扬声器的电阻抗

合集下载

阻抗与功放、音箱的关系

阻抗与功放、音箱的关系
。 , , ,
抗为s
n
时 在 通 常情 况 下 它可 安
,
比如
,
如 果 某 音 箱 的 接 线 端未
,
全 地推 动 4 n 的 负 载 而 不 管 它 的
黔 翼替 哄 不 ` 产 座 涵 岁
黝 薰霎 蒸缨耀】 黔 馨 蒸 纂i鑫 瓢薰
口,
从 物 理 原理 可

,
彝 鬓 脊 豁藻毅豁 窦 瀚 戮 戮麟臻蒸摹 鬓暴 黔麒 魏黝
霎纂黔馨耀
蘸l
黝 黝{
写 食

,
在进行 功 放 测 试 时
,
U
I
J
实验
n

室 在 功 放输 出 端 接 上 一 个
I k
s
的 然
电 流 趋向

会有 什 么 影 响 呢

要解 决 以 上 问

题 就 需要 弄 清 阻抗 的真 正 含 义
和 它 与 功 放 音 箱 之间 的 关系
,
10

% 的
数值

即 为名 义 阻抗
但对 名
简单地讲 在直流 电 中物 体
义 阻 抗 的 认 识 仍未 完 全
阻碍 电 流 流 动 并 将 电 能 转变 为 热
能 的 特性 叫 做 电 阻 而 在 交 流 电
请记 住这 一
在 实 际使
,
音 箱 输 出 的 功 放其 额 定 负 载 的 阻
点 会对你 在购 置器材时 有 所 帮 助

用 中 你 可 能 只 有 一 对 音箱 也 可 能 有 两 对音 箱 并 准 备 接在 一 起 同 时使用 甚至于你准备 同时使用 三 对 音 箱 那 么 怎 样 的 接 法 才是 正确 的 呢?

谈音响中的阻抗

谈音响中的阻抗

谈音响中的阻抗2009-08-11 09:40:22 来源: 作者: 【大中小】浏览:2947次评论:0条谈音响中的阻抗笔者发现消费者在选购前级、后级扩大器时,常会询问它的输入阻抗、输出阻抗及输出内阻是多少?功率和驱动能力有多强?胆机好还是晶体管机好?桥接又如何?选购扬声器时也想了解它的功率、效率、阻抗等等感觉似是而非的问题。

首先从阻抗谈起。

阻抗是音响是最常看到的字眼了,那么它到底是指什么呢?阻抗与电阻的概念不是完全一样的。

阻抗就是电阻加电抗,详细地说,就是电阻、电容抗、电感抗在向量上的总和。

在相现电压下,阻抗越高电流越小,阻抗越低电流越大。

一般音响器材常提到阻抗的地方有:扬声器的阻抗,前后级放大器的输入阻抗,前级的输出阻抗,(后级经常不称作输出阻抗,而称输出内阻),信号导线的传输阻抗等。

若说到器材内部电子线路及零件和各部分阻抗那就复杂了在此只介绍有关音响器材标称的阻抗具有什么实质意义。

1、扬声器的电阻抗现在先从扬声器的阻抗谈起。

目前,世界各国的扬声器厂家每天都在制造出千万只品种与性能各异的扬声器,以满足日益增长的Hi-Fi市场与AV市场的需要,但扬声器的标称阻抗却都遵循4Ω,8Ω,16Ω,32Ω这样一个国际化的标准系列。

这代表了什么呢?这代表了扬声器谐振频率的峰值fo至第2个共振峰fr之间呈现的最低阻抗值,如图1所示,实际上扬声器构成的输出线路是一个带电抗的电阻,只不过它的电阻随播放音乐的频率而变,这个动态的电阻就称为阻抗,它可不是一个常数值,而是随频率的不同而不同,甚至可能会起伏得很厉害,可能在某频率高到十几Ω或二十几Ω,也可能在某频率低到1Ω或以下。

当后级输出一固定电压给扬声器时,依照欧姆定律,4Ω的扬声器会比8Ω的扬声器多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何一部8Ω输出100W的晶体后级,在接上4Ω扬声器时会变成200W了。

当然除非特殊需要,没有一个扬声器的设计专家会冒天下众多音视器材阻抗匹配要求之大不韪,设计出类似于2.5Ω,5Ω,10Ω,15Ω这样非标称阻抗系列的扬声器供应市场。

细解扬声器的Q值

细解扬声器的Q值

细解扬声器的Q值在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。

下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。

基本概念根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。

在T-S参数中,Q值分为Qms,Qes和Qts。

Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗;Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗;Qts为总阻尼,为上述两者的并联。

即Qts=Qms*Qes/(Qms+Qes)。

扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。

图(1)Qts对扬声器低频声压特性的影响阻抗曲线的数学模型考虑到扬声器Q值与阻抗Ze密不可分的关系,在具体分析Q值前,我们简单了解一下扬声器阻抗曲线。

在阻抗型电声类比中,扬声器的等效阻抗为:其中,Re为扬声器的直流阻抗,L为音圈线圈的感抗;Res为振动系统的力学等效阻抗,Res=(BL)²/(Rms+2Rmr),Rms振动系统的力阻,Rmr为扬声器振膜单面的辐射力阻;Cmes为质量抗,Cmes=Mms/(BL)²;Lces为弹性抗,Lces=Cms*(BL)²。

当频率在Fs的时候,动生阻抗达到最大值;同时由于在低频阶段,音圈感抗相当小,基本上可以忽略,所以我们有:Zmax=Re+|Res|参考下面Mlssa对某款扬声器的测试结果,我们可以对其进行直观地理解。

图(2)扬声器的阻抗曲线Q值与阻抗Ze的关系根据Qms的定义,有Qms=ωMms/(Rms+2Rmr)。

扬声器参数讲解

扬声器参数讲解

扬声器参数讲解1.RMSE-free:此为所测得的参数值反推阻抗曲线,并以此估之阻抗曲线和原测得之阻抗曲线作一误差平方和的计算,故此值愈大,表示所测得的参数愈不可靠,须重新检测测试程序及接法.2.Fs:即Fo,最低共振频率,这个参数决定了扬声器声音重现的低频界限,它决定于扬声器振动系统的等效质量和等效力顺,即Fs=(1/2)(MmsCms)-1/22.1增加边的硬度可提高Fs,增加弹波的硬度可提高Fs。

2.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可降低Fs。

3.Re:线圈的直流阻抗,Re=*L/S:音圈导线的电阻率,L:音圈导线的长度,S:音圈导线的横截在积。

Zmax:扬声器阻抗曲线上的峰值阻抗Ro=Zmax/Re4.Res:电气系统的等值电阻值。

Res=Zmax-Re=(Bl)2/Rms Rms:支撑系统的等效力阻。

4.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振动系统,盆架的窗口改大,可提高Res。

4.2增加BL值可提高Res(对Res影响最大)Rms为振动系统的力阻。

4.3随喇叭口径的增加而降低(增加了sd值),Rmr为幅射力阻,面积越大其值越大。

5.Qms:机械系统的阻尼系数。

Qms=o*Mms/Rms,Rms=(Bl)2/Res.5.1改变振动系统的力阻,如在管材,鼓纸和T铁上打孔或将弹波的材质改稀,或将含浸浓度降低,或增加的鼓纸的刚性(将鼓纸纤维打短打细以压得更紧),或改软振系统,盆架的窗口改大,可提高Qms。

5.2增加等效振动质量,即增加边,胴体,音圈,弹波,中心胶,防尘盖和加大口径(即空气负载)的重量,均可提高Qms.5.3改变音圈管材材质(Kapton比aluminum高,til比kapton高)5.4增加喇叭的Fs值可提高Qms。

扬声器阻抗测试操作规程

扬声器阻抗测试操作规程

斯贝克电子(嘉善)有限公司扬声器阻抗测试操作规程一.抽样要求每批成品中抽取3只来测试。

具体抽取方法为每做完总数的三分之一中抽取一只,直至抽完3只。

二.测试1.先开启测试系统,把信号输出接至扬声器接线板上(双头扬声器,接线板需串联)2.红色夹子接正极,黑色夹子接负极。

3.拨动开关位置:左边---1#4.将待测扬声器放在对应木板的孔中这样可以使上下声场的扩散面积增大,对曲线影响降至最小,然后张开双手五指,轻按扬声器音盆数下在缓缓抬起,使之后所测得的参数与实际更接近;注意用力,以免损坏扬声器。

5.双击DAAS M32—Ⅱ打开测试程序,点击Measvrementes菜单下的子菜单Thiele small parameter出现一线路图后,点击F1 Start Reference Meas然后用双手按住扬声器盆架边缘,等听完扬声器振动声后,点击F1 OK,并将左边拨动开关拨到2#,点击F1 Start,再用双手按住盆架边缘,扬声器振动完后点击F1 OK并点击Change,输入被测扬声器的直流电阻并点击OK(由于扬声器电阻受温度影响较大,一般将室温控制在[18-22]度之间,要是将仰声器从温度较低或较高的地方拿进室中,应在室中放置2小时或2小时以上)。

6.当扬声器的Mns>250克时,应使用密闭式箱体测试法测试阻抗曲线:首先,将扬声器放置于测试台的测试孔中取得第一条曲线(按第4条测试)然后将扬声器倒置于一个密闭木箱上面向下,封闭性良好,在测试之前应测量出整个封闭箱的有效容积,箱体孔的体积和扬声器音盆的有效容积并把三者之和输入电脑提示的0-200L的表格内箱体的体积与曲线的关系为:体积越大所测出的两条曲线越接近。

值得注意的是用密闭式箱体测试法时,不可能出现无法测得的数据,此时如还出现不正常的现象说明扬声器本身技术上有问题7.用天平称取合适的橡皮泥(按Mns对照表)做成粗细相同的圆环加至防生罩与音盆的粘接处并用双手轻按橡皮泥,使之与防生罩紧紧粘住不能松动使音盆四周受到相同的力,然后先点击F2 V AS 后点击F1 Repecet,同样双手按住扬声器盆架边缘,振动完后再次点击OK,在对话框中输入扬声器泡沫边的有效振动直径并点击OK,再输入橡皮泥的重量并点击OK出现测试所要的曲线,并使曲线在整个屏幕显示最大。

扬声器检验规程

扬声器检验规程
3.2《GB2423.2-89电工电子产品基本环境试验规程试验B:高温试验方法》
3.3《GB2423.1-89电工电子产品基本环境试验规程试验A:低温试验方法》
3.4《GB/T2423.3-93电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法》
3.5《GB/T 2424.22-1987电工电子产品基本环境试验规程试验N:温度变化试验方法》
3.9《GB/T 2423.5-1995电工电子产品基本环境试验规程第二部分:机械冲击试验》
3.10《部品技术标准》
3.11《YD 1032-2000900/1800MHz TDMA数字蜂窝移动通信系统电磁兼容性限值和测量方法》
4测试设备
电声分析系统,自由场(消声室),万用表,数显卡尺,声级计,电烙铁,温度试验箱,恒温恒湿试验箱,热冲击箱,自制气动跌落夹具,随机振动台,机械冲击台,静电场发生器。
7.3注意事项:
1)在测试之前一定要查看翻盖上蜂鸣孔,要保证其没有被杂物挡住。
2)在测试时,所处环境要保持安静。否则测试误差较大。
3)由于手机的铃声大部分是和弦音,所以铃声的分贝值变化的比较快,在记录分贝值时,应取音量变化比较
平缓的时候的数值,或取一个中间的数值。
8机械性能测试
8.1自由跌落试验:
更改标记
7.2测试步骤:
1)从要测试的5台手机中取两台,分别装上SIM(UIM)卡。
2)把待测试的手机处于待机状态,设置手机的来电提示为响铃模式、且把手机的铃声音量调至最大、铃声种
类调至铃声1。
3)声级计的设置:TES1350A的面板上有三个推钮
RANGE:电源开关及调节音量范围推钮:它有LO和HI两档,一般把它置为LO档。
更改原因

细解扬声器的Q值

细解扬声器的Q值

细解扬声器的Q值细解扬声器的Q值在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。

下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。

基本概念根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。

在T-S参数中,Q值分为Qms,Qes和Qts。

Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗;Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗; Qts为总阻尼,为上述两者的并联。

即Qts=Qms*Qes/(Qms+Qes)。

扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。

图(1)Qts对扬声器低频声压特性的影响阻抗曲线的数学模型考虑到扬声器Q值与阻抗Ze密不可分的关系,在具体分析Q值前,我们简单了解一下扬声器阻抗曲线。

在阻抗型电声类比中,扬声器的等效阻抗为:其中,Re为扬声器的直流阻抗,L为音圈线圈的感抗;Res为振动系统的力学等效阻抗,Res=(BL)2/(Rms+2Rmr),Rms振动系统的力阻,Rmr为扬声器振膜单面的辐射力阻; Cmes为质量抗,Cmes=Mms/(BL)2; Lces为弹性抗,Lces=Cms*(BL)2。

当频率在Fs的时候,动生阻抗达到最大值;同时由于在低频阶段,音圈感抗相当小,基本上可以忽略,所以我们有: Zmax=Re+|Res|参考下面Mlssa对某款扬声器的测试结果,我们可以对其进行直观地理解。

图(2)扬声器的阻抗曲线Q值与阻抗Ze的关系根据Qms的定义,有Qms=ωMms/(Rms+2Rmr)。

扬声器参数

扬声器参数

扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0, SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义.1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗.扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准.直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值.我们通常所说的4欧或者8欧是指额定阻抗.1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率.单位:赫兹(Hz).扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化的曲线.1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率.1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m 点上产生的声压.单位:分贝(dB).1.5 Qts :扬声器的总品质因数值.1.6 Qms:扬声器的机械品质因数值.1.7 Qes:扬声器的电品质因数值.1.8 V as(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时的容积.单位:升(L).1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以及参与振动的空气质量等.单位:克(gram).1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2).1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位:(T*M).1.13 Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm).1.14 Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla).1\Xmax是量出来的,不是测量出来的,需要知道上板厚度PL和音圈圈幅VC,则Xmax=|PL-VC|/23\1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2).这个量的时候要注意,一般规定为鼓纸的直径加上1/3的悬边的长度,也有文献说是1/2的边的长度,根据经验来确定首先,我们来谈谈如何认识一个喇叭单元,这是我们每个生产厂家、每个扬声器系统设计人员要面对的一个最基本而又是最重要的问题。

细解扬声器的Q值

细解扬声器的Q值

细解扬声器的Q值在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。

下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。

基本概念根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。

在T-S参数中,Q值分为Qms,Qes和Qts。

Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗;Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗;Qts为总阻尼,为上述两者的并联。

即Qts=Qms*Qes/(Qms+Qes)。

扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。

图(1)Qts对扬声器低频声压特性的影响阻抗曲线的数学模型考虑到扬声器Q值与阻抗Ze密不可分的关系,在具体分析Q值前,我们简单了解一下扬声器阻抗曲线。

在阻抗型电声类比中,扬声器的等效阻抗为:其中,Re为扬声器的直流阻抗,L为音圈线圈的感抗;Res为振动系统的力学等效阻抗,Res=(BL)²/(Rms+2Rmr),Rms振动系统的力阻,Rmr为扬声器振膜单面的辐射力阻;Cmes为质量抗,Cmes=Mms/(BL)²;Lces为弹性抗,Lces=Cms*(BL)²。

当频率在Fs的时候,动生阻抗达到最大值;同时由于在低频阶段,音圈感抗相当小,基本上可以忽略,所以我们有:Zmax=Re+|Res|参考下面Mlssa对某款扬声器的测试结果,我们可以对其进行直观地理解。

图(2)扬声器的阻抗曲线Q值与阻抗Ze的关系根据Qms的定义,有Qms=ωMms/(Rms+2Rmr)。

扬声器常用参数的物理意义

扬声器常用参数的物理意义

扬声器常用参数的物理意义扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的参数主要包括:Z,Fo,η0,一、SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义.1、"Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗.扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值.它是计算扬声器电功率的基准.直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值.我们通常所说的4欧或者8欧是指额定阻抗.2、Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率.10、"Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/xx(mm/N).11、"Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2).12、"BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位T*M).13、"Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm).14、"Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla).二、扬声器的非线性失真扬声器在重放音时会出现许多附加信号成分,从而形成非线性失真。

其主要有以下几种。

1、谐波失真磁隙中磁场不均匀、振动系统边缘折环和定心支片顺性在大振幅情况下会引起谐波失真。

这种失真总是出现在低频段,频率越低,纸盆振幅越大,谐波失真越明显。

2、调制失真扬声器音圈同时输入低频和高频信号,例如低频100~200HZ,高频6~7KHZ,纸盆则同时振动,并出现高频声振动调制低频的现象,这样必然会产生调制失真,使音色变坏,发硬。

3、瞬态失真扬声器音圈通以电流,带动锥盆等产生振动而发音,这时必然会产生一定的惯性作用。

扬声器参数——精选推荐

扬声器参数——精选推荐

扬声器参数1扬声器的阻抗公式Ze---扬声器阻抗m ad ---辐射质量R V ---扬声器⾳圈直流电阻r m ---机械系统的等效⼒阻Lv---扬声器⾳圈电感m d -----振膜质量A----⼒系数m V ---⾳圈质量2r ad --辐射阻S d ---弹波劲度S S ---折环劲度扬声器的阻抗由3部分组成,即⾳圈直流电阻、⾳圈感抗、动⽣阻抗。

(动⽣阻抗是由机械系统反应到电系统的阻抗,是由振动系统振动⽽产⽣的阻抗)2扬声器谐振频率 (HZ)(扬声器谐振频率是指扬声器低频谐振频率或最低谐振频率)o ---扬声器谐振频率S o ---等效劲度s o =s d +s s s d =弹波劲度s s =折环劲度m o ---等效质量m o =m d +2m ad +m v m d =振膜质量 m v =⾳圈质量2m ad =16/3*ρo *a3ρo =空⽓密度a=振膜半径谐振频率的调节加⼤振膜质量,会降低谐振频率,但质量过⼤会使扬声器灵敏度降低增加振膜与弹波的顺性,会降低谐振频率,但顺性太⼤会使振膜振幅加⼤,导致失真加⼤和功率承受能⼒扬声器的⼝径越⼤,其谐振频率越低3扬声器有效辐射⾯积(扬声器振膜的投影⾯积,可认为是锥体与1/2折环的投影⾯积)S D =有效辐射⾯积D=有效辐射直径有效辐射⾯积与辐射质量的关系1.54BL值(T*M)(BL值称为⼒系数,它源于扬声器最基本的公式,即载流导体在磁场中受到的⼒ F=BLI)F=BLIB=磁隙磁通密度L=⾳圈导线长度I=导线电流BL值与扬声器的总品质因数Q TS 的关系如下S D =π(0.5D)22m ad =16/3*ρo *a3=0.575S DZ e=R V +j ωLv+BL=Cms = 1/[( 2πFo )2?Mms]So:是振动系统的等效⼒劲,即⽀撑振动系统的⿎纸Edge和弹波等弹簧系统的刚度,其倒数是顺性Cms=1/ SoCms:即顺性Co,表⽰上述弹簧系统的柔软度。

电声实验报告_扬声器阻抗特性的测量

电声实验报告_扬声器阻抗特性的测量

实验报告小组成员:实验题目:扬声器阻抗特性的测量一、实验目的:(1)掌握扬声器阻抗特性的测量方法(2)由扬声器阻抗特性求出其谐振频率和品质因数值二、实验设备:扬声器(带电阻)、信号发生器、毫伏表、万用表三、实验原理:阻抗曲线是在扬声器正常工作的情况下,用恒流法或恒压法测得的扬声器阻抗模值随频率变化曲线。

本次试验使用的是间接测量的恒压法。

实验原理图如下:图1其中U o≡4V,i为通过电路的电流,R od为扬声器直流电阻Z y=U i/i i=(U o-U i)/R Q o(品质因数)=f0/B=f0/(f2-f1)=∣Z max∣/R od (f0为谐振频率)四、实验内容及步骤:1、用万用表测量扬声器的直流电阻R od(R od=6.5Ω),并读出R 的阻值(R=620Ω)。

2、按原理图连接电路,保证信号发生器输出电压U o =4V 的同时,用毫伏表测不同频率(见表1)的扬声器两端的电压U i 。

3、将测得数据填入表1,并计算扬声器阻抗值。

4、根据所得数据画出Z y —f 曲线。

扬声器的阻抗特性5101520253020304050601202404809601920384076801536018000f(Hz)Z y图25、将图2与扬声器的阻抗特性曲线的理论图(图3)相比较,可看出所测扬声器的f0=50Hz,品质因数Q o=图3五、实验结论:1、由实验数据大体可以得出如图3所示的扬声器阻抗特性曲线。

2、由所得的曲线可计算出扬声器的谐振频率,谐振频率即为Z max 所对应的频率。

3、通过此次实验我掌握了测试扬声器阻抗特性的方法。

六、误差分析:.仪器设备的误差等误差导致实验结果与理论结果有一定的差距。

【可编辑全文】扬声器的主要技术参数测量方法

【可编辑全文】扬声器的主要技术参数测量方法

可编辑修改精选全文完整版扬声器的主要技术参数及测量方法一、极性1、极性标志扬声器输入端的极性标志是指在扬声器输入端馈入信号时,扬声器膜片产生运行的方向与输入端所加信号极性之间关系的标志。

2、测量方法按规定馈给扬声器以瞬时直流电压,引起膜片向扬声器前方运行时,与电压正极相连接的输入端为扬声器正极,用红色或符号:“+”表示。

二、纯音检听1、特性解释在额定频率范围内,馈给扬声器以规定电压的正弦信号,检查扬声器的装配质量。

2、测量方法(1、)扬声器单元检听馈给扬声器正弦信号的电功率为二分之一额定噪声功率:U= WRn/2,一般在0.3m处检听,在此距离内应无反射物(试听室)。

扬声器单元不另加负载。

注:A、全频带及低频扬声器检听时,应从共振频率允许偏差下限向高频扫频。

B、中频、高频扬声器检听时,应从分频点频率开始向高频扫频。

C、高顺性扬声器检听时,可以在产品标准规定的声负载上进行。

应从共振频率允许偏差下限开始向高频扫频。

D、为便于检查垃圾声、碰圈声和机械声,在共振频率Fo附近必须检听,但可以规定馈给扬声器以较低的信号电压。

2 、扬声器系统检听馈给扬声器系统的正弦信号电压及检听距离由标准规定。

检听时由系统的下限频率开始向高频扫频,有衰减器时,一般将衰减器置于频率响应的平直位置或产品标准规定的位置。

三、额定阻抗扬声器的额定阻抗是一个由制造厂规定的纯电阻值,在确定信号源的有效电动率时,用它来代替扬声器。

额定阻抗是指阻抗曲线上紧跟在第一个极大值后面的极小值。

在额定频率范围内,阻抗模值的最低值一般不应小额定阻抗的80%(一般取±20%公差,例8±20%Ω)。

上面提到阻抗曲线----把阻抗值表示为频率的函数。

(如下图)额定阻抗的测试方法:用替代法进行,馈给扬声器的电流通常选用50mA±10%,测量原理图如下:测量时开关K先接通被测扬声器。

在扬声器辐射面前0.3m内应无反射物。

递增信号频率,若无其它规定,使频率停留在有效值电压表指示的第一个极大值后面的极小值处,然后将开关K接通Rk并调节电阻Rk,当电阻Rk上的电压与被测扬声器上的电压一致时,所指示的Rk值即可用于判定是否符合额定阻抗规定的要求。

扬声器参数计算公式

扬声器参数计算公式

1.扬声器主要参数综合设计和分析扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。

扬声器常用机电参数以及计算公式、测量方法简述如下:1.1直流电阻Re由音圈决定,可直接用直流电桥测量。

1.2共振频率Fo由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5),Fo可直接用Fo 测试仪测量或通过测量阻抗曲线获得。

1.3共振频率处的最大阻抗Zo由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。

Zo = Re+[(BL)2/(Rms+Rmr)] (10)1.4 机械力阻Rms由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms 后通过下列公式计算:Rms =(1/Qms)*SQR(Mms/Cms) (11)这里SQR( )表示对括号( )中的数值开平方根,下同。

1.5 辐射力阻Rmr由口径、频率决定,低频时可忽略。

Rmr = 0.022*(f/Sd)2 (12)1.6 等效辐射面积Sd只与口径(等效半径a)有关。

Sd =π*a2 (13)1.7 机电耦合因子BL由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算:(BL)2 =(Re/Qes)*SQR(Mms/Cms) (14)1.8 等效振动质量Mms由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定,Mms可由附加质量法测量获得。

Mms=Mm1+Mm2+2Mmr1.9 辐射质量Mmr只与口径(等效半径a)有关。

Mmr =2.67*ρo*a3 (16)其中ρo=1.21kg/m3为空气密度,a为扬声器等效半径。

1.10 等效顺性Cms是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N,而变位可以用变位仪直接测量。

音量电位器的阻抗曲线

音量电位器的阻抗曲线

音量电位器的阻抗曲线
音量电位器(也称为音量控制电位器或音量旋钮)是一种用于调节电路中信号幅度的电子元件。

它的阻抗曲线描述了音量电位器在不同旋转位置时的阻抗值。

阻抗是电路中电阻、电感和电容的综合效应,它决定了电流通过电路时的难易程度。

音量电位器通常具有一个旋转轴,通过旋转这个轴可以改变电路中的阻抗值。

阻抗曲线是一个图形表示,它展示了音量电位器在不同旋转位置时的阻抗值。

这个曲线通常是线性的,意味着阻抗值随着旋转角度的增加而均匀增加。

然而,有些音量电位器可能具有非线性阻抗曲线,以提供更精细的音量控制。

阻抗曲线的形状和特性取决于音量电位器的设计和制造。

不同的音量电位器可能有不同的阻抗范围和曲线形状。

在音频应用中,音量电位器通常用于控制扬声器的音量,通过改变阻抗值来调节音频信号的幅度。

需要注意的是,阻抗曲线是音量电位器的一个关键特性,但它并不是唯一的考虑因素。

在选择音量电位器时,还需要考虑其他因素,如阻抗范围、旋转角度、噪声水平、耐用性等。

此外,阻抗曲线也可能受到温度、湿度等环境因素的影响。

总之,音量电位器的阻抗曲线描述了其在不同旋转位置
时的阻抗值,是选择和使用音量电位器时需要考虑的重要因素之一。

电动式扬声器阻抗曲线分析与测量

电动式扬声器阻抗曲线分析与测量

电动式扬声器阻抗曲线分析与测量发表时间:2019-06-03T16:16:02.780Z 来源:《电力设备》2019年第2期作者:申彦冬[导读] 摘要:电动式扬声器单元支撑系统的蠕变效应表现在扬声器单元的位移在共振频率以下会有所上升。

(天津博顿电子有限公司 301722)摘要:电动式扬声器单元支撑系统的蠕变效应表现在扬声器单元的位移在共振频率以下会有所上升。

扬声器的相关性能指标包括频率响应与有效频率范围、额定频带的特性灵敏度级、谐波失真、额定噪声功率、额定阻抗、额定共振频率,其中额定阻抗、额定共振频率可以从阻抗曲线中得到。

围绕扬声器的阻抗曲线,介绍电动式扬声器阻抗曲线方面的相关知识,再介绍用丹麦B&K公司的PULSE电声分析系统测量电动式扬声器的阻抗曲线。

关键词:电动式扬声器;额定阻抗;阻抗曲线现代电声技术的发展, 现已对扬声器有了较深刻、较全面、多角度、多方位、多层次的认识。

目前,在扬声器相关性能指标测试时,往往只注重频响曲线,而忽视阻抗曲线的讨论。

扬声器的阻抗特性很重要,许多听感上的缺陷都能从阻抗曲线上反映出来。

一、扬声器扬声器是一种现代人不可缺少的电声器件, 广泛用于人类生活的各个领域。

世界每年生产几十亿只扬声器, 已形成一个完整的产业链。

扬声器研究受到更多的关注与参与, 扬声器作为一个单独学科, 理论体系正处在完善发展中。

二、电动式扬声器工作原理电动式扬声器的工作原理,永磁体、上导磁板、下导磁板构成一个磁回路,在上导磁板和下导磁板之间形成一个很小的均匀的磁气隙,当音圈有交变电流流过时,音圈就会上下振动,从而推动音盆造成空气振动发出声音。

扬声器的音圈是一个由漆包线绕制而成的线圈,它不但有一定的直流电阻,还具有电感特性。

音圈在磁气隙中运动,切割磁力线,这个过程中会感应出一个与音频信号反向的感应电压,会削弱音圈中的音频信号电流,从而使得音圈的阻抗增大,这种增大会随着音频信号频率的上升变得越来越大。

电动式扬声器阻抗曲线分析与测量

电动式扬声器阻抗曲线分析与测量

电动式扬声器阻抗曲线分析与测量朱德铭;邝永辉;艾晓晓【摘要】扬声器的相关性能指标包括频率响应与有效频率范围、额定频带的特性灵敏度级、谐波失真、额定噪声功率、额定阻抗、额定共振频率,其中额定阻抗、额定共振频率可以从阻抗曲线中得到.围绕扬声器的阻抗曲线,先介绍了扬声器的分类,再重点介绍电动式扬声器的工作原理与等效电路,最后分析了扬声器阻抗曲线以及利用PULSE电声分析系统测量扬声器的阻抗曲线.【期刊名称】《电声技术》【年(卷),期】2015(039)006【总页数】5页(P15-19)【关键词】电动式扬声器;额定阻抗;阻抗曲线;PULSE电声分析系统【作者】朱德铭;邝永辉;艾晓晓【作者单位】广东省质量监督电声产品检验站,广东江门529000;广东省质量监督电声产品检验站,广东江门529000;广东省质量监督电声产品检验站,广东江门529000【正文语种】中文【中图分类】TN6431 引言目前,在扬声器相关性能指标测试时,往往只注重频响曲线,而忽视阻抗曲线的讨论。

扬声器的阻抗特性很重要,许多听感上的缺陷都能从阻抗曲线上反映出来。

例如从阻抗曲线中可以得到扬声器的额定阻抗、谐振频率、品质因数;扬声器频率响应也与阻抗曲线有密切关系,阻抗曲线上的谐振频率就是扬声器频率响应曲线的下限;阻抗曲线高频区的小峰与扬声器频率响应曲线的高频峰相对应。

首先介绍电动式扬声器阻抗曲线方面的相关知识,再介绍用丹麦B&K公司的PULSE电声分析系统测量电动式扬声器的阻抗曲线。

2 扬声器分类扬声器俗称喇叭,是一种将电能转化为声能,并将它辐射到空气中的电声换能器件。

按驱动方式分,扬声器可分为电动式、电磁式、静电式、压电式。

(1)电动式(如图1所示),又称动圈扬声器。

其工作原理是当声源信号电流流过音圈,与磁体磁场相互作用而形成电磁力,在输入电流产生的电磁场与磁场内磁束相交平面的垂直方向产生交变运动,纸盆在这种力的作用下振动而发声。

图1 电动式扬声器(2)电磁式(如图2所示),又称舌簧式扬声器,原理是经声源信号磁化了的振荡部分与磁体的磁性作用下使振膜振动而发声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬声器的电阻抗如何配置功放包括前级和后级时,常会询问它的输入阻抗、输出阻抗及输出内阻是多少?功率和驱动能力有多强?胆机好力还是晶体管机好力?桥接又如何?选购扬声器时也想了解它的功率、效率、阻抗等等感觉似是而非的问题,我相信看了下文应该有满意的答案了。

我们首先从阻抗谈起。

阻抗是音响中最常看到的字眼了,那么它到底是指什么?阻抗与电阻不是完全一致的东西。

阻抗就是电阻加电抗,详细地说,就是电阻、电容抗、电感抗在向量上的总和。

在相同电压下,阻抗越高电流越小,阻抗越低电流越大。

一般音响器材常见提到阻抗的地方有:喇叭的阻抗,前后级放大器的输入阻抗,前级的输出阻抗,(后级经常不称作输出阻抗,而称输出内阻),信号导线的传输阻抗等。

若说到器材内部电子线路及零件的各部分阻抗那就更琳琅满目复杂得多了,在此我们只介绍有关音响器材标称的阻抗具有什么实质意义?“扬声器的电阻抗”现在先从喇叭的阻抗谈起。

目前,世界各国的扬声器厂家每天都在制造出千万只品种与性能各异的扬声器,以满足日益增长的Hi—Fi市场与AV市场的需要,但扬声器的标称阻抗却都遵循4Ω、8Ω、16Ω、32Ω这样一个国际化的标准系列。

这代表了什么呢?这代表了扬声器谐振频率的FO至第二个共振峰Fz之间所呈现的最低阻抗值。

实际上喇叭构成输出线路中一个带电抗的电阻,只不过它的电阻随潘放的音乐的频率而变,这个动态的电阻就称为阻抗。

它可不是一个常数值,而是随着频率的不同而不同,甚至可能会起伏得很可伯,可能在某频率高到十几Ω或二十几Ω,也可能在某频率低到IΩ或以下。

当后级输出一个固定电压给喇叭时,依照欧姆定律,4Ω的喇叭会比8Ω的喇叭多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何一部8Ω输出的100瓦的晶体后级,在接上4Ω喇叭时会变为200瓦了。

当然除非特殊需要,没有一个扬声器的设计专家会设计出类似于2.5Ω、5Ω、10Ω、15Ω这样非标称阻抗系列的扬声器供应市场。

谁都知道一个二单元的音箱(一个高音一个低音)通常采用1只8Ω的高音单元和1只8Ω的低音单元组成,如果三单元的音箱(一个高音二个低音)通常都采用1只8Ω的高音单元和2只4Ω的低音单元串联组成,或者用I只8Ω的高音单元和2只16Ω的低音单元并联组成,以达到整个音箱的8Ω输入阻抗与功率放大器8Ω输出阻抗相匹配。

当如上所述,喇叭的阻抗值不断下降时,后级输出一个固定电压,它的电流就会愈来愈大,你确定你的后级能输出这么大的电流吗?你知道喇叭阻抗不断下降的结果到后来就相当于是把喇叭线直接短路,所有的晶体管后级放大器,其输出电流的能力均有其设计上的限制,超出此范围,机器就要烧掉了。

这也就是为什么一般人常说的:后级的功率不用大,但输出电流要大的道理。

当然这种讲法也不太规范。

因为现今的高保真晶体管功率放大器基本属定压型放大器,以输出功率=负载的电流平方x负载阻抗来计算,大功率时电流大,小功率时电流小亦属于正常。

真正有机会在既定的负载上有“大电流输出”的,还是大功率放大器。

早期日本放大器给人的印象就是功率标示很高,但输出电流能力则令人质疑,其实输出功率和驱动能力之间的关系十分微妙。

讲到“输出功率”的高低与“驱动能力”的强弱,两者虽然没有绝对的关系,但却有相对的联系。

输出功率很容易从数字显示5OW、100W、200W甚至更多,但是驱动能力的辨识就得依靠慧眼,甚至得真正度过才知道。

功率放大器的驱动对象是喇叭,驱动能力越强,也就表示越能压得住喇叭。

当然你会问,什么样的喇叭难推?我的看法是:低效率的(86db以下的),低阻抗的(4Ω或以下的),静电式和铝带式等等,都是很考功放搭配的。

而功放的驱动能力则完全体现在电流的供给上,电压×电流,就是真正的“功率”。

如果有一部功放,其功率标称是100W×2(8Ω),200W×2(4Ω),400W×2(2Ω),我们通常称他是“大电流”设计,这种功放的驱动能力就会比较强。

小小一套日本产的床头音响组合动不动就是300W,可是KRELL的300W后级你想一个人扛是扛不动的。

这种高电压低电流的日本放大器如遇上现在满街都是的低阻抗喇叭,一下子就软了脚。

4Ω喇叭的需求电压比8Ω低,但需求电流却比较大,就以4W为例,8Ω喇叭是0.7A,而4Ω喇叭则吃lA电流,故为何大家都说,低阻抗喇叭比较难推动。

正由于低阻抗喇叭“吃”电流,故晶体后级逐渐形成大电流设计。

只要负载电流够,晶体机的输出功率会随着喇叭阻抗的降低而提开。

但胆机固有输出变压器隔离,功率不随喇叭阻抗变化,因此当喇叭阻抗猛往下降时,胆机就可能使不上力,因此时喇叭欲吃电流,但胆机却是电压组件,无法提供电流,此时是不是晶体机比胆机够力?有些放大器的设计是可以把两个声道结合起来成为一个单声道来运作。

通常其功率比原来两个声道功率之和还要大。

这种技术称为桥接或同极耦合。

放大器是否可以桥接是取决于原来的设计。

大部分的放大器都不能桥接,如果说明书没有说明,则不要作此尝试,否则可能会损坏机器,其实这样做亦并非是好事,因为它会使放大器忍受低阻抗的能力降低。

如果有一对喇叭的阻抗很高,像早期的RogerslS3/5A,那放大器的输出功率岂不是减少?这是对晶体管机而言的,对于胆机却是好事;因为胆机有输出变压器,所以其输出功率不会随负载阻抗变动而变动,故无论负载阻抗变大或变小,胆机可维持稳定的功率输出,遇到3/5a等高阻抗喇叭时,胆机比晶体机来得够力。

晶体机驱动高阻抗喇叭会降低功率,但也有例外,因为有个别晶体管机亦使用输出变压器,其输出功率不会随负载阻抗变动而变动。

阻抗是音响圈中最常看到的字眼了,但是它到底意所何指呢?许多人在看到喇叭标示的阻抗值是四或八欧姆的时候,会直觉地拿起三用电表往喇叭的二个接线端子一量,看看到底是不是正确,可惜的是绝大部份的人都失望了,因为用三用电表上的电阻档量出来的结果并没有和喇叭上面所标示的一致。

原因呢?因为你误会了,你搞错了。

阻抗与电阻不是完全一致的东西。

在国中的物理课本上,我们第一次接触到有关电学方面的理论,其中提到了有关电压、电流、电阻以及电功率之间的原理和数学关系。

绝大部份没有继续进修电学方面的课程或从事于电子专业的人士,其毕生的电学常识乃尽粹于斯,这还是当年上课没打瞌睡,经努力、认真、用功学习后才能拥有的辉煌成果,难怪你会把阻抗当成电阻了。

阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。

在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。

电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。

但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。

电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。

它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。

此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

一般音响器材常见被提到阻抗的地方有喇叭的阻抗,前后级扩大机的输入阻抗,前级的输出阻抗,(后级通常不称输出阻抗,而称输出内阻),信号导线的传输阻抗(或称特性阻抗)等。

若说到器材内部电子线路及零件的各部份阻抗那就更琳琅满目复杂多多了,非三言两语可说明清楚。

在此我们专只约略介绍有关音响器材标示的阻抗具有什么样的实质意义。

由于阻抗的单位仍是欧姆,也同样适用欧姆定律,因此一言以蔽之,在相同电压下,阻抗愈高将流过愈少的电流,阻抗愈低会流过愈多的电流。

光是这么简单一句话,你可知道多少音响器材的搭配学问尽在其中吗?先从喇叭的阻抗谈起。

最常见到的喇叭阻抗的标示值是八欧姆,也有很多是四欧姆,这代表了什么呢?这代表了这对喇叭在工厂测试规则时,当输入1KHz的正弦波信号,它呈现的阻抗值是四或八欧姆;或是是在喇叭的工作频率响应范围内,一个平均的阻抗值。

它可不是一个固定值,而是随着频率的不同而不同,甚至可能会起伏得很可怕,可能在某频率高到十几廿几欧姆,也可能在某频率低到一欧姆或以下(这种喇叭通常被视为后级的杀手,当年以Apogee最为着名)。

好,让我们来脑力激荡一下;当后级输出一个固定电压给喇叭时,依照欧姆定律,四欧姆的喇叭会比八欧姆的喇叭多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何坊间会传言一部八欧姆输出一百瓦的晶体后级,在接上四欧姆喇叭时会自动变为二百瓦的道理。

可是你先别高兴,以为占到了便宜,天下没有白吃的午餐,当喇叭的阻抗值一路下降时,后级输出一个固定电压,它流过的电流就会愈来愈大,你确定你的后级能输出这么大的电流吗?你知道喇叭阻抗一路下降的结果到后来就有点像是把喇叭线直接短路的意思,所以阻抗值有时会低至一欧姆的Apogee喇叭被称作后级杀手的原因,你明白了吧!所有的电晶体后级扩大机,其输出电流的能力均有其设计上的限制,超出此范围,机器就要烧掉了。

这也就是为什么一般人常说的:后级的功率不用大,但输出电流要大的似是若非的道理(这个问题以后我们会详细讨论)。

同理,如果有一对喇叭的阻抗很高,像早期15的RogersLS 3/5A,那扩大机的输出功率岂不自动减半?没错!如果这对喇叭的效率又很低的话,你要它发出高音压来,能不动用高功率扩大机吗?江湖有传言:上扬唱片在台北市中山北路的门市有一对15的Rogers LS 3/5A,作为背景音乐之用。

推它的扩大机是一部日本早期的Technics综合扩大机而已,但包括刘老总及赖主编在内,均盛赞它好声,你言如何?早期日本扩大机给人的印象就是功率标示很高,但输出电流能力则令人颇有微词,君不见小小一套床头音响组合动不动就是300W吗?可是KRELL的300W后级你想一个人扛是扛不动的。

这种高电压低电流的日本扩大机一遇上现在满街都是的低阻抗喇叭,一下子就软脚了,但是如果碰上了高阻抗喇叭,例如……,会不会就成了名符其实的当哈利遇上莎莉呢?搭配之妙啊!岂可等闲视之。

一般我们常耳闻的说法是:扩大机的输入阻抗是愈高愈好,而输出阻抗是愈低愈好。

为什么呢?因为输入阻抗高了,从讯号源来的讯号功率强度就可以不必那么大。

这么说也许还有读者不甚了解,让我们再回想一下欧姆定律;假设讯源输出不甚了解,让我们再回想一下欧姆定律;假设讯源输出一个固定电压,传送往下一级,如果这一级的输入阻抗高,是不是由讯源所提供的讯号电流就可以降低?如果输入阻抗非常非常的高,则几乎不会消耗讯号电流(当然还是会有)就可以驱动这一级电路工作,换句话说就是几乎只要有讯号电压,电路就可以正常工作;但是对于低输入阻抗的电路呢?就正好相反了,它必须要求讯号能源能提供较为大量的讯号电流,因为在同一个电压下,低输入阻抗会流进较大的讯号电流,如果讯源提供的电流强度不足以满足下一级电路的需求,它就不能完美地驱动下一级电路。

相关文档
最新文档