(完整word版)初中数学观察量表.doc
初中数学听课记录(一)word版本
学生回答,教师点评:
三、典例精析,掌握新知 例 1 将下列二次函数写成顶点式
y=a(x-h) 2+k 的形式,并写出其开口方向,顶点坐标,对
教 称轴 .
学
例 2 用总长为 60m的篱笆围成的矩形场地,矩形面积
是多少时,场地的面积 S最大
内
① S 与 l 有何函数关系
容
②举一例说明 S 随 l 的变化而变化
听课人
向中伟
级
间
一、情境导入,初步认识
复习回顾 : 同学们回顾一下 : ①y=ax 2,y=a(x-h) 2, (a≠ 0) 的图象的开口方向、对称轴、顶点坐标, ②如何由 y=ax2(a ≠ 0) 的图象平移得到 y=a(x-h) 2 的图象
y 随 x 的增减性分别是什么
二、思考探究,获取新知 探究 1 y=a(x-h) 2+k 的图象和性质 探究 2 二次函数 y=a(x-h) 2+k 的应用
1. 教材 P15 第 1~3 题 . 2. 完成同步练习册中本课时的练习 .
评 价 及 建 议
1. 图象开口向上 .
教
2. 对称轴是 y 轴,顶点是坐标原点,函数有最低点 .
学
3. 当 x> 0 时, y 随 x 的增大而增大,简称右升;当 x<0 时, y 随 x 的增大而减小,简称左降 .
内
三、典例精析,掌握新知
容
例 已知函数 y
(k
2) xk2
k
4
是关于
x 的二次函数
.
(1) 求 k 的值 .
S随矩形一边长 l 的变化而变化, l
③怎样求 S 的最大值呢
四、运用新知,深化理解
1. (北京中考)抛物线 y=x2 -6x+5 的顶点坐标为(
初中数学知识点大全(完整版)
第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
a-b=a+(-b)1.4有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
课堂观察量表三
教师对
互动
过程
的推进
10.以问题推进互动.
11.以评价推进互动.
12.以非语言推进互动.
言语互
动过程
记时
13. 30秒以下.
14. 30秒以上.
师对生
提问
的态度
15.热情.
16.冷漠.
17.忽视.
互动
管理
18.有效调控.
19.放任.
评
价
注:评分为5分制:优—5分,良—4分,好—3分,一般—2分,尚可—1分.
浙江省初中数学新课程新教材“疑难问题解决”专题培训
课堂观察量表三(师生互动等级量表)
执教者资料
姓名
单位
课题
观察者资料
姓名
单位
观察记录
观察内容
评分
备注
教师提问类型
1.描述性问题..理解性疑惑.
5.判断性疑惑.
6.实证性疑惑.
互动
类型
7.对师生互动.
8.生生互动.
(完整word版)初中数学新课程标准(2011版)
初中数学新课程标准(2011版)目录第一部分前言 (2)一、课程性质 (2)二、课程基本理念 (2)三、课程设计思路 (4)第二部分课程目标 (7)一、总目标 (7)二、学段目标 (8)第三部分内容标准 (10)第三学段(7--9年级) (10)一、数与代数 (10)二、图形与几何 (14)三、统计与概率 (21)四、综合与实践 (21)第四部分实施建议 (22)一、教学建议 (22)二、评价建议 (30)三、教材编写建议 (37)四、课程资源开发与利用建议 (43)附录 (47)附录1有关行为动词的分类 (47)附录2内容标准及实施建议中的实例 (48)第一部分前言数学是研究数量关系和空间形式的科学。
数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。
特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
一、课程性质义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展.义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律.它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。
(完整word版)初一数学课堂观察表
学员姓名
学员单位
观察时间段
12.14
观察对象
七年级数学
授课内容
解一元一次方程(一)
观察点
教学过程客观描述
教学实施优缺分析
教学行为调整建议
一、课前情境创设(激发学生学习兴趣的问题情境创设)
问题1:约公元825年,中亚细亚数学家阿尔-花拉子米写了一本代数书《对消与还原》,重点讨论怎样解方程。“对消”与“还原”是什么意思呢?
应充分调动学生的积极性,讨论交流其他列方程的方法。同时应使学生领悟到剖析数学知识的方法和途径。即怎样把实际问题转化为数学问题。解方程时常用到合并同类项,因而,要利用方程解决实际问题,当然必须要学好合并同类项解方程。
三、知识概念掌握后的应用与展示(学生表达、展示的问题选择和活动组织)
本环节安排了基础性练习、拓展性练习和联系实际的练习。问题由易到难,由浅入深、循序渐进,但是在第三个练习的安排上时间不够。
在组织学生表达时要注重学生对实际问题中的等量关系的剖析,要尽量让学生多说多练。
活动组织可以让学生板演,也可以让学生合作交流,竞赛等,让每一位学生都充分参与到学习过程中。
四、对学生学习情况的把握与调整(学生学习反馈的引导确定和教学调整)
课堂上发现学生的问题没能及时引导和纠正,要注意给学生强调,只有将同类项合并正确,才能保证解方程的正确性。
没能及时发现问题和不足,没有点明本节课的数学思想方法是化归思想。
应让学生自己小结反馈,多让学生说自己的收获和困惑,对学生的成绩要及时肯定,对学生的困惑要及时解决,可通过教学媒体展示或改正。
问题2:学校三年共购买计算机140台,去年购买量是前年的2倍,今年购买量又是去年的2倍,前年这个学校购买了多少台计算机?
(完整word版)人教版初中数学课本目录
初中数学课本目录七年级(上)第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)-—合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动七年级(下)第五章相交线与平行线5.1 相交线5.1。
2 垂线5.1。
3 同位角、内错角、同旁内角观察与猜想看图时的错觉5.2 平行线及其判定5.2。
1 平行线5.3 平行线的性质5。
3。
1 平行线的性质5.3。
2 命题、定理5.4 平移数学活动第六章平面直角坐标系6。
1 平面直角坐标系6.2 坐标方法的简单应用阅读与思考用经纬度表示地理位置6。
2 坐标方法的简单应用数学活动第七章三角形7。
1 与三角形有关的线段7。
1。
2 三角形的高、中线与角平分线7.1.3 三角形的稳定性信息技术应用画图找规律7.2 与三角形有关的角7.2。
2 三角形的外角阅读与思考为什么要证明7.3 多变形及其内角和阅读与思考多边形的三角剖分7。
4 课题学习镶嵌数学活动第八章二元一次方程组8.1 二元一次方程组8.2 消元-—二元一次方程组的解法8.3 实际问题与二元一次方程组阅读与思考一次方程组的古今表示及解法*8。
4 三元一次方程组解法举例数学活动第九章不等式与不等式组9。
1 不等式阅读与思考用求差法比较大小9.2 实际问题与一元一次不等式实验与探究水位升高还是降低9.3 一元一次不等式组阅读与思考利用不等关系分析比赛数学活动第十章数据的收集、整理与描述10.1 统计调查实验与探究瓶子中有多少粒豆子10。
教案观察表初中
教案观察表初中教案观察表是教师在教学过程中用于指导学生学习的一种教学工具。
它可以帮助教师更好地了解学生的学习情况,提高教学效果。
本文将结合初中阶段的教学实际,探讨教案观察表的设计与应用。
一、教案观察表的设计1. 教学目标:明确本节课的教学目标,包括知识与技能、过程与方法、情感态度与价值观等方面的要求。
2. 教学内容:梳理本节课的主要知识点,将其按照逻辑顺序进行排列。
3. 学生情况:分析学生的年龄特点、认知水平、学习兴趣等因素,以便制定适合学生的教学策略。
4. 教学方法:根据教学内容和学生情况,选择适当的教学方法,如讲授法、讨论法、探究法等。
5. 教学过程:将教学过程分为几个环节,如导入、新课、练习、小结等,并明确每个环节的主要任务。
6. 教学评价:设计合理的评价方法,对学生的学习过程和结果进行评价。
二、教案观察表的应用1. 课前准备:教师根据教案观察表的内容,准备好教学所需的教材、课件、教具等。
2. 导入环节:通过生动有趣的方式,激发学生的学习兴趣,引导学生进入学习状态。
3. 新课环节:按照教案观察表的安排,逐个讲解知识点,注意引导学生主动参与、积极思考。
4. 练习环节:设计具有针对性的练习题,巩固所学知识,提高学生的实际应用能力。
5. 小结环节:总结本节课的主要内容,强调重点、难点,为课后复习奠定基础。
6. 课后反思:教师根据教案观察表,对学生课堂表现、教学效果进行总结与反思,不断调整教学策略,以提高教学质量。
三、教案观察表的优点1. 明确教学目标:教案观察表可以帮助教师明确教学目标,确保教学内容的完整性。
2. 有序开展教学:教案观察表可以使教学过程更加有序,提高教学效率。
3. 关注学生需求:教案观察表有助于教师了解学生情况,制定适合学生的教学方法。
4. 便于教学评价:教案观察表为教学评价提供了依据,有助于教师了解学生的学习成果。
总之,教案观察表是初中教学过程中不可或缺的重要工具。
教师应根据实际情况,不断调整和完善教案观察表,以提高教学效果,促进学生的全面发展。
课题学习观课量表
《基于课程标准的精准备课的研究》的课堂观察量表
观课教师观课时间2020年6月30日精准备课点1 预设分析课堂呈现效果
复习旧知,引入新课
一元一次方程及方程的解的概念;整式的概念拾旧引新,数学知识都是相关联的。
通过复习学过的内容,利用知识的迁移,类比学习引出新课,突出知识间的联系。
精准备课点2(多媒体辅助教学)预设分析课堂呈现效果
开放练习,放手探究
问题1:有一块长100cm,宽50cm的铁皮,在它的四周各减去一个同样大的正方形,然后制作成一个无盖的面积为3600cm2的盒子,切去的正方形的边长应为多少?
问题2:学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.1.由于班级学生的分析问题、理解问题的能力急需加强,因此平时注重课堂上的培养。
2.一元二次方程是初中数学中最重要的数学模型之一,它有丰富的实际背景。
通过实际问题的引入使学生更深入的体会数学与现实世界的联系,发展学生的应用意识,同时通过具体问题的引导,逐步培养学生的分析问题的能力。
3.探索2个实际问题,得到两个一元二次方程。
精准备课点3(多媒体辅助教学)预设分析课堂呈现效果
观察总结,得出结论引导学生观察总结得出一元二
次方程的相关概念,并会判断;
掌握一元二次方程的一般形式。
.
精准备课点4(多媒体辅助教学)预设分析课堂呈现效果
讲练结合,善于归纳出示课件,题签练习为了让学生灵活掌握一元二次方程相关概念、一般形式
1.选择讲练结合的方法解决问题跟进训练。
2.对所学知识及时进行巩固评价,帮助学生深入理解所学内容并培养其会用所学知识解决问题的能力。
精准备课点5 预设分析课堂呈现效果。
(完整word版)初中数学定义、定理(大全),推荐文档
第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。
(完整word)初中数学找规律
例题:(10西城二模)一组按规律排列的整数 5, 7, 11, 19,…,第6个整数为,根据上述规律,第n 个整数为 _____________ ( n 为正整数)•••第6个整数是26 3 67,第n 个整数是2n 3 (n 为正整数).练习:1 4 9 16 1' (10怀柔二莫)按一定规律排列的一列数依次为:3,产,亍……,按此规 律排列下去,这列数中的第5个数是 ____________ ,第n 个数是 ______________________________________2、(09东城一模)按一定规律排列的一列数依次为: -…,按此规律排列下去,这列数中的第 9个数是 35 答案:12 n1n ( 1)例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发 芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为 a )照这样下去,第8年老芽数与总芽数的比值为.解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,贝吐匕值为 •34 练习:1、( 08石景山一模)小说《达•芬奇密码》中的一个故事里出现了一串神秘排列 的数,将这串令人费解的数从小到大的顺序排列为:1,1, 2, 3, 5, 8 ,则答案: 25 n 211 , 2n 11 ] 丄 丄 丄2,3,10,15, 26这列数的第8个数是______________ .2答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填 出图4中的数字.答案:7,9,11,176((1)n 与(1)n1)例题:(09通州二模)12.观察并分析下列数据,寻找规律:0,..、36 ,3,- 2、.3,,15,— 3・.2,……那么第10个数据是 _____________ ;第n 个数据 是 ______ .•••第10个数据是3-3,第n 个数据是(1)n1.. 3n 3 . 练习:1、(10房山一模)一组按规律排列的式子: 4,%~|,■16,...(a 0),其中第a a a a 8个式子是 _____ ,第n 个式子是 ________ (n 为正整数). 答案: 64( 1)n 1 n 223 3n 1aa58112、(10门头沟二模)一组按一定规律排列的式子:一a 2,-,—-,—,…,23 4(a ^ 0),则第n 个式子是 ________ (n 为正整数)3n 1答案:(1)0-—n3、(09崇文一模)一组按规律排列的数:2, 0, 4, 0, 6, 0,…,其中第7个数 是 ________ ,第n 个数是 _________ ( n 为正整数). 答案:8,』^(n 1)57 9108例题:(08通州二模)世界上著名的莱布尼茨三角形如图所示:贝U排在第10行从左边数第3个位置上的数是_______ .•••第10行倒数第三个数是———.72 90 360练习:1、(08大兴一模)自然数按一定规律排成下表,那么第200行的第5个数是_____ .12 34 5 67 89 101113 14 1512答案:199052、如图的数字方阵中,方框所缺的数,按照适宜的规律填上(A、100B、128C、129D、130答案:C例题:(11平谷二模)如图,将连续的正整数1,2,3,4……依次标在下列三角形中,那么2011这个数在第 ____ 个三角形的 ________ 顶点处(第二空填:上,左下,右下).• 2011 这个数在第671个三角形的上顶点处.故答案为:671, 上.练习:1、(08 崇文一模)观察下列等式:31 1 2 , 32 1 8 , 33 1 26 , 34 1 80 , 35 1 242 ,…….通过观察,用你所发现的规律确 定32008 1的个位数字是 ______ . ___ 答案:32、右图为手的示意图,在各个手指间标记字母A ,B ,C, D 请你按图中箭头所指 方向(即A — B ^C T C T B ^B^d …的方式)从 A 开始 数连续的正整数1, 2, 3, 4,…,当数到12时,对应的字母是 当字母C 第201次出现时,恰好数到的数是 当字母C 第2n 1次出现时(n 为正整数),恰 好数到的数是 ____ (用含n 的代数式表示). 答案:B, 603, 6n+3例题:(09平谷一模)已知:£2£2232 34 44 4……若b x1 1 '2 2 ‘3 3'10=a +10 (a 、b 都是正整数),则a+b 的最小值是 _________ . 二a+b 的最小值是19 练习:1. ( 10密云一模)下面是按一定规律排列的一列数:第1个数: 1 1 122第2个数: 1 1 11 (1)211 1323 第3个数: 1 1 11 (1)2 1423232n 11 1L 1(“第n 个数:2n(1)3;4 ;4 5 6那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数B .第11个数 C.第12个数 D.第13个数答案:A例题1: (10昌平一模)观察下列图案:照这样它们是按照一定规律排列的,依照此规律,第5个图案中共有________ 个三角形,第n (n 1,且n为整数)个图案中三角形的个数为_________ (用含有n的式子表示).解答:解:第5个图案中,有6+4X4=22 (个)三角形;第n个图案中,有6+4(n-1 )=4n+2 (个)三角形.例题2. (10西城一模)在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(一8,0 ),(0,4 ),(8,0 ),(0,点正方形的个数是个;若菱形ABGD n的四个顶点坐标分别为(—2n,0 ),(0, n), (2n,0), (0,—n)(n 为正整数),则菱形ABnG D n能覆盖的单位格点正方形的个数为_______________________ (用含有n的式子表示).答案为:4n2-4n .—4),贝U菱形ABCD能覆盖的单位格练习:.1、(10大兴一模)如图4所示,把同样大小的黑色棋子摆放在正多边形的边上,按的规律摆下去,则第n个图形需要黑色棋子的个数是_______________第1个图形第2个图形第3个图形第4个图形(图4)答案:n(n 2)2、(08顺义二模)如图,图①,图②,图③,图④……是用围棋棋子摆成的一列图①图②图③图④具有一定规律的“山”字•则第n个“山”字中的棋子个数是______________答案:5n+23、(08丰台二模)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:请问第n个图案中有白色纸片的张数为A. 4n 3B. 3n 1C. nD. 2n 2答案:B第1个第2个第3个4、(10丰台一模)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点•请你观察图中正方形ABCD, ABC2D2,AB3C3D3…每个正方形四条边上的整点答案:80个.的个数•按此规律推算出正方形Ao BwC o D。
(完整word版)人教版初中数学课程标准(2018年)
初中数学课程标准(人教版)一、数与代数(一)数与式1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道a的含义(这里的a表示有理数)。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
(4)理解有理数的运算律,能运用运算律简化运算。
(5)能运用有理数的运算解决简单的问题。
2、实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数和绝对值。
(4)能用有理数估计一个无理数的大致范围。
(5)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
3、代数式(1)借助现实情境了解代数式,进一步理解用字母表示数的意义。
(2)能分析具体问题中的简单数量关系,并用代数式表示。
(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行运算。
4、整式与分式(1)了解整数指数幂的意义和基本性质;会用科学计数法表示数。
(2)理解整式的概念,掌握合并同类型和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
(3)能推导乘法公式:()b a + ()b a 22b a -=- ,()b a b a ab 2222+±=±,了解公式的几何背景,并能利用公式进行简单计算。
(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。
(完整word版)初中数学知识点全总结(完美打印版),推荐文档
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
(word完整版)初中数学公式大全(整理打印版),推荐文档.doc
初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数 a 的相反数是— a,实数 a 的倒数是1(a≠0);a②实数 a 的绝对值:a( a 0)a 0( a 0)a(a 0)③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:ab a b (a≥0,b≥0);a a( a≥ 0, b> 0);b b②二次根式的性质:a2a( a 0) aa(a 0)( 2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 a m a n a m n ( m、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 a m a n a m n ( a≠ 0, m、 n 为正整数, m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即( ab) n a n b n(n为正整数);④零指数: a 0 1 (a≠0);⑤负整数指数: a n1( a ≠ 0, n 为正整数);a n⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即( a b)( a b)a 2b 2 ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍,即 (ab) 2 a 2 2ab b 2 ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a a ma a m bb ;b b,其中 m 是不等于零的代数式;m m②分式的乘法法则:a c ac ;b d bd③分式的除法法则:a c a d ad(c 0) ;b db cbc( a ) nn④分式的乘方法则:a n ( n 为正整数);b b⑤同分母分式加减法则:a b a bc c c ;⑥异分母分式加减法则:a d ab cdc b;bc2. 方程与不等式① 一 元 二 次 方 程 ax 2bx c 0 (a ≠ 0 ) 的 求 根 公 式 :xbb 2 4ac (b 2 4ac0)2a② 一 元 二 次 方 程 根 的 判 别 式 :b 24ac 叫 做 一 元 二 次 方 程ax 2bx c 0 ( a ≠0)的根的判别式:0 方程有两个不相等的实数根; 0 方程有两个相等的实数根; 0方程没有实数根;③一元二次方程根与系数的关系:设x 1 、 x 2 是方程 ax 2 bx c0 ( a ≠ 0)的两个根,那么x1 + x2b c ;= a,x1x2=a不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数 y=kx+b(k 、b 是常数, k≠ 0) 的图象是过点( 0,b)且与直线y=kx 平行的一条直线;一次函数的性质:设 y=kx+b ( k≠ 0),则当 k>0 时, y 随 x 的增大而增大;当k<0, y 随 x 的增大而减小;正比例函数的图象:函数y kx 的图象是过原点及点(1,k)的一条直线。
(完整word版)初中数学定理大集合
初中数学基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值(Sin30=Cos60),任意锐角的余弦值等于它的余角的正弦值(Cos30=Sin60)100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、d为圆心到直线的距离①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 , p表示正n边形的周长142、正三角形面积√3a2/4 ,a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=n兀R/180,n为圆心角度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂观察量表——教师教学的维度
时间讲课人观察人课题平行线的性质与判定复习
视角观察点结果统计评价反思
①本节课由哪些环节构成?
交代学习目标,然后围绕目标进教师在教学中灵活运用三维目
行教学设计,以一根直尺与一个标,体现课堂民主化,开发了学是否围绕教学目标展开?
三角板为载体,贯穿整个课堂生思维能力。
②这些环节是否面向全体是面向全体学生,并且注重了学生环节学生 ? 的差异。
教师课前导入不到 4 分钟;然后课时分配合理充分发挥了以学
③不同环节 /行为 / 内容的是边学边练,让学生由易到难地生为主体以教师为主导的教学
时间是怎么分配的 ? 掌握本节课的内容,学生兴趣十理念。
足。
教师以设疑、解疑;从现实到模教师抓住了学生的求知欲望,从
①怎样讲解 ? 讲解是否有
型,从一种方法到一题多解的思生活出发,体现出了建模的数学
路,逐步引导学生掌握本节课内思想,激发了学生的学习兴趣,效( 清晰 /结构 /契合主题 / 简
容,节奏合理,语言简洁,符合语言较为简练,实用,有利于学洁/语速 / 音量 /节奏 ) ?
本节课的内容,有利于学生认真生接受。
听讲。
抓住了本节课的重点,重在题目板书的重点应该是数学思想与
②板书怎样呈现的 ? 是否的一题多解,在板书时把重要的方法或重要的知识点,学生的板
为学生学习提供了帮助? 知识点和辅助线板书在黑板上,演可以放在靠边的位置上。
呈示加深了学生的记忆。
主要是使用几何画板展示图示,几何画板的使用熟练,实用性
③媒体怎样呈现的 ? 是否然后抽象出几何图形,让学生进强,合理有效,值得学习。
一步体会到了数学来源于生活、
适当 ? 是否有效 ?
应用于生活,并进一步锻炼了学
生解决实际问题的能力。
④教师在课堂中的行为和课堂上教师实时指导,鼓励性语教师融入到学生中间,体现以学动作(如走动、指导等)是言多,肢体语言丰富,有利于教生为主体以教师为主导的教学
怎样呈现的 ? 是否规范 ? 是学。
理念利于教学。
否有利教学 ?
①提问的学生分布、次数、教师提问分布广根据学生自身提问面广、难易适中。
差异提问难易适中既鼓励了学
知识的认知难度、候答时间
困生,又发挥了优等生,可谓是
怎样 ?是否有效 ?
事半功倍。
对话
②教师的回答方式和内容难易结合,效果极佳。
较好
如何 ? 是否有效 ?
③对话围绕哪些话题 ? 话对话围绕数学思考、数学思想与能围绕教学内容、教学目标有序
题与学习目标的关系如何 ? 方法以及建模的思想来进行。
组织教学。
深化情感目标
提出问题、抽象成数学问题,然学习方式有效,学生的兴趣较为
①怎样指导学生自主学习后由学生思考、小组讨论、学生浓厚。
( 阅读 /作业 /) ? 是否有效 ? 展示、上讲台交流等方式进行自
主学习。
②怎样指导学生合作学习明确了小组合作的内容,让学生随时掌握小组合作学习的情况,
(讨论 / 活动 /作业 ) ? 是否有有的放矢,有针对性的进行讨有利于找学生代表进行成果展指导
效?
论,教师进行巡回指导。
示。
③怎样指导学生探究学习题目的设计具有引导性,层次性指导学生探究学习教师的问题
( 教师命制探究题目 /指导与针对性,围绕同一个目标进行紧密联系生活实际。
学生围绕学习内容自命题了不同的题目变式,学生从中发
目并自主探究 ) ? 是否有现规律与方法,掌握相关的技
效? 能。
①教学设计与预设的有哪教学有法、法无定法这是教学设这种方法有效。
对今后教学是有
些调整 ? 为什么 ? 效果怎计与教学实际区别。
才能达到更帮助的。
么样 ? 好的教学效果。
随机应变,对于学生发现的方法根据本地教学实际教师可采取
②如何处理来自学生或情
进行分析,总结、评价,并对学灵活教学方法进行教学,在遇到景的突发事件 ? 效果怎么
生的表现给予鼓励。
突发事件时要机智得想办法化样?
机智解。
③呈现了哪些非言语行为规范的语言,仪表庄重、教态大教师表情、移动、体态语对学生
( 表情 /移动 /体态语 ) ? 效果方得体给人以亲切感。
影响很大所以教学注意自己言
怎么样 ? 行举止衣着等
④有哪些具有特色的课堂利用各种时机巧妙运用语言出教师要善于组织语言巧妙运用
行为 ( 语言 /教态 /学识 /技色完成教学任务。
语言。
能/思想 ) ?。