超声波焊接原理【深度解析】

合集下载

焊缝超声波探伤原理

焊缝超声波探伤原理

焊缝超声波探伤原理
焊缝超声波探伤是利用超声波的传播和相互作用原理来检测和评估焊缝中的缺陷和杂质。

超声波是一种高频机械波,具有传播距离远、穿透性好和对被测材料无损伤的特点。

在焊缝超声波探伤过程中,超声波传播到焊缝区域时,其中的能量会发生转换,一部分能量被反射回传感器,另一部分能量经过焊缝进入焊接材料内部继续传播。

当超声波遇到焊缝中的缺陷或垂直于超声波传播方向的杂质时,会发生反射或散射,这些反射或散射波会被传感器接收并转换成电信号。

根据接收到的电信号,可以分析焊缝中的缺陷类型、大小和位置,以及评估焊缝的质量和可靠性。

常用的超声波探伤方法有脉冲回波法和全景扫查法。

在脉冲回波法中,通过发射短脉冲超声波来激励焊缝区域,接收并记录回波信号。

根据回波信号的时间延迟和振幅变化,可以确定焊缝中的缺陷位置和大小。

全景扫查法是一种全面检测焊缝的方法,可以将焊缝区域划分为多个小区域,逐个扫描并记录每个小区域中的回波信号。

通过综合分析所有小区域的回波信号,可以获得焊缝的完整图像,并对缺陷进行全面评估。

总的来说,焊缝超声波探伤利用超声波在焊缝中传播、反射和散射的特性,通过接收和分析回波信号来检测和评估焊缝的质
量。

这种方法是一种无损检测技术,可以提高焊接质量并确保焊缝的可靠性。

超声波焊接机原理是什么

超声波焊接机原理是什么

超声波焊接机原理是什么
超声波焊接是一种利用超声波振动引起的材料分子间的摩擦产生热量来实现焊接的方法。

其基本原理是通过将电能转化为超声波能,然后将超声波能转化为机械振动能,再通过焊接头传递给被焊接的材料。

具体来说,超声波焊接机中通常包含一个压头和一个换能器。

换能器将电能转化为超声波能,在超声波振动的作用下,焊接头不断地压在需要焊接的材料上。

由于焊接头的振动频率非常高(通常在20kHz以上),使焊接头在短时间内产生大量的微小振动,这种振动将会产生摩擦。

焊接头的振动能量被转移到焊接材料上,使材料表面分子不断地发生碰撞和摩擦,导致材料温度升高。

当材料温度升高到足够高时,材料变软,分子间的结合力变弱,焊接头的压力使材料表面分子之间发生扩散和交联,从而实现焊接。

总的来说,超声波焊接机利用超声波的振动引起的材料分子间的摩擦产生的热量,使材料表面温度升高,从而实现焊接。

这种焊接方法具有速度快、操作简单、能耗低等优点,在工业生产中得到广泛应用。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常见的焊接设备,它利用超声波的能量来实现材料的焊接。

下面将详细介绍超声波焊接机的工作原理。

1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。

超声波发生器通过电能转换为高频机械振动,产生超声波能量。

2. 换能器:超声波发生器通过换能器将电能转换为机械振动能量。

换能器通常由压电陶瓷材料制成,当电流通过陶瓷时,它会振动并产生超声波。

3. 振动系统:振动系统由换能器、振动焊头和振动块组成。

换能器的振动能量通过振动焊头传递给要焊接的材料。

4. 焊接部件:超声波焊接机通常有两个焊接部件,分别是焊头和焊座。

焊头是固定在振动系统上的,它将超声波能量传递给焊接材料。

焊座是用于支撑和固定被焊接材料的部件。

5. 焊接过程:当超声波能量传递到焊接材料时,它会产生摩擦和热量。

焊接材料因为受到振动的作用而变软,形成塑性状态。

在振动的同时,焊接材料的分子间结合力也会发生改变,使得两个焊接部件在高温和高压的作用下形成牢固的焊接接头。

6. 控制系统:超声波焊接机还配备了控制系统,用于控制焊接过程的参数,如振动频率、振幅、焊接时间等。

控制系统可以根据不同的焊接要求进行调整,以确保焊接质量和效率。

超声波焊接机的工作原理可以简单总结为:通过超声波发生器产生高频机械振动能量,换能器将电能转换为机械振动能量,振动系统将能量传递给焊接部件,焊接部件产生摩擦和热量,使得焊接材料形成牢固的焊接接头。

超声波焊接机具有焊接速度快、焊接质量高、不产生污染等优点,广泛应用于塑料、金属、纺织品等行业。

它被广泛应用于汽车制造、电子设备制造、医疗器械制造等领域,为各行各业的生产提供了高效、可靠的焊接解决方案。

超声波焊接

超声波焊接

焊接过程
1)焊头对塑料表面施压 2)焊头每秒20000到40000次振动 3)振动产生摩擦热使材料融化粘接
焊接类型
• 埋植:埋植指的是焊头在压力下将金属零件挤 入塑料孔内
• 铆焊:铆焊法指的是振动的焊头压制物品的突起处 使其热熔为铆钉状,从而使两物体机械铆合
• 点焊:点焊指的是对于焊线不易设计的物体进 行分点焊接,可达到熔接效果。
超声波焊接
超声波焊接
• 超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表 面相互摩擦而形成分子层之间的熔合。
• 超声焊接需要包含超声波发生器、转换器、升压器、焊具等部件。
一、超声波焊接原理
一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。
超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及 焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振 幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能 量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量 小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊 接部分的边长与边缘每1mm的最佳压力之积。
超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能 通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置 传递到焊头。焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦 方式转换成热能,将需要焊接的部件区域熔化。超声波不仅可以被用来焊接金属、硬热塑性塑料,还 可以加工织物和薄膜等。本篇文章主要介绍金属和塑料的焊接。
1)超声波金属焊接原理
超声波金属焊接原理是利用超声频率(超过16KHz )的 机械振动能量,连接同种金属或异种金属的一种特殊方 法.金属在进行超声波焊接时,既不向工件输送电流, 也不向工件施以高温热源,只是在静压力之下,将框框 振动能量转变为工件间的摩擦功、形变能及有限的温升 。接头间的冶金结合是母材不发生熔化的情况下实现的 一种固态焊接.因此它有效地克服了电阻焊接时所产生 的飞溅和氧化等现象。超声金属焊机能对铜、银、铝、 镍等有色金属的细丝或薄片材料进行单点焊接、多点焊 接和短条状焊接。可广泛应用于可控硅引线、熔断器片 、电器引线、锂电池极片、极耳的焊接。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超音波焊接机的工作原理是:是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。

振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。

一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。

超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。

根据产品的外观来设计模具的大小、形状。

超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。

1、气动传动系统包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。

工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。

2、控制系统控制系统由时间继电器或集成电路时间定时器组成。

主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。

整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。

3、超声波发生器(1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

(2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。

4、超声波焊接机使用的声学系统,主要是有换能器和工具头构成的。

一、打开电源无显示原因:保险丝熔断解决方法:1、检查功率管是否短路2、更换保险丝二、超声波测试无电流显示原因:1、功率管烧毁2、高压电容烧毁3、继电器控制线路部分有故障解决方法:更换相关烧毁零件三、起声波测试电流偏大、过载原因:1、焊头没锁紧或有裂纹2、若不带焊头,电流大,此换能器或二级杆老化或有裂纹二、3、功率管特性有变异或烧毁4、功率放大电路部分有故障解决方法:更换相关零件四、焊接时电流偏大、过载原因:1、气压偏高2、焊头过大,冲击电流大3、触发压力高,延迟时间长4、二级杆变比偏高解决方法:1、调低气压2、使用较大功率机型3、调低触发压力,减少延迟时间三、4、换用低倍数二级杆五、触发触发开关焊头不落原因:1、急停开关未复位2、触发开关不能同时触发或其中一个接触不良3、程序控制板有问题解决方法:1、将急停开关复位2、检测使两个触发开关能同时触发3、检测程序板排除故障,一般为IC问题六、触发触发开关后,超声时间非常长或者保压时间非常长原因:焊接时间或保压时间波段开关断路解决方法:调整波段开关触点,使之接触良好七、触发触发开关后,超声波不能触发原因:1、压力触发开关损坏2、程序板有问题解决方法:1、更换压力触发开关或小弹簧2、检测程序板排除故障,一般为IC问题四、一、超声波金属焊接机的工作原理:当超声波发生器施加功率于换能器,换能器的振动通过变幅杆得到机械振幅放大,并传到工具头;强烈的超声振动力在垂直压力作用下加到被焊物上,使两金属间产生高频摩檫。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属和塑料焊接的设备,它利用超声波振动将工件加热并连接在一起。

以下是超声波焊接机的工作原理的详细解释。

1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。

它产生高频的电信号,并将其转换为机械振动。

2. 换能器:超声波发生器的电信号被传递到换能器上。

换能器是由压电陶瓷材料制成的,能够将电信号转换为机械振动。

换能器的振动频率通常在20kHz到70kHz之间。

3. 振动焊头:换能器产生的机械振动通过焊头传递给工件。

焊头通常由钛合金制成,具有良好的导热性和机械强度。

4. 压力系统:超声波焊接机通过压力系统将工件保持在一定的压力下。

这有助于确保焊接的质量和稳定性。

5. 聚焦角:焊头的设计通常具有特定的聚焦角度,以确保超声波能够集中在焊接区域。

聚焦角度的选择取决于工件的材料和形状。

6. 界面磨擦:焊接过程中,焊头施加在工件上的压力会产生界面磨擦。

这种磨擦会产生热量,使工件表面温度升高。

7. 塑性变形:由于焊头的振动和界面磨擦,工件表面的温度升高,材料开始软化。

在一定的压力下,工件开始发生塑性变形。

8. 熔融:随着温度的升高和塑性变形的发生,工件表面的材料开始熔融。

熔融的材料填充在焊接区域,并与另一工件表面的熔融材料相互融合。

9. 冷却固化:焊接完成后,焊接区域的温度会逐渐降低。

熔融的材料会在冷却过程中固化,形成坚固的焊接点。

超声波焊接机的工作原理基于超声波的机械振动和界面磨擦产生的热量。

它可以实现快速、高效、无污染的焊接过程,适合于各种金属和塑料材料的连接。

超声焊的原理和应用

超声焊的原理和应用

超声焊的原理和应用1. 超声焊的原理超声焊是一种非常常用的焊接方法,它利用超声波振动产生的热量来进行材料的焊接。

超声波在振动时可以产生黏合热,并且可以在焊接接触点处产生局部加热。

这种焊接方法具有以下原理:•超声波振动效应:超声波是指频率高于人耳可听到的20kHz的声波。

超声波振动时,会在材料的接触面产生剧烈的摩擦和振动,从而产生热量。

•界面结构变化:超声波振动会使得焊接材料的界面结构发生变化,从而增加了焊接接触面积,并且形成了更好的焊接接触。

•塑性变形:超声波振动会在焊接接触点附近产生塑性变形,从而使金属在一个小的区域内发生细微的形变。

•扩散效应:超声波焊接时,焊接接触点的原子会因为振动而发生扩散,从而增加了材料的结合力。

2. 超声焊的应用超声焊具有广泛的应用领域,特别是在电子、汽车、塑料等行业中经常使用。

以下是一些超声焊的应用情况:2.1 电子领域超声焊在电子领域中被广泛应用于电子元件的连接和封装。

例如:•电缆连接:超声焊可以用于连接电缆与插头,实现可靠的电气连接。

•电池制造:超声焊可以用于电池的连接,提高电池的性能和寿命。

•电子元件封装:超声焊可以用于电子元件的封装,保护电子元件免受外界环境的影响。

2.2 汽车工业超声焊在汽车工业中广泛应用于汽车零部件的制造和组装。

以下是一些超声焊在汽车工业中的应用:•汽车灯具制造:超声焊可以用于汽车灯具的焊接和封装,确保灯具的可靠性和密封性。

•汽车仪表盘制造:超声焊可以用于汽车仪表盘的焊接,提高仪表盘的稳定性和耐用性。

•汽车内饰件制造:超声焊可以用于汽车内饰件的焊接和组装,提高内饰件的牢固度和整体质量。

2.3 塑料加工超声焊在塑料加工领域中被广泛应用于塑料制品的生产和加工。

以下是一些超声焊在塑料加工中的应用:•塑料零件制造:超声焊可以用于塑料零件的焊接和组装,提高零件的耐用性和结构稳定性。

•塑料包装材料制造:超声焊可以用于塑料包装材料的焊接和封装,确保包装材料的密封性和保鲜性。

超声波焊接的原理及应用(5分钟精简版)

超声波焊接的原理及应用(5分钟精简版)
先开始熔化,熔体在压 力作用下向被焊产品 上下表面铺展,,当停止 超声后, 温度降下来熔
融塑料凝固从而使被
焊产品连接在一起。
内容提要
1 2 3 4 5
基本概念 焊接机理 应用方法
应用场合
总结展望
超声波焊接的机理
通过上焊件把超声能量传送到焊区,由于焊 区即两个焊接的交界面处声阻大,因此会产
生局部高温。又由于塑料导热性差,一时还
LOGO
超声波焊接技术
内容提要
1 2 3 4 5
基本概念 焊接原理 应用方法
应用场合
注意事项
超声波焊接的基本概念
超声波焊接是利用高
频振动波传递到两个 需焊接的物体表面, 在加压的情况下,使 两个物体表面相互摩 擦而形成分子层之间 的熔合。
超声波焊接的基本概念
过程:在超声波振动
能的作用下,焊接线首
和手机吊带的焊接、一次打火机外壳。
超声波焊接的应用
汽车PC转向灯和PMMA/ABS反射器灯具
超声波焊接的应用
汽车炮筒式仪表
超声波焊接的应用
聚合物微器件的超声波焊接键合
超声波焊接的应用
燃气表装配工艺的改进
内容提要
1 2 3 4 5
基本概念 焊接原理 应用方法
应用场合
注意事项
超声波焊接的注意事项
5.1 热阻要达到工件的熔点
5.2 两种工件一定要可熔接 5.3 接缝面积有一定的要求 5.4 超声波焊接机输出功率要衡定 5.5 走出超声焊接机种误区(并不是功率越大 越好) 5.6 超声波焊头结构需要严格检验
LOGO
不能及时散发,聚集在焊区,致使两个塑料 的接触面迅速熔化,加上一定压力后,使其 融合成一体。当超声波停止作用后,让压力 持续,有些许保压时间,使其凝固成型,这

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机的工作原理:超声波焊接机是一种利用超声波振动产生的热能来实现材料的焊接的设备。

它主要由超声波发生器、振动系统、焊接头和控制系统组成。

1. 超声波发生器:超声波发生器是超声波焊接机的核心部件,它能够将电能转化为超声波振动能。

在超声波发生器中,电能首先被转化为高频电能,然后通过压电陶瓷换能器将电能转化为机械振动能。

2. 振动系统:振动系统由压电陶瓷换能器和振动增幅器组成。

压电陶瓷换能器接收到超声波发生器产生的机械振动能后,将其转化为超声波振动能。

振动增幅器将超声波振动能进行放大,并传递到焊接头。

3. 焊接头:焊接头是超声波焊接机焊接材料的关键部件。

它通常由焊接头块和焊接头角组成。

焊接头块负责传递超声波振动能到焊接材料上,而焊接头角则用于集中能量和控制焊接过程。

4. 控制系统:控制系统是超声波焊接机的智能化部份,它能够监测和控制焊接过程中的各项参数,以确保焊接质量。

控制系统通常包括超声波发生器控制、振动系统控制、焊接头温度控制等功能。

超声波焊接机的工作原理如下:首先,超声波发生器产生高频电能,并将其转化为机械振动能。

然后,振动系统将机械振动能传递到焊接头。

焊接头将超声波振动能传递到焊接材料上,使其产生热能。

热能可以使焊接材料的表面温度升高,从而使其软化和熔化。

当焊接材料熔化后,焊接头施加一定的压力,将焊接材料连接在一起。

最后,焊接头住手振动,焊接材料冷却固化,完成焊接过程。

超声波焊接机的工作原理基于超声波的特性,超声波具有高频、高能量和高速传播等特点。

通过利用超声波的特性,超声波焊接机能够实现高效、快速、无污染的焊接过程。

它广泛应用于塑料、金属、纺织品等领域的焊接工艺中,具有焊接速度快、焊接强度高、焊接接头美观等优点。

超声波焊接原理

超声波焊接原理

超声波焊接原理
超声波焊接是利用超声波的机械振动能量将两个物体通过牢固的结合形成一体的焊接技术。

其原理基于以下几个步骤:
1. 超声波的产生:通过超声波发生器产生高频电信号,再通过换能器将电能转换为机械振动能量。

2. 超声波的传导:超声波能量通过变幅器和共振体传导到焊接头部。

变幅器增幅电信号,使其振幅达到数十微米,共振体能够将信号传导到焊接头。

3. 介质的作用:焊接头部和物体表面之间加入一层介质,常用的有液体或者薄膜。

介质的作用是传递超声波能量并提供均匀的压力。

4. 界面振动:超声波通过介质传导到物体表面后,产生机械振动。

由于介质和物体表面的分子间力的相互作用,界面处的分子开始随着超声波振动。

5. 界面松动:随着界面分子的振动,分子之间的键开始松动,使得两个物体表面之间的间隙变大。

6. 摩擦发热:由于振动引起的分子间摩擦,界面处的温度迅速上升,松动的分子逐渐进一步松动。

7. 塑性变形:随着温度上升,物体表面的塑性材料开始软化,界面的表面变得粘性。

这使得两个物体表面更容易接触并形成
定位。

8. 冷却固化:当超声波停止传递时,焊接头部冷却并逐渐固化,使得两个物体牢固地连接在一起。

超声波焊接利用超声波的振动能量和摩擦发热将物体表面加热、软化并连接在一起。

其具有焊接速度快、能量消耗低、连接牢固可靠等优点,广泛应用于汽车、电子、医疗器械等行业。

超声波焊原理

超声波焊原理

超声波焊原理
超声波焊接是一种常见的金属焊接方法,利用超声波的机械能来实现材料的焊接。

其原理是利用超声波的高频振动作用力,使焊接表面的材料进一步热化,并产生塑性变形。

当达到一定温度和压力时,材料表面的氧化层被破坏,然后形成分子间的潜移默化,从而实现焊接。

超声波焊接的过程主要包括以下几步:首先,将需要焊接的材料置于焊接夹具中,使其保持相对位置。

接着,将焊接头置于材料表面,并施加一定的压力。

然后,通过超声波发生器产生的超声振动,将能量传递到焊接头上,使其振动,并通过材料表面传导至焊接部位。

振动产生的摩擦力和热量,使焊接部位的材料迅速升温,并且降低了材料的硬度,使其发生塑性变形。

最后,随着振动的结束,焊接材料冷却固化,形成一个坚固的焊缝。

与传统的焊接方法相比,超声波焊接具有多种优点。

首先,它不需要使用焊接剂或填充材料,避免了对环境的污染。

其次,焊接过程中不需要加热或加压气体,节约了能源消耗。

此外,超声波焊接的焊接速度快,焊接效率高,并且焊接接头的强度和密封性良好。

因此,超声波焊接在汽车、电子、医疗器械等领域中得到了广泛的应用。

总的来说,超声波焊接是一种高效、环保的金属焊接方法。

通过利用超声波的振动能量,使焊接部位材料发生塑性变形从而达到焊接的目的。

它不仅提高了焊接的可靠性,还降低了生产成本,对于提高产品质量具有重要的意义。

超声波焊接工作原理

超声波焊接工作原理

超声波焊接工作原理
超声波焊接是一种利用超声波在材料界面产生剧烈摩擦热而实现焊接的方法。

其工作原理如下:
1. 超声波发生器产生超声波:超声波是指频率高于20kHz的
机械波,通常使用频率在20kHz-60kHz之间的超声波。

2. 超声波通过换能器传递:超声波发生器会将电能转化为机械振动能,通过换能器将振动能传递到工作头部。

3. 工作头部振动:工作头部内部有一个振子,接受到换能器传递的振动能后开始振动,并将振动能传递到焊接接触面。

4. 材料剧烈摩擦热产生:当工作头部与焊接接触面接触时,因为接触面之间有些微的间隙,工作头部的振动会引起接触面的高频摩擦运动,从而产生摩擦热。

5. 材料局部软化:由于摩擦热的作用,接触面的局部区域会被加热到临界温度以上,使得材料表面局部软化,形成塑性流动层。

6. 塑性流动层的形成:当达到一定程度的软化温度时,材料表面就会形成塑性流动层,这层材料具有一定程度的流动性。

7. 熔汇与结合:在两接触面产生摩擦热的作用下,塑性流动层流向工件内部,使得两材料的表面粘接在一起,形成焊接接头。

总结来说,超声波焊接是通过超声波产生高频振动,通过振动产生的摩擦热使材料局部软化形成塑性流动层,最终实现两材料的粘接。

这种焊接方法具有快速、高效、无污染等优点,在各种行业中得到广泛应用。

超声波焊接机工作原理

超声波焊接机工作原理

超声波焊接机工作原理
超声波焊接机工作原理是利用超声波的振动和热能生成,实现材料的粘结。

其具体工作原理如下:
1. 高频振荡器产生电能,将电能转换成机械振动。

2. 通过声波传导装置将机械振动传导到焊接部位。

焊接部位通常由两个需要焊接的材料构成。

3. 当振动传导到焊接区域时,材料表面的摩擦引起材料内部的分子振动,产生热能。

4. 材料的表面温度随着热量的积累而升高。

当温度达到材料的熔化点时,材料开始融化。

5. 融化的材料进一步渗透到焊接材料的结构中,形成焊缝。

随着材料冷却,焊缝固化,实现了焊接。

6. 最后,振荡器停止振动,焊接过程结束。

焊接部位冷却后,形成了坚固的焊接连接。

超声波焊接机工作原理的主要特点是焊接过程速度快、能量消耗少、无需使用焊接剂或填充材料等。

它被广泛应用于塑料焊接、金属焊接、电子组件的封装等领域。

超声波金属焊接机原理

超声波金属焊接机原理

超声波金属焊接机原理一、引言超声波金属焊接机是一种利用超声波振动能量将金属材料焊接在一起的设备。

它具有高效、环保、节能等优点,被广泛应用于汽车、电子、航空航天等领域。

本文将详细介绍超声波金属焊接机的原理。

二、超声波的产生及特点1. 超声波的产生超声波是指频率大于20kHz的机械振动波。

在超声波金属焊接机中,通过电能转换为机械能,再通过振动器将机械能转化为超声波。

振动器通常采用压电陶瓷材料制成,当施加电场时,会发生压电效应从而产生振动。

2. 超声波的特点超声波具有高频率、短波长、高能量密度等特点。

由于其频率高于人类听觉范围,因此不会对人体造成伤害。

同时,由于其短波长和高能量密度,可以在焊接过程中快速加热并使金属材料达到熔点从而实现焊接。

三、超声波金属焊接的原理1. 原理概述超声波金属焊接是一种利用超声波振动能量将金属材料焊接在一起的技术。

其原理是通过振动器将电能转化为机械能,再将机械能转化为超声波,使工作头产生高频振动。

当工作头与被焊接材料接触时,会产生摩擦热并使材料达到熔点,从而实现焊接。

2. 焊接过程超声波金属焊接过程主要包括以下几个步骤:(1)清洁被焊件表面:清除被焊件表面的油污、氧化物等杂质。

(2)固定被焊件:将被焊件固定在夹具上以保证其不会移动。

(3)加压:通过气缸或液压系统施加压力,使工作头与被焊件紧密贴合。

(4)加热:启动超声波发生器,产生高频振动并传递给工作头。

工作头与被焊件之间的摩擦热会使材料达到熔点。

(5)冷却:停止超声波振动并冷却焊接区域,使焊缝固化。

3. 焊接参数超声波金属焊接的参数包括振幅、频率、压力和时间等。

其中,振幅是指工作头在超声波振动中的最大位移量,频率是指每秒钟振动的次数,压力是指施加在工作头上的力量,时间是指焊接持续的时间。

这些参数会影响到焊接质量和效率。

四、超声波金属焊接机的优点1. 高效超声波金属焊接机采用高频振动能够快速加热材料并实现焊接,因此具有高效的特点。

无纺布超声波焊接原理

无纺布超声波焊接原理

无纺布超声波焊接原理
无纺布超声波焊接是一种利用超声波振动产生摩擦热来融合无纺布的方法。

它的原理如下:
1. 超声波发生器产生高频电能,将电能转换为机械振动能。

2. 振动能通过焊头传导到无纺布上,在焊接界面形成机械振动。

3. 由于无纺布的振动摩擦产生热量,使无纺布和无纺布之间的纤维相互融合。

4. 当温度足够高使纤维熔融时,停止振动,保持一段时间以使融化纤维更好地结合。

5. 冷却后,形成坚固的焊接点,完成焊接过程。

无纺布超声波焊接的原理特点是无需使用胶水或熔融的材料,焊接速度快、效率高,焊接点坚固牢固,不会污染环境和产生气体。

因此,该方法在无纺布制造和加工中得到广泛应用。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超音波焊接机的工作原理是:?是经过振荡电路振荡出高频信号由换能器转变成机械能(即频次高出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面激烈摩擦后融化。

振动停止后保持在工件上的短暂压力使两焊件以分子链接方式凝结为一体。

一般焊接时间小于 1 秒钟,所获得的焊接强度可与本体相媲美。

超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。

依据产品的外观来设计模具的大小、形状。

?超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等构成。

1、气动传动系统包含有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。

动力气压在中小功率的超声波焊工作时第一由空压机驱动冲程气缸,以带动超声换能器振动系统上下挪动,接中气压依据焊接需要调定。

2、控制系统控制系统由时间继电器或集成电路时间准时器构成。

主要功能是:一是控制气压传动系统工作,使其焊接时在准时控制下翻开气路阀门,气缸加压使焊头降落,以必定压力压住被焊物品,当焊接完后保压一段时间,而后控制系统将气路阀门换向,使焊头上升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。

整个控制系统的次序是:电源启动一触发控制信号气压传动系统,气缸加压焊头降落并压住焊触发超声发生器工作,发射超声并保持必定焊接时间去除超声发射持续保持必定压力时间退压,焊头上升焊接结束。

3、超声波发生器(1)功率较大的超声波塑料焊接机,发生器信号采纳锁相式频次自动追踪电路,使发生器输出的频次基本上与换能器谐振频次一致。

(2)功率在 500W 以上的超声波塑料焊接机所用发生器采纳自激式功率振荡器,也拥有必定的频次追踪能力。

4、超声波焊接机使用的声学系统,主假如有换能器和工具头构成的。

一、翻开电源无显示?二、原由:保险丝熔断?三、解决方法:?四、 1、检查功率管能否短路?五、 2、改换保险丝?六、七、二、超声波测试无电流显示?八、原由:九、 1、功率管烧毁?十、 2、高压电容烧毁?十一、3、继电器控制线路部分有故障?十二、解决方法:改换有关烧毁零件?十三、十四、三、起声波测试电流偏大、过载?十五、原由:十六、1、焊头没锁紧或有裂纹?十七、2、若不带焊头,电流大,此换能器或二级杆老化或有裂纹十八、3、功率管特征有变异或烧毁?十九、4、功率放大电路部分有故障?二十、解决方法:改换有关零件?二十一、二十二、四、焊接时电流偏大、过载?二十三、原由:二十四、1、气压偏高?二十五、2、焊头过大,冲击电流大?二十六、3、触发压力高,延缓时间长?二十七、4、二级杆变比偏高?二十八、解决方法:二十九、1、调低气压?三十、2、使用较大功率机型?三十一、3、调低触发压力,减少延缓时间三十二、4、换用低倍数二级杆?三十三、三十四、五、触发触发开关焊头不落?三十五、原由:三十六、1、急停开关未复位?三十七、2、触发开关不可以同时触发或此中一个接触不良?三十八、3、程序控制板有问题?三十九、解决方法:四十、1、将急停开关复位?四十一、2、检测使两个触发开关能同时触发?四十二、3、检测程序板清除故障,一般为IC问题?四十三、四十四、六、触发触发开关后,超声时间特别长或许保压时间特别长?四十五、原由:焊接时间或保压时间波段开关断路?四十六、解决方法:调整波段开关触点,使之接触优秀?四十七、四十八、七、触发触发开关后,超声波不可以触发?四十九、原由:五十、1、压力触发开关破坏?五十一、2、程序板有问题?五十二、解决方法:五十三、1、改换压力触发开关或小弹簧?五十四、2、检测程序板清除故障,一般为IC 问题五十五、五十六、一、超声波金属焊接机的工作原理:当超声波发生器施加功率于换能器,换能器的振动经过变幅杆获得机械振幅放大,并传到工具头;激烈的超声振动力在垂直压力作用下加到被焊物上,使两金属间产生高频摩檫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波焊接原理
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。

超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。

被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。

超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。

一套超声波焊接系统的主要组件包括超声波发生器,换能器变幅杆/焊头三联组,模具和机架。

线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。

热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。

一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。

轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。

在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。

运动可以产生热能,使两个塑料件的焊接部分达到熔点。

一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。

小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。

焊接原理
超声波焊接原理:超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。

当超声波停止作用后,让压力持续几秒钟,
使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。

超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅。

杆决定。

这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。

这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积
超声波金属焊接原理:
超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工件间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超声金属焊机能对铜、银、铝、镍等有色金属的细丝或薄片材料进行单点焊接、多点焊接和短条状焊接.可广泛应用于可控硅引线、熔断器片、电器引线、锂电池极片、极耳的焊接。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.。

相关文档
最新文档