2017-2018年七年级下学期数学期末测试卷及答案

合集下载

(2017----2018)七年下数学期末考试卷附答案

(2017----2018)七年下数学期末考试卷附答案

桦甸市中学2017—2018学年度质量监测七年级数学试卷一、选择题(每小题2分共12分)1.一个数的立方根等于3,这个数是( ) A . 9 B .27 C .33 D . ±272.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B . 3与4之间C . 4与5之间D . 5与6之间3.如图,已知∠1=60°,如果CD ∥BE ,那么∠B 的度数为( ) A .70° B .100° C .110° D .120°4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是( )A .个体B .总体C .总体的样本D .样本容量5.在平面直角坐标系中,点A 在第四象限,到x 轴,y 轴的距离分别为3,1,则点A 的坐标是( ) A .(1,-3) B . ( -1,3) C .(3,-1)D . ( -3, 1)6.已知不等式①x >1,②x >4,③x <2,④2-x >-1从这四个不等式中选2个,构成正整数解是x=2的不等式组的不等式是( )A . ①②B . ②③C . ③④D . ①④二、填空题(每小题3分,共24分)7.绝对值小于15的所有整数是 .8.把命题“对顶角相等”改写成“如果 … 那么… ”的形式 . 9.一个数的平方根与它本身相等,这个数是 .10. 已知m ,n 满足方程组 则m +n 的值为 .11. 某足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支球队参加15场比赛,负4场,共得29分,则这支球队胜了 场.12.若把点A (-5m ,2m -1)向上平移3个单位长度后,得到的点在x 轴上,则点A 的坐标为__________.13.如图,在平面直角坐标系中,已知A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A …的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 .14.如图,将△ABE 向右平移2cm ,得到△DCF ,若△ABE 的周长为16cm ,则四边形ABFD的周长为__________ cm.七年级数学试卷 第1页(共6页)七年级数学试卷 第2页(共6页)第13题三、解答题( 每小题5分,共20分) 15. 计算:381-9136÷⨯.16. 解不等式,并把解集在数轴上表示出来.17. 解方程组18. 已知:AB ∥EF ,点G 在EF 上,B 、C 、G 三点在同一条直线上,且∠1=500,∠2=500. 试说明:CD ∥EF四、解答题(每小题7分,共 28分)19. 求不等式组()⎪⎩⎪⎨⎧-->+x 23-7≤1x 21,1x 32x 5的解集.20.已知:A (-1,-1),B (2,-1),C(0,1). (1)在平面直角坐标系中画出三角形ABC ; (2)写出三角形ABC 的面积 ; (3)若把△ABC 向上平移2个单位,向右平移3个单位,得到对应△A ′B ′C ′,写出平移后的三角形各个顶点坐标________________.21. “某学校为了了解学生的学习兴趣进行了一次抽样调查,学习兴趣情况分为三个层次,A 层次:很感兴趣,B 层次:较感兴趣,C 层次:不感兴趣. 将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①、②补充完整;(3)图②中C 层次所在扇形的圆心角的度数是 度;(4)根据抽样调查的结果,请你估计该校1200名学生中大约有多少名学生对学习感兴趣.22. 某车间有98名工人,平均每人每天可加工机轴15根或轴承12根,若每根机轴要配2根轴承.(1)应安排多少名工人加工机轴,多少名工人加工轴承, 才能使每天加工的机轴和轴承刚好配套?(2)在(1)的条件下,刚好配成_________套.七年级数学试卷 第3页(共6页)七年级数学试卷 第4页(共6页)装订线装订线⎪⎩⎪⎨⎧=+=-.123m 2,22m nnx ≥121+-x五、解答题(每小题8分,共16分)23. 如图,D 为线段BC 上一点,且不与点B ,C 重合,DE ∥AC 交AB 于点 E ,DF ∥AB 交AC 于点F.求证:∠EDF =∠A .24.某校知识竞赛中,甲、乙两人进入了必答题环节.比赛规则是:每人都要回答10道题,每题回答正确得x 分,回答错误或放弃回答扣y 分.当甲、乙两人恰好都回答完5道题时,甲答对了4道题,得分为35分;乙答对了3道题,得分为20分. (1)求x 和y 的值;(2)若比赛规定此环节得分要超过60分能晋级,甲在剩下的比赛中至少还要答对多少道题才能顺利晋级?六、解答题(每小题10分,共20分)25.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(a,0),C 点的坐标为(0,b ),(2)当点P 移动了6秒时,指出此时P 点的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.26华府小区准备新建50个停车位,以解决小区停车难的问题。

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

人教版2017-2018学年七年级(下册)期末数学试卷及答案

人教版2017-2018学年七年级(下册)期末数学试卷及答案

2017-2018学年七年级(下册)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.22.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b4.将不等式组的解集表示在数轴上,下面表示正确的是()A.BC.D.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.6.方程组的解是()A.B.C.D.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是.12.方程组的解是.13.用不等式表示:x与5的差不大于x的2倍:.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.16.关于x的不等式组有三个整数解,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).18.(6分)解二元一次方程组:.19.(7分)解不等式组.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.3.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、、是有理数,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是﹣0.6.【分析】根据立方根的定义即可求解.【解答】解:﹣的立方根是﹣0.6,故答案为﹣0.6.【点评】本题主要考查了立方根的概念,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,比较简单.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成(4,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:确定平面直角坐标系中x轴为从下数第一条横线,y轴为从左数第一条竖线,小明的位置为原点,从而可以确定小浩位置点的坐标为(4,3).故答案为:(4,3).【点评】此题主要考查了根据坐标确定点的位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.16.关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).【分析】(1)根据特殊角的函数值即可求出答案.(2)先化简原方程组,然后根据二元一次方程组的解法即可【解答】解:(1)原式=1﹣+3+4=8﹣=(2)原方程组化为①﹣②得:4x=﹣4x=﹣1将x=﹣1代入①中,y=解得:【点评】本题考查学生的计算能力,解题的关键熟练运用运算法则,本题属于基础题型.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.【分析】根据同旁内角互补,两直线平行由∠1+∠2=180°得AB∥EF,再根据平行线的性质得∠B=∠EFC,而∠B=∠3,所以∠3=∠EFC,然后根据平行线的判定方法即可得到结论.【解答】证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.【点评】本题是一元一次不等式的应用,列不等式时要先根据“至少”、“最多”、“不超过”、“不低于”等关键词来确定问题中的不等关系,本题要弄清数量、单价、总价和书名,明确数量×单价=总价;在确定最后答案时,要根据实际意义,不能利用四舍五入的原则取整数值.24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

2017-2018学年人教版数学七年级(下册)期末考试试卷及答案

2017-2018学年人教版数学七年级(下册)期末考试试卷及答案

2017-2018学年七年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为.17.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)20.(4分)计算:.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.参考答案与试题解析一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【分析】根据整式的运算法则即可求出答案.【解答】解:①原式=2ab,故①错误;②原式=﹣6x2y2,故②错误;③原式=﹣64c,故③错误;④原式=(﹣ab2)2=a2b4,故④正确;故选(C)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】分别根据零指数幂,负指数幂、乘方的运算法则计算,然后再比较大小.【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°【分析】两人互相看时,说明方向正好是相反关系,故小颖应在小明的南偏西70°.【解答】解:∵小明处在小颖的北偏东70°方向上,∴小颖应在小明的南偏西70°,故选:C.【点评】此题主要考查了方向角,关键是掌握方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【分析】根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.【解答】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.【点评】本题主要考查三角形内角和定理的运用.7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选B.【点评】本题考查了函数的图象,应首先看清横轴和纵轴表示的量,然后根据实际情况进行确定.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.【分析】找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.【解答】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选B.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为 2.04×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00204=2.04×10﹣3,故答案为:2.04×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为8或9或10.【分析】根据三角形的三边关系即可确定a的范围,则a的值即可求解.【解答】解:a的范围是:9﹣2<a<9+2,即7<a<11,则a=8或9或10.故答案为:8或9或10.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为y=x2+6x.【分析】增加的面积=边长为3+x的新正方形的面积﹣边长为3的正方形的面积,把相关数值代入即可求解.【解答】解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.【点评】解决本题的关键是得到增加的面积的等量关系,注意新正方形的边长为3+x.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=1.【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【解答】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,=AC•BC=(AC+BC+AB)•r,∴S△ABC∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.=【点评】此题考查了角平分线的性质.此题难度适中,注意掌握S△ABCA C•BC=(AC+BC+AB)•r.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为22cm或14cm.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,可得x﹣6=2或6﹣x=2,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=2或6﹣x=2,解得:x=8或x=4,∴这个等腰三角形的周长为:22cm或14cm.故答案为:22cm或14cm.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.17.观察下列图形的构成规律,根据此规律,第8个图形中有65个圆.【分析】观察图形可知,每幅图可看成一个正方形加一个圆,利用正方形的面积计算可得出结果.【解答】解:第一个图形有2个圆,即2=12+1;第二个图形有5个圆,即5=22+1;第三个图形有10个圆,即10=32+1;第四个图形有17个圆,即17=42+1;所以第8个图形有82+1=65个圆.故答案为:65.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115°.【分析】根据角平分线的定义求出∠EBC的度数,根据线段垂直平分线的性质得到EB=EC,求出∠C的度数,根据邻补角的概念计算即可.【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBC=25°,∵AD垂直平分线段BC,∴EB=EC,∴∠C=∠EBC=25°,∴∠DEC=90°﹣25°=65°,∴∠AEC=115°,故答案为:115°.【点评】本题考查的是线段垂直平分线的概念和性质以及等腰三角形的性质,掌握线段垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)【分析】直接利用同底数幂的乘法、幂的乘方与积的乘方以及合并同类项的知识求解即可求得答案.【解答】解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.【点评】此题考查了同底数幂的乘法、幂的乘方与积的乘方.此题比较简单,注意掌握指数与符号的变化是解此题的关键.20.(4分)计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)【分析】先去小括号,再合并同类项,再根据单项式除以单项式的法则计算即可.【解答】解:原式=﹣[a2+2ab+b2﹣a2+2ab﹣b2]÷4ab=﹣4ab÷4ab=﹣1.【点评】本题考查了整式的除法.解题的关键是注意灵活掌握去括号法则、单项式除单项式的法则.22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.【分析】原式前两项利用完全平方公式化简,最后一项利用平方差公式化简,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x6+4x3+4﹣x6+4x3﹣4﹣2x4+32=8x3﹣2x4+32,当x=时,原式=1﹣+32=32.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,是基础题,熟记概念并准确识图,找准各角之间的关系是解题的关键.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.【分析】由全等三角形的判定定理SSS证得△ABC≌△DEF,则对应角∠BCA=∠EFD,易证得结论.【解答】证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.【点评】本题考查了全等三角形的判定与性质,平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.【分析】首先根据角平分线的定义,可得:∠1=∠ABD,∠2=∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.【解答】证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.【点评】此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?【分析】O是AB、A′B′的中点,得出两组对边相等,又因为对顶角相等,通过SAS得出两个全等三角形,得出AA′、BB′的关系.【解答】解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BO B′(SAS),∴AA′=BB′.【点评】本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握.28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【分析】首先可判断△ABC是等腰直角三角形,连接AD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.【解答】证明:连AD,如图所示:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵D为BC中点,∴AD=DC,AD平分∠BAC,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

17—18学年下学期七年级期末考试数学试题(附答案)

17—18学年下学期七年级期末考试数学试题(附答案)

民勤六中2017—2018学年度第二学期期末考试七年级数 学 试 卷一、选择题 (每小题3分,共30分)1.下列四个实数中是无理数的是( )A .πB .1.414C .0D .2. 如图,已知AB ∥ED ,∠ECF=65°,则∠BAF 的度数为( )A .115°B .65°C .60°D . 25°3.由方程组可得出x 与y 的关系是( )A .2x+y=4B .2x ﹣y=4C .2x+y=﹣4D .2x ﹣y=﹣44.将不等式组的解集在数轴上表示出来,正确的是( )A .B .C.D .5. 下列各式是二元一次方程的是:( ) A. y x 21+B.342=+-y y xC. 95-=y xD.02=-y x 6. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是: A. 4± B. 2± C. 4 D. 27. 若a <b ,则下列各式中,错误的是( )A .a ﹣3<b ﹣3B .3﹣a <3﹣bC .﹣3a >﹣3bD .3a <3b8.本地四月份第一周连续七天的空气质量指数(AQI )分别为:118, 96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述( )A .折线统计图B .扇形统计图C .条形统计图D .以上都不对9.不等式组的解集为x <4,则a 满足的条件是( )A.a<4 B.a=4 C.a≤4 D.a≥410.比较下列各组数的大小,正确的是()A.>5 B.<2 C.>﹣2 D.+1>二、填空题(每小题3分,共30分)11. x的与12的差不小于6,用不等式表示为.12.方程组的解是.13.如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为度.14. 点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.15. 某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.16. 如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.17. 已知a、b为两个连续的整数,且a<11<b,则a b+18.不等式:34125x+-<≤的非正整数解个数有个。

2017-2018学年度第二学期期末考试七年级数学试题及答案

2017-2018学年度第二学期期末考试七年级数学试题及答案

火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

2017——2018学年度下学期期末学业水平检测七 年 级 数 学 试 题一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 .三、解答题(每小题5分,共20分) 15.计算:2393-+-.学校 年 班 姓名: 考号:七年级数学试题 第1页 (共6页)七年级数学试题 第2页 (共6页)21 3 4AB CD E(第6题)(第10题)16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的 加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少? (2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售 价至少定为多少,才能避免亏本?五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.七年级数学试题 第3页 (共6页)七年级数学试卷题 第4页 (共6页) 考号:七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页)HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.一. 单项选择题 (每小题3分,共24分)1. C2. B3. D4. C5. D6. C7. D8. C二. 填空题(每小题3分,共24分)9.答案不唯一,如(1,2) 10. 8 11.±10 12. 同位角相等,两直线平行七年级数学试题 第6页 (共6页)七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay13. 四 14.7,π 15. 1 16. ()7+410-50x x ≤三.解答题(每小题6分,共24分)17. 解:原式=4259-.…………………3分=517453-=-.…………………6分 18. 解:由①,得 x=y+3.③ ………………2分把③代入②,得 3(y+3)-8y=14,解得 y=-1. ……………… 4分 把y=-1代人③,得 x=2.…… 5分,所以这个方程组的解是21x y =⎧⎨=-⎩. ………………6分19. 解:解不等式213x +>-,得2x >-; ………………1分解不等式1x x -≤8-2,得x ≤3.………………2分 所以原不等式组的解集为-2<x ≤3 ………………………4分 解集在数轴上表示略. ………………6分20. 解:∵DE ∥CF , ∠D=30 o.∴∠DCF=∠D=30 o (两直线平行,内错角相等)………………2分 ∴∠BCF=∠DCF+∠BCD=30 o +40o =70o ..………………4分又∵AB ∥CF∴∠B+∠BCF=180 o (两直线平行,同旁内角互补)∴∠B=180 o —70o =110o .………………6分 四.解答题(每小题7分,共28分)21.解:(1)建立直角坐标系略(2分 ) (2)市场(4,3),超市(2,-3)(2分) (3)图略(3分)22. 评分标准:(1)3分,(2)、(3)各2分,满分7分.(1)(2)图②(或扇形统计图)能更好地说明一半以上国家的学生成绩在60≤x <70之间. (3)图①(或频数分布直方图)能更好地说明学生成绩在70≤x <80的国家多于成绩在50≤x <60的国家.23.解:设七年(1)班和七年(2)班分别有x 人、y 人参加“光盘行动”, 根据题意,得⎩⎨⎧=-=++101288y x y x . ……………3分解得⎩⎨⎧==5565y x .……………6分答:七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”. ……………7分 24.评分标准:每个横线1分,满分7分.(1)∠BFD, 两直线平行,内错角相等, ∠BFD, 两直线平行,同位角相等. (2)对顶角相等, ∠D , 内错角相等,两直线平行.五.解答题(每小题10分,共20分)25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要A:26.7%B: 53.3%C:13.3%D: 6.7%频数(国家个数)成绩/分24 6 8 10 BAC40 50 60 70 80 D :40≤x <50 C :50≤x <60 B :60≤x <70 A :70≤x <801D20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017—2018七年级数学下册期末测试题及答案(共3套)

2017—2018七年级数学下册期末测试题及答案(共3套)

2017—2018年度第二学期七年级数学期末试卷班级: 姓名: 得分:一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( ) (A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘C 1A 1好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2017-2018学年七年级(下)期末数学试卷

2017-2018学年七年级(下)期末数学试卷

2017-2018 学年七年级(下)期末数学试卷一、选择题(本大题共12 小题,每小题 3 分,共 36 分) 1 . 36 的平方根是( )A .﹣ 6B . 36C .±D .± 62.在平面直角坐标系中,点 M (﹣ 6, 4)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列调查中,调查方式选择合理的是( )A .为了了解全国中学生的视力情况,选择全面调查B .为了了解一批袋装食品是否含有防腐剂,选择全面调查C .为了检测某城市的空气质量,选择抽样调查5.若 x> y ,则下列式子中错误的是(A . x+ > y+B . x ﹣ 3> y ﹣ 3 6.如图,在数轴上标有字母的各点中,与实数 对应的点是(A . AB . BC . CD . D7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣ 2,2) ,黑棋 B 所在点的坐标是( 0, 4) ,D .为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查D .﹣ 3x>﹣ 3y10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多存粮 y 吨,则有( )D . 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来 A .B .C .D .3x+4y=5 的解的是(无解,则实数 a 的取值范围是(A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1 12.如图 1 是长方形纸带,∠ DEF=10°,将纸带沿EF 折叠成图 2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少(13.14.写出一个第四象限的点的坐标 .15.不等式﹣ 3x+6> 0 的正整数解有 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 . 11.若不等式组120° D . 110°二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)A . 160°B . 150°C .三、解答题(本大题共 6 小题,共 46 分)19.解方程组:20.如图,已知∠ DAB+∠ D=180°, AC 平分∠DAB ,且∠ CAD=25°,∠B=95° .求:∠∠ DCA 的度数.请将以下解答补充完整,解:因为∠ DAB+∠ D=180°所以 DC ∥ AB ( )所以∠ DCE=∠ B ( )又因为∠ B=95°,所以∠ DCE= °;因为 AC 平分∠ DAB ,∠ CAD=2°5 ,根据角平分线定义,所以∠ CAB= = °,因为 DC ∥ AB所以∠ DCA=∠ CAB , ( )所以∠ DCA= °.17.关于 x , y 的方程组 的解满足 x+y=6,则m的值DCE 和18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶22.如图,∠1+∠ 2=180 °,∠3=∠ B.(Ⅰ)求证: AB∥ EF;DE与 BC的位置关系,并证明你的结论.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价如表所示:1 )该商场购进甲、乙两种矿泉水各多少箱?2)全部售完 500 箱矿泉水,该商场共获得利润多少元?2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12 小题,每小题3 分,共 36 分)1 . 36 的平方根是()A.﹣ 6 B. 36 C.±D.± 6【考点】21:平方根.【分析】依据平方根的定义求解即可.【解答】解:∵(±6) 2=36,∴ 36 的平方根是±6.故选: D.2.在平面直角坐标系中,点M(﹣6, 4)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据点M 的坐标确定出所在的象限即可.【解答】解:在平面直角坐标系中,点M(﹣6, 4)在第二象限,故选 B3.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、为了了解全国中学生的视力情况,人数较多,应选择抽样调查,故错误;B、为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,故错误;C、为了检测某城市的空气质量,选择抽样调查,正确;D、为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,故错误;故选: C.4.不等式x+5< 2 的解在数轴上表示为()C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得, x< 2﹣ 5,合并同类项得,x<﹣3,在数轴上表示为;故选 D.5.若x> y,则下列式子中错误的是()A. x+ > y+ B.x﹣3> y﹣ 3 C.> D.﹣3x>﹣3y【考点】C2:不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1 ,可得x+ > y+ ,故 A 选项正确;B、根据不等式的性质1,可得x﹣ 3> y﹣ 3,故 B 选项正确;C、根据不等式的性质2,可得 > ,故 C选项正确;D、根据不等式的性质3,可得﹣3x<﹣ 3y,故 D 选项错误;故选: D.6.如图,在数轴上标有字母的各点中,与实数对应的点是()A. A B. B C. C D. D【考点】29:实数与数轴.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵4< 5< 9,∴ 2< < 3.故选C.7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣2,2),黑棋 B 所在点的坐标是(0, 4),现在轮到黑棋走,黑棋放到点 C 的位置就获得胜利,点 C 的坐标是()【考点】D3:坐标确定位置.【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C 的坐标.【解答】解:由题意可得,如图所示的平面直角坐标系,故点 C的坐标为(3, 3),8.如图,直线a∥ b, c 是截线.若∠ 2=4∠ 1 ,则∠ 1 的度数为(JA:平行线的性质.【分析】根据两直线平行,同旁内角互补可得∠1+∠ 2=180°,然后把∠ 2 换成∠ 1 列出方程求解即可.【解答】解:∵a∥ b,∴∠1+∠ 2=180°,【分析】将各对 x 与 y 的值代入方程检验即可得到结果.【解答】解: A 、将x=1, y= 代入 3x+4y=5 的左边得: 3× 1+4×=5,右边为 5,左边 =右边,不合题意;B 、将 x=﹣1, y=2 代入 3x+4y=5 的左边得: 3×(﹣ 1) +4×2=5,右边为 5,左边 =右边,不合题意; C 、 将 x=0, y= 代入 3x+4y=5 的左边得:3× 0+4 × =5, 右边为 5, 左边 =右边, 不合题意;D 、将x= , y=0 代入 3x+4y=5 的左边得: 3 × +4× 0= ,右边为5,左边≠右边,符合题意,故选 D . 10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来存粮 y 吨,则有( )A . C . D .【考点】 9A :二元一次方程组的应用.【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的 60%,从乙仓库运出存粮的 40%.结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨,甲仓∵∠ 2=4∠1 ,∴∠ 1+4∠1=180°, 解得∠3x+4y=5 的解的是()B .库、乙仓库共存粮450 吨.【解答】解:设甲仓库原来存粮x 吨,乙仓库原来存粮y吨.根据题意得:.故选C.无解,则实数a 的取值范围是(11.若不等式组A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1【考点】 CB :解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 【解答】解:, 由①得, x ≥﹣ a ,由②得, x< 1,∵不等式组无解,∴﹣ a ≥ 1 ,解得: a ≤﹣ 1.故选: D .12.如图1 是长方形纸带,∠ DEF=10°,将纸带沿 EF 折叠成图2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少( )A . 160°B . 150°C . 120°D . 110°【考点】 PB :翻折变换(折叠问题) ; LB :矩形的性质.【分析】 由矩形的性质可知 AD ∥ BC , 由此可得出∠ BFE=∠ DEF=10°, 再根据翻折的性质可知每翻折一次减少一个∠ BFE 的度数,由此即可算出∠ CFE 度数.ABCD 为长方形,∴ AD ∥ BC ,∴∠ BFE=∠ DEF=10° .由翻折的性质可知:∠ EFC=180° ﹣∠ BFE=170° ,∠ BFC=∠ EFC ﹣∠BFE=160°,∠ CFE=∠ BFC ﹣∠ BFE=150° . 故选 B .二、填空题(本大题共6 小题,每小题 3 分,共 18 分)13. = ﹣ 2 . 【考点】 24:立方根.【分析】因为﹣2 的立方是﹣ 8,所以 的值为﹣ 2.【解答】解: =﹣ 2. a 的取值范围.故答案为:﹣ 2.14.写出一个第四象限的点的坐标 【考点】 D1:点的坐标.【分析】根据第四项限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:写出一个第四象限的点的坐标( 1 ,﹣ 1 ) ,故答案为: ( 1,﹣ 1) .15.不等式﹣ 3x+6> 0 的正整数解有 1 .【考点】 C7:一元一次不等式的整数解.【分析】 首先利用不等式的基本性质解不等式, 再从不等式的解集中找出适合条件的正整数即可.【解答】解:移项得:﹣ 3x>﹣ 6,系数化为 1 得: x< 2,则正整数解为: 1 .故答案为: 1 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 28% .【考点】 V8:频数(率)分布直方图.【分析】用 40~ 42 的人数除以总人数即可得.【解答】解:由图可知,职工人数最多年龄段的职工人数占总人数的百分比为× 100%=28%,故答案为: 28%.17.关于x , y 的方程组 的解满足 x+y=6,则 m 的值为 ﹣ 1 .1,﹣ 1) (答案不唯一)【分析】首先应用代入法,求出关于x, y 的方程组的解,然后根据x+y=6,求出m 的值为多少即可.【解答】解:由②,可得:x=5m﹣ 2③,把③代入①,解得y=4﹣ 9m,∵ x+y=6,∴ 5m ﹣ 2+4﹣ 9m=6,解得 m=﹣ 1 .故答案为:﹣ 1 .18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是21 .【考点】9A:二元一次方程组的应用.【分析】设掷中外环区、内区一次的得分分别为x, y 分,根据等量关系列出方程组,再解方程组即可.【解答】解:设掷中 A 区、 B 区一次的得分分别为x,y 分,依题意得:解这个方程组得:,则小亮的得分是2x+3y=6+15=21 分.故答案为21 ;三、解答题(本大题共 6 小题,共 46 分)19.解方程组:【分析】先把原方程组化为一般方程的形式,再消元求解即可.【解答】解:原方程组可化为,① +②得:y= ,把 y 的值代入①得:x= .所以此方程组的解是20.如图,已知∠DAB+∠ D=180°, AC 平分∠DAB,且∠CAD=25°,∠B=95° .求:∠DCE 和∠ DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠ D=180°所以DC∥ AB(同旁内角互补,两直线平行)所以∠DCE=∠ B(两直线平行,同位角相等)又因为∠B=95°,所以∠ DCE= 95AC平分∠DAB,∠CAD=2°5 ,根据角平分线定义,所以∠ CAB= ∠ CAD= 25因为DC∥ AB所以∠DCA=∠ CAB,(两直线平行,内错角相等)所以∠ DCA=25CAB=∠ CAD.再由DC∥ AB 得出∠DCA=∠ CAB,进而JB:平行线的判定与性质.DAB+∠ D=180°得出95;∠ CAD, 25;两直DC∥ AB,故可得出∠DCE=∠ B.再由∠B=95°可得出∠DCE的度数,由角平分线的定义可知∠可得出结论.【解答】解:∵∠DAB+∠ D=180° ,∴ DC∥ AB(同旁内角互补,两直线平行)∴∠DCE=∠ B(两直线平行,同位角相等)又∵∠ B=95°,∴∠DCE=9°5;∵ AC 平分∠DAB,∠CAD=2°5,∴∠CAB=∠ CAD=2°5,∵ DC∥ AB∴∠ DCA=∠ CAB , (两直线平行,内错角相等)∴∠ DCA=2°5 .故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;线平行,内错角相等; 25.21 .解不等式组: ,并在数轴上表示它的解集.【考点】 CB :解一元一次不等式组; C4:在数轴上表示不等式的解集.故不等式组的解集为;﹣ 1 < x ≤ 1 .在数轴上表示为:.22.如图,∠ 1+∠ 2=180 °,∠ 3=∠ B .(Ⅰ)求证: AB ∥ EF ;(Ⅱ)试判断 DE 与 BC 的位置关系,并证明你的结论.【考点】 JB :平行线的判定与性质.【分析】 ( 1 )要证明∠ AED=∠ C ,则需证明 DE ∥ BC .根据等角的补角相等,得∠ DFE=∠ 2,根据内错角相等,得直线 EF ∥ AB ;( 2)由 EF ∥ AB ,得到∠ 3=∠ ADE ,从而∠ ADE=∠ B ,即可证明结论.【解答】证明: ( 1 )∵∠ 1+∠ 2=180°,∠ 1+∠ DFE=180° , ∴∠ DFE=∠ 2,∴ EF ∥ AB ;( 2) DE ∥ BC ,理由如下:由( 1)知 EF ∥ AB ,∴∠ 3=∠ ADE .又∠ 3=∠ B ,∴∠ ADE=∠ B ,x>﹣ 1,由②得,x ≤ 1,∴ DE∥ BC,∴∠AED=∠ C,∴ DE∥ BC.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有500 人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是54 度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】( 1 )利用 C的人数÷所占百分比可得被调查的学生总数;( 2)利用总人数减去其它各项的人数 =A的人数,再补图即可;( 3)计算出 B 所占百分比,再用 360° × B所占百分比可得答案;( 4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:( 1) 140÷ 28%=500(人),故答案为:500;( 2)A的人数:500﹣ 75﹣ 140﹣ 245=40(人);补全条形图如图:( 3)75÷ 500× 100%=15%,360 °× 15%=54°,故答案为:54;( 4)245÷ 500× 100%=49%,3600 × 49%=1764(人).24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价( 1 )该商场购进甲、乙两种矿泉水各多少箱?( 2)全部售完500 箱矿泉水,该商场共获得利润多少元?【考点】9A:二元一次方程组的应用.【分析】( 1 )设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800 元资金购进甲、乙两种矿泉水共500 箱,列出方程组解答即可;( 2)总利润=甲的利润+乙的利润.【解答】解:( 1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水 y 箱,由题意得解得:答:商场购进甲种矿泉水300 箱,购进乙种矿泉水200 箱.( 2) 300 ×(36﹣ 24) +200×(48﹣ 33)=3600+3000=6600(元).答:该商场共获得利润6600 元.。

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.点P (2,1)在平面直角坐标系中所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限2.计算05的结果是A .0B .1C .50D .53.人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为A .37.710-⨯B .47710-⨯C .37710-⨯D .47.710-⨯4.下列计算正确的是A .3362a a a ⋅=B .336a a a +=C .3521a a a ÷=D .()336a a =5.已知a b <,下列变形正确的是A .33a b -->B .3131a b -->C .33a b -->D .33a b >6.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°, 那么∠2的度数为 A .10°B .15°C .20°D .25°7.在下列命题中,为真命题的是A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直8.如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么a 的值为 A .1 B .2 C .3D .09.右图是某市 10 月 1 日至10 月 7 日一周内的“日平均气温变化统计图”.在“日平均气温”这组数据中,众数和中位数气温(℃)12分别是 A .13,13 B .14,14 C .13,14D .14,1310.如图,在平面直角坐标系xOy 中,点P (1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至 点P 2(-1,1),第3次向上跳动1个单位至 点P 3,第4次向右跳动3个单位至点P 4,第 5次又向上跳动1个单位至点P 5,第6次向左 跳动4个单位至点P 6,…….照此规律,点P 第100次跳动至点P 100的坐标是 A .(-26,50) B .(-25,50) C .(26,50) D .(25,50)二、填空题(本题共24分,每小题3分)11.如果把方程32x y +=写成用含x 的代数式表示y 的形式,那么y = . 12.右图中四边形均为长方形,根据图形,写出一个正确的等式: . 13.因式分解:34a a -= .14.如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = 度.15.如果关于x ,y 二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足2x y +<,那么a 的取值范围是 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两; 牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5只羊,值金8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 . 17.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FOD = 28°, 那么∠AOG = 度.18.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步 去分母,得 ()15327x x --≥,第二步 去括号,得 153142x x --≥, 第三步 移项,得 321415x x -+-≥, 第四步 合并同类项,得 1x --≥, 第五步 系数化为1,得 1x ≥. 第六步 把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: . 三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算:(1)()()212a a a ---; (2)()()()()643223x x x x -+++-.20.解下列方程组:ABCD EFGOABCDEF12(1)5,22;y x x y =-⎧⎨-=⎩ (2)233,327.x y x y -=⎧⎨-=⎩21.已知12x =,13y =,求()()()232x y x y x y x y xy +++--÷的值.22.解不等式组 ()41710853x x x x ⎧++⎪⎨--⎪⎩,<≤并写出它的所有非负整数....解.23.完成下面的证明:已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F . 求证:∠1=∠2.证明:∵ BE ⊥AD (已知),∴ ∠BED = °( ). 又∵ CF ⊥AD (已知), ∴ ∠CFD = °. ∴ ∠BED =∠CFD (等量代换).∴ BE ∥CF ( ). ∴ ∠1=∠2( ).24.为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: .A .对七年级(1)班的全体同学进行问卷调查;B .对七年级各班的语文科代表进行问卷调查;C .对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:① 在扇形统计图中,“其它”所在的扇形的圆心角等于 度; ② 补全条形统计图;③ 根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有 人.25.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买人数806040漫画科普常识其他种类小说020其它40%小说30% 科普常识漫画3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.四、解答题(本题共13分,26题7分,27题6分)26.已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA 交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).F图1 图2 图327.定义一种新运算“a b ☆”的含义为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=-☆,()()111666222-=--=-☆.(1)填空:()43-=☆ ;(2)如果()()()()34283428x x x x -+=--+☆,求x 的取值范围;(3)填空:()()222325x x x x -+-+-=☆ ;(4)如果()()37322x x --=☆,求x 的值.三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算(本小题满分6分) (1)()()212a a a ---;解:原式22212a a a a =-+-+,…………………………………………………………2分1.=…………………………………………………………………………………3分 (2)()()()()643223x x x x -+++-.解:原式2222449x x x =--+-,………………………………………………………2分28220.x x =---………………………………………………………………3分20.解下列方程组(本小题满分6分) (1)5,22;y x x y =-⎧⎨-=⎩①② 解:把①代入②得 ()252x x --=,……………………………………………………1分 解得 4.x =把4x =代入得① 54 1.y =-=………………………………………………………2分∴ 原方程组的解为41.x y =⎧⎨=⎩……………………………………………………………3分(2)233,327x y x y -=⎧⎨-=⎩①②. 解:由①得 699x y -= ③由②得 6414x y -= ④………………………………………………………………1分 ③-④得 94914y y -+=-,解得 1.y =………………………………………………………………………………2分 把1y =代入①得 233x -=, 解得 1.x =∴ 原方程组的解为31.x y =⎧⎨=⎩……………………………………………………………3分21.(本小题满分4分)解:()()()232.x y x y x y x y xy +++--÷2222222x xy y x y x =+++--,2.xy =……………………………………………………………………………………3分∴ 当12x =,13y =时,原式1112.233=⨯⨯=………………………………………………………………………4分22.(本小题满分4分)解:()4171085.3x x x x ⎧++⎪⎨--⎪⎩①,< ②≤ 由①得 2x ≥-,…………………………………………………………………………1分 由②得 72x <,…………………………………………………………………………2分∴ 原不等式组的解集是72.2x -≤<…………………………………………………………3分∴ 原不等式组的所有非负整数解为0,1,2,3. …………………………………………4分 23.(本小题满分4分)证明:略. ……………………………………………………………………………………4分24.(本小题满分4分)解:略. ………………………………………………………………………………………4分 25.(本小题满分5分) 解:(1)由题意,得 2,23 6.x y x y -=⎧⎨-=-⎩ ………………………………………………………2分解得12,10.x y =⎧⎨=⎩………………………………………………………………………3分(2)设治污公司决定购买A 型设备a 台,则购买B 型设备(10-a )台.由题意,得 ()121010105.a a +-≤解得 5.2a ≤所以,该公司有以下三种方案: A 型设备0台,B 型设备为10台; A 型设备1台,B 型设备为9台;A 型设备2台,B 型设备为8台. …………………………………………………4分(3)由题意,得 ()240200102040.a a +-≥解得: 1.a ≥所以,购买A 型设备1台,B 型设备9台最省钱. ……………………………5分四、解答题(本题共13分,26题7分,27题6分) 26.(本小题满分7分)解:(1)① 补全图形;………………………………………………………………………1分② ∠EDF =∠A . ……………………………………………………………………2分 (2)DE ∥BA . ……………………………………………………………………………3分证明:如图,延长BA 交DF 与G .∵ DF ∥CA , ∴ ∠2=∠3. 又∵ ∠1=∠2, ∴ ∠1=∠3.∴ DE ∥BA . ………………………………………………………………5分(3)∠EDF =∠A ,∠EDF +∠A =180°.…………………………………………7分 、27.(本小题满分6分)解:(1)7-;…………………………………………………………………………………1分 (2)由题意得 3428x x -+<,………………………………………………………2分解得 12.x <∴ x 的取值范围是12.x <………………………………………………………3分 (3)2-;………………………………………………………………………………4分1F A BC DEG23七年级数学试卷 第 11 页 共 11 页 (4)当3732x x --≥,即2x ≥时, 由题意得 ()()37322x x --=+,解得 6.x =…………………………………………………………………………5分 当3732x x --<,即2x <时,由题意得 ()()37322x x --=-,解得 125x =(舍). ∴ x 的值为6. ……………………………………………………………………6分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

七年级2017-2018学年度第二学期期末学业参考答案

七年级2017-2018学年度第二学期期末学业参考答案

2017-2018学年度第二学期期末学业质量监测试题七年级数学试题参考答案一、请把选择题答案填在下列表格中(每小题3分,满分36分)13.71.610-⨯ 14.75° 15.240° 16.-1 17.60° 18.8818x y -三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明或演算步骤) 19. (本题满分12分,每小题4分)(1)481a - (2)994009 (3)5418x y 20. (本题满分12分,每小题4分)(1)()()1b c a -- (2)()()2y x y x y -- (3)()224(4)x y x y -+21.(本题满分7分)解:∵,CD AB EF AB ⊥⊥, ∴180CDF EFD ∠+∠=︒, ∴//CD EF ,………………2分 ∴2DCE ∠=∠,………………3分 又∵12∠=∠, ∴1DCE ∠=∠, ∴//DG BC ,………………5分∴AGD ACB ∠=∠.………………7分 22.(本题满分7分) 解:(1)1 6 15 20 15 6 1 ………………2分(2)()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++-----5分(3)5, 1………………7分 23.(本题满分8分)解:∵MF//AD ,FN//DC ,∴∠BMF=∠A=100°,∠BNF=∠C=70°,………………2分 ∵△BMN 沿MN 翻折得△FMN ,∴111005022BMN BMF ∠=∠=⨯︒=︒, 11703522BNM BNF ∠=∠=⨯︒=︒,………………6分在△BMN 中,∠B=180°-(∠BMN+∠BNM )=95°。

………………8分24. (本题满分10分)解:(1)∵a,b 满足()2460a b -+-= ∴()240a -=,60b -=解得4,6,a b ==∴点B 的坐标是(4,6);………………3分(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O →→→→的线路移动, ∴248⨯=, ∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8-6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度(或点P 在线段CB 的中点处),点P 的坐标是(2,6); ………………7分(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况:当点P 在OC 上时,点P 移动的时间是52 2.5÷=秒;第二种情况:当点P 在BA 上时,点P 移动的时间是()6412 5.5++÷=秒; 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒. ………………10分 25.(本题满分10分) (1)解:如图①所示:∵DE//BC (已知) ∴∠A=∠1 ,∠B=∠2(两直线平行,内错角相等)又∵∠1+∠ACB+∠2=180°(平角的性质) ∴∠A+∠ACB+∠B=180°(等量代换) ∴△ABC 的内角之和等于180°…………3分 (2)解:∵∠AGF+∠EGF=180°(平角的性质) 又∵在△GEF 中∠EGF+∠GEF+∠F=180°(内角和性质) ∴∠AGF=∠GEF+∠F (等量代换)…………6分 (3)解:∵AB//CD ,∠CDE=119°(已知) ∴∠CDE+∠AED=180°(两直线平行,同旁内角互补) ∠CDE=∠BED=119°(两直线平行,内错角相等) ∴∠AED=61°-----------------------------------------------------------------------------------7分 ∵EF 平分∠DEB ∴∠DEF=∠FEB=59.5° ∠AEF=∠GED+∠DEF=120.5°----8分 ∵∠AGF=∠AEF+∠F (外角等于不相邻的两个内角和) ∠AGF=150° ∴∠F=∠AGF-∠AEF =29.5° ………………10分。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

七年级数学质量监测试题 1 (共4页)2017-2018学年第二学期期末七年级数学质量监测试题(考试时间:120分钟 满分:150分)一、单项选择题(每小题4分,共40分。

) 1.下列各点中,在第二象限的点是( )A .(﹣4,2)B .(﹣4,﹣2)C .(4,2)D .(4,﹣2) 2.下列各数属于无理数的是( ) A .722B .3.14159C .32D .363.下列调查中,适宜采用全面调查方式的是( )A .调查电视剧《人民的名义》的收视率B .调查重庆市民对皮影表演艺术的喜爱程度C .调查某市居民平均用水量D .调查你所在班级同学的身高情况 4. 下列方程组中,是二元一次方程组的是( )A. ⎩⎨⎧=-=+54y x y xB. ⎩⎨⎧=-=+64382c b b aC. ⎩⎨⎧==-nm n m 20162D. ⎪⎩⎪⎨⎧+=-=4236316y xy x5. 如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .140°B .40°C .50°D .60° 6.下列命题中,假命题是( ) A .垂线段最短 B .同位角相等 C .对顶角相等 D .邻补角一定互补 7.若方程组()⎩⎨⎧=-+=+611434y m mx y x 的解中x 与y 的值相等,则m 为(A. 4B. 3C. 28.把不等式组1010x x +≥⎧⎨-<⎩的解集表示在数轴上,正确的是( )七年级数学质量监测试题 2 (共4页)9.定义一种新的运算:对任意的有序数对(x ,y )和(m ,n )都有(x ,y )※(m ,n )=(x +m ,y +n )(x ,y ,m ,n 为任意实数),则下列说法错误的是( )A .若(x ,y )※(m ,n )=(0,0),则x 和m 互为相反数,y 和n 互为相反数.B .若(x ,y )※(m ,n )=(x ,y ),则(m ,n )=(0,0)C .存在有序数对(x ,y ),使得(x 2, y 2)※(1,-1)=(0,0)D .存在有序数对(x ,y ),使得(x 3, y 3)※(1,-1)=(0,0)10. 如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变 换成△OA 3B 3,……,则B 2018的横坐标为( )A. 22016B. 22017C. 22018D. 22019第10题图二、填空题(每小题4分,共24分)11.剧院里11排5号可以用(11,5)表示,则(9,8)表示 . 12.如图,D 、E 分别是AB 、AC 上的点,DE//BC ,若∠C =50°,则∠AED = °.13.一条船顺流航行每小时行40km ,逆流航行每小时行32km ,设该船在静水中的速度为每小时x km ,水流速度为每小时y km ,则可列方程组为 .14. 已知|x ﹣2y|+(y-2)2=0,则x +y = .15. 已知关于x 的不等式组⎪⎩⎪⎨⎧>-->-a x x 21125无解,则a 的取值范围是_______.16. 如果n 为正偶数且x n=(-2)n,y n =(-3)n ,那么x +y = .三、解答题(共86分)17. (8分)计算(1)25+38 (2)|2﹣3|-(3﹣1)18.(8分)解不等组⎪⎩⎪⎨⎧->--≥+13273)1(3x x x x ,并把解集表示在数轴上。

2017-2018学年度七下数学期末测试及答案

2017-2018学年度七下数学期末测试及答案

第1页 共6页 ◎ 第2页 共6页 外…………○…………○…………订学校:_______________班级:______内…………○…………○…………订2017-2018学年度七下数学期末测试 考试时间:120分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 一、单选题 1.下列各组的两个图形属于全等图形的是 ( ) A. B. C. D. 2.下列计算正确的是( ) A. a 3•a 2=a 6 B. (﹣2a 2)3=﹣8a 6 C. (a+b )2=a 2+b 2 D. 2a+3a=5a 2 3.如图,已知∠ABC=∠DCB ,增加下列条件不能证明△ABC ≌△DCB 的是 A. ∠A=∠D B. AB=DC C. ∠ACB=∠DBC D. AC=BD 4.若a 2﹣kab+9b 2是完全平方式,则常数k 的值为( ) A. ±6 B. 12 C. ±2 D. 6 5.如果ax 2+3x+=(3x+12)2+m ,则a ,m 的值分别是( ) A. 6,0 B. 9,0 C. 6,14 D. 9, 14 6.已知x+y ﹣4=0,则2y •2x 的值是( ) A. 16 B. ﹣16 C. D. 8 7.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =9,DE=2,AB=5,则AC 长是( ) A. 3 B. 4 C. 5 D. 6 8.如图所示,为了测量出A ,B 两点之间的距离,在地面上找到一点C ,连接BC ,AC ,使∠ACB=90°,然后在BC 的延长线上确定D ,使CD=BC ,那么只要测量出AD 的长度也就得到了A ,B 两点之间的距离,这样测量的依据是( ) A. HL B. ASA C. SAS D. SSS 9.观察如图,第1个图形中有1个正方形,第2个图形中有3个小正方形,第3个图形中有6个小正方形,…依此规律,若第n 个图形中小正方形的个数为66,则n 等于( )第3页 共6页 ◎ 第4页 共6页……外…………○……………订………※※请※※不※※※线※※内※※……内…………○……………订……… A. 13 B. 12 C. 11 D. 10 10.将下列多项式因式分解,结果中不含有因式a+1的是( ) A. a 2﹣1 B. a 2+a C. (a+1)2-a-1 D. (a-2)2+2(a-2)+1 11.如果(2a+2b+1)(2a+2b-1)=3,那么a +b 的值为( ) A. 2 B. ±2 C. 4 D. ±1 12.如图所示,△ABC 的两条外角平分线AP 、CP 相交于点P ,PH ⊥AC 于H .若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③△ABC ≌△APC ;④PA ∥BC ;⑤∠APH=∠BPC ,其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个 第II 卷(非选择题)二、填空题13.分解因式:2x 3-8x = .14.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =_______.15.若221x x +=7,则1x x +=___________. 16.如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= .17.如图,在△PAB 中,∠A=∠B ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=53°,则∠P=______°.18.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .三、解答题19.计算:(1)(y+3x )(3x ﹣2y ) (2)(-3x 2y 3)·(-23xy 2)220.如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD.21.如图,在Rt △ABC 中,∠ACB =90°,点D 、F 分别在AB 、AC 上,CF =CB ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF .第5页 共6页 ◎ 第6页 共6页 ………线…………○…______ ………线…………○… (1)求证:△BCD ≌△FCE ; (2)若EF ∥CD ,求∠BDC 的度数. 22.已知(x 3+mx+n )(x 2﹣x+1)展开式中不含x 3和x 2项. (1)求m 、n 的值; (2)当m 、n 取第(1)小题的值时,求(m+n )(m 2﹣mn+n 2)的值. 23.先化简,再求值: (a ﹣b )2+(2a ﹣b )(a ﹣2b )-a(3a-b),其中│a -1│+(2+b )2 =0 24.先阅读下列材料,然后解后面的问题. 材料:一个三位自然数abc (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F (abc )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12. (1)对于“欢喜数abc ”,若满足b 能被9整除,求证:“欢喜数abc ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值. 25.如图,四边形ABDC 中,∠D=∠ABD=90°,点O 为BD 的中点,且OA ⊥OC . (1)求证:CO 平分∠ACD ;(2)求证:AB+CD=AC . 26.(1)如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,求证:EF=BE+FD . (2)如图2,四边形ABCD 中,∠BAD≠90°,AB=AD ,∠B+∠D=180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足什么关系时,仍有EF=BE+FD ,说明理由. (3)如图3,四边形ABCD 中,∠BAD≠90°,AB=AD ,AC 平分∠BCD ,AE ⊥BC 于E ,AF ⊥CD 交CD 延长线于F ,若BC=8,CD=3,则CE= .(不需证明)参考答案1.D【解析】A选项两个图形不全等,因为它们大小不一样;B选项两个图形不全等,因为它们大小不一样;C选项两个图形不全等,因为它们大小形状都不一样;D选项两个图形全等,它们大小和形状都一样.故选D.点睛:全等的两个图形大小和形状都一样.2.B【解析】A选项错误,a3·a2=a5;B选项正确;C选项错误,(a+b)2=a2+2ab+b2;D选项错误,2a+3a=5a.故选B.点睛:熟记公式:(1)(a n)m=a mn,(2)a m·a n=a m+n,(3)(a±b)2=a2±2ab+b2.3.D【解析】试题分析:根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.考点:全等三角形的判定.4.A【解析】由完全平方公式可得:-kab=±2a×(3b),k=±6.故选A.点睛:做此类问题重点在于判断完全平方式的结构特点.5.D【解析】ax2+3x+12=(3x+12)2+m,ax2+3x+12= 9x2+3x+14+m,所以a=9,14+m=12,m=14.故选D.点睛:遇到此类问题先将左右两侧式子展开,再根据等式左右两边对应项的系数相等列方程即可求解.6.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.点睛:a m·a n=a m+n.7.B【解析】如图,作DF⊥AC交AC于点F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=S△ADC+S△ADB=12AC·DF+12AB·DE=12DE(AC+AB)=9,∴12×2×(AC+5)=9,∴AC=4.故选B.点睛:(1)遇到角平分线较常用的一类辅助线的作法是过角平分线上一点向角的两边作垂线.(2)三角形的面积除了用公式法还可以用割补法将三角形的面积用别的形式表示出来,此题将三角形面积表示为两个三角形的面积之和,然后列方程求解.8.C【解析】∵∠ACB=90°,∴∠ACD=90°,在△ACB和△ACD中,{AC ACACB ACDCD CB=∠=∠=,∴△ACB≌△ACD(SAS).故选C.点睛:判定三角形全等方法:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS);(3)有两角及其夹边对应相等的两个三角形全等(ASA);(4)有两角及一角的对边对应相等的两个三角形全等(AAS);(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL). 9.C【解析】通过观察可得:第一个图形中正方形的个数为:1个;第二个图形中正方形的个数为:1+2=3个;第三个图形中正方形的个数为:1+2+3=6个;第n个图形中正方形的个数为:1+2+3+…+n=12n n+().令12n n+()=66,n2+n-132=0,(n+12)(n-11)=0,解得n=11或-12(舍),所以n=11.故选C.点睛:熟记规律题中常用的求和公式:1+2+3+…+n=12n n+().10.D【解析】A选项:a2﹣1=(a+1)(a-1);B选项: a2+a=a(a+1);C选项:(a+1)2-a-1=(a+1)2-(a+1)=a(a+1);D选项:(a-2)2+2(a-2)+1=(a-1)2.故选D.点睛:熟记因式分解常用公式:完全平方公式:(a+b)2=a2+2ab+b2;平方差公式:a2-b2=(a+b)(a-b).11.D【解析】令t=2a+2b,则(2a+2b+1)(2a+2b-1)=3化为:(t+1)(t-1)=3,t2=4,t=±2,所以2a+2b=±2,a+b=±1.故选D.点睛:掌握利用换元法求解一元二次方程的方法.12.B【解析】如图,作PN⊥BD交BD于点N,作PM⊥BE交BE于点M,∵∠PAH=∠PAN,PN⊥BD,PH⊥AC,∴PN=PH,同理可证PM=PH,∴PB平分∠DBE,∠ABP=30°,故①正确;∵在Rt△PAH和Rt△PAN中,{PN PH PA PA==,∴△PAH≌△PAN,同理可证△PCM≌△PCH,∴∠NPA=∠APH,∠HPC=∠CPM,∵∠ABC=60°,∴∠MPN=120°,∴∠APC=12∠NPM=60°,故②正确;③错误;④错误;∵∠BPN=∠CPA=60°,∴∠CPB=∠APN,∴∠APH=∠BPC,故⑤正确.故选B.点睛:角平分线的性质:角平分线上的点到角两边的距离相等;角平分线逆定理:到角两边的距离相等的点在角平分线所在直线或它外角平分线所在直线上.13..【解析】试题分析:先提取公因式2x,再运用平方差公式因式分解;试题解析:原式=2x(x2-4)=2x(x+2)(x-2)14.40°【解析】设∠BAC=4x°,∠ACB=3x°,∠ABC=2x°,所以4x+3x+2x=180,x=20,∴∠ABC=40°,∵△ABC≌△DEF,∴∠ABC=∠DEF=40°.故答案为40°.点睛:利用全等三角形的性质,要求∠DEF即要求∠ABC,分别设出△ABC对应的角度,再利用三角形内角和为180°列方程解出未知数即可.15.±3【解析】(x+1x)2=x2+2+21x=7+2=9,x+1x=±3.故答案为±3.点睛:(1)(x+1x)2=x2+2+21x;(x-1x)2=x2-2+21x.16.66°.【解析】试题分析:根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.考点:全等三角形的性质.17.74°【解析】∵在△AMK和△BKN中,{AM BKA B BN AK=∠=∠=,∴△AMK≌△BKN(SAS),∴∠MKA=∠KNB,∠AMK=∠BKN,∴∠AKN=∠B+∠BNK,∴∠AKM+∠MKN=∠B+∠BNK,∴∠B=∠MKN=53°,∴∠A=∠B=53°,∴∠P=180°-2×53°=74°.故答案为74°.点睛:三角形的一个外角等于与它不相邻的两个内角和.18.9【解析】(a﹣2016)2+(2018﹣a)2=20,(a﹣2016)2+(a-2018)2=20,令t=a-2017,∴(t+1)2+(t-1)2=20,2t2=18,t2=9,∴(a﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.19.详见解析.【解析】试题分析:去括号计算出最后结果即可;(2)先去括号再计算出最终结果即可. 试题解析:解:(1)原式=3xy-2y2+9x2-6xy=9x2-3xy-2y2;(2)原式=-3x2y3 ·49x2y4=-43x4y7.点睛:a m·a n=a m+n.20.详见解析.【解析】试题分析:要证明AB=AD,证明△ABC≌△ADC即可,根据已知条件不难证明. 试题解析:∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠1=∠2,∴∠ABC=∠ADC,∵在△ABC和△ADC中,{BAC CAD ABC ADCAC AC∠=∠∠=∠=,∴△ABC≌△ADC(AAS),∴AB=AD.点睛:熟练掌握证明三角形全等的方法.21.详见解析.【解析】试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中, CB=CF∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE∴△BCD≌△FCE(SAS).(2)、由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.22.-1,-1;-2【解析】试题分析:(1)要使多项式展开式中不含x3和x2项,即要使x3和x2前面的系数为0,求出m、n的值即可;(2)将m、n的值代入式子计算出最终结果即可.试题解析:(1)(x3+mx+n)(x2﹣x+1)=x5-x4+x3+mx3-mx2+mx+nx2-nx+n= x5-x4+(1+m)x3+(n-m)x2+(m-n)x+n,∵不含x3和x2项,可得1+m=0 ,n-m=0,∴m=-1,n=-1;(2)将m=-1,n=-1代入式子得:(-1-1)(1-1+1)=-2.点睛:要使多项式展开式不含某项,即要使该项的系数为0即可.23.3b2-6ab,24.【解析】试题分析:先将原式去括号化简,再由│a-1│+(2+b)2 =0可以求出a、b的值,将a、b的值代入化简后的式子即可.试题解析:原式=a2-2ab+b2+2a2-4ab-ab+2b2-3a2+ab=3b2-6ab;∵│a-1│+(2+b)2 =0,∴a-1=0,2+b=0,∴a=1,b=-2;将a=1,b=-2代入化简后的式子可得:原式=3×(-2)2-6×1×(-2)=24.点睛:非负数之和为0,那么对应的每一个非负数必为0.24.(1)详见解析;(2)99或297.【解析】试题分析:(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数abc”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F (m)﹣F(n)=3中,将式子变形分析得出最终结果即可.试题解析:(1)证明:∵abc为欢喜数,∴a+c=b.∵abc=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数abc”能被99整除;(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=297.∴若F(m)﹣F(n)=3,则m﹣n的值为99或297.点睛:做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.25.详见解析.【解析】试题分析:(1)延长AO交CD延长线于点E,通过证明△AOB≌△EOD可以得到AO=OE,从而证明△ACE为等腰三角形,再利用等腰三角形三线合一性质即可证明CO平分∠ACD;(2)由第(1)问△AOB≌△EOD可得AB=DE,又因为AC=CE,AC=CD+DE=CD+AB.试题解析:(1)如图,延长AO 交CD 延长线于点E ,∵O 为BD 中点,∴BO =DO ,在△AOB 和△EOD 中, { AOB EODBO ODD ABD ∠=∠=∠=∠,∴△AOB ≌△EOD ,∴AO =AE ,∵OA ⊥OC ,∴AC =CE ,∴CO 平分∠ACD ;(2)∵△AOB ≌△EOD ,∴AB =DE ,∵AC =CE ,CE =CD +DE ,∴AC =CD +DE =CD +AB .点睛:(1)题目中出现中点可以利用“倍长中线造全等”的方法构造全等三角形.(2)要证明一条线段等于两条线段之和,可以采用“截长补短”的方法构造全等三角形证明.26.(1)详见解析;(2)∠BAD=2∠EAF ,理由详见解析;(3)CE=5.5.【解析】试题分析:(1)将△ABE 绕点A 旋转使得AB 与AD 重合,然后证明△AFG ≌△AFE ,再利用全等三角形对应的边相等的性质不难证明;(2)首先延长CB 至M ,使BM =DF ,连接AM ,构造△ABM ≌△ADF ,再证明△FAE ≌△MAE ,最后将相等的边进行转化整理即可证明. 试题解析:(1)证明:把△ABE 绕点A 逆时针旋转90°至△ADG ,如图1所示:则△ADG ≌△ABE ,∴AG =AE ,∠DAG =∠BAE ,DG =BE ,又∵∠EAF =45°,即∠DAF +∠BAE =∠EAF =45°,∴∠GAF =∠FAE ,在△GAF 和△FAE 中, { AG AEGAF FAE AF AF=∠=∠= , ,∴△AFG ≌△AFE (SAS ).∴GF =EF .又∵DG =BE ,∴GF =BE +DF ,∴BE +DF =EF .(2)∠BAD =2∠EAF .理由如下:如图2所示,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM ,在△ABM 和△ADF 中, { AB ADABM D BM DF=∠=∠=,∴△ABM ≌△ADF (SAS )∴AF =AM ,∠DAF =∠BAM ,∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF ,∴∠EAB +∠BAM =∠EAM =∠EAF ,在△FAE 和△MAE 中, { AE AEFAE MAE AF AM=∠=∠=,∴△FAE ≌△MAE (SAS ),∴EF =EM =BE +BM =BE +DF ,即EF =BE +DF .(3)CE =5.5点睛:(1)在出现正方形或者等腰直角三角形的题目中,我们多采用旋转构造全等三角形的方法.(2)遇到此类压轴题,第一问的思路方法可以为第二问、第三问所用.。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期期末学情调研七年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有6小题,每小题3分,共18分)1.如图,是一个正方体的表面展开图,原正方体中“祝”的对面是(▲ )A. 考B. 试C. 顺D. 利(第1题图)(第2题图)(第5题图)2.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是(▲ )A. ∣a∣>∣b∣B. a>bC. b>−aD. ab>03.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是(▲)A. 2B. 3C. 4D. 54.6.25∘可以化为(▲ )A. 6∘10ʹB. 6∘15ʹC. 6∘25ʹD. 6∘30ʹ5.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN 的长为(▲ )A. 5cmB. 4cmC. 3cmD. 2cm6.中心幼儿园给小朋友分苹果.若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个.问苹果有多少个?若设共有x个苹果,则列出的方程是(▲ )A. 3x+1=4x−2B. 3x−1=4x+2C. x−13=x+24D. x+13=x−24二、填空题(本大题共10小题,每小题3分,共30分)7.圆柱的侧面展开图的形状是▲.8. −6的倒数是▲.9.如图,点D在直线AB上,当∠1=∠2时,CD与AB的位置关系是▲.10.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC= 120∘,∠BCD=60∘.这个零件▲.(填“合格”或“不合格”)(第9题图)(第10题图)(第11题图)(第14题图)11.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段▲.12.“ x与−4的和的3倍”用代数式表示为▲.13.若关于x的方程2x+a=3的解为x=−1,则a=▲.14.如图,直线AB、CD相交于点O,OE平分∠AOD.若∠BOD=100∘,则∠AOE=▲.15.已知P=xy−5x+3,Q=x−3xy+1,若无论x取何值,代数式2P−3Q的值都等于3,则y=▲.16. 甲、乙二人在圆形跑道上从同一点A同时出发,并按相反方向跑步,甲的速度为每秒5m,乙的速度为每秒8m,到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了▲次.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)7−(−2)+(−3)(2)(−16)÷(−2)218.(6分)先化简,再求值:x2+(2xy−3y2)−2(x2+yx−2y2),其中x=−1,y=2.19.(8分)如图是由6个相同的小立方块搭成的几何体,这个几何体的部分三视图在所给的四个平面图形中,请选择正确的视图,标出相应名称,其余图形打“×”.(1)▲(2)▲(3)▲(4)▲20.(8分)请写出下列几何体的名称.(1)▲(2)▲(3)▲(4)▲21.(8分)如图,AB⊥BD,CD⊥BD,∠A=∠FEC,以下是小明同学证明EF∥CD的过程,请你在横线上补充完整其说理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知),∴∠ABD=∠CDB=90∘(垂直定义).∴∠ABD+∠CDB=180∘.∴AB∥CD(①▲).∵∠A=∠FEC(已知),∴AB∥(②▲)(③▲).∴ EF∥CD(④▲).22.(10分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?23.(10分)如图,已知CD∥BF,∠B+∠D=180∘,求证:AB∥DE.24.(10分)甲、乙两人从学校到2000米远的展览馆去参观,甲走了4分钟后乙才出发,已知甲的速度是80米/分,乙的速度是100米/分.(1)乙出发后经过多长时间能追上甲?(2)乙追上甲时离展览馆还有多远?25.(10分)将长度为2n(n为不小于4的自然数)的一根铅丝折成各边长均为整数的三角形,把三边长分别为a、b、c且满足a≤b≤c的三角形简记为数组(a,b,c).如当n=4时,有(2,3,3).(1)就n=5、6的情况,分别写出所有满足题意的(a,b,c);(2)根据前面的结果猜想:当铅丝的长度为2n(n为不小于4的自然数)时,对应(a,b,c)的个数是▲.为了检验这个的猜想是否正确,请分别写出当n=8、10时所有的(a,b,c),并判断这个猜想▲.(选填“正确”或“不正确”)26.(12分)王老师为学校购买运动会的奖品后,回学校向吴会计交账说:“我买了两种书,共100本,单价分别为8元和12元,买书前我领了1500元,现在还余463元.”吴会计算了一下,说:“你肯定搞错了.”(1)吴会计为什么说他搞错了?试用方程的知识给予解释;(2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.笔记本的单价不小于5元且不超过10元,你能推算出笔记本的单价可能为多少元吗?27.(14分)如图,已知AM∥BN,∠A=50∘.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D.(1)①∠ABN的度数是▲;②∵AM∥BN,∴∠ACB=∠▲;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是▲.2017-2018学年度第一学期期末学情调研七年级数学答案一、选择题(本大题共有6小题,每小题3分,共18分)1.C 2.A 3.D 4.B 5.B 6.C二、填空题(本大题共10小题,每小题3分,共30分)9.垂直10.合格11.PN 7.长方形8.−1616.14 12.3(x−4)13.5 14.40°15.111三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)解:(1)7−(−2)+(−3)=6 ――――3分(2)(−16)÷(−2)2=−4――――3分18.(6分)解: x2+(2xy−3y2)−2(x2+yx−2y2)=−x2+y2,――――3分当x=−1,y=2时,原式=−(−1)2+22=−1+4=3.――3分19.(8分)解:(1)左视图、(2)主视图、(3)×、(4)×――――各2分20.(8分)解:圆柱,正方体(长方体),圆锥,棱柱――――各2分21.(8分)解:同旁内角互补,两直线平行EF同位角相等,两直线平行平行于同一条直线的两条直线平行――――各2分22.(10分)解:(1)S=2n+6m+3×4+2×3=6m+2n+18. ――――4分(2)当n=1.5时,2n=3.根据题意,得6m=8×3=24. ――――4分∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用为4500元.――――2分23.(10分)证明∵CD∥BF,(∴∠AOC=∠B,∵∠AOC=∠BOD,)―――可有可无∴∠BOD=∠B,――――4分∵∠B+∠D=180∘,∴∠BOD+∠D=180∘,――――3分∴AB∥DE.――――3分24.(10分)解:(1)设乙要x分钟才能追上甲,――――1分根据题意得:100x=80x+4×80.――――3分解方程得:x=16.答:乙出发后经过16分钟能追上甲.――――2分(2)乙追上甲时离展览馆还有2000−100×16=400(米).答:乙追上甲时离展览馆还有400米.――――4分25.(10分)解:(1)当n=5时,有(2,4,4),(3,3,4);――――2分当n=6时,有(2,5,5),(3,4,5),(4,4,4).――――2分(2)n−3――――1分当n=8时,a+b+c=16,可得(a,b,c)共5组:――――2分(2,7,7),(3,6,7),(4,5,7),(4,6,6),(5,5,6).当n=10时,a+b+c=20,可得(a,b,c)共8组:――――2分(2,9,9),(3,8,9),(4,7,9),(5,6,9),(4,8,8),(5,7,8),(6,6,8),(6,7,7).猜想“不正确”.――――1分26.(12分)解:(1)设单价为8.00元的课外书为x本,则单价为12.00元的课外书则为(100-x)本.根据题意,得8x+12(100-x)=1500-463,――――4分解之得x=40.75(不符合题意),所以王老师肯定搞错了.――――2分(2)设笔记本的单价为a元,根据题意,得8 x +12(100-x)=1500-463-a,即163+a=4 x,因为a、x都是整数,且163+a应被4整除,又因为a为不小于5且不超过10的整数,所以a可能为5、9.当a=5时,4x=168,x=42,符合题意;――――3分当a=9时,4x=172,x=43,符合题意.――――3分所以笔记本的单价可能5元或9元.27.(14分)解:(1)130∘――――2分CBN(或NBC)――――2分(2)∠CBD=65∘.――――2分(3)不变,∠PBN=2∠DBN.――――2分∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,――――2分(4)32.5∘――――2分。

相关文档
最新文档