17年高考数学题型总结分享_题型归纳
17年高考数学总练习知识点大全
17年高考数学总练习知识点大全高三在我们的关注中履约而至,征战高考的军号已经吹响,时间不可置疑地把我们推到命运的分水岭。
小编为大家收集了高考数学总复习知识点,一同来看看吧。
考数学解答题部分主要考察七大骨干知识:第一,函数与导数。
主要考察会合运算、函数的相关看法定义域、值域、分析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的要点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的要点并且是难点,主要出一些综合题。
第四,不等式。
主要考察不等式的求解和证明,并且极少单独考察,主假如在解答题中比较大小。
是高考的要点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间地点关系的定性与定量剖析,主假如证明平行或垂直,求角和距离。
第七,分析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考察,既全面又突出要点,扎实的数学基础是成功解题的要点。
针对数学高考重申对基础知识与基本技术的考察我们必定要全面、系统地复习高中数学的基础知识,正确理解基本看法,正确掌握定理、原理、法那么、公式、并形成记忆,形成技术。
以不变应万变。
对数学思想和方法的考察是对数学知识在更高层次上的抽象和归纳的考察,考察时与数学知知趣联合。
对数学能力的考察,重申〝以能力立意〞,就是以数学知识为载体,从问题下手,掌握学科的整体意义,用一致的数学看法组织资料,重视表达对知识的理解和应用,特别是综合和灵巧的应用,全部数学考试最后落在解题上。
考纲对数学思想能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考察要求,而解题训练是提升能力的必需门路,因此高考复习一定把解题训练落到实处。
训练的内容一定依据考纲的要求精心选题,一直紧扣基础知识,多进行解题的回首、总结,归纳提炼基本思想、基本方法,形成对通性通法的认识,真实做到解一题,会一类。
2017年高考数学各题型解题方法汇总_答题技巧
2017年高考数学各题型解题方法汇总_答题技巧
成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时中不断积累,小编为大家准备了
高考数学解析几何题,希望同学们不断取得进步!
2017年高考数学各题型解题方法
★ 2017年12个高考数学考场解题方法
★ 2016-2017高考数学立体几何解题方法
★ 名师精讲2017年高考数学常用的解题思路
★ 高分生分享2017高考数学解答题答题技巧
★ 考生拿下高考数学解析几何题的方法
小编为大家提供的
2017年高考数学各题型解题方法大家仔细阅读了吗?最后祝同学们学习进步。
17年高考数学大题题型介绍_题型归纳
17年高考数学大题题型介绍_题型归纳想要在高考数学中成绩一骑绝尘,一定要掌握常考的六大题型,只要这六大题型把握好了,高分绝非难事。
下面来看看高考数学大题题型,相信对你的复习有很大帮助~17年高考数学大题题型介绍:一、三角函数注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
17年数学高考知识点
17年数学高考知识点2017年的数学高考,是每个学生都备受期待和紧张的一场考试。
这次考试的数学试题涵盖了多个知识点和能力要求,考察了学生的逻辑思维能力和解题技巧。
在这篇文章中,我们将讨论一些17年数学高考的重点知识点,帮助学生准备和复习这些内容。
一、函数与方程函数与方程是数学高考中最基础、最重要的一部分。
在17年的数学高考试题中,函数与方程的知识点主要包括函数的定义、性质与图像、一次函数、二次函数、指数函数、对数函数、幂函数、反函数、特殊函数方程等。
学生需要掌握这些知识点的概念和性质,能够根据函数的图像、表达式等来求解相关的问题。
二、几何与图形几何与图形是另一个重要的知识点。
17年数学高考中,几何与图形的内容主要包括平面几何、立体几何和解析几何。
学生需要掌握平行线、垂直线、等腰三角形、相似三角形、勾股定理、解三角形等基本概念和定理,能够灵活运用这些知识解决实际问题。
三、概率与统计概率与统计是考查学生分析和解决实际问题能力的重要内容。
在17年数学高考中,概率与统计的知识点主要包括样本调查、事件与概率、统计图表的分析和应用、抽样调查与总体参数的估计等。
学生需要熟悉概率的概念、性质和计算方法,能够读懂和分析统计图表,灵活运用统计方法解决实际问题。
四、数列与数学归纳法数列与数学归纳法是数学高考中的常见考点。
17年数学高考中,数列与数学归纳法的知识点主要包括等差数列、等比数列、递推数列、通项公式、递归公式、数列的极限、数学归纳法等。
学生需要熟练掌握这些知识点的概念和性质,能够根据数列的特点找出其通项公式或递推公式,并能够应用数学归纳法解决一些证明问题。
五、微积分微积分是高考中比较复杂的知识点之一。
17年数学高考中,微积分的知识点主要包括导数、微分、极值、最值、不等式证明等。
学生需要掌握导函数的概念和性质,能够求解函数的导数、极值和最值,能够应用导数解决实际问题。
六、线性规划与向量线性规划与向量是数学高考中的综合应用题。
17年高考数学题型总结分享
17年高考数学题型总结分享17年高考数学题型总结分享高考数学如何复习才能更有效的提分?每天刷题真的会有效吗?在高考数学复习中,你也有类似的疑问吗?不用着急,快来看看高考数学题型总结吧~17年高考数学题型总结分享:一、排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.四、导数应用篇1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
17年高考数学最容易丢分的知识点总结
17年高考数学最简单丢分的知识点总结1、忘记空集致误因为空集是任何非空会合的真子集,所以B=?时也知足B?A。
解含有参数的会合问题时,要特别注意当参数在某个范围内取值时所给的会合可能是空集这种状况。
2、忽视会合元素的三性致误会合中的元素拥有确立性、无序性、互异性,会合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实质上就隐含着对字母参数的一些要求。
3、混杂命题的否认与否命题命题的〝否认〞与命题的〝否命题〞是两个不一样的看法,命题 p 的否认能否认命题所作的判断,而〝否命题〞是对〝假定p,那么q〞形式的命题而言,既要否认条件也要否认结论。
4、充足条件、必需条件颠倒致误对于两个条件 A,B,假如 A?B 成立,那么 A 是 B 的充足条件,B 是 A 的必需条件 ; 假如 B?A成立,那么 A 是 B 的必需条件, B 是 A 的充足条件 ; 假如 A?B,那么 A, B 互为充足必需条件。
解题时最简单犯错的就是颠倒了充足性与必需性,所以在解决这种问题时必定要依据充足条件和必需条件的看法作出正确的判断。
5、〝或〞〝且〞〝非〞理解禁止致误命题 p∨q真 ?p 真或 q 真,命题 p∨q假?p 假且 q 假 ( 归纳为一真即真 ); 命题 p∧q真 ?p 真且 q 真,命题 p∧q假 ?p 假或 q假 ( 归纳为一假即假 ); 绨 p 真 ?p 假,绨 p 假 ?p 真 ( 归纳为一真一假 ) 。
求参数取值范围的题目,也能够把〝或〞〝且〞〝非〞与会合的〝并〞〝交〞〝补〞对应起来进行理解,经过会合的运算求解。
6、函数的单一区间理解禁止致误在研究函数问题时要不时辰刻想到〝函数的图像〞,学会从函数图像上去剖析问题、找寻解决问题的方法。
对于函数的几个不一样的单一递加( 减 ) 区间,切忌使用并集,只需指明这几个区间是该函数的单一递加( 减 ) 区间即可。
7、判断函数奇偶性忽视定义域致误判断函数的奇偶性,第一要考虑函数的定义域,一个函数具备奇偶性的必需条件是这个函数的定义域对于原点对称,如果不具备这个条件,函数必定是非奇非偶函数。
历年高考数学的17个必考题型重点复习附带真题解析(值得收藏)
117个必考题型01题型一
运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
解三角函数问题、判断三角形形状、正余弦定理的应用。
数列的通向公式得求法。
05题型五
数列的前n项求和的求法。
06题型六
利用导数研究函数的极值、最值。
利用导数几何意义求切线方程。
利用导数研究函数的单调性,极值、最值
09题型九
利用导数研究函数的图像。
10题型十
求参数取值范围、恒成立及存在性问题。
数形结合确定直线和圆锥曲线的位置关系。
焦点三角函数、焦半径、焦点弦问题。
动点轨迹方程问题。
14题型十四共线问题。
15题型十五定点问题。
16题型十六
存在性问题。
存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆
17题型十七
最值问题。
利用圆锥曲线的切线求最值。
高考数学题型归纳总结
高考数学题型归纳总结
高考数学是考生需要面对的一门重要科目,包括数学基础、代数、几何、概率与统计等多个方面。
以下是我对高考数学题型的归纳总结:
1.选择题:主要考查考生对数学概念、原理及计算方法的理解和掌握程度。
选择题的难度通常比较简单,但是需要考生对数学知识点有一个全面的掌握。
2.填空题:要求考生计算出问题中给出的具体数值,考查考生对数学公式的掌握和对计算思路的理解。
3.解答题:包括证明题、计算题和应用题等。
其中,证明题要求考生根据所给的条件,进行严谨的证明过程;计算题要求考生运用所学的计算方法,完成一系列的计算步骤;应用题要求考生将所学的数学知识应用到具体实际问题中,寻找最优解。
4.应用题:是高考数学中难度较大的一类题型,考查考生将所学的数学知识应用到实际问题中的能力,需要考生熟练掌握各类数学知识点,并具备较强的分析和解决问题的能力。
5.综合题:是将多个数学知识点进行综合运用的题目。
综合题既考查考生对数学知识的掌握程度,又考查考生的分析和解决问题的能力。
6.证明题:是要求考生根据所给条件和结论,通过严密的推理和论证,证明结论正确的数学问题。
证明题考查的是考生的逻辑推理和论证能力,需要考生严谨思考,掌握一定的证明技巧和方法。
7.图形题:主要考查考生对几何图形的认识和理解程度,需要考生能够准确绘制图形,并且根据图形给出的条件,进行分析和计算。
总之,高考数学题型众多,需要考生全面掌握各类数学知识点,掌握各类解题技巧和方法,并且需要考生具备较强的思考和解决问题的能力。
【教育资料】名师总归纳结17年高考数学选择题解法学习精品
名师总归纳结17年高考数学选择题解法高考数学选择题从难度上讲是降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
查字典数学网整理了高考数学选择题解法,供考生参考。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2017年高考数学热点、难点知识汇总
2017年高考数学热点、难点知识汇总第一、立体几何 知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[) 180,0∈θ)(直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) (向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)12方向相同12方向不相同[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面) ③垂直于同一平面的两条直线平行.(√)5. ⑪垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑫射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.P O AaP αβM AB证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑪最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑫最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、 棱锥、棱柱. 1. 棱柱.⑪①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑫{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑬棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑭平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)图1θθ1θ2图2④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑪①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑫棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑬特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等) ii. 简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, l ab cB F E D得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅0=-⇒则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑪球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑫纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立]②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立]④若为非零向量,则0=⋅.(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(≠a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.O r OR(3)共面向量:若向量使之平行于平面α或在α内,则与α的关系是平行,记作∥α.(4)①共面向量定理:如果两个向量,不共线,则向量与向量,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x z y x 是PABC 四点共面的充要条件.(简证:→+==++--=z y z y z y )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). 注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅ ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a 222321a a a ++==(a a =⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中DBα∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).ABII. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心; ③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A -BC-D=sin∠ABC/sin∠A -BD-C=sin∠CBD/sin∠C -BA-DO A BCD空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立体几何知识要点一、知识提纲(一)空间的直线与平面⒈平面的基本性质⑪三个公理及公理三的三个推论和它们的用途.⑫斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑪公理四(平行线的传递性).等角定理.⑫异面直线的判定:判定定理、反证法.⑬异面直线所成的角:定义(求法)、范围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑪直线和平面垂直:定义、判定定理.⑫三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑪平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑫二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑪点到平面的距离.⑫直线到与它平行平面的距离.⑬两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑭异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑪多面体.⑫棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑬平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑭棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑮直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑪简单多面体的欧拉公式.⑫正多面体.11.球⑪球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑫球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ; 4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
2017年高考数学题型归纳完整版
第一章集合与常用逻辑用语第一节集合题型1-1 集合的基本概念题型1-2 集合间的基本关系题型1-3 集合的运算第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系题型1-5 充分条件、必要条件、充要条件的判断与证明题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围第三节简单的逻辑联结词、全称量词与存在量词题型1-7 判断命题的真假题型1-8 含有一个量词的命题的否定题型1-9 结合命题真假求参数的取值范围第二章函数第一节映射与函数题型2-1 映射与函数的概念题型2-2 同一函数的判断题型2-3 函数解析式的求法第二节函数的定义域与值域(最值)题型2-4 函数定义域的求解题型2-5 函数定义域的应用题型2-6 函数值域的求解第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断题型2-8 函数单调性(区间)的判断题型2-9 函数周期性的判断题型2-10 函数性质的综合应用第四节二次函数题型2-11 二次函数、一元二次方程、二次不等式的关系题型2-12 二次方程的实根分布及条件题型2-13 二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质题型2-16 指数函数中恒成立问题第六节对数与对数函数题型2-17 对数运算及对数方程、对数不等式题型2-18 对数函数的图象与性质题型2-19 对数函数中恒成立问题第七节幂函数题型2-20 求幂函数的定义域题型2-21 幂函数性质的综合应用第八节函数的图象题型2-22 判断函数的图象题型2-23 函数图象的应用第九节函数与方程题型2-24 求函数的零点或零点所在区间题型2-25 利用函数的零点确定参数的取值范围题型2-26 方程根的个数与函数零点的存在性问题第十节函数综合题型2-27 函数与数列的综合题型2-28 函数与不等式的综合题型2-29 函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1 导数的定义题型3-2 求函数的导数第二节导数的应用题型3-3 利用原函数与导函数的关系判断图像题型3-4 利用导数求函数的单调性和单调区间题型3-5 函数的极值与最值的求解题型3-6 已知函数在区间上单调或不单调,求参数的取值范围题型3-7 讨论含参函数的单调区间题型3-8 利用导数研究函数图象的交点和函数零点个数问题题型3-9 不等式恒成立与存在性问题题型3-10 利用导数证明不等式题型3-11 导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12 定积分的计算题型3-13 求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1 终边相同角的集合的表示与识别题型4-2 α2是第几象限角题型4-3 弧长与扇形面积公式的计算题型4-4 三角函数定义题型4-5 三角函数线及其应用题型4-6 象限符号与坐标轴角的三角函数值题型4-7 同角求值——条件中出现的角和结论中出现的角是相同的题型4-8 诱导求值与变形第二节三角函数的图象与性质题型4-9 已知解析式确定函数性质题型4-10 根据条件确定解析式题型4-11 三角函数图象变换第三节三角恒等变换题型4-12 两角和与差公式的证明题型4-13 化简求值第四节解三角形题型4-14 正弦定理的应用题型4-15 余弦定理的应用题型4-16 判断三角形的形状题型4-17 正余弦定理与向量的综合题型4-18 解三角形的实际应用第五章平面向量第一节向量的线性运算题型5-1 平面向量的基本概念题型5-2 共线向量基本定理及应用题型5-3 平面向量的线性运算题型5-4 平面向量基本定理及应用题型5-5 向量与三角形的四心题型5-6 利用向量法解平面几何问题第二节向量的坐标运算与数量积题型5-7 向量的坐标运算题型5-8 向量平行(共线)、垂直充要条件的坐标表示题型5-9 平面向量的数量积题型5-10 平面向量的应用第六章数列第一节等差数列与等比数列题型6-1 等差、等比数列的通项及基本量的求解题型6-2 等差、等比数列的求和题型6-3 等差、等比数列的性质应用题型6-4 判断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合第二节数列的通项公式与求和题型6-6 数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式第二节均值不等式和不等式的应用题型7-3 均值不等式及其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 绝对值不等式的解法第四节二元一次不等式(组)与简单的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简单线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球第二节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图⟹直观图——简单几何体基本量的计算题型8-7三视图⟹直观图——简单组合体基本量的计算题型8-8 部分三视图⟹其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”、“点共面”或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12证明空间中直线、平面的垂直关系第六节空间向量及其应用题型8-13 空间向量及其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程第二节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的判断题型9-9 圆的一般方程的充要条件题型9-10 与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的判断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值及取值范围题型10-3 焦点三角形第二节双曲线题型10-4 双曲线的标准方程题型10-5 双曲线离心率的求解及其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面向量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 根据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简单排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简单排列组合问题的结合第二节排列问题题型12-4 特殊元素或特殊位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和分配问题第四节二项式定理题型12-12 证明二项式定理题型12-13 T r+1的系数与x幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式展开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率及其计算题型13-1 古典概型题型13-2 几何概型的计算第二节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回归方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理第二节直接证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{a n}通项公式的猜证及有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节坐标系与参数方程(选修4-4)题型16-4 参数方程化为普通方程题型16-5 普通方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第二节不等式选讲(选修4-5)题型16-7含绝对值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。
名师总归纳结17年高考数学选择题解法
名师总归纳结17年高考数学选择题解法高考数学选择题从难度上讲是降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
查字典数学网整理了高考数学选择题解法,供考生参考。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
考前冲刺!2017高考数学题型整理_题型归纳
考前冲刺!2017高考数学题型整理_题型归纳17年高考迫在眉睫,考生都在努力的复习当中,在冲刺阶段应该如何复习呢?快来看看高考常考数学题型吧~考前冲刺!2017高考数学题型整理高考数学必考题型之函数与导数考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
函数与导数单调性⑴若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。
需代入驻点左右两边的数值求导数正负判断单调性。
⑴若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
高考数学必考题型之几何公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内公理2:过不在同一条直线上的三点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线互相平行定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行“线面平行”如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”高考数学必考题型之不等式①对称性②传递性③加法单调性,即同向不等式可加性④乘法单调性⑤同向正值不等式可乘性⑥正值不等式可乘方⑦正值不等式可开方⑧倒数法则高考数学必考题型之数列(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。
2017高考数学各类题型答题方法高考数学题型全归纳
《2017高考数学各类题型答题方法:高考数学题型全归纳》摘要:解答高考数学题目时,考生可以掌握一些答题方法,帮助答题,下面小编给大家带来高考数学各类题型答题方法,希望对你有帮助.,11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;解答高考数学题目时,考生可以掌握一些答题方法,帮助答题。
下面小编给大家带来高考数学各类题型答题方法,希望对你有帮助.1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用三合一定理.2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质.如所过的定点,二次函数的对称轴或是;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成.1、函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
2017年高考数学真题考点汇总
文科数学考点:1.集合的交集,一元一次不等式。
2.统计量,方差3.复数运算,纯虚数概念。
4.几何概型,割补法求面积5.过双曲线焦点的直线,且与x轴垂直的模型6.线面平行7.简单的线性规划,目标函数为线性,且没有参数8.已知函数解析式,判断函数图形(奇偶,特殊值,单调性)9.由函数解析式判断函数性质,复合函数的单调性与对称性。
10.程序框图,容易11.解三角形。
边角互化,正弦定理,余弦定理。
12.解析几何中,顶点三角形问题。
二、填空题13.向量的坐标运算。
14.利用导数的几何意义,求切线方程。
15.已知正切,求余弦16.三棱锥内接球模型,把握确定球心,使球心到每个点距离都相等。
三、17数列,等比数列已知等式,解方程,确定首项和公比。
计算等比数列的特定前n项,判断三个数字,是否为等差数列。
18.(1)四棱锥模型,证明,面面垂直。
(2)已知四棱锥的体积,求表面积,重视平面中的面积计算。
19.(1)随机抽样中,。
相关系数的公式应用于计算。
(2)正态分布,合理过程进行,评价与判断。
提出数据,重新计算均值和方差。
20.(1)点差法,确定直线的斜率。
(2)直线与抛物线联立方程,寻找等式,确定直线的截距。
21.已知函数解析式,确定函数的单调性。
指数与对数的互相化简符合函数。
22.椭圆的参数方程。
简单的直线参数方程,确定直线与椭圆的交点。
利用椭圆的参数性质,已知,距离的最大值,确定直线的参数的值。
2017年高考数学总结
2017年高考数学总结引言2017年的高考数学考试,是我国高中毕业生的一次重要考试。
本文将对2017年高考数学试题进行总结,分析其中的特点、难点和解题技巧,希望对广大考生有所帮助。
一、试题特点1. 综合性2017年高考数学试题整体上具有很强的综合性,题目不仅考察了基础知识,还要求考生具备较强的理解能力和问题解决能力。
很多题目涉及多个知识点的综合运用,考查考生的整体素质。
2. 知识点分布2017年高考数学试题的知识点分布比较均匀,覆盖了高中数学各个领域,如代数、几何、概率等。
其中,代数相关的题目比较多,占据了较大的比重。
3. 难度适中整体来说,2017年高考数学试题的难度适中,考查内容并没有过于偏难或偏易。
题目设计较为严谨,很多题目可以根据已学过的知识点进行解答,不需要过多的推理和思考。
二、难点分析1. 综合应用题2017年高考数学试题中出现了一些比较综合的应用题,选择题的难度比较大。
这类题目需要考生对多个知识点进行综合运用和分析,解题思路相对较长。
因此,对于这类题目,考生需要在平时的学习过程中注重提高自己的综合运用能力。
2.几何证明几何证明一直是高中数学中的难点,2017年高考数学试题也不例外。
试题中有一些几何证明题,需要考生熟练掌握几何定理和证明方法,具备较强的逻辑推理能力。
3. 统计与概率统计与概率是高中数学中的重要分支,也是考试中的重点。
2017年的数学试题中有一些与统计和概率相关的题目,需要考生掌握相关的概念和计算方法。
对于这部分内容,考生需要在复习过程中多做题,加深对统计和概率的理解和应用。
三、解题技巧1. 阅读题目细节在解题过程中,首先要仔细阅读题目的要求和条件,理解题目的意图。
对于较长的应用题,要注意提炼关键信息,理清题目的逻辑结构。
2. 熟练掌握基本知识解题过程中,要能够熟练运用基本的数学知识和公式,熟悉代数运算、几何定理等基本概念。
掌握基础知识对于解答试题非常重要。
3. 勤于思考和练习数学是一门需要思考与实践并重的学科。
2017年高考数学总结
2017年高考数学总结2017年高考数学总结2017年高考数学考试分为理科和文科两个版本,共有12个单选题、15个非选择题,满分试卷总分150分。
这次高考数学试题整体难度适中,题型覆盖面广,主要考察学生对基本数学概念和方法的掌握,以及灵活运用数学知识解决实际问题的能力。
一、试题分析1.单选题单选题占总分的20%,主要考察学生的基础知识和解题技巧。
其中,基础知识的考察主要涉及平方根、立方根、统计等方面,解题技巧则包括换元法、凑倍数、代换法等。
需要注意的是,单选题多数为处于基础水平,只要理解题目要求,掌握基本解题方法,就能得到正确答案。
2.非选择题非选择题占总分的80%,包括填空题、解答题和实际问题运用题。
非选择题要求学生综合运用数学知识解决实际问题,考察学生的思维能力和解题能力。
本次考试重点考察了函数、立体几何等知识点,题目相对较难。
二、解题技巧与策略1.加强基础知识的学习和巩固基础知识对于数学考试至关重要,理解和掌握基础知识能够帮助我们迅速理解题目的要求,从而快速定位解题方法。
特别是对于一些常见的数学公式、定理和性质,要熟练掌握并能够熟练运用到实际解题中。
2.注重解题方法和策略的学习解题方法和策略的学习能够帮助我们在有限的时间内高效解题。
对于一些常见的解题思路和技巧,如换元法、凑倍数、代换法等,要逐步掌握并多进行练习。
3.注重实际问题解决能力的培养高考数学试题中,实际问题运用题是难度较大的一类题型。
要注重实际问题解决能力的培养,尤其是对于函数、立体几何等知识点的实际运用。
通过多进行实际问题的解答练习,提高自己的解题思维和分析能力。
三、备考经验与方法总结1.多做真题和模拟题高考数学试题考察内容较为固定,因此多做真题和模拟题能够增加题型的熟悉度,提高解题效率。
通过对真题和模拟题的积累和总结,可以发现一些常考的知识点和解题技巧,有针对性地进行备考。
2.注意解题过程和步骤在解题过程中,要注意解题的思路和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17年高考数学题型总结分享_题型归纳
高考数学如何复习才能更有效的提分?每天刷题真的会有效吗?在高考数学复习中,你也有类似的疑问吗?不用着急,快来看看高考数学题型总结吧~
17年高考数学题型总结分享:
一、排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.
二、立体几何篇
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
三、数列问题篇
1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
四、导数应用篇
1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接
下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
2高考数学高分经验多做典型题多归纳总结多做典型题
众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。
高考数学题型总结整理的很及时吧,在高考的最后复习中,大家一定不要慌,做好最后的复习~。