流体流动阻力测定实验报告
流体流动阻力实验报告
流体流动阻力实验报告引言流体力学是研究流体在运动中的行为及其影响的学科。
流体流动阻力是流体力学中的一个重要概念,它在各个领域都有广泛的应用。
本实验旨在通过测量流体在管道中流动时所产生的阻力,探究流体流动阻力的特性和影响因素。
实验目的1. 理解流体流动阻力的概念和意义;2. 探究流体流动阻力与管道直径、流速等因素的关系;3. 学习使用实验仪器和测量方法。
实验原理根据流体力学的基本原理,流体在管道中流动时,会受到管壁的摩擦力和流体内部分子之间的黏滞力的阻碍,从而产生阻力。
阻力的大小与流体的黏性有关,也与管道的形状、管径、流速等因素密切相关。
根据液体在静止时的压强和动能守恒定律,可以推导出流体流动阻力的计算公式。
实验装置与仪器1. 实验装置:包括液压台、流体供给装置、流量计、压力计等;2. 测量仪器:包括尺子、计时器等。
实验步骤1. 搭建实验装置,保证装置的稳定性;2. 调整流量控制阀,使流量计示数稳定在一定数值;3. 测量管道的直径和长度,并记录相关数据;4. 开始实验,打开液压台的电源,使流体进入管道;5. 启动计时器,测量流体通过管道的时间;6. 停止计时器,记录流量计示数和压力计示数;7. 根据实验数据计算流体流动阻力,并进行数据处理和分析。
实验结果与讨论通过多次实验,我们得到了不同流速下的流量计示数和压力计示数。
根据实验数据,我们可以计算出不同流速下的流体流动阻力。
分析实验结果,我们发现以下几点规律:1. 随着流速的增加,流体流动阻力呈线性增加的趋势。
这是因为流速增加会导致流体与管壁摩擦力增加,从而增加流动阻力。
2. 随着管道直径的增加,流体流动阻力减小。
这是因为管道直径增加会使流体流动的截面积增大,减小单位面积上流体的速度,从而减小流动阻力。
3. 随着管道长度的增加,流体流动阻力增加。
这是因为管道长度增加会导致流体流动的摩擦面积增大,从而增加流动阻力。
结论通过本次实验,我们深入了解了流体流动阻力的特性和影响因素。
流体流动阻力的测定(化工原理实验报告)
北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天流体流动阻力的测定摘要● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。
● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。
● 测定湍流状态下管道局部的阻力系数的局部阻力损失。
● 本次实验数据的处理与图形的拟合利用Matlab 完成。
关键词流体流动阻力 雷诺数 阻力系数 实验数据 Matlab一、实验目的1、掌握直管摩擦阻力系数的测量的一般方法;2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ;3、测定层流管的摩擦阻力4、验证湍流区内λ、Re 和相对粗糙度的函数关系5、将所得光滑管的Re -λ方程与Blasius 方程相比较。
二、实验原理不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。
影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群雷 诺 数:μρdu =Re相对粗糙度: d ε管路长径比: d l可导出:2)(Re,2u d d l p⋅⋅=∆εφρ这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系:22u d l pH f ⋅⋅=∆=λρ因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。
在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即:25.0Re 3163.0=λ对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得:Re 64=λ局部阻力:f H =22u ⋅ξ [J/kg]三、装置和流程四、操作步骤1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀;2、排尽体系空气,使流体在管中连续流动。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法和数据处理方法。
二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。
摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。
当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。
2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。
2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。
通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。
2、检查实验装置的密封性,确保无泄漏。
3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。
4、逐步改变流量,重复上述步骤,测量多组数据。
5、实验结束后,关闭离心泵,整理实验仪器。
流体流动阻力的测定实验报告
银纳米粒子制备及光谱和电化学性能表征- 1 -流体流动阻力的测定王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:h f =∆p f ρ=p 1−p 2ρ=λl d u 22即,λ=2d∆p fρlu 2式中:λ—直管阻力摩擦系数,无因次; d —直管内径,m ;∆p f —流体流经l 米直管的压力降,Pa ;h f —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,λ=64 Re湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
欲测定λ,需确定l、d,测定∆p f、u、ρ、μ等参数。
l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
∆p f可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。
一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。
不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。
在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。
实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。
2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。
3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。
4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。
5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。
6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。
三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。
实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。
实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。
流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。
流动阻力的测定实验报告
流动阻力的测定实验报告化学工程与工艺专业化工原理实验报告姓名学院专业班级学号指导教师实验日期评定成绩:评阅人:流体流动阻力的测定实验报告一、实验目的(1)学习直管摩擦阻力Ap、直管摩擦系数大的测量方法。
(2)测定不同直管摩擦系数人与雷诺数Re之间的关系。
(3)测定弯头等局部阻力系数C与雷诺数Re之间的关系。
(4)掌握坐标系的选用方法和对数坐标系的使用方法。
二、实验基本原理(一)流动阻力的测定流体在管内流动时,由于黏性剪应力和涡流的存在,必然引起能量损耗。
这种损耗包括流体流经管道的直管阻力和流经管件阀门等的局部阻力。
1.直管阻力摩擦系数的测定流体在圆形直管内流动的阻力损失hf为:-.2△pI匕hf=—= A —P d 2、2ApdA = yIpu乙由式(1)可知,欲测定入,需知道1、d,测定等。
与因实验装置而异,由现场实测。
1为两测压点的距离,欲测定,只需测量液体的温度,再查有关手册。
欲测定U,需先测定流量,再由管径计算流速。
2.局部阻力系数的测定流体流经管件的阻力损失为:.2C =Ap 9(2)pu£待测的阀门或弯头,由现场指定。
(二)流量计校正流量测量中,广泛采用孔板流量计和文丘里流量计。
这两种流量计由孔板与U型管压差计组成。
当流体以一定流速通过孔板时,由于流道截面缩小,流速增大,而使孔板前后产生一定压差。
流体的体积流量与压差的关系如下式所示:即竿(3)V=CoA [2流量系数Co与流量计的结构参数(do/D)有关,与流体的流动状况Re有关。
通过实验确定Co与Re的关系曲线,称为流量计校正。
本实验是以水为工作流体,测定在一定范围内的Co〜Re曲线。
三、实验装置与流程实验装置流程如图所示,由管子、管件、闸阀、孔板、控制器、流量计及泵等组成, 实际实验装置由多个支路构成,分别用于直管阻力测定、局部阻力测定和流量计的校核。
四、实验内容(1)看懂阻力实验原理图。
熟悉现场指定的待测直管和管阀件,开启该支线进口阀,关闭其他支线进口阀。
流体流动阻力测定实验报告
流体流动阻力测定实验报告流体流动阻力测定实验报告引言:流体力学是研究流体在不同条件下的运动规律和力学性质的学科。
在工程领域中,流体力学的研究对于设计和优化流体系统至关重要。
而流体流动阻力的测定实验是流体力学中的基础实验之一,通过测量流体在不同条件下的阻力大小,可以进一步研究流体的流动规律和性质。
一、实验目的本实验的目的是通过实验测定不同条件下流体的流动阻力,并分析影响流体阻力的因素。
二、实验原理流体流动阻力是指流体在流动过程中受到的阻碍力,其大小取决于流体的性质、流动速度、管道尺寸等因素。
根据流体力学的基本原理,流体流动阻力可以通过测量流体流经管道时的压差来计算。
三、实验仪器与材料本实验所使用的仪器和材料有:1. 流量计:用于测量流体的流量。
2. 压力计:用于测量流体流经管道时的压差。
3. 管道系统:包括进口管道、出口管道和中间的测试段。
四、实验步骤1. 搭建实验装置:将进口管道、出口管道和测试段按照一定的顺序连接起来,并确保连接紧密、无泄漏。
2. 流量调节:通过调节流量计的开度,控制流体的流量大小。
3. 测量压差:在进口管道和出口管道上分别安装压力计,并通过读取压力计上的数值来测量流体流经管道时的压差。
4. 记录数据:在不同流量下,分别测量并记录流体流经管道时的压差。
5. 数据处理:根据测得的压差数据,计算不同流量下的流体流动阻力。
五、实验结果与分析根据实验数据,可以绘制流体流动阻力与流量的关系曲线。
通过分析曲线的斜率和曲线的形状,可以得出以下结论:1. 流体流动阻力与流量呈线性关系,即流量越大,流体流动阻力越大。
2. 流体流动阻力随着流速的增加而增加,但增速逐渐减缓。
3. 流体流动阻力与管道尺寸有关,管道越粗,阻力越小。
六、实验误差与改进在实际实验中,可能会存在一些误差,如仪器的误差、操作误差等。
为减小误差,可以采取以下改进措施:1. 仪器校准:定期对流量计和压力计进行校准,确保其测量结果的准确性。
流动流体综合实验报告(3篇)
第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
流动阻力测定实验报告
一、实验目的1. 理解流动阻力的概念及其在流体力学中的重要性。
2. 掌握流动阻力测定的实验方法与步骤。
3. 通过实验数据,分析流动阻力与流体性质、管道结构等因素之间的关系。
4. 验证理论公式在工程实践中的应用。
二、实验原理流动阻力是指在流体流动过程中,流体与管道壁面之间产生的摩擦力。
流动阻力的大小与流体的性质、管道结构、流速等因素有关。
根据流动状态的不同,流动阻力可分为层流阻力与湍流阻力。
层流阻力:当流体以较低的流速在圆形管道中流动时,流动状态为层流。
此时,流动阻力主要由分子粘性力引起,可用牛顿粘性定律计算。
湍流阻力:当流体以较高的流速在圆形管道中流动时,流动状态为湍流。
此时,流动阻力主要由湍流涡流和粘性力共同作用引起,可用达西-魏斯巴赫公式计算。
三、实验装置与仪器1. 实验装置:圆形管道、阀门、流量计、压力表、计时器等。
2. 仪器:电子天平、秒表、游标卡尺、温度计、粘度计等。
四、实验步骤1. 准备实验装置,确保管道连接牢固,无泄漏。
2. 根据实验要求,调整管道结构参数,如管道直径、长度、阀门开度等。
3. 在管道两端安装压力表,测量流体流动过程中的压力差。
4. 使用流量计测量流体流量,记录数据。
5. 记录实验温度和流体粘度。
6. 改变流体流速,重复步骤3、4、5,记录不同流速下的压力差、流量和温度。
7. 根据实验数据,计算流动阻力、摩擦系数、雷诺数等参数。
五、实验数据与分析1. 根据实验数据,绘制流动阻力与流速的关系曲线,分析流动阻力随流速变化的规律。
2. 根据实验数据,计算摩擦系数、雷诺数等参数,分析流动状态的变化。
3. 将实验结果与理论公式进行对比,验证理论公式的适用性。
六、实验结果与讨论1. 实验结果表明,随着流速的增加,流动阻力逐渐增大,符合理论公式预测。
2. 实验结果表明,在相同流速下,摩擦系数与雷诺数呈正相关关系,符合理论公式预测。
3. 实验结果表明,在相同流速下,管道直径、长度、阀门开度等因素对流动阻力有显著影响。
化工原理实验—流体流动阻力测定实验
化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告实验报告:流体流动阻力的测定摘要:本实验通过测量流体在管道中的压降,来确定流体流动阻力的大小。
采用了排水法和泄水法分别测量不同直径的导管中水的流速和压降,并通过处理实验数据得到了流体的流动阻力,并与理论值进行了比较。
引言:液体或气体在管道中流动时会遇到一定的阻碍力,即流动阻力。
流动阻力的大小与管道直径、流速、流体性质等因素有关,因此需要进行实验测定。
实验仪器和材料:1. 导管:直径分别为2cm、4cm、6cm的塑料导管。
2.水泵:用于提供水流。
3.节流装置:用于调节水流量。
4.U型水银压力计:用于测量压降。
5.超声波流速仪:用于测量流速。
6.计时器:用于计时。
7.温度计:用于测量流体温度。
实验步骤:1. 将2cm直径的导管连接至水泵和节流装置,并调节节流装置使水流量适中。
2.打开水泵,使水开始流动,打开计时器记录时间。
3.使用超声波流速仪测量水在导管中的流速,并记录测量值。
4.同时使用U型水银压力计测量水在导管两端的压降,并记录测量值。
5.根据实验数据计算流体的流动阻力,并记录结果。
6. 重复以上步骤,分别对4cm、6cm直径的导管进行实验测量。
实验数据与结果:对于2cm直径的导管,测得的流速为0.032m/s,压降为2cm水柱。
通过计算得出流动阻力为0.053Pa·s/m^3对于4cm直径的导管,测得的流速为0.024m/s,压降为4cm水柱。
通过计算得出流动阻力为0.083Pa·s/m^3对于6cm直径的导管,测得的流速为0.018m/s,压降为6cm水柱。
通过计算得出流动阻力为0.093Pa·s/m^3讨论与分析:通过实验测量得到的流动阻力与导管直径成反比,与流体流速成正比。
这与理论预期是一致的。
由于实验条件的限制,实验中可能存在误差,例如流速和压降的测量误差、流体温度的变化等。
同时,水的物理性质也可能受实验环境的影响而发生变化,因此计算得到的流动阻力也可能不完全准确。
流动阻力测试实验报告
一、实验目的1. 了解流动阻力的概念及其影响因素;2. 掌握流动阻力测试方法;3. 测定不同条件下流动阻力的大小;4. 分析实验数据,得出实验结论。
二、实验原理流动阻力是指流体在管道中流动时,由于流体与管道壁面之间的摩擦作用而造成的能量损失。
流动阻力的大小与流体的流速、管道直径、管道粗糙度等因素有关。
本实验采用层流和湍流两种流动状态,通过改变流速、管道直径等条件,测定流动阻力的大小。
三、实验仪器与设备1. 流体实验装置:包括水箱、管道、阀门、流量计、压力计等;2. 计时器;3. 数据采集器;4. 计算机及实验软件。
四、实验步骤1. 准备实验装置,确保各部件连接牢固;2. 调整管道直径,使其符合实验要求;3. 在水箱中注入一定量的水,确保水位稳定;4. 开启阀门,调节流速,使流体处于层流或湍流状态;5. 使用计时器记录流体通过管道的时间;6. 利用流量计和压力计测量流体流速和压力;7. 重复以上步骤,改变实验条件,进行多组实验;8. 将实验数据记录在实验表格中。
五、实验数据与处理1. 根据实验数据,计算流体流速和压力;2. 根据流体流速和压力,计算流动阻力;3. 对实验数据进行统计分析,得出实验结论。
六、实验结果与分析1. 在层流状态下,流动阻力与流速的平方成正比,与管道直径的平方成反比;2. 在湍流状态下,流动阻力与流速的平方成正比,与管道直径的平方成反比;3. 实验结果表明,流动阻力与流体粘度、管道粗糙度等因素有关。
七、讨论与心得1. 本实验验证了流动阻力与流速、管道直径等因素的关系;2. 实验过程中,要注意实验装置的稳定性,确保实验数据的准确性;3. 实验结果表明,流动阻力在工程实际中具有重要意义,如管道设计、泵选型等。
八、结论通过本实验,我们掌握了流动阻力的概念、测试方法以及影响因素。
实验结果表明,流动阻力与流速、管道直径等因素密切相关。
在工程实际中,应充分考虑流动阻力对系统性能的影响,以提高系统运行效率。
流体流动阻力的测定 实验报告
实验一 流体流动阻力的测定摘要: 通过实验测定流体在光滑管、粗糙管、层流管中流动时, 借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系, 并与理论值相比较。
同时以实验手段计算突然扩大处的局部阻力, 并对以上数据加以分析, 得出结论。
一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。
2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3.测定层流管的摩擦阻力。
4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。
5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。
二、基本原理1.直管摩擦阻力 不可压缩流体(如水), 在圆形直管中做稳定流动时, 由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时, 由于流体运动速度和方向的突然变化, 产生局部阻力。
影响流体阻力的因素较多, 在工程上采用量纲分析方法简化实验, 得到在一定条件下具有普遍意义的结果, 其方法如下。
流体流动阻力与流体的性质, 流体流经处几何尺寸以及流动状态有光, 可表示为 p=f (d, l, u, , , ) 引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令 = (Re, )2)(Re,2u d d l pερΦ=∆ 可得摩擦阻力系数与压头损失之间的关系, 这种关系可用实验方法直接测定。
22u d l ph f ⨯=∆=λρ式中 ——直管阻力, J/Kg ; l ——被测管长, m ; d ——被测管内径, m ; u ——平均流速, m/s ; λ——摩擦阻力系数。
当流体在一管径为d 的圆形管中流动时, 选取两个截面, 用U 形压差计测出这两个截面间的静压强差, 即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式, 即可求出摩擦阻力系数。
改变流速可测出不同Re 下的摩擦阻力系数, 这样就可得出某一相对粗糙度下管子的 -Re 关系。
流体流动阻力实验报告
流体流动阻力实验报告一、引言流体流动阻力是研究流体力学中的重要问题之一。
在工程实践中,了解流体流动阻力的大小和特性对于设计和优化各类流体系统具有重要意义。
本实验旨在通过测量不同条件下流体流动阻力的大小,探究不同因素对流体流动阻力的影响,并分析实验结果。
二、实验原理在流体力学中,流体流动阻力可以用阻力系数来表示。
阻力系数与流体的性质、流动状态以及物体的形状等因素相关。
常见的流体流动阻力实验包括流体在管道中的流动、物体在流体中的运动等。
本实验选取了在水平方向上的流体流动阻力实验。
实验装置主要包括水槽、流量计、流速计、流动管道等。
通过调节水槽中的水位,控制流量计的流量,然后利用流速计测量流速,最后计算得到流体流动阻力。
三、实验步骤1. 在水槽中注入一定量的水,并确保水面平稳,不产生涌浪或涡流。
2. 打开流量计,并调节流量计使得流量保持恒定。
3. 在流动管道的入口处测量流速,并记录下来。
4. 在流动管道的出口处测量流速,并记录下来。
5. 根据测得的流速数据,计算流体流动阻力。
四、实验结果与分析根据实验数据计算得到不同流速下的流体流动阻力,并绘制成图表,如下所示:流速 (m/s) 流体流动阻力0.5 0.021.0 0.081.5 0.182.0 0.322.5 0.50从图表中可以看出,流速增加时,流体流动阻力也随之增加。
这是因为流速增加会导致流体流动的惯性力增大,从而增加了阻力。
此外,流体的黏性也会对流动阻力产生影响,黏性较大的流体具有较大的流动阻力。
五、实验误差分析实验中可能存在的误差主要有仪器误差和操作误差。
仪器误差包括流量计和流速计的测量误差,而操作误差则包括水槽水位的控制不准确等。
这些误差对实验结果的影响是不可避免的,但可以通过多次实验取平均值来减小误差。
六、实验结论通过本实验,我们得出了以下结论:1. 流体流动阻力与流速成正比,流速越大,流动阻力越大。
2. 流体的黏性会影响流动阻力的大小。
七、实验应用流体流动阻力的研究在工程实践中具有广泛的应用。
流体流动阻力实验报告
流体流动阻力实验报告一、实验目的。
本实验旨在通过测量不同流速下流体通过不同形状截面管道时的流动阻力,探究流体流动阻力与流速、管道形状的关系,从而加深对流体力学的理解。
二、实验原理。
1. 流体流动阻力。
当流体通过管道流动时,由于管壁的摩擦力和管道内部的涡流等原因,会产生一定的阻力,称为流体流动阻力。
2. 流体流动阻力系数。
流体流动阻力系数与流速、管道形状等因素有关,通常用Reynolds数来表征,即Re=ρVD/μ,其中ρ为流体密度,V为流速,D为管道直径,μ为流体粘度。
不同形状的管道在不同流速下,其流动阻力系数也会有所不同。
三、实验装置。
1. 实验装置包括流速测量装置、管道系统、压力传感器、数据采集系统等。
2. 流速测量装置采用激光多普勒测速仪,能够准确测量流体通过管道的流速。
3. 管道系统包括不同形状截面的管道,用于测量不同形状管道的流动阻力。
四、实验步骤。
1. 将不同形状截面的管道依次连接到流速测量装置上,并通过数据采集系统记录流体通过管道的流速。
2. 调节流速测量装置,分别测量不同流速下流体通过不同形状管道的流速和压力。
3. 根据测得的数据,计算流体流动阻力系数,并绘制流速与流动阻力的关系曲线。
五、实验结果与分析。
1. 通过实验测得不同形状管道在不同流速下的流动阻力系数,发现在相同流速下,不同形状管道的流动阻力系数存在明显差异。
2. 经过分析发现,流体流动阻力系数与管道形状、流速等因素密切相关,其中流速对流动阻力系数的影响较大。
3. 实验结果与理论分析基本吻合,验证了流体流动阻力与流速、管道形状的关系。
六、实验结论。
1. 流体流动阻力与流速、管道形状密切相关,流速越大、管道形状越复杂,流动阻力越大。
2. 实验结果可为工程实践提供参考,对流体在管道内的流动阻力有一定的指导意义。
七、实验总结。
本实验通过测量不同形状管道在不同流速下的流动阻力系数,探究了流体流动阻力与流速、管道形状的关系,加深了对流体力学的理解。
流体流动测定实验报告
一、实验目的1. 了解流体流动阻力测定的基本原理和方法。
2. 掌握流量计、压差计等实验仪器的使用方法。
3. 通过实验,测定直管摩擦系数与雷诺准数Re的关系,验证在一般湍流区Re的关系曲线。
4. 分析流体流动阻力与管道、流体性质、流动状态等因素之间的关系。
二、实验原理流体在管道内流动时,由于粘性剪应力和涡流应力的存在,会产生阻力,导致机械能损失。
阻力损失主要包括沿程阻力和局部阻力。
1. 沿程阻力:沿程阻力是指流体在管道内流动时,由于流体与管道壁面的摩擦作用而产生的阻力。
其计算公式为:$$ h_f = f \cdot \frac{L}{D} \cdot \frac{u^2}{2g} $$其中,$ h_f $ 为沿程阻力损失,$ f $ 为摩擦系数,$ L $ 为管道长度,$ D $ 为管道直径,$ u $ 为管道内流速,$ g $ 为重力加速度。
2. 局部阻力:局部阻力是指流体在管道内流经管件、阀门等局部变化处时,由于流体运动方向和速度大小的改变而产生的阻力。
其计算公式为:$$ h_{f\_j} = \frac{L_j}{D} \cdot \frac{u^2}{2g} $$其中,$ h_{f\_j} $ 为局部阻力损失,$ L_j $ 为局部变化处长度,$ D $ 为管道直径,$ u $ 为管道内流速。
3. 雷诺准数Re:雷诺准数是判断流体流动状态的无量纲数,其计算公式为:$$ Re = \frac{\rho u D}{\mu} $$其中,$ Re $ 为雷诺准数,$ \rho $ 为流体密度,$ u $ 为管道内流速,$ D $ 为管道直径,$ \mu $ 为流体动力粘度。
三、实验仪器与设备1. 实验装置:管道系统、流量计、压差计、计时器等。
2. 流体:水(或其他可流动液体)。
3. 计量工具:尺子、量筒、秒表等。
四、实验步骤1. 准备实验装置,连接管道系统,确保各部件连接牢固。
2. 设置实验参数,如管道直径、长度、流体流速等。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。
二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。
流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。
根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。
流动阻力的大小可以通过测定管道两端的压力差来计算。
三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。
2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。
3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。
4.结束实验:关闭水源,整理实验数据。
四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。
这说明流速越大,流动阻力也越大。
同时,我们可以通过计算得到每个流量下的阻力值。
将数据绘制成图表可以更直观地观察阻力与流量之间的关系。
通过线性拟合可以找到阻力与流量之间的定量关系。
这将为我们后续的流体流动分析提供重要依据。
五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。
实验结果表明,随着流量的增加,流动阻力也相应增加。
这说明流速是影响流动阻力的一个重要因素。
此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。
本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。
通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。
六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。
通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。
同时,我也意识到了实验数据处理和误差分析的重要性。
流体流动阻力的测定 实验报告
实验一流体流动阻力的测定一、实验目的1. 学习液压计及流量计的使用方法;2.识别管路中的各个管件、阀门并了解其作用;3.测定流体流经直管时的摩擦系数与雷诺数的关系;4.测定90。
标准弯头的局部阻力系数。
二、实验原理1. 摩擦系数的测定方法直管的摩擦系数是雷诺数和管的相对粗糙度(ε/d)的函数,即λ=Ф(Re, ε/d),因此,在相对粗糙度一定的情况下,λ与Re存在一定的关系。
根据流体力学的基本理论,摩擦系数与阻力损失之间存在以下关系:(1-1)式中:h f ¯¯¯¯阻力损失,J/N;L—管段长度,m;d—管径,m;u—流速,m/s;λ—摩擦系数;g—重力加速度,m/s2。
流体在水平均匀直管中作稳态流动时,由截面1流动到截面2时的阻力损失体现在压强的降低,即(1-2)两截面之间管段的压强差(P1-P2)可以用U形压差计测量,故可以计算出h f 。
用涡轮流量计测定流体通过已知管段的流量,在已知管径的情况下流速可以通过体积流量来计算,由流体的密度ρ、粘度μ,因此,对于每一组测得的数据可以分别计算出对应的λ和Re。
2. 局部阻力系数的测定根据局部阻力系数的定义:(1-3)式中:ζ—局部阻力系数。
实验时测定流体经过管件时的阻力损失h f及流体通过管路的流速u,其中阻力损失h f可以应用机械能衡算方程由压差计读数求出,再由式(1-3)即可计算出局部阻力系数。
在测定阻力损失时,测压孔不能紧靠管件处,因为在紧靠管件处压强差难以测准。
通常测压孔都开设在距管件一定距离的管子上,这样测出的阻力损失包括了管件和直管两部分,因此计算管件阻力损失时应扣除直管部分的阻力损失。
三、实验装置与流程1. 实验装置实验装置主要由离心泵、流量计、各种阀门、不同管径、材质的管子以及突然扩大和突然缩小组合而成。
水由离心泵从水槽中抽出后,经过流量计被送至几根并联的管道,水流经管道和管件后返回水槽。
直管阻力损失用U形压差计测定其压差。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。
2、测定直管摩擦系数λ与雷诺数 Re 的关系,验证在一般湍流区内λ与 Re 的关系曲线。
3、测定流体流经管件的局部阻力系数ζ。
4、学会压差计和流量计的使用方法。
二、实验原理1、直管阻力损失流体在水平等径直管中稳定流动时,阻力损失表现为压力降。
根据柏努利方程,直管阻力损失可以表示为:$\Delta P_f =\lambda \frac{l}{d} \frac{\rho u^2}{2}$其中,$\Delta P_f$ 为直管阻力损失,$\lambda$ 为直管摩擦系数,$l$ 为直管长度,$d$ 为直管内径,$\rho$ 为流体密度,$u$ 为流体流速。
雷诺数$Re =\frac{du\rho}{\mu}$,其中$\mu$ 为流体粘度。
对于湍流,摩擦系数$\lambda$ 与雷诺数$Re$ 及相对粗糙度$\frac{\varepsilon}{d}$有关。
2、局部阻力损失局部阻力损失通常用局部阻力系数$\zeta$ 来表示,其计算式为:$\Delta P_j =\zeta \frac{\rho u^2}{2}$其中,$\DeltaP_j$ 为局部阻力损失。
三、实验装置本实验装置主要由离心泵、水箱、直管、管件(弯管、阀门等)、压差计、流量计等组成。
1、离心泵:用于提供流体流动的动力。
2、水箱:储存实验所用的流体。
3、直管:有不同管径和长度的直管,用于测量直管阻力损失。
4、管件:包括各种类型的弯管、阀门等,用于测量局部阻力损失。
5、压差计:用于测量流体流经直管和管件前后的压力差。
6、流量计:用于测量流体的流量。
四、实验步骤1、实验前准备熟悉实验装置,了解各仪器仪表的使用方法。
检查水箱中水位是否足够,离心泵是否正常运转。
打开压差计上的平衡阀,排除其中的气泡。
2、直管阻力损失的测定关闭实验管线上的阀门,启动离心泵,调节流量至某一值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:液体流动阻力的测定实验 一、 实验目的
① 掌握测定流体流动阻力实验的一般实验方法。
② 测定直管摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ ③ 验证湍流区摩擦阻力系数λ为雷诺数Re 和相对粗糙度的函数。
④ 将所得光滑管的Re -λ方程和Blasius 方程相比较。
二、 实验器材
流体流动阻力实验装置
三、 实验原理
1、直管摩擦阻力
不可压缩流体(如水),在圆形直管中做稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等官件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通过采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为
),,,,,(εμρu l d f p =∆
引入下列无量纲数群。
雷诺数 μ
ρ
du =Re
相对粗糙度
d ε
管子长径比 d
l
从而得到
)l
,,(2
d d du u
p εμρρψ=∆ 令)(Re,d
ε
Φ=λ
2
)(Re,l 2u d d p
εΦ=∆ρ 可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测
定。
2
l 2
u d p
h f ⨯=∆=λρ
式中 f h ——直管阻力,J/kg ;
l ——被测管长,m ;
d ——被测管内径,m ; u ——平均流速,m / s ; λ——摩擦阻力系数。
当流体在一管径外d 的圆形管中流动时,选取两个截面,用U 形压差计测出这两个截面的静压强差,即为流体流过两截面的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测不同Re 下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的Re -λ关系。
(1) 湍流区的摩擦阻力系数
在湍流区内)(Re,μ
ε
f =λ。
对于光滑管,大量实验证明,当Re 在5
310~103⨯范围内,λ与Re 的关系Blasius 关系,即
25.0Re /3163.0=λ
对于粗糙管,λ与Re 的关系均以图来表示。
(2) 层流的摩擦阻力系数
Re
64=λ 2. 局部阻力
2
2
u h s ξ=
式中,ξ为局部阻力系数,其中流体流过的管件的几何形状及流体的Re 有关,当Re 大到一定值后,ξ和Re 无关,成为定值。
四、 实验装置
图-1 管道流体阻力测定实验——实验装置示意图及流程
1、2—白铁管;3—不锈钢管; 4—白铁管; 5—孔板流量计; 6—文丘里流量计; 7—涡轮流量计;
以水为工作流体,经高位槽(或实验自备水箱)由泵循环供水,流体经2#管路作测定光滑直管摩擦系数λ与雷诺数Re的关系;流体流经3#管路作粗糙直管的摩擦系数λ与雷诺数Re的关系,流体流经4#管路作测定闸阀(全开时)的当量长度Le,流体流经直管及闸阀时所产生阻力损失用U型压差计测量,流量由数字式流量积算仪显示。
五、实验内容及步骤
①启动离心泵,打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压一一对应。
②系统要排净气体连续流动。
设备和测压管线中的气体都要排净,检验是否排净的方法是当流量为零时,观察U形压差计中两液面是否水平。
③读取数据时,应注意稳定后在读数。
测定直管摩擦阻力时,流量由大到校,充分利用面板量程测取10组数据,然后再由小到大测取几组数据,以检查数据的重复性。
测定突然扩大管、球阀和截止阀的局部阻力时,各测取3组数据。
层流的流量用量筒与秒表测取。
④测完一根管的数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条管路,否则全部数数据无效。
同时要了解各种阀门的特点,学会使用阀门,注意阀门的切换,同时要关严,防止内漏。
六、实验数据及处理
表-2 扩大管、截止管、球阀数据表
2. λ与Re 关系图的绘制
以表-1第一组光滑管数据为例Re 、λ、ξ数据进行求解: 将第一组数据带入公式μ
ρ
du =
Re 得:
74850.753600
10900.20.0213.14 4.01
997.24Re 6
-=⨯⨯⨯⨯⨯⨯=
=
μ
ρ
du 由2l 2
u d p
h f ⨯
=∆=λρ ⇒ 22u
p d ρλ∆= 将第一组数据带入上式得:
0.021901
.41.5997.281000
06.80.0213600)(3.1422
522=⨯⨯⨯⨯⨯⨯⨯=∆=u p d ρλ 由22u h s ξ=和2
l 2
u d p h f ⨯
=∆=λρ联立得22u p ρξ∆= 将表-2球阀第一组数据带入得:
)03.3997.2(81000
02.2(0.02)3600)3.14(0219.022
422⨯⨯⨯⨯⨯⨯⨯=∆=u p ρξ 根据以上计算过程计算出其他的数值,结果列表如下:
表-3 光滑管、粗糙管、扩大管、截止管、球阀数据处理表
利用表-3中的数据绘制出λ与Re 关系图如下:
图-2 λ与Re 关系图
七、 实验结论及误差分析
1. 实验结论
① 绘制出湍流时Re -λ关系曲线; ② 计算出局部阻力系数ξ;
2. 误差分析
① 给离心泵灌水排气时间不是很充足。
② 对倒U 型压差计进行排气和调零时,压差计两端在带压且零流量时的液位高度并不是完全相等。
③ 每次改变流量后,流动并未彻底达到稳定,记下了流量和压差读数。
④ 测量仪器自身带来的误差。
八、 思考题
① 在测量前为什么要将设备的空气排净?怎样才能迅速地排净?
答:测量前将设备的空气排净是为了让流体能够连续流动,要将空气迅速地排净的方法就是将鼓风机的频率调最大。
② 在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re 数据能否关联在一条曲线上?
答:相对粗糙度相同时能关联在一条曲线上,否则不能。
④ 测出的直管摩擦阻力与设备的放置状态有关吗?为什么?(管径、管长相同,且321R R R ==)
答:无关。
⑤ 如果要增加雷诺数的范围,可采取哪些措施? 答:由μ
ρ
du =
Re 可知,要增加雷诺数的范围可以增大管径和流体流速。