2﹣1=2﹣1=1,故答案为:1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.14.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.15.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.【答案】36°【解析】由正五边形的性质得出∠B=108°,AB=CB ,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE 是正五边形,∴∠B=108°,AB=CB ,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩【答案】A【解析】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.17.因式分解:a3-a=______.【答案】a(a-1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).18.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.三、解答题(本题包括8个小题)19.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.【答案】(1)y=60x;(2)300【解析】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以a-100100=24.8-2.82,解得a=300.20.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=45,求MC的长.【答案】(1)证明见解析;(2)MC=15 4.【解析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【详解】(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC ;(2)由题意可知AB=5×2=10,AC=45, ∵AB 是⊙O 的直径,∴∠ACB=90°,∴BC=()221045-=25, ∵∠AOD=∠ACB ,∠A=∠A ,∴△AOD ∽△ACB ,∴OD AO BC AC =,即52545OD =, 可得:OD=2.5,设MC=MD=x ,在Rt △OCM 中,由勾股定理得:(x+2.5)2=x 2+52,解得:x=154, 即MC=154. 【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.21.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.求证:DP 是⊙O 的切线;若⊙O 的半径为3cm ,求图中阴影部分的面积.【答案】(1)证明见解析;(22933()22cm . 【解析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可.(2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:3.∴图中阴影部分的面积221603933333()236022 ODP DOBS S S cm 扇形22.4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?【答案】(1)14;(2)12;(3)x=1.【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34xx++=0.95,解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.23.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.24.某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B 两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.考点:1.折线统计图;2.条形统计图.25.已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).【答案】(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k =2,∴AD =10,∵BC ⊥AC,AC ∥PO,∴BH ⊥PO,∴四边形ADHC 是矩形,CH =AD =10,AC =DH,∵∠BPD =45°,∴PH =BH,设BC =x,则x+10=24+DH,∴AC =DH =x ﹣14,在Rt △ABC 中,tan76°=BC AC ,即14x x -≈4.1. 解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC 的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.26.如图,抛物线y =12x 2+bx+c 与x 轴交于点A (﹣1,0),B (4,0)与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交抛物线与点Q .求抛物线的解析式;当点P 在线段OB 上运动时,直线1交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;在点P 运动的过程中,坐标平面内是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】 (1) 213222y x x =--;(2) 当m =2时,四边形CQMD 为平行四边形;(3) Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2)【解析】(1)直接将A (-1,0),B (4,0)代入抛物线y=12x 2+bx+c 方程即可; (2)由(1)中的解析式得出点C 的坐标C (0,-2),从而得出点D (0,2),求出直线BD :y =−12x+2,设点M(m ,−12m+2),Q(m ,12m 2−32m−2),可得MQ=−12m 2+m+4,根据平行四边形的性质可得QM=CD=4,即−12m 2+m+4=4可解得m=2; (3)由Q 是以BD 为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD 2+DQ 2=BQ 2,列出方程可以求出Q 1(8,18),Q 2(-1,0),②当∠DBQ=90°时,则BD 2+BQ 2=DQ 2,列出方程可以求出Q 3(3,-2).【详解】(1)由题意知,∵点A (﹣1,0),B (4,0)在抛物线y =12x 2+bx+c 上, ∴210214402b c b c ⎧-+=⎪⎪⎨⎪⨯++=⎪⎩解得:322b c ⎧=-⎪⎨⎪=-⎩ ∴所求抛物线的解析式为 213222y x x =-- (2)由(1)知抛物线的解析式为213222y x x =--,令x =0,得y =﹣2 ∴点C 的坐标为C (0,﹣2)∵点D 与点C 关于x 轴对称∴点D 的坐标为D (0,2)设直线BD 的解析式为:y =kx+2且B (4,0)∴0=4k+2,解得:1k 2=- ∴直线BD 的解析式为:122y x =+ ∵点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交BD 于点M ,交抛物线与点Q∴可设点M 1m,22m ⎛⎫-+ ⎪⎝⎭,Q 213,222m m m ⎛⎫-- ⎪⎝⎭ ∴MQ =2142m m -++ ∵四边形CQMD 是平行四边形∴QM =CD =4,即2142m m -++=4 解得:m 1=2,m 2=0(舍去)∴当m =2时,四边形CQMD 为平行四边形(3)由题意,可设点Q 213,222m m m ⎛⎫-- ⎪⎝⎭且B (4,0)、D (0,2) ∴BQ 2=22213(4)222m m m ⎛⎫-+-- ⎪⎝⎭DQ 2=22213422m m m ⎛⎫+-- ⎪⎝⎭ BD 2=20①当∠BDQ =90°时,则BD 2+DQ 2=BQ 2, ∴2222221313204(4)22222m m m m m m ⎛⎫⎛⎫++--=-+-- ⎪ ⎪⎝⎭⎝⎭解得:m 1=8,m 2=﹣1,此时Q 1(8,18),Q 2(﹣1,0)②当∠DBQ =90°时,则BD 2+BQ 2=DQ 2, ∴222222131320(4)242222m m m m m m ⎛⎫⎛⎫+-+--=+-- ⎪ ⎪⎝⎭⎝⎭解得:m 3=3,m 4=4,(舍去)此时Q 3(3,﹣2)∴满足条件的点Q 的坐标有三个,分别为:Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2).【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.2.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.5.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°【答案】C【解析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.6.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 .你认为其中正确信息的个数有A.2个B.3个C.4个D.5个【答案】D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴x b 12a 3=-=-,∴2b a 3=-<1.∴ab >1.故①正确. ②如图,当x=1时,y <1,即a+b+c <1.故②正确.③如图,当x=﹣1时,y=a ﹣b+c >1,∴2a ﹣2b+2c >1,即3b ﹣2b+2c >1.∴b+2c >1.故③正确. ④如图,当x=﹣1时,y >1,即a ﹣b+c >1,∵抛物线与y 轴交于正半轴,∴c >1.∵b <1,∴c ﹣b >1.∴(a ﹣b+c )+(c ﹣b )+2c >1,即a ﹣2b+4c >1.故④正确. ⑤如图,对称轴b 12a 3=-=-,则3a b 2=.故⑤正确. 综上所述,正确的结论是①②③④⑤,共5个.故选D .7.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 【答案】B。

24.7 第2课时 圆锥的侧面展开图 公开课一等奖教案

24.7 第2课时 圆锥的侧面展开图 公开课一等奖教案

24.7 弧长与扇形面积第2课时圆锥的侧面展开图1.经历圆锥侧面积的探究过程;2.学会求圆锥的侧面积,并能解决一些简单的实际问题(重点,难点).一、情境导入观察下面一组图片,图中物体有什么共同特点?你知道它们的侧面展开图是什么图形吗?二、合作探究探究点:与圆锥侧面展开图相关的计算【类型一】求圆锥的侧面积小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为() A.270πcm2B.540πcm2C.135πcm2D.216πcm2解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】求圆锥底面的半径用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1.5cmC.πcm D.1cm解析:设底面半径为r ,根据底面圆的周长等于扇形的弧长,可得2πr =120×3π180,∴r =1,故选D.方法总结:用扇形围成圆锥时,扇形的弧长是底面圆的周长.扇形的弧长公式为l =n πr180. 变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型三】 求圆锥的高小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个圆锥的高是( )A .4cmB .6cmC .8cmD .2cm解析:如图,∵圆锥的底面圆周长=扇形的弧长=6πcm ,圆锥的底面圆周长=2π·OB ,∴2π·OB =6π,解得OB =3.又∵圆锥的母线长AB =扇形的半径=5cm ,∴圆锥的高OA =AB 2-OB 2=4cm.故答案选A.方法总结:这类题要抓住两个要点:(1)圆锥的母线长为扇形的半径;(2)圆锥的底面圆周长为扇形的弧长.再结合题意,综合运用勾股定理、方程思想就可解决.变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型四】 求圆锥的侧面展开图的圆心角一个圆锥的侧面积是底面积的2倍,则此圆锥侧面展开图的圆心角是( )A .120°B .180°C .240°D .300°解析:设圆锥的母线长为R ,底面半径为r ,则由侧面积是底面积的2倍可知侧面积为2πr 2,则2πr 2=πRr ,解得R =2r ,利用弧长公式可列等式2πr =n π·2r180,解方程得n =180°.故选B.方法总结:解关于圆柱和圆锥的侧面展开图的计算问题时,将立体图形和展开后的平面图形的各个量的对应关系联系起来至关重要.变式训练:见《学练优》本课时练习“课后巩固提升”第2题 【类型五】 运用圆锥的侧面积解决实际问题某工厂生产一批漏斗,工人师傅要把一块矩形铁皮加工成底面半径为20cm ,高为402cm 的圆锥形漏斗,并且要求只有一条接缝(接缝忽略不计).请问选长、宽分别为多少的矩形铁皮(如图所示),才能最节约成本(即用料最少)?解析:由于底面半径,高线,母线正好组成直角三角形,可由勾股定理求得母线长,则扇形的圆心角=底面周长×180÷(母线长×π),可在矩形内画出一半径为60,圆心角为120°的扇形,由矩形和直角三角形的性质求得矩形的长和宽.解:∵底面半径为20cm ,高为402cm ,∴由勾股定理可知R =(402)2+202=60cm.∵l =40π=n R180π ,∴扇形的圆心角=40π×180÷60π=120°,在矩形内画出一半径为60,圆心角为120°的扇形.如图,在矩形ABCD 中,EF ⊥AB ,∠AFG =120°,AD =EF =AF =FG =60cm ,∵∠FGB =∠EFG =∠AFG -∠AFE =120°-90°=30°,∴FB =FG ·sin30°=30cm ,AB =AF +FB =60+30=90cm.∴长为90cm ,宽为60cm 的矩形铁皮才能最节约成本.方法总结:解决本题需将侧面展开,化曲面为平面,利用所给数值得到扇形的半径及圆心角,进而利用构造的直角三角形求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题 三、板书设计1.圆锥的侧面展开图 (1)求圆锥的侧面积; (2)求圆锥底面的半径; (3)求圆锥的高;(4)求圆锥的侧面展开图的圆心角; (5)运用圆锥的侧面积解决实际问题.教学过程中,强调学生应熟练掌握相关公式并会灵活运用.要充分发挥空间想象力,把立体图形与展开后的平面图形中的各个量准确对应起来.。

九年级数学圆锥的侧面展开图新人教学习教案

九年级数学圆锥的侧面展开图新人教学习教案

第七页,编辑于星期日:九点 四十九分。
圆锥的侧面积和全面积
圆锥的底面周长就是其侧面展开图扇形的弧长,
圆锥的母线就是其侧面展开图扇形的半径。
1la12rara
22
rar2
第7页/共21页
第八页,编辑于星期日:九点 四十九分。
解: l 2r 58 r
58
2
由勾股定理得: 母a线 h2r22.2 09
A B B2 A S2 S 42 2 02 0 25 0
B
B
第15页/共21页
第十六页,编辑于星期日:九点 四十九分。
1.若圆锥的底面半径r =4cm,高线h =3cm,则它的
侧面展开图中扇形的圆心角是 —— 度。288
2.若圆锥的母线l=10cm,高h=8cm,则其侧面展
开图中扇形的圆心角是 ——216度。
B D 3 3 2
答: 它 爬 行 的 最 短 路 3 线 3. 是
2
第17页/共21页
第十八页,编辑于星期日:九点 四十九分。
已知圆锥的轴截面是正三角形, 圆锥的高线为 6 3 cm,求圆锥的表面积。 P
解:由正三角形可得
l
h
l=2r
∵ l2=r2+h2
l 2r l2 r2 h2 r2 (6 3)2 48 2 r6,l 2r12 .
2 答 : 它 爬 行 的 最 短 路 3 线 3. 是
2
解: 将 圆 锥A 沿 B 展 开 成 扇 A形 B B, 则 点 C是BB的 中 点 , 过 点 B作B D A C ,解: 将圆锥A沿B展开成扇A形 BB,则点C是BB的中点 ,过点B作BDAC,
垂 足 为 D.
垂足为 D.
B A B r 360 120 l

圆锥侧面展开图说课稿范文

圆锥侧面展开图说课稿范文

圆锥侧面展开图说课稿范文圆锥侧面展开图说课稿范文一、教材分析(一)教材的地位和作用圆锥侧面展开图这一节是第24章最后一个单元的最后一节,是学生对圆锥图形已有的基本认识基础上的进一步研究。

本节内容主要包括圆锥的概念和性质,圆锥的侧面展开图及轴面图的认识,圆锥的侧面积及表面积的计算。

学生掌握这些内容,不仅有利于提高几何体知识的掌握水平,也为今后学习立体几何打下基础;同时让学生体会到利用平面图形知识可以解决立体图形的计算,培养了学生的转化思想,发展了学生的空间观念。

(二)教学目标:1、知识目标:使学生了解圆锥及其特征,掌握圆锥的侧面展开图是扇形,并能利用扇形面积公式计算圆锥的表面积和侧面积。

同时使学生比较熟练地应用圆锥的基本性质和轴截面解决有关圆锥表面积的计算问题。

2、能力目标:培养学生的动手和观察能力;培养转化思想;发展学生的空间观念。

3、情感目标:培养学生学习数学的热情和自信心;渗透事物间相互联系的辩证唯物主义观点。

(三)教学重点、难点:圆锥的轴截面及其在计算圆锥表面积中的应用,能加深学生对圆锥的认识,是教学重点;考虑到初中生的空间观念和抽象思维能力的极限性,理解圆锥的侧面展开图是扇形为本节课的难点。

关键是让学生通过动手实验、观察,捉住变与不变,引导学生得到圆锥侧面积的计算方法。

二、教法与学法分析本节课的教学紧扣新课改”以学生发展为本”理念,以自主探究,合作交流为主,发现法和练习法为辅,实现教学目标。

初中阶段立体图形的学习是转化为平面图形,知识的获取不是靠严格的论证,而是让学生在学习活动中主动获取。

因此,教学中充分发挥学生的主体作用,尽可能让学生动手、动脑、动口,积极参与教学的全过程。

本节课教与学通过三个活动调动学生的积极性,培养学生主动参与意识,进一步调动学习的积极性,让学生通过实验探索、观察,化抽象为直观,从而突破难点,揭示重点。

学生整个学习过程围绕在老师创设的问题情景之中,即培养了学生动手、观察能力和空间观念,又克服了教学中只重结论,轻过程,重记忆,轻理解,重知识,轻能力的弊病。

圆锥的侧面展开图

圆锥的侧面展开图

在认识圆锥的侧面积展开图时,应知道圆锥的底面周长就是其侧面展开图扇形的弧长。圆锥的 母线就是其侧面展开图扇形的半径,这样在计算侧面积和全面积时才能做到熟练、准确。
一、 教师个人介绍 省份: 山东省 学校: 青州市谭坊初级中学 姓名: 郝素珍 职称: 二级 教师 电话: 3841370 电子邮件:794295686@ 通讯地址:青州市谭坊初级中学 郝素珍,女,中学二级教师,1997 年毕业于昌潍师范师范专科学校数学教育专业,2000 年毕业 于青岛海洋大学数学与应用数学专业。毕业后一直从事初中数学课的教育教学,并历年担任班 主任。在校领导和同事的大力支持和帮助下,通过自己的不懈努力,取得了一定的成绩。曾获 青州市优质课称号,论文多次获奖,连续多年获得镇优秀教师和优秀班主任称号,青州市优秀 教师和青州市教坛新秀称号!我会一直坚持自己的教育理念:在平凡的岗位上努力做出最大的 贡献,努力争做学生喜欢的老师和家长满意教师!教育无止境,在教与学中不断充实,完善自 己,争取更好!
图 23.3.7
(三)应用与拓展: 应用与拓展: 例1、一个圆锥形零件的母线长为 a,底面的半径为 r,求这个圆锥形零件的侧面积和 全面积. 解 圆锥的侧面展开后是一个扇形,该扇形的半径为 a ,扇形的弧长为 2 πr ,所以
1 S 侧= 2 ×2πr×a=πra;
S 底=πr2;
A
S=πra+πr2.
四。教学方法 本节课内容较为抽象,所以在这节课学习上我采取学生自学,小组合作探究,教师答疑的方法 进行,在授课过程中充分利用教具导学,以期达到让学生更好理解的目的。授课过程中通过讲 解让学生充分明确侧面展开图与立体图中元素的对应关系,把握好二者的联系。通过例题和练 习让学生进一步熟悉侧面展开图面积的计算,从而达到学以致用的目的,培养学生动手,动脑 以及空间想象能力,进一步让学生体会数学与人类生活的联系! 五.教学过程: (一)情境探究:由具体的模型认识圆锥的侧面展开图,认识圆锥各个部分的名称 把一个

《圆柱和圆锥的侧面展开图》教案设计

《圆柱和圆锥的侧面展开图》教案设计

《圆柱和圆锥的侧面展开图》教案设计第一章:圆柱的侧面展开图1.1 教学目标让学生了解圆柱的侧面展开图的概念。

让学生掌握圆柱的侧面展开图的绘制方法。

让学生能够运用圆柱的侧面展开图解决实际问题。

1.2 教学内容圆柱的侧面展开图的定义。

圆柱的侧面展开图的绘制方法。

圆柱的侧面展开图在实际问题中的应用。

1.3 教学步骤引入圆柱的侧面展开图的概念。

讲解圆柱的侧面展开图的绘制方法。

通过实例展示圆柱的侧面展开图在实际问题中的应用。

1.4 练习与作业让学生绘制圆柱的侧面展开图。

让学生运用圆柱的侧面展开图解决实际问题。

第二章:圆锥的侧面展开图2.1 教学目标让学生了解圆锥的侧面展开图的概念。

让学生掌握圆锥的侧面展开图的绘制方法。

让学生能够运用圆锥的侧面展开图解决实际问题。

2.2 教学内容圆锥的侧面展开图的定义。

圆锥的侧面展开图的绘制方法。

圆锥的侧面展开图在实际问题中的应用。

2.3 教学步骤引入圆锥的侧面展开图的概念。

讲解圆锥的侧面展开图的绘制方法。

通过实例展示圆锥的侧面展开图在实际问题中的应用。

2.4 练习与作业让学生绘制圆锥的侧面展开图。

让学生运用圆锥的侧面展开图解决实际问题。

第三章:圆柱和圆锥的侧面展开图的比较3.1 教学目标让学生了解圆柱和圆锥的侧面展开图的异同。

让学生能够运用侧面展开图的比较解决实际问题。

3.2 教学内容圆柱和圆锥的侧面展开图的异同。

圆柱和圆锥的侧面展开图在实际问题中的应用。

3.3 教学步骤讲解圆柱和圆锥的侧面展开图的异同。

通过实例展示圆柱和圆锥的侧面展开图在实际问题中的应用。

3.4 练习与作业让学生比较圆柱和圆锥的侧面展开图。

让学生运用圆柱和圆锥的侧面展开图解决实际问题。

第四章:圆柱和圆锥的侧面展开图的实际应用4.1 教学目标让学生了解圆柱和圆锥的侧面展开图在实际问题中的应用。

让学生能够运用圆柱和圆锥的侧面展开图解决实际问题。

4.2 教学内容圆柱和圆锥的侧面展开图在实际问题中的应用。

4.3 教学步骤讲解圆柱和圆锥的侧面展开图在实际问题中的应用。

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计第一章:圆锥的侧面展开图概念介绍1.1 圆锥的侧面展开图定义引导学生回顾圆锥的基本概念,理解圆锥的侧面展开图是将圆锥的侧面展开后形成的平面图形。

通过实物演示或图片展示,让学生直观地感受圆锥的侧面展开图的形成过程。

1.2 圆锥的侧面展开图的特点分析圆锥的侧面展开图的形状,引导学生发现它是一个扇形。

解释圆锥的侧面展开图与圆锥的底面之间的关系,让学生理解展开图的弧长等于圆锥底面的周长。

第二章:圆锥的侧面展开图的计算2.1 圆锥的侧面积计算引导学生利用圆锥的侧面展开图来计算圆锥的侧面积。

给出圆锥的侧面积计算公式:侧面积= π×r ×l,其中r为圆锥的底面半径,l为圆锥的母线长。

2.2 圆锥的全面积计算引导学生理解圆锥的全面积包括底面积和侧面积。

给出圆锥的全面积计算公式:全面积= π×r ×(r + l),其中r为圆锥的底面半径,l为圆锥的母线长。

第三章:圆锥的侧面展开图的应用3.1 圆锥的侧面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的侧面积在实际问题中的应用,如制作圆锥形状的物体时计算材料用量等。

3.2 圆锥的全面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的全面积在实际问题中的应用,如计算圆锥形物体的表面积等。

第四章:圆锥的侧面展开图的绘制4.1 圆锥的侧面展开图的绘制方法引导学生学习如何将圆锥的侧面展开成一个扇形,并绘制出圆锥的侧面展开图。

通过步骤讲解和示范,让学生掌握绘制圆锥的侧面展开图的方法。

4.2 圆锥的侧面展开图的绘制技巧介绍一些绘制圆锥的侧面展开图的技巧,如如何准确地测量和标记圆锥的底面半径和母线长等。

第五章:圆锥的侧面展开图的综合练习5.1 圆锥的侧面展开图的计算练习提供一些有关圆锥的侧面展开图的计算题目,让学生巩固圆锥的侧面积和全面积的计算方法。

5.2 圆锥的侧面展开图的应用练习提供一些有关圆锥的侧面展开图的应用题目,让学生将所学知识应用到实际问题中。

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计第一章:圆锥的侧面展开图的概念1.1 了解圆锥的侧面展开图的定义:圆锥的侧面展开图是将圆锥的侧面展开后得到的图形。

1.2 掌握圆锥的侧面展开图的特点:圆锥的侧面展开图是一个扇形,其弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长。

第二章:圆锥的侧面展开图的画法2.1 学习如何画圆锥的侧面展开图:(1)画出圆锥的底面,确定底面的圆心O和半径r;(2)画出圆锥的侧面,将侧面沿母线剪开,展开成一个扇形;(3)标记扇形的弧长和半径,分别为圆锥底面的周长和母线长。

2.2 练习画圆锥的侧面展开图,加深对圆锥侧面展开图的理解。

第三章:圆锥的侧面展开图的应用3.1 学习如何利用圆锥的侧面展开图计算圆锥的体积和侧面积:(1)根据扇形的弧长和半径计算圆锥的侧面积;(2)根据圆锥的底面周长和母线长计算圆锥的体积。

3.2 进行圆锥侧面展开图的应用练习,巩固所学知识。

第四章:圆锥的侧面展开图与圆锥的关系4.1 了解圆锥的侧面展开图与圆锥的底面、侧面之间的关系:(1)圆锥的侧面展开图的弧长等于圆锥底面的周长;(2)圆锥的侧面展开图的半径等于圆锥的母线长。

4.2 通过实例说明圆锥的侧面展开图在解决实际问题中的应用。

第五章:圆锥的侧面展开图的综合练习5.1 完成一些关于圆锥的侧面展开图的综合练习题,加深对圆锥侧面展开图的理解;5.2 结合所学知识,思考圆锥的侧面展开图在实际问题中的应用,提高解决问题的能力。

第六章:圆锥侧面展开图的衍生图形6.1 学习圆锥侧面展开图的衍生图形,如圆锥切面展开图和圆锥挖去部分后的展开图。

6.2 理解衍生图形的形成过程及其与原圆锥侧面展开图的关系。

第七章:圆锥侧面展开图的变换7.1 学习圆锥侧面展开图的基本变换,如平移、旋转和缩放。

7.2 通过对圆锥侧面展开图进行变换,探究变换后图形的特点和性质。

第八章:圆锥侧面展开图与空间想象力8.1 通过对圆锥侧面展开图的观察和分析,培养学生的空间想象力。

圆锥的侧面展开图课件

圆锥的侧面展开图课件
机械零件设计
旋转体制造
在建筑设计领域,圆锥的侧面展开图常被用于设计一些具有曲线形状的建筑元素,如穹顶、拱门等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行建筑设计。
建筑设计
在建筑结构分析中,圆锥的侧面展开图可以用于分析建筑结构的受力情况。通过将建筑结构中的受力部分展开成平面图形,可以更直观地理解其受力情况,从而更好地进行结构设计和优化。
在实际应用中,圆锥的侧面展开图可用于建筑设计、机械制造等领域,例如在设计旋转机械或计算风力发电机的功率时,需要使用圆锥的侧面展开图来计算相关参数。
在艺术领域,圆锥的侧面展开图也常被用于创作雕塑、绘画等艺术作品,以表现立体感、空间感和流动感。
02
圆锥的侧面展开图的绘制方法
Chapter
确定圆锥的底面半径和高度
圆锥的侧面展开图具有连续性,即展开后的图形是一个连续的平面区域。
圆锥的侧面展开图在几何形状上与原圆锥侧面相同,但在平面上表现为一个二维图形。
圆锥的侧面展开图可以用于计算圆锥侧面积和表面积,以及用于解决一些几何问题。
在几何教学中,圆锥的侧面展开图常用于帮助学生理解圆锥的几何性质和侧面积的计算方法。
建筑结构分析
包装设计
在包装设计中,圆锥的侧面展开图可以用于设计一些具有曲线形状的包装容器,如饮料瓶、洗发水瓶等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行包装设计。
艺术创作
在艺术创作中,圆锥的侧面展开图可以用于创作一些具有曲线形状的艺术作品,如雕塑、绘画等。通过将圆锥侧面展开,可以更好地理解其形状和尺寸,从而更好地进行艺术创作。
,. which on,:xe%\xe guide on have!1 – the8\ans: the! speech! havemo揍

初中数学_圆锥的侧面展开图教学设计学情分析教材分析课后反思

初中数学_圆锥的侧面展开图教学设计学情分析教材分析课后反思

圆锥的侧面展开图教学设计学习目标• 了解圆锥的顶点,高,母线的定义• 理解圆锥侧面展开图的性质• 运用圆锥侧面展开图的性质解决有关问题学习过程一、复习1.弧长公式把圆周等分成360份,每一份的弧叫做1°的弧;1°的弧所对的圆心角叫做1°的角。

设一圆为⊙O ,半径为r1) 圆周长为多少? ____________2) 圆周角为360°,则1°的圆心角所对的弧长为多少?____________3) n °的圆心角所对的弧长为多少? ____________2.扇形面积公式设一圆的为⊙O ,半径为r 。

1) 圆面积为多少? ____________2) 圆周角为360°,则1°的圆心角所对的扇形面积为多少?____________3) n °的圆心角所对的扇形面积为多少? ____________3. 弧长公式与扇形面积公式的关系巩固训练:扇形AOB 的半径为30cm ,∠AOB =120° 1、求弧AB 的长 2、扇形AOB 的面积二、圆锥的有关定义我们把连接圆锥的顶点和底面圆上任一点的连线叫做圆锥的__________连接顶点与底面圆的圆心的线段叫做圆锥的__________思考圆锥的母线,高,底面半径有什么关系?A B 图23.3.6l三、圆锥的侧面展开图将一个圆锥的侧面沿它的一条母线剪开铺平,圆锥的侧面展开图是什么图形?圆锥的侧面展开图是____________形侧面展开图扇形的半径= ____________侧面展开图扇形的弧长=____________圆锥的侧面展开图是以圆锥的顶点为圆心,以母线为半径的扇形,扇形的弧长等于圆锥底面的圆周长。

圆锥的侧面积等于圆锥的侧面展开图的面积,即 S侧= ½cl=πrl其中 c是圆锥的底面圆的周长,r是底面圆的半径,l是圆锥的母线长四、巩固训练2,求圆锥的母线长及侧面积1. 已知圆锥的底面直径为2,高为22.已知圆锥的侧面积为14π,母线长为7,求圆锥的表面积。

圆锥的侧面展开图导学案

圆锥的侧面展开图导学案

精 讲 点 评
9、△BAC 中,AB=5,AC=12,BC=13,以 AC 所在的直线为轴将△ABC 旋转一周得一个几何体, 这个几何体的表面积是多少?
1、若圆锥的底面半径是 3cm,母线长是 5cm,则它的侧面展开图的面积是________
自 主 学 习 任 务
2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系 右图中,将圆锥的侧面沿母线 l 剪开, 展开成平面图形,可以得到一个扇形,设圆锥的底面半径为 r, 这个扇形的半径等于 3、圆锥侧面积计算公式 从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样, 扇形的弧长等于( )
2
1、掌握圆锥侧面展开图是扇形, 2、知道圆锥各部分的名称,能够计算圆锥侧面积和全面积 重点:圆锥的侧面积和全面积的计算方法 难点:圆锥的侧面展开图,计算圆锥的侧面积和全面积 1、圆锥的基本概念 在右图的圆锥中,连结圆锥的顶点 S 和底面圆上任意一点的线段 SA、SA1……叫做 面圆的圆心 O 的线段叫做 。 ,连接顶点 S 与底
当 堂 验 收
2、若圆锥的母线长为 5cm,高为 3cm,则其侧面展开图中扇形的圆心角是 3、圆锥的底面半径 r=4cm,母线长 l=5cm ,则圆锥的侧面积是 平方厘米,侧面展开图的圆心角是 度
2
度. 平方厘米,表面积是
4、已知圆锥的侧面展开图的圆心角为 180°,底面积为 15cm ,则圆锥侧面积 S=
第二十四章 24.4.2 圆锥的侧面展开图
学科:数学 学习 目标 教学重 难点 主备人:何树平
5、已知扇形的圆心角为 120°,面积为 300π cm 。若把此扇形卷成一个圆锥,则这个圆锥的轴截面 面积是 2 6、圆锥的母线为 13cm,侧面展开图的面积为 65π cm ,则这个圆锥的高为 8、如果该圆锥形的冰淇淋纸筒的母线长为 8cm,底面圆的半径为 5cm, 你能算出扇形的圆心角的度数吗? .

《圆锥的侧面展开图》教案设计

《圆锥的侧面展开图》教案设计
力.
(三)情感目标
1.通过对圆锥侧面展开图的自主探究,让学生获得亲自参与研究探索的情感体验,通过与人合作、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观;
三、教材分析
重点:1、圆锥的形成手段和圆锥的轴、母线、高等概念及其特征;
2、用展开图的面积公式计算圆锥的侧面积和表面积。
难点:对侧面积计算的理解.
3、圆锥的侧面展开图
(1)以小组为单位,每小组至少有一个收集到的圆锥是能剪开的(如雪榚筒模型),让形是一个扇形(如图)。
(2)为了方便讲解,教师也拿出事先用纸皮做好的圆锥形教具,沿其任意一条母线剪开,与学生剪出的图形作对比,并用电脑演示展开过程,加深印象。
5、小结:
(1)圆锥侧面展开图(扇形)中的各元素与圆锥的各元素之间的关系极为密切,即扇形的半径是圆锥的母线,扇形的弧长是圆锥底面圆的周长。因此我们要重视空间图形与平面图形的互相转化.
(2)圆锥是由一个圆和一个曲线围成的,这个曲线的展开图是一个扇形,我们可以利用扇形的面积公式来求圆锥的侧面积,从而进一步求出与圆锥有关的组合体和旋转体的表面积。
六、教学反思
1.学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理.
2.让实际问题中的量的关系在数学模型中相互联系,并得到解决。
(3)小组交流,自主讨论,在展开的过程中,有没有相等关系的量?圆锥的底面圆展开后到哪去了?母线呢?经过小组交流,得出结论:这个扇形的半径是圆锥的母线长SA,弧长是底面圆的周长。
(4)如果底面圆的半径为 ,则圆锥侧面展开的扇形的弧长为 。已知扇形的半径和弧长,就可以求得扇形的圆心角和扇形的面积。
4、圆锥的侧面积、全面积
《圆锥的侧面展开图》教案设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆锥的侧面展开图》教案
教学目标
(一)教学知识点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.
2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.
(三)情感与价值观要求
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
教学重点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
经历探索圆锥侧面积计算公式.
教学过程
Ⅰ.创设问题情境,引入新课
[师]大家见过圆锥吗?你能举出实例吗?
[主]见过,如漏斗、蒙古包.
[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.
[生]圆锥的表面是由一个圆面和一个曲面围成的.
[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.
Ⅲ.新课讲解
一、圆锥的有关概念
圆锥:是由一个底面和一个侧面围成的.
母线:我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.如图中的l .
高:从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高h.
二、探索圆锥的侧面展开图的形状
[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.
[生]圆锥的侧面展开图是扇形.
[师]能说说理由吗?
[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.
[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?
[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?
[生]是扇形.
[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.
三、探索圆锥的侧面积公式
[师]请以你课前准备的圆锥模型为工具,运用所学的知识,探究圆锥侧面积的计算公式.并考虑以下问题:
(1)你是用什么方法怎样进行探究的?
(2)你认为运用什么知识可以求出圆锥的侧面积?
(3)在你的探究得到的结论中,需要已知哪几个量才可以求出圆锥的侧面积?
(4)用公式表示圆锥的侧面积.
[师]小结:圆锥的侧面展开图是以圆锥的顶点为圆心、母线为半径的扇形,扇形的弧长
等于圆锥底面的圆周长.圆锥侧面积等于圆锥的侧面展开图的面积,即S侧=1
,
2
cl rl
π
=其中c
是圆锥底面圆的周长,r是底面圆的半径,l是圆锥的母线长.
三、例题讲解
例1如图(课本第150页),已知圆锥形工件的底面直径是80cm、母线长是50cm.
(1)求侧面展开图的圆心角,并画出侧面展开图;
(2)求圆锥的侧面积(精确到1平方厘米).
例2用半径为30,圆心角为120°的扇形纸片围成一个圆锥的侧面,求这个圆锥的地面圆半径.
例3如图,某加工厂生产一种圆锥形的烟囱帽.已知烟囱帽的底面周长为83cm,高为10cm.要制作这样的一个烟囱帽,至少需要多少平方厘米的铁皮?(结果精确到0.1cm2)
例4蒙古包可以近似地看成是由圆锥和圆柱组成的.如果想在某个牧区搭建15个底面积为33m2,高为10m(其中圆锥形顶子的高度为2m)的蒙古包,那么至少需要用多少平方米的帆布?(结果精确到0.1m2)
练习:圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积.现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长.在高h、底面圆的半径r、母线l组成的直角三角形中,根据勾股定理求出母线l,代入S侧=πrl中即可.
解:设纸帽的底面半径为rcm,母线长为lcm,则r=58 2
l≈22.03cm,
S圆锥侧=πrl≈1
2
×58×22.03=638.87cm2.
638.87×20=12777.4cm2.
所以,至少需要12777.4cm2的纸.
四、课后小结
1.圆锥的侧面展开图是一个扇形;
2.圆锥的侧面积为S侧=πrl.。

相关文档
最新文档