2020年高中数学必修四全套教案(精品)

合集下载

(整理)高中数学必修4全套教案

(整理)高中数学必修4全套教案

第1,2课时1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角始边 终边顶点AO B负角:按顺时针方向旋转形成的角角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y 上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:练习第1-5题; 习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 k 为奇数,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 因此2α属于第二或第四象限角. 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角第3课时1.1.2弧度制(一)教学目标(一)知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. (二)过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (三)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点:“角度制”与“弧度制”的区别与联系. 教学过程:一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考: (1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:3.571801≈⎪⎭⎫ ⎝⎛=π5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.r l α=弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把150°化成弧度;把rad 53π化成度 例2.计算:4sin)1(π;.6cos)2(π例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 67π是第三象限的角,所以它是第三象限角.ORl631)2(π-是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式 7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业:①教材P9练习第1、2、3、6题 ②教材P10面7、8题及B2、3题.第4课时1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学人教版必修4全套教案

高中数学人教版必修4全套教案

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角⑵B 1 y⑴Ox45° B 2O x B 3y30°60o负角:按顺时针方向旋转形成的角 始边 终边顶点AO B3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角此时,2α属于第四象限角 因此2α属于第二或第四象限角. 1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. (五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题(六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗? (2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p=?. 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度7.弧长公式弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180Rn l π=,∴R l R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业: ①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学必修四备课教案

高中数学必修四备课教案

高中数学必修四备课教案
目标:通过本节课的学习,学生能够掌握直线方程的基本知识,能够灵活运用直线的方程
求解相关问题。

学习内容:直线的方程
教学重点:直线的斜率和截距的概念及其计算,直线的一般方程的推导和应用。

教学难点:直线的截距式和一般式的转化,直线的斜率的应用。

教学过程:
一、导入:通过一个生活实例引入直线的概念,让学生了解直线的基本特征。

二、讲解直线的斜率和截距的概念,并介绍直线的斜率和截距的计算方法。

三、讲解直线的一般方程的推导,通过样例演示如何根据直线上的两点求出直线的一般方程。

四、练习:布置一些练习题,让学生巩固所学知识,并培养他们灵活运用直线方程的能力。

五、总结:回顾本节课的重点内容,强调直线方程的重要性,并解答学生在学习过程中遇
到的问题。

六、作业:布置相关作业,以进一步巩固学生所学知识。

评价:通过学生的课堂表现和作业完成情况,评价学生对直线方程的掌握情况,并及时指
导学生的学习方向。

高中数学必修四的教案

高中数学必修四的教案

高中数学必修四的教案
教学目标:
1. 理解函数的定义及基本性质。

2. 学会通过实例计算函数的值。

3. 掌握函数的奇偶性、周期性、单调性等基本性质。

教学重点:
1. 函数的定义和基本性质。

2. 函数值的计算。

3. 函数的奇偶性、周期性、单调性等性质。

教学难点:
1. 函数的奇偶性、周期性、单调性的判断。

2. 函数值的计算。

教学过程:
一、导入:通过一个生活中的例子引入函数的概念,让学生了解函数在实际生活中的应用。

二、讲解函数的定义及基本性质,包括函数的符号表示、定义域、值域、函数的奇偶性、
周期性、单调性等内容。

三、练习:让学生通过实例计算函数的值,并判断函数的奇偶性、周期性、单调性等性质。

四、总结:总结本节课所学的内容,强调函数的重要性和实际应用价值。

五、作业布置:布置相关练习题,巩固学生的学习成果。

教学手段:
1. 板书。

2. PPT。

3. 小组讨论。

4. 实例练习。

教学评价:
1. 学生能准确理解函数的定义及基本性质。

2. 学生能够通过实例计算函数的值。

3. 学生能够准确判断函数的奇偶性、周期性、单调性等性质。

教学反思:
教师应根据学生的实际掌握情况,适时调整教学内容和教学方法,确保学生能够全面理解并掌握函数的相关知识。

高中数学必修四教案6篇

高中数学必修四教案6篇

高中数学必修四教案6篇高中数学必修四教案篇1教学目标:1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·2·培养学生数形结合的思想,以及分析推理的能力·教学重点:对数函数性质的应用·教学难点:对数函数的性质向对数型函数的演变延伸·教学过程:一、问题情境1·复习对数函数的性质·2·回答下列问题·(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03·情境问题·函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题·三、数学运用例1求函数y=log2(x2+2x+2)的定义域和值域·练习:(1)已知函数y=log2x的值域是[—2,3],则x的范围是________________·(2)函数,x(0,8]的值域是·(3)函数y=log(x2—6x+17)的值域·(4)函数的.值域是_______________·例2判断下列函数的奇偶性:(1)f(x)=lg(2)f(x)=ln(—x)例3已知loga 0·75 1,试求实数a取值范围·例4已知函数y=loga(1—ax)(a 0,a≠1)·(1)求函数的定义域与值域;(2)求函数的单调区间·练习:1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号)·2·函数y=lg(—1)的图象关于对称·3·已知函数(a 0,a≠1)的图象关于原点对称,那么实数m= ·4·求函数,其中x [,9]的值域·四、要点归纳与方法小结(1)借助于对数函数的性质研究对数型函数的定义域与值域;(2)换元法;(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)· 五、作业课本P70~71—4,5,10,11·高中数学必修四教案篇2教学准备教学目标掌握三角函数模型应用基本步骤:(1)根据图象建立解析式;(2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型·教学重难点·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·教学过程一、练习讲解:《习案》作业十三的第3、4题3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的`水深的近似数值(精确到0·001)·(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1·5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1·5米,该船在2:00开始卸货,吃水深度以每小时0·3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。

高中数学必修四教案最新5篇

高中数学必修四教案最新5篇

高中数学必修四教案最新5篇高中高二数学必修四教案篇一教学目标1、掌握平面向量的数量积及其几何意义;2、掌握平面向量数量积的重要性质及运算律;3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4、掌握向量垂直的条件。

教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高一上册数学必修四教案篇二教学目标1、通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;2、明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示。

;3、让学生深刻理解向量在处理平面几何问题中的优越性。

教学重难点教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”。

教学难点:如何将几何等实际问题化归为向量问题。

教学过程由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

例1、平行四边形是表示向量加法与减法的几何模型。

高中数学必修4全套教学

高中数学必修4全套教学

高中数学必修4全套教学一、教学任务及对象1、教学任务本教学设计针对的是高中数学必修4全套课程。

高中数学必修4是高中数学课程体系中的重要组成部分,其内容主要包括:函数的概念与性质、三角函数及其图象、数列、平面向量及其应用等。

通过本课程的学习,使学生掌握函数的基本概念和性质,理解并运用三角函数解决实际问题,掌握数列的求和与通项公式,了解平面向量的基本运算及应用。

本教学任务旨在帮助学生建立扎实的数学基础,培养逻辑思维能力和解决问题的能力。

2、教学对象本教学设计的教学对象为高中一年级学生。

经过初中数学学习,学生已具备一定的数学基础和逻辑思维能力。

但由于高中数学知识点的增多和难度加大,部分学生可能在学习过程中感到吃力。

因此,在教学过程中,教师需要关注学生的个体差异,因材施教,激发学生的学习兴趣,帮助他们克服困难,逐步提高数学素养。

同时,注重培养学生的自主学习能力和合作精神,使他们养成良好的学习习惯,为今后的学习打下坚实基础。

二、教学目标1、知识与技能(1)理解函数的基本概念,掌握函数的定义、域、值域、图像等基本性质。

(2)掌握三角函数的图像、性质、周期性、奇偶性等,能够运用三角函数解决实际问题。

(3)掌握数列的求和公式、通项公式,了解数列的收敛性、发散性等概念。

(4)了解平面向量的基本概念、运算规律,能够运用向量解决几何问题。

(5)运用数学知识解决实际问题,培养数学建模和数学思维能力。

2、过程与方法(1)通过问题驱动的教学方法,引导学生主动探究、发现数学规律,培养学生的自主学习能力。

(2)采用小组合作、讨论交流等教学形式,培养学生的合作精神和团队意识。

(3)运用多媒体、教具等辅助教学手段,丰富教学形式,提高学生的学习兴趣。

(4)设计不同难度的练习题,使学生在练习中巩固知识,提高解题能力。

(5)注重数学思想方法的渗透,培养学生的逻辑思维、抽象思维和创新能力。

3、情感,态度与价值观(1)激发学生对数学学科的兴趣,使他们认识到数学在自然科学、社会科学等领域的重要性。

高一数学必修四教案(6篇)

高一数学必修四教案(6篇)

高一数学必修四教案(6篇)高一数学必修四教案(6篇)高一数学必修四教案1 教学准备教学目的1·掌握平面向量的数量积及其几何意义;2·掌握平面向量数量积的重要性质及运算律;3·理解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4·掌握向量垂直的条件·教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1·向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

〔3〕你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2·4 A组2、7题课后小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

〔3〕你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2·4 A组2、7题板书高一数学必修四教案2 教学准备教学目的o理解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别才能的训练,培养学生认识客观事物的数学本质的才能·教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联络·教学过程〔一〕向量的概念:我们把既有大小又有方向的量叫向量。

高中数学必修4教案6篇

高中数学必修4教案6篇

高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。

教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇高一数学必修四教案篇一教学准备教学目标o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力· 教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联系·教学过程(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)1、数量与向量有何区别?(数量没有方向而向量有方向)2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?课后小结1、描述向量的两个指标:模和方向·2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。

反思教学方式及能力培养篇二为了强调学生的主体性,把时间还给学生,有的教师上课便叫学生自己看书,教师指导性差、没有提示和具体要求,看得如何没有检查也没有反馈等等。

一些课堂上教师片面追求小组合作这一学习形式,对小组合作学习的目的、时机及过程没有进行认真设计。

这些学习方式,学生表面上获得了自主的权利,可实际上并没有做到真正的自主。

课堂教学是开展反思性学习的主渠道。

在课堂教学中要有意识的引导学生从多方位、多角度进行反思性的学习;要引导学生自然地合理地提出问题、自然地合理地解决问题、自然地合理地拓展问题,从而提高逻辑思维能力和解决问题的能力。

数学必修4教案

数学必修4教案

数学必修4教案数学必修4教案(10篇)作为一位不辞辛劳的人民教师,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。

那么写教案需要注意哪些问题呢?以下是小编帮大家整理的数学必修4教案,仅供参考,希望能够帮助到大家。

数学必修4教案1教学目标1.使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。

3.在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神。

教学重点,难点重点是奇偶性概念的形成与函数奇偶性的判定难点是对概念的熟悉教学用具投影仪,计算机教学方法引导发现法教学过程一.引入新课前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质。

从什么角度呢?将从对称的角度来研究函数的性质。

对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,非凡是函数中有没有对称问题呢?(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等。

)结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称。

最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。

二.讲解新课2.函数的奇偶性(板书)教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判定图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。

(人教版)高中数学必修4教案全集

(人教版)高中数学必修4教案全集

第一章三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒”(即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

最新高中数学必修4全套教案精编版

最新高中数学必修4全套教案精编版

2020年高中数学必修4全套教案精编版仅供学习与交流,如有侵权请联系网站删除 谢谢126第1,2课时1.1.1 任意角教学目标 (一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.(二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 始终顶A OB 负角:按顺时针方向旋转形成的角仅供学习与交流,如有侵权请联系网站删除 谢谢126⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;仅供学习与交流,如有侵权请联系网站删除 谢谢126⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在«Skip Record If...»上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:练习第1-5题; 习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,«Skip Record If...»各是第几象限角?解:«Skip Record If...»角属于第三象限,«Skip Record If...» k ·360°+180°<α<k ·360°+270°(k ∈Z) 因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k ·180°+90°<«Skip Record If...»<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<«Skip Record If...»<n ·360°+135°(n ∈Z) ,此时,«Skip Record If...»属于第二象限角正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角k为奇数,令k=2n+1 (n∈Z),则n·360°+270°<«Skip Record If...»<n·360°+315°(n∈Z) ,此时,«Skip Record If...»属于第四象限角因此«Skip Record If...»属于第二或第四象限角.仅供学习与交流,如有侵权请联系网站删除谢谢126第3课时1.1.2弧度制(一)教学目标(一)知识与技能目标理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.(二)过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题(三)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点:“角度制”与“弧度制”的区别与联系.教学过程:一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的«Skip Record If...»作为1度的角,用度做单位来度量角的制度叫做角度制.二、新课:1.引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.3.思考:仅供学习与交流,如有侵权请联系网站删除谢谢126(1)一定大小的圆心角«Skip Record If...»所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳:弧度制的性质:①半圆所对的圆心角为«Skip Record If...»②整圆所对的圆心角为«Skip Record If...»③正角的弧度数是一个正数.④负角的弧度数是一个负数.⑤零角的弧度数是零.⑥角α的弧度数的绝对值|α|=«Skip Record If...»4.角度与弧度之间的转换:①将角度化为弧度:«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;«Skip Record If...».②将弧度化为角度:«Skip Record If...»5.常规写法:①用弧度数表示角时,常常把弧度数写成多少π的形式, 不必写成小数.②弧度与角度不能混用.6.特殊角的弧度仅供学习与交流,如有侵权请联系网站删除谢谢126«Skip Record If...»«Skip Record If...»弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.例1.把150°化成弧度;把«Skip Record If...»化成度例2.计算:«Skip Record If...»;.«Skip Record If...»例4.将下列各角化成0到2π的角加上2kπ(k∈Z)的形式:«Skip Record If...»;«Skip Record If...».例5.将下列各角化成2kπ + α(k∈Z,0≤α<2π)的形式,并确定其所在的象限.«Skip Record If...»;«Skip Record If...».解: (1)«Skip Record If...»«Skip Record If...»是第三象限的角,所以它是第三象限角.«Skip Record If...»是第二象限角. «Skip Record If...»证法一:∵圆的面积为«Skip Record If...»,∴圆心角为1的扇形面积为«Skip Record If...»,又扇形弧长为l,半径为R,∴扇形的圆心角大小为«Skip Record If...»rad, ∴扇形面积«Skip Record If...».证法二:设圆心角的度数为n,则在角度制下的扇形面积公式为«Skip Record If...»,又此时弧长«Skip Record If...»,∴«Skip Record If...».可看出弧度制下的扇形面积公式显然要简洁得多.«Skip Record If...»7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①教材P9练习第1、2、3、6题②教材P10面7、8题及B2、3题.OR l仅供学习与交流,如有侵权请联系网站删除谢谢126仅供学习与交流,如有侵权请联系网站删除谢谢126第4课时1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中必修四数学教案

高中必修四数学教案

高中必修四数学教案
教学内容:高中必修四数学课程
目标:帮助学生掌握高中必修四数学的基本知识和技能,提高数学思维能力和解题能力
教学重点:数学基本知识和技能的掌握
教学难点:数学理解和运用的能力提升
教学方法:综合应用教学法、问题解决教学法
教学步骤:
一、引入(5分钟)
1.和学生一起回顾上节课的内容,引出本节课的主题
2.介绍本节课要学习的知识点和目标
二、讲解(30分钟)
1.讲解高中必修四数学课程中的基本知识和概念,包括整数、有理数、无理数、代数运算等内容
2.通过案例分析和实例演练,让学生掌握数学运算规则和方法
三、练习(20分钟)
1.布置练习题让学生巩固所学知识并提高解题能力
2.辅导和指导学生解决问题,解答疑惑和困惑
4.让学生互相讨论交流,提高合作学习能力
四、总结(5分钟)
1.和学生一起总结本节课的重点和难点,复习本节课的内容
2.鼓励学生勤勉学习,提高数学思维和解题能力
教学反思:根据学生实际情况调整教学策略,及时反馈学生学习情况,帮助学生解决问题和提高能力。

最新高中数学必修四教案 全套【5篇】

最新高中数学必修四教案 全套【5篇】

最新高中数学必修四教案全套【5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中数学必修四教案全套【5篇】作为一位无私奉献的人·民教师,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。

高中数学必修四教案

高中数学必修四教案

中学数学必修四教案作为一位无私奉献的人民老师,很有必要细心设计一份教案,教案是教学蓝图,可以有效提高教学效率。

那么你有了解过教案吗?这里给大家共享一些关于中学数学必修四教案,便利大家学习。

中学数学必修四教案篇1教学目标1.驾驭平面对量的数量积及其几何意义;2.驾驭平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理垂直的问题;4.驾驭向量垂直的条件.教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学过程1.平面对量数量积(内积)的定义:确定两个非零向量a与b,它们的夹角是θ,那么数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π).并规定0向量与任何向量的数量积为0.×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区分?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所确定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,假设a?0,且a×b=0,那么b=0;但是在数量积中,假设a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.中学数学必修四教案篇2一、指导思想:使学生在九年义务教化数学课程的根底上,进一步提高作为将来公民所必要的数学素养,以满足个人开展与社会进步的须要。

具体目标如下。

1.获得必要的数学根底学问和根本技能,理解根本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。

高中数学必修4教案

高中数学必修4教案

高中数学必修4教案一、教学目标本教案旨在帮助学生掌握高中数学必修4的相关知识和技能,具体目标如下:1.理解函数的概念,能够画出函数的图像并进行简单的函数变换;2.掌握三角函数的基本概念和性质,能够解决与三角函数相关的问题;3.熟练掌握向量的基本概念和运算法则,能够解决与向量相关的问题;4.理解数列和级数的概念,能够求解数列和级数的相关问题;5.掌握概率的基本概念和计算方法,能够解决与概率相关的问题。

二、教学内容1. 函数1.1 函数的概念1.2 函数的图像1.3 函数的性质1.4 函数的变换2. 三角函数2.1 弧度制与角度制2.2 正弦函数、余弦函数、正切函数的定义和性质2.3 三角函数的图像2.4 三角函数的基本公式3. 向量3.1 向量的概念3.2 向量的运算法则3.3 向量的数量积和向量积3.4 平面向量的坐标表示4. 数列和级数4.1 数列的概念和性质4.2 等差数列和等比数列4.3 级数的概念和性质4.4 收敛级数和发散级数5. 概率5.1 随机事件和样本空间5.2 概率的定义和性质5.3 条件概率和乘法公式5.4 全概率公式和贝叶斯公式三、教学方法本教案采用多种教学方法,包括讲授、练习、讨论、实验等,具体如下:1.讲授:通过讲解相关知识点和例题,帮助学生理解和掌握相关知识和技能;2.练习:通过练习题目,帮助学生巩固所学知识和技能,并提高解题能力;3.讨论:通过小组讨论和课堂讨论,帮助学生深入理解相关知识点,并提高思维能力;4.实验:通过实验,帮助学生探究相关知识点,提高实际操作能力。

四、教学重点和难点1. 教学重点1.1 函数的概念和性质1.2 三角函数的基本概念和性质1.3 向量的基本概念和运算法则1.4 数列和级数的概念和性质1.5 概率的基本概念和计算方法2. 教学难点2.1 函数的变换2.2 三角函数的图像2.3 向量的数量积和向量积2.4 级数的收敛和发散2.5 全概率公式和贝叶斯公式五、教学评估本教案采用多种教学评估方法,包括课堂测试、作业评估、小组讨论和实验报告等,具体如下:1.课堂测试:通过课堂测试,检测学生对所学知识和技能的掌握情况;2.作业评估:通过作业评估,检测学生对所学知识和技能的掌握情况,并提供反馈和指导;3.小组讨论:通过小组讨论,检测学生对所学知识和技能的理解情况,并提高思维能力;4.实验报告:通过实验报告,检测学生对所学知识和技能的应用情况,并提高实际操作能力。

高中数学必修四教案

高中数学必修四教案

高中数学必修四教案高中数学必修4教案篇一教学目标1、掌握平面向量的数量积及其几何意义;2、掌握平面向量数量积的重要性质及运算律;3、了解用平面向量的数量积可以处理垂直的问题;4、掌握向量垂直的条件。

教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

并规定0向量与任何向量的数量积为0.×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b 是两个向量的数量的积,书写时要严格区分。

符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.高中高二数学必修四教案篇二一、说教材:1、地位、作用和特点:《___》是高中数学课本第__册(_修)的第__章“___”的第__节内容。

本节是在学习了之后编排的。

通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。

此外,《__》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。

本节的特点之一是__;特点之二是:___。

教学目标:根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:(1)知识目标:A、B、C(2)能力目标:A、B、C(3)德育目标:A、B教学的重点和难点:(1)教学重点:(2)教学难点:二、说教法:基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。

数学必修四教案

数学必修四教案

数学必修四教案教案标题:数学必修四教案教案目标:1. 知识与技能:通过本节课的教学,学生将能够掌握必修四数学课程中的关键概念和技能。

2. 思维培养:培养学生的数学思维和解决问题的能力。

3. 方法与策略:引导学生学会合作与探究、运用数学方法进行问题解决。

教学重点:1. 理解概率的基本概念和性质。

2. 掌握概率的计算方法。

3. 运用概率计算解决实际问题。

教学难点:1. 理解概率的复杂问题和概率计算的深层次思维。

2. 运用概率计算解决实际问题的能力。

教学准备:1. 教师准备相关范例和实例,以便于引导学生理解和掌握概率的计算方法。

2. 准备纸张、铅笔和计算器等教学工具。

教学过程:步骤一:导入1. 教师介绍本节课的教学目标,并与学生一起回顾上节课所学的内容。

2. 教师提出一个问题,如“掷一枚硬币,正面朝上的概率是多少?”引发学生思考。

步骤二:知识讲解与概念引入1. 教师对概率的定义进行讲解,并与学生一起讨论概率的基本概念和性质。

2. 然后,教师引入条件概率的概念,并以实例进行解释。

步骤三:方法与策略1. 教师介绍概率计算的基本方法,包括等可能原则、频率方法和几何方法等。

2. 通过范例和实例的引导,教师演示如何利用不同的方法计算概率。

步骤四:案例分析与实践操作1. 教师提供一些案例,鼓励学生进行讨论和合作解决问题,帮助学生进一步理解概率计算方法。

2. 学生分组进行实践操作,运用概率计算方法解决与实际生活相关的问题。

步骤五:归纳总结与拓展1. 教师与学生一起归纳总结本节课所学的内容,强调概率计算的方法和应用。

2. 鼓励学生针对概率的应用领域进行进一步的拓展思考,如生活中的抽奖、赌博等情境。

步骤六:作业布置1. 布置相应的课后作业,巩固学生对本节课所学的知识和技能的掌握。

2. 鼓励学生积极思考、合作解决问题,并及时与教师交流。

教学评价:1. 教师观察学生的课堂参与情况、讨论和解决问题的能力。

2. 教师收集学生的作业和实践操作情况,评估学生对概率计算的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范文
2020年高中数学必修四全套教案(精品)
1/ 6
2020 年高中数学必修四全套教案(精品)第一章三角函数1.1.1 任意角教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三)情感与态度目标 1.提高学生的推理能力; 2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角的名称: B 始边③角的分类:终边 O 顶点 A 正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°; 1
⑶角的概念经过推广后,已包括正角、负角和零角.⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例 1.如图⑴⑵中的角分别属于第几象限角?y 45°B1 x O ⑴ y 60o B3 30°x O B2 ⑵ 例 2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°;⑵ 120°;⑶ 240°;⑷ 300°;
⑸ 420°;⑹ 480°;答:分别为 1、2、3、4、1、2 象限角. 3.探究:教材 P3 面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合 S={ β | β = α + k·360 ° ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴ k∈Z ⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例 3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例 4.写出终边在 y 轴上的角的集合(用0°到360°的角表示) .解:{α | α= 90°+ n·180°,n∈Z}.例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720° 的元素β写出来. 4.课堂小结
3/ 6
①角的定义;②角的分类: 2
正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材 P2-P5;②教材 P5 练习第 1-5 题;③教材 P.9 习题 1.1 第 1、 2、3 题思考题:已知α角是第三象限角,则2α,各是第几象限角? 2 解:角属于第三象限,k·360°+180°<α<k·360°+270°(k∈Z) 因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k·180°+90°<<k·180°+135°(k∈Z) . 2 当 k 为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z) , 2 此时,属于第二象限角 2 当 k 为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n 2 ∈Z) ,此时,属于第四象限角 2 因此属于第二或第四象限角. 2 1.1.2 弧度制教学目标(四)知识与技能目标理解弧度的意义;了解角的集合与实数集 R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五)过程与能力目标 3
5/ 6
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题(六)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点“角度制”与“弧度制”的区别与联系.教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的 1 作为 1 度的角,用度做单位来度量角的制度叫做角度制. 360 二、新课: 1.引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是 60 进制的, 运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定义我们规定,长度等于半径的弧所对的圆心角叫做 1 弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1 弧度记做 1rad.在实际运算中,常常将 rad 单位省略. 3.思考:(1)一定大小的圆心角所对应的弧长与半径的比值是否是确定的?与圆的半。

相关文档
最新文档