降压型功率变换器LM2596的原理及应用
LM2596中文资料
LM2596S-3.3, LM2596S-5.0,LM2596S-12, LM2596S-ADJ为TO-263封装(SMT)。
η
效率
VIN=12V,ILOAD=3A
73
LM2596□—5.0 (见注 14)
VOUT
输出电压
5.0 7V≤VIN≤40V, 0.2A≤ILOAD≤3A
η
效率
VIN=12V,ILOAD=3A
80
3.168/3.135 3.432/3.465
V V(min) V(max) %
4.800/4.750 5.200/5.250
2 30
A A(min) A(max) μA(max) mA mA(max)
IQ
静电流
见注 9
5 10
mA mA(max)
ISTBY
待机静电流
ON/OFF 脚=5V(OFF)(9)
80
μA
200/250
μA(max) 3
开发板精品网www.mcu361.com为您提供各种开发板和电子技术资料
LM2596 开关电压调节器 SEPTEMBER, 2004
ILOAD=500mA。 (见注 14)
361 符号
参量
cu 器件参数
.m Ib
反馈偏置电流
wwwfO
振荡器频率
条件
LM2596□—XX
典型值(2) 极限值(3)
单位
只适用于输出可调节的情况,VFB=1.3V
lm2596引脚图应用电路
lm2596引脚图应用电路
lm2596是常见的稳压电源芯片,是降压型电源管理芯片,他能输出3A的驱动电流.
lm2596典型应用电路
lm2596引脚图:1为+VIN,2为out put,3为gnd,4为feed back,5为on/off。
下面说说我自己的调试经验:今晚真的是奇了怪了,先是对面的爆了钽电容,然后冠军烧芯片,最后是我烧了个电感...根本停不下来的节奏
经验证电路可行,但是一把电阻r2换成电位器后就没输出了,烧了个电感,然后今晚就不敢动了,深深以一个通霄十分钟烧三个舵机为鉴(ps:电感烧起来的火花倒是挺好看的…),
lm2596电路图。
LM2596全中文资料
LM2596 开关电压调节器LM2596开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。
固定输出版本有3.3V、5V、12V,可调版本可以输出小于37V的各种电压。
该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。
由于该器件只需4个外接元件,可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。
其封装形式包括标准的5脚TO-220封装(DIP)和5脚TO-263表贴封装(SMD)。
该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)特点※ 3.3V、5V、12V的固定电压输出和可调电压输出※可调输出电压范围1.2V~37V±4%※输出线性好且负载可调节※输出电流可高达3A※输入电压可高达40V※采用150KHz的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高※低功耗待机模式,I Q的典型值为80μA※TTL断电能力※具有过热保护和限流保护功能※封装形式:TO-220(T)和TO-263(S)※外围电路简单,仅需4个外接元件,且使用容易购买的标准电感应用领域※高效率降压调节器※单片开关电压调节器※正、负电压转换器典型应用(固定输出)LM2596□-5.0管脚图极限参数名称范围单位最大电源电压 45 V脚输入电压-0.3~25 V“反馈”脚电压 -0.3~25 V到地的输出电压(静态) -1 V功耗由内部限定 --储存温度 -65~150℃静电释放(人体放电1) 2000 V气流焊(60秒) 215 ℃ TO-263红外线焊接(10秒) 245 ℃ 焊接时的管脚温度TO-220 波峰焊/电烙铁焊接(10秒)260℃最高结温 150 ℃温度范围 -40~125℃工 作条 件电源电压 4.5~40 V注1:人体放电模式相当于一个100PF 的电容通过一个1.5K 的电阻向每个管脚放电。
LM2576应用-技术文档 原理,设计,应用
LM2576应用技术文档标题:LM2576应用[转]——难得一找的文章2009-08-29 15:50:511、LM2576的特性如下:1)有3.3V、5V、12V、15V和可调电压输出多种系列;2)输出电压可调的范围为1.23V~37V (HV型号的可达57V),负载电压的输出容差最大为±4%;3)最少只需要4个外围元件,可达3A的输出电流4)宽的输入电压范围,HV型号甚至可达40V~60V;5)内部振荡器产生52KHz的固定频率;6)可用TTL电平关闭输出,低功耗待机模式,典型待机电流为50μA;7)BUCK式降压器,较高的转换效率;8)过热和过流保护;9)可实现Buck-Boost式正-负电压转换器。
2、LM2576的管脚1)VIN—输入电压端,为减小输入瞬态电压和给调节器提供开关电流,此管脚应接旁路电容CIN;2)OUTPUT—稳压输出端,输出高电压为(VIN-VSAT),输出低电压为-0.5V。
3)GND—电路地;4)FEEDBACK—反馈端;5)ON/OFF—控制端,高电平有效,待机静态电流仅为75µA。
3、外围元件的选择:1)输入电容CIN:要选低ESR的铝或钽电容作为旁路电容,防止在输入端出现大的瞬态电压。
还有,当你的输入电压波动较大,输出电流有较高,容量一定要选用大些,470μF--10000μF都是可行的选择;电容的电流均方根值至少要为直流负载电流的1/2;基于安全考虑,电容的额定耐压值要为最大输入电压的1.5倍。
千万不要选用瓷片电容,会造成严重的噪声干扰!Nichicon的铝电解电容不错。
选好了此电容,设计就成功了一半!2)续流二极管:首选肖特基二极管,因为此类二极管开关速度快、正向压降低、反向恢复时间短,千万不要选用1N4000/1N5400之类的普通整流管!3)储能电感:建议好好看看datasheet中的电感选择曲线,要求有高的通流量和对应的电感值,也就是说,电感的直流通流量直接影响输出电流。
lm2596中文资料
VIN=25V,VOUT =3V, ILOAD=3A
η
效率
VIN=25V,VOUT =15V,ILOAD=3A
电气特性(所有输出)
典型值(2) 极限值(3)
单位
12.0
88 1.230
73 90
11.52/11.40 12.48/12.60
V V(min) V(max) %
1.193/1.180 1.267/1.280
2000
V
气流焊(60 秒)
215
℃
焊接时的管脚
TO-263
温度
红外线焊接(10 秒)
245
℃
TO-220
波峰焊/电烙铁焊接(10 秒)
260
℃
最高结温
150
℃
工 作条 件
温度范围 电源电压
-40~125
℃
4.5~40
V
注 1:人体放电模式相当于一个 100PF 的电容通过一个 1.5K 的电阻向每个管脚放电。
电气特性
说明:标准字体对应的项目适合于 TJ=25℃时,带下划线的粗斜体字对应的项目适合于整个温度范围; 系统参量(4) 测试电路见图 1
符号
参量
条件
典型值(2)
极限值(3)
单位
LM2596□—3.3 (见注 14)
VOUT
输出电压
3.3 4.75V≤VIN≤40V,
0.2A≤ILOAD≤3A
η
效率
A(max)
50
μA(max)
2 30
mA mA(max)
5 10
mA mA(max)
80
μA
200/250
μA(max) ˏ
LM2596开关电源 多路开关电源 DC-DC降压电源 固定可调输出 原理图和PCB
LM2596开关电源多路开关电源DC-DC降压电源固定/可调输出原理图和PCB基本原理开关电源的基本原理就不做赘述,有兴趣的可以看下我们TPS5430正负电源的原理简介即可。
芯片选型LM2596最大负载电流能到3A,有多个规格可选,3.3V、5V、12V以及可调输出等,ADJ输出范围是1.2V到Vin-1V,最大可支持40V输入,也有特殊规格比如LM2596-HVS,可达60V 的输入的电压,但是容易买到假芯片。
这个大家都懂的。
我们可以大致看出芯片的价格相对比较便宜,所以在普通使用场合,该芯片的性价比还是可以的。
原理图&3D-PCB在原理图方面基本没有这个特别介绍,主要是布局以及PCB布线的讲解。
具体讲解1、原理图需要注意电容以及二极管的方向,至于耐压、封装以及选型问题可以参考TPS5430开关电源分析。
2、这边截取了一路的布局以及走线作为示意。
首先C10和C12为电源输入滤波,应该尽量靠近芯片输入端,其次是输入的线应该尽量的粗,才能满足大电流。
3、芯片的第5脚是GND脚,需要在旁边放两个接地的过孔,这样有利于电流的释放接入背面的GND平面。
4、由于输出电流大是芯片发热就会比较厉害,所以在芯片散热焊盘的地方打了12个过孔方便散热。
5、其次是在接近输出端子的地方加一个C16电容可以进一步的减小纹波。
6、需要特别注意的是D5二极管为整流二极管,正向端接GND必须要良好接地,也就是需要过孔或者较粗的线接到输入电源的GND。
模块原理图-PDF、原理图库、PCB库下载以下为原文地址,https:///Elecdemo/article/details/103276839下载需要积分,仅供参考。
官方网址。
LM2596(开关电压调节器)中文版
η
效率
VIN=12V,ILOAD=3A
73
LM2596□—5.0 (见注 14)
VOUT
输出电压
5.0 7V≤VIN≤40V, 0.2A≤ILOAD≤3A
η
效率
VIN=12V,ILOAD=3A
80
3.168/3.135 3.432/3.465
V V(min) V(max) %
LM2596 开关电压调节器 SEPTEMBER, 2004
LM2596 开关电压调节器
LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出 3A 的驱动电流,同时具有很好的线性和 负载调节特性。固定输出版本有 3.3V、5V、12V, 可调版本可以输出小于 37V 的各种电压。
该器件内部集成频率补偿和固定频率发生器,开关频率为 150KHz,与低频开关调节器相比较,可以使用更小 规格的滤波元件。由于该器件只需 4 个外接元件,可以使用通用的标准电感,这更优化了 LM2596 的使用,极大地 简化了开关电源电路的设计。
其封装形式包括标准的 5 脚 TO-220 封装(DIP)和 5 脚 TO-263 表贴封装(SMD)。 该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围 内,振荡频率误差在±15%的范围内;可以用仅 80μA 的待机电流, 实现外部断电;具有自我保护电路(一个两级 降频限流保护和一个在异常情况下断电的过温完全保护电路)
应用领域
※ 高效率降压调节器 ※ 单片开关电压调节器 ※ 正、负电压转换器
典型应用(固定输出)
LM2596□-5.0
1
管脚图
LM2596 开关电压调节器 SEPTEMBER, 2004
LM2596芯片简介
编辑本段LM2596芯片简介LM2596系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ),和基准稳压器(1.23v),并具有完善的保护电路:电流限制、热关断电路等。
利用该器件只需极少的外围器件便可构成高效稳压电路。
提供有:3.3V、5V、12V及可调(-ADJ)等多个电压档次产品。
此外,该芯片还提供了工作状态的外部控制引脚。
LM2596芯片LM2596系列开关稳压集成电路的主要特性如下:1、最大输出电流:3A2、最高输入电压:40V3、输出电压:3.3V、5V、12V及(ADJ)等,最大输出电压37V4、震荡频率:150KHZ5、转换效率:75%~88%(不同电压输出时的转换效率不同)6、工作温度范围:-40℃~+125℃7、工作模式:低功耗/正常两种模式。
可外部控制8、工作模式控制:TTL电平相容9、所需外部组件:仅四个(不可调);六个(可调)10、器件保护:热关断及电流限制11、封装形式:5脚(TO-220(T);TO-263(S))编辑本段LM2596内部框图LM2596芯片内部框图。
注:此图为TO-220封装形式的内部框图。
LM2596内部包含150KHZ振荡器、1.23v基准稳压电路、热关断电路、电流限制电路、放大器、比较器和内部[1]稳压电路等。
为了产生不同的输出电压通常将比较器的负端接基准电压(1.23V ),正端接分压电阻网络。
其中R1=1KΩ,R2分别为1.7KΩ(3.3v),3.1KΩ(5V),8.8KΩ(12V)、0(-ADJ)。
将输出电压的分压电阻网络的输出同内部基准稳压值1.23V进行比较,若电压有偏差,则可用放大器控制内部振荡器的输出占空比,从而使输出电压保持稳定。
编辑本段LM2596经典应用实例具体应用时可根据需要选择:LM2596-5V、LM2596-3.3等。
要获得+1.8V、+5V输出电压时请选用A图,要获得+3.3V输出电压时请选用B图。
lm2596中文资料
VFB
反馈电压
0.2A≤ILOAD≤3A
VOUT 调为 3V, 电路图见图 1
η
效率
VIN=25V,VOUT =3V, ILOAD=3A
VIN=25V,VOUT =15V,ILOAD=3A
电气特性(所有输出)
典型值(2) 极限值(3)
单位
12.0
88 1.230
73 90
11.52/11.40 12.48/12.60
特点
※ 3.3V、5V、12V 的固定电压输出和可调电压输出 ※ 可调输出电压范围 1.2V~37V±4% ※ 输出线性好且负载可调节 ※ 输出电流可高达 3A ※ 输入电压可高达 40V ※ 采用 150KHz 的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高 ※ 低功耗待机模式,IQ 的典型值为 80μA ※ TTL 断电能力 ※ 具有过热保护和限流保护功能 ※ 封装形式:TO-220(T)和 TO-263(S) ※ 外围电路简单,仅需 4 个外接元件, 且使用容易购买的标准电感
5
TO-263 封装(S)尺寸图
单位:英寸/毫米
TO-220 封装(T)尺寸图
单位:英寸/毫米
6
设计步骤及实例
固定输出调节器的设计步骤
条件:VOUT=3.3(或 5 、或 12)V , VIN(max)为最大直流输入电压, ILOAD(max)为最大负载电流 步骤: 1. 电感的选择(L1) A. 要根据图 4、图 5 和图 6 所示的数据选择电感的适当值(分别对应输出电压为 3.3V、5V 和 12V),对于所有的
符号
参量
器件参数
Ib
反馈偏置电流
fO
振荡器频率
VSAT
LM2596集成稳压芯片的基本特性及应用
LM2596集成稳压芯片的基本特性及应用
LM2596系列是3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ)和基准稳压器(1.23v),并具有完善的爱护电路、电流限制、热关断电路等。
利用该器件只需极少的外围器件便可构成高效稳压电路。
LM2596内部包含150KHZ振荡器、1.23v基准稳压电路、热关断电路、电流限制电路、放大器、比较器和内部稳压电路等。
该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调整器相比较,可以使用更小规格的滤波元件。
由于该器件只需4个外接元件,可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。
其封装形式包括标准的5脚TO-220封装(DIP)和5脚TO-263表贴封装(SMD)。
该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我爱护电路(一个两级降频限流爱护和一个在特别状况下断电的过温完全爱护电路)
特性如下:
1、输出电压:3.3V、5V、12V及(ADJ)等,最大输出电压37V
2、工作模式:低功耗/正常两种模式。
可外部掌握
3、工作模式掌握:TTL电平相容
4、所需外部组件:仅四个(不行调);六个(可调)
5、器件爱护:热关断及电流限制
6、封装形式:5脚(TO-220(T);TO-263(S))
应用领域:
1、高效率降压调整器
2、单片开关电压调整器
3、正、负电压转换器。
降压型功率变换器LM2596的原理及应用
第十四届全国电源撞术年会论文集降压型功率变换器LM2596的原理及应用蒋玉萍中国运载火箭技术研究院(100076)摘要:本文介绍降压型功率变换器I.M2596的原理和应用。
叙词弋竖璺兰銮i姆开关电源ADJ。
LM2596控制芯片的工作频率为1501Cttz,其最大电流驱动I引言能力为3A,只需极少量的外围元件就可以实现辟压变换,大大LM7.596系列控制器是美国国家半导体公司推出的降压型开简化了小型开关电源的设计步骤,鳙短了开发周期。
关电源控制芯片,适用于简易高频降压变换器、扳上开关变换2特点和引脚说明器以及正负输出变换器。
该芯片具有四种不同的型号,输出电LM2596采用5脚TO一220(r)和5脚TO一263(s)封装,压分别为3.3v、5.OV、12V和可调输出四种,对应型号分别为:U心孵6T一3.3、删9耵一.5.0、u伫596T—12和U嘶T—如图I所示。
引坤50N,0FF引囊4Feed ma ck引朋3舒锄-d引箨201ln P at}胂l n_图l LM2596引脚封装2.1特点电压信号影响周围的敏感电路,线路板爱锕区需直接与该脚相LM2596系列控制芯片具有以下特点:连。
(1)具有四种不同的输出电压可供选择:3.3V、5.0V、(3)Gnxa,cl(引脚3):信号地。
12V、可调:(4)Feedback(引脚4):输出电压拉测端,构成反馈回路。
(2)可词输出电压范围为1.2v一37V±4%;(5)ON/OFF(引脚5):通过该脚可以控制芯片的工作状(3)最大输出负载驱动电流3A;态。
当滚脚上的电压低于1.3V时,菩片进入工作状态;当该(4)输入电压最高可达40V;脚上的电压高于1.3v时(最高可达到25V),芯片进人睡眠状(5)只需4个外国元件即可实现降压变换;态。
芯片进^睡眠状态后,所需供电电流仅为80,t工A。
如果该引(6)内置150Ⅺb定频振荡器;脚接地或悬空,则睡眠状态被屏蔽,芯片将始终处于工作状态。
LM2596开关电压调节
A. 要根据图 4、图 5 和图 6 所示的数据选择电感的适当值(分别对应输出电压为 3.3V、5V 和 12V),对于所有的 其他输出电压的情况,请看输出可调的调节器的设计步骤。 B. 在图 4、图 5 和图 6 上,由最大输入电压线和最大负载电流线的交叉区域确定电感的值,每一个区域都对应一 个电感值和一个电感代号(LXX)。 C. 从图 8 中所列的 4 个厂家所列的产品号中选择一个合适的电感,最好使用磁屏蔽结构的电感器。 2. A. 输出电容的选择(COUT) 在大多数的应用中,低等效电阻(Low ESR)的电解电容值在 82μF 到 820μF 之间,而低等效电阻(Low ESR)钽电容值在 10μF 到 470μF 之间效果最好。电容应该靠近 IC,同时,电容的管脚要短,连接的铜线也 要短,电容值不要大于 820μF。 B. 为了简化电容选择步骤,请参阅表 2 所示的电容快速选择,这个表包含了最好的设计方案所需的不同的输入电 压、输出电压、负载电流、不同的电感和输出电容。 C. 电解电容的耐压至少应是输出电压的 1.5 倍,为了得到纹波更低的输出电压,需要更高耐压值的电容器。
LM2596 开关电压调Байду номын сангаас器
LM2596 开关电压调节器
SEPTEMBER, 2004
LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出 3A 的驱动电流,同时具有很好的线性和 负载调节特性。固定输出版本有 3.3V、5V、12V, 可调版本可以输出小于 37V 的各种电压。 该器件内部集成频率补偿和固定频率发生器,开关频率为 150KHz,与低频开关调节器相比较,可以使用更小 规格的滤波元件。由于该器件只需 4 个外接元件,可以使用通用的标准电感,这更优化了 LM2596 的使用,极大地 简化了开关电源电路的设计。 其封装形式包括标准的 5 脚 TO-220 封装(DIP)和 5 脚 TO-263 表贴封装(SMD)。 该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围 内,振荡频率误差在±15%的范围内;可以用仅 80μA 的待机电流, 实现外部断电;具有自我保护电路(一个两级 降频限流保护和一个在异常情况下断电的过温完全保护电路)
lm2596中文资料
lm2596中文资料1. 概述lm2596是一款高效率开关电源稳压器芯片,广泛应用于电子设备中对直流电压进行稳定调整的场合。
本文档将详细介绍lm2596的特性、工作原理、应用场景以及使用注意事项。
2. 特性•宽输入电压范围:4V-40V•可调输出电压范围:1.23V-37V•高效率:可达到92%•最大输出电流:3A•过热保护功能3. 工作原理lm2596采用了开关稳压器的工作原理,通过周期性地开关和断开电流流通路径,将输入电压转换为稳定的输出电压。
其主要原理如下:1.输入电压通过电感和开关管传导到输出端,同时电容储存能量。
2.控制器检测输出电压,如果低于设定值,则控制开关管开启,使电流通过电感传输到输出端,提供稳定的输出电压。
3.如果输出电压高于设定值,则控制开关管关闭,切断电流流动。
这种周期性的开关和断开电路,可以通过控制开关管的开启时间和关闭时间,来调整输出电压的稳定性和精确度。
4. 应用场景lm2596广泛应用于各种需要稳定直流电压的场合,以下是lm2596常见的应用场景:4.1 电子设备稳压电源lm2596可以根据需要调整输出电压,可以在电子设备中作为稳压电源芯片使用。
它可以将输入电压调整为稳定的输出电压,以供电子设备正常运行。
4.2 LED照明由于lm2596具有高效率和可调输出电压的特性,非常适合用于LED照明应用。
lm2596可以将输入电压调整为适合LED灯的电压,提供稳定的电源以驱动LED照明。
4.3 高频电源lm2596的高效率和宽输入电压范围,使其非常适合用于高频电源应用。
lm2596可以将输入电压转换为稳定的高频输出,满足高频电源的需求。
5. 使用注意事项在使用lm2596时,请注意以下事项:1.输入电压不要超过40V,否则可能导致芯片过载损坏。
2.充分考虑散热问题,尽量避免芯片过热,建议在芯片周围预留散热空间。
3.在使用lm2596时,应按照芯片的使用说明进行正确的电路设计和连接。
LM2596开关电压调节
2.0
V(min)
5
μA
15
μA(max)
0.02
μA
5
μA(max)
注 2: 典型值是指在 25℃下的数值,代表最常见的情况。 注 3: 所有的极限参数都必须适合于室温(用正常字体表示)和极限温度(用带下划线的粗斜体字表示),所有室
温下的极限参数都是经过测试得出的,所有的极限温度下的极限参数都可以通过使用相关的标准静态质量控 制方法来加以保证。 注 4:二极管、电感、输入和输出端的电容以及调节输出电压的电阻等外接元件可能会影响开关调节器的系统性 能。当 LM2596 用在如图 1 所示测试电路中时,其系统性能如电气特性中系统参量所示。 注 5:当第二级电流极限功能启动时,开关频率会有所下降, 下降的程度取决于过电流的严重程度。 注 6:输出管脚不连接电感、电容或二极管。 注 7:把反馈管脚和输出管脚断开,把反馈管脚连到 0V,以强制输出开关晶体管导通。 注 8:把反馈管脚和输出管脚断开,把反馈管脚连到 12V(当 VOUT=3.3V、5V 或 ADJ 时)或 15V(当 VOUT=12V 时), 以强制输出开关晶体管截止。 注 9:VIN=40V 注 10:环境热阻(不外加散热片)是指 TO-220 封装的 LM2596 垂直焊接在覆盖有面积约为 1 平方英寸铜箔的 PCB 上所对应的值。 注 11:TO-263 封装的 LM2596 垂直焊接在覆盖有面积约为 0.5 平方英寸铜箔的单面 PCB 上所对应的环境热阻。 注 12:TO-263 封装的 LM2596 垂直焊接在覆盖有面积约为 2.5 平方英寸铜箔的单面 PCB 上所对应的环境热阻。 注 13:TO-263 封装的 LM2596 垂直焊接在覆盖有面积约为 3 平方英寸铜箔的双面 PCB 上所对应的环境热阻,而 PCB 的另一面覆盖有面积约为 16 平方英寸铜箔。 注14: LM2596T-3.3, LM2596T-5.0, LM2596T-12, LM2596T-ADJ为TO-220封装(DIP); LM2596S-3.3, LM2596S-5.0,LM2596S-12, LM2596S-ADJ为TO-263封装(SMT)。
LM2596利用说明
输入电压范围:直流至40V (输入的电压必需比要输出的电压高以上。
不能升压)
输出电压范围:直流至35V 电压持续可调,高效率(最大92%)最大输出电流为3A。
实测12V输入,5V输出电流1A时的负载调整率低于1%
注:此为降压模块,输入电压必需比输出电压高。
输出2A以下能够长时刻不用加散热片输出电流大于(或输出功率大于10W)长时刻工作请加散热片。
XL6009 400KHz 4A开关电流升压模块
XTW6009 是一款4A开关电流的高性能升压(BOOST)模块。
该模块利用第二代高频开关技术的XL6009E1为核心芯片,性能远超第一代技术的LM2577。
XL6009升压模块本钱更低,性能更卓越,LM2577模块即将被淘汰。
●超宽输入电压3V~32V,最正确工作电压范围是5~32V;
●超宽输出电压5V~35V;
●内置4A高效MOSFET开关管,使效率最高达94%;(LM2577电流仅3A)
●超高开关频率400KHz,能够用小容量的滤波电容即能达到超级好的成效,纹波更小,体积更小。
(LM2577频率仅50KHz)
输入5V 输出12V 输入输出12V 18W
输入12V 输出15V 2A 30W 输入12V 输出16V 2A 32W 输入12V 输出18V 输入12V 输出19V
输入12V 输出24V 1 A 24W。
中文资料 LM2596电源降压调整器
LM2596电源降压调整器(150KHz,3A)英文文章名:LM2596 SIMPLE SWITCHER® Power Converter 150 kHz3A Step-Down Voltage Regulator文章出处:版本号:DS012583 日期:2002年5月摘录人:黄明强摘录日期:2007年5月3日是否好买估计:生产中心正在使用价格:概述:LM2596系列开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。
固定输出版本有3.3V、5V、12V,还有一个输出可调版本。
添加少量的外部元件就可以使用该电压调节器。
该器件内部集成有频率补偿和固定频率发生器。
开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件。
其封装形式包括标准的5脚TO-220封装和5脚TO-263表贴封装。
由于该器件可以使用通用的标准电感,这更优化了LM2596的使用,极大地简化了开关电源电路的设计。
该器件还有其他一些特点:在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级降频限流保护和一个在异常情况下断电的过温完全保护电路)。
特征:※ 3.3V、5V、12V的固定电压输出和可调电压输出※可调输出电压范围1.2V~37V,±4%※封装形式:TO-220(T)和TO-263(S)※保证输出负载电流3A※输入电压可高达40V※仅需4个外接元件※很好的线性和负载调节特性※150KHz固定频率的内部振荡器※TTL关断能力※低功耗待机模式,I Q的典型值为80μA※高转换效率※使用容易购买的标准电感※具有过热保护和限流保护功能应用:※简易高效率降压调节器※在卡上的开关电压调节器※正到负电压转换器专利号:5382918典型电路(固定输出电压版本):封装和型号:※弯曲交叉的引脚,通孔封装,5脚TO-220 (T)订货型号:LM2596T-3.3, LM2596T-5.0,LM2596T-12 or LM2596T-ADJ ※表面贴封装,5脚TO-263 (S)订货型号:LM2596S-3.3, LM2596S-5.0, LM2596S-12 or LM2596S-ADJ 极限条件:最大供电电压45VON /OFF 管脚输入电压-0.3≤V≤+25V反馈脚电压-0.3≤V≤+25V输出电压到地(稳态)-1V功率消耗内部限定储存温度-65°C 到+150°CESD易感性(人体模式)2KV焊接温度T封装(锡焊, 10秒) +260°C最大结温+150°C运行条件:温度范围-40°C≤T J≤+125°C供电电压 4.5V 到40VLM2596-3.3电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围LM2596-5.0电参数说明:标准字体对应的项目适合于TJ=25℃时,粗体字对应的项目适合于全温度范围LM2596-12电参数所有输出电压版本电参数说明:标准字体对应的项目适合于TJ=25℃时,带下划线的粗斜体字对应的项目适合于整个温度范围。
LM2596S-3.3-3A降压电压稳压器应用方案
随着科学技术的发展进步,电子元器逐渐智能化,多样化,应用的范围也越来越广泛。
LM2596系列:3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ),和基准稳压器(1.23v),并具有完善的保护电路:电流限制、热关断电路等。
利用该器件只需极少的外围器件便可构成高效稳压电路。
提供有:3.3V、5V、12V及可调(-ADJ)等多个电压档次产品。
深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。
奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。
销售网络覆盖华东、华南及华北地区。
奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管主要品牌产品:OWEIS-TECHOWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485ILX232 ILX3232三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668 TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列LM2596SNVS124C – NOVEMBER 1999 – REVISED APRIL 2013LM2596 SIMPLE SWITCHER ® Power Converter 150 kHz3A Step-Down Voltage RegulatorCheck for Samples: LM2596FEATURESDESCRIPTION• 3.3V, 5V, 12V, and Adjustable Output Versions • Adjustable Version Output Voltage Range,1.2V to 37V ±4% Max Over Line and Load The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and loadConditionsregulation. These devices are available in fixed output • Available in TO-220 and TO-263 Packages • Ensured 3A Output Load Current • Input Voltage Range Up to 40V• Requires Only 4 External Components voltages of 3.3V, 5V, 12V, and an adjustable output version.Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation , and a • Excellent Line and Load Regulationfixed-frequency oscillator.Specifications• 150 kHz Fixed Frequency Internal Oscillator The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter • TTL Shutdown Capabilitycomponents than what would be needed with lower • Low Power Standby Mode, I Q Typically 80 μA • High Efficiencyfrequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 • Uses Readily Available Standard Inductors surface mount package.• Thermal Shutdown and Current Limit A standard series of inductors are available from Protectionseveral different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the APPLICATIONSdesign of switch-mode power supplies.• Simple High-Efficiency Step-Down (Buck)Other features include a ensured ±4% tolerance on Regulatoroutput voltage under specified input voltage and • On-Card Switching Regulators • Positive to Negative ConverterTypical Application(Fixed Output Voltage Versions)output load conditions, and ±15% on the oscillator frequency. External shutdown is included, featuring typically 80 μA standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions. (1)(1) † Patent Number 5,382,918.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.SIMPLE SWITCHER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date. Copyright © 1999–2013, Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does notnecessarily include testing of all parameters.Connection DiagramsFigure 1. 5-Lead Bent and Staggered Leads, Figure 2. 5-Lead DDPAK/TO-263 (S) Package Through Hole TO-220 (T) Package See Package Number KTT0005BSee Package Number NDH0005DThese devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.(1)(2)(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions forwhich the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics.(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability andspecifications.(3) The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.LM2596-5.0 Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.LM2596-12 Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affectswitching regulator system performance. When the LM2596 is used as shown in the Figure 20 test circuit, system performance will be as shown in system parameters of Electrical Characteristics section.All Output Voltage Versions Electrical CharacteristicsSpecifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V IN = 12V for the 3.3V, 5V, and Adjustable version and V IN = 24V for the(1) Typical numbers are at 25°C and represent the most likely norm.(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limitsare 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).(3) The switching frequency is reduced when the second stage current limit is activated.(4) No diode, inductor or capacitor connected to output pin.(5) Feedback pin removed from output and connected to 0V to force the output transistor switch ON.(6) Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to forcethe output transistor switch OFF.(7) V IN = 40V.All Output Voltage Versions Electrical Characteristics (continued)Specifications with standard type face are for T J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V IN = 12V for the 3.3V, 5V, and Adjustable version and V IN = 24V for the(8) Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to aprinted circuit board with (1 oz.) copper area of approximately 1 in2.(9) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in2 of (1 oz.)copper area.(10) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in2 of (1oz.) copper area.(11) Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in2 of (1 oz.)copper area on the LM2596S side of the board, and approximately 16 in2 of copper on the other side of the p-c board. See Application Information in this data sheet and the thermal model in Switchers Made Simple™ version 4.3 software.Typical Performance Characteristics(Circuit of Figure 20)NormalizedOutput Voltage Line RegulationFigure 3. Figure 4.Switch Saturation Efficiency VoltageFigure 5. Figure 6.Switch Current Limit Dropout VoltageFigure 7. Figure 8.(Circuit of Figure 20)Operating ShutdownQuiescent Current Quiescent CurrentFigure 9. Figure 10.Minimum Operating ON /OFF ThresholdSupply Voltage VoltageFigure 11. Figure 12.ON /OFF PinCurrent (Sinking) Switching FrequencyFigure 13. Figure 14.(Circuit of Figure 20)Continuous Mode Switching WaveformsFeedback Pin V IN = 20V, V OUT = 5V, I LOAD = 2ABias CurrentL = 32 μH, C OUT = 220 μF, C OUT ESR = 50 mΩA: Output Pin Voltage, 10V/div. B: Inductor Current 1A/div.C: Output Ripple Voltage, 50 mV/div.Figure 15.Figure 16. Horizontal Time Base: 2 μs/div.Discontinuous Mode Switching WaveformsLoad Transient Response for Continuous Mode V IN = 20V, V OUT = 5V, I LOAD = 500 mAV IN = 20V, V OUT = 5V, I LOAD = 500 mA to 2A L = 10 μH, C OUT = 330 μF, C OUT ESR = 45 mΩL = 32 μH, C OUT = 220 μF, C OUT ESR = 50 mΩA: Output Pin Voltage, 10V/div. B: Inductor Current 0.5A/div.C: Output Ripple Voltage, 100 mV/div.A: Output Voltage, 100 mV/div. (AC) B: 500 mA to 2A Load PulseFigure 17. Horizontal Time Base: 2 μs/div.Figure 18. Horizontal Time Base: 100 μs/div.Load Transient Response for Discontinuous ModeV IN = 20V, V OUT = 5V, I LOAD = 500 mA to 2A L = 10 μH, C OUT = 330 μF, C OUT ESR = 45 mΩA: Output Voltage, 100 mV/div. (AC) B: 500 mA to 2A Load PulseFigure 19. Horizontal Time Base: 200 μs/div.Test Circuit and Layout GuidelinesFixed Output Voltage VersionsC IN —470 μF, 50V, Aluminum Electrolytic Nichicon “PL Series” C OUT —220 μF, 25V Aluminum Electrolytic, Nichicon “PL Series” D1 —5A, 40V Schottky Rectifier, 1N5825 L1 —68 μH, L38where V REF = 1.23VAdjustable Output Voltage VersionsSelect R 1 to be approximately 1 kΩ, use a 1% resistor for best stability. C IN —470 μF, 50V, Aluminum Electrolytic Nichicon “PL Series” C OUT —220 μF, 35V Aluminum Electrolytic, Nichicon “PL Series” D1 —5A, 40V Schottky Rectifier, 1N5825 L1 —68 μH, L38 R1 —1 kΩ, 1%C FF —See Application Information SectionFigure 20. Standard Test Circuits and Layout GuidesAs in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher lC as possible using ground plane construction or single point grounding.If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, lC groundpath and C OUT wiring can cause problems.When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See Application Information section for moreinformation.)LM2596 Series Buck Regulator Design Procedure (Fixed Output)Table 1. LM2596 Fixed Voltage Quick Design Component Selection TableTable 1. LM2596 Fixed Voltage Quick Design Component Selection Table (continued)LM2596 Series Buck Regulator Design Procedure (Adjustable Output)= 1k (16.26 − 1) = 15.26k, closest 1% value is 15.4 kΩ. = 15.4 kΩ. Select a value for R 1 between 240Ω and 1.5 kΩ. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the temperature coefficient and the best stability 1% metal film resistors.)(2)2. Inductor Selection (L1)A. Calculate the inductor Volt • microsecond constant E • T (V • μs), from the following formula:where•V SAT = internal switch saturation voltage =1.16V•V D = diode forward voltage drop = 0.5V (4) B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 24.C. on the horizontal axis, select the maximum load current.D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).E. Select an appropriate inductor from the four manufacturer's part numbers listed in Table 3.E • T = 34.2 (V • μs)LOAD(max) = 3AFrom the inductor value selection guide shown ininductance region intersected by the 34 (V • μs) horizontalthe 3A vertical line is 47 μH, and the inductor code isFrom the table in Table 3, locate line L39, and select an inductor part number from the list of manufacturers part numbers.3. Output Capacitor SeIection (C OUT)See section on C OUT in Application Information section.From the quick design table shown in Table 2, locatevoltage column. From that column, locate the output voltage closest4. Feedforward Capacitor (C FF) (See Figure 20)For output voltages greater than approximately 10V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.(6) This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)LM2596 Series Buck Regulator Design Procedure (Adjustable Output)Table 2. Output Capacitor and Feedforward Capacitor Selection TableTable 2. Output Capacitor and Feedforward Capacitor Selection Table (continued)LM2596 Series Buck Regulator Design ProcedureINDUCTOR VALUE SELECTION GUIDES(For Continuous Mode Operation)Figure 21. LM2596-3.3 Figure 22. LM2596-5.0Figure 23. LM2596-12 Figure 24. LM2596-ADJTable 3. Inductor Manufacturers Part NumbersTable 4. Inductor Manufacturers Phone NumbersTable 5. Capacitor Manufacturers Phone NumbersTable 5. Capacitor Manufacturers Phone Numbers (continued)Table 6. Diode Selection TableBlock DiagramAPPLICATION INFORMATIONTable 7. PIN DESCRIPTIONSEXTERNAL COMPONENTSINPUT CAPACITORC IN—A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.The RMS current rating of a capacitor could be viewed as a capacitor's power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately 10°C above an ambient temperature of 105°C. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating. The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor's electrolyte, resulting in eventual failure. Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of 40°C, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to 70°C, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements.A graph shown in Figure 25 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS c urrent it is rated for. These curves were obtained from the Nichicon “PL” series of low ESR, high reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet.“Standard” electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime.Because of their small size and excellent performance, surface mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turn on when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a 100% surge current testing on their products to minimize this potential problem. If high turn on currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current.FEEDFORWARD CAPACITOR(Adjustable Output Voltage Version)C FF— A Feedforward Capacitor C FF, shown across R2 in Figure 20 is used when the ouput voltage is greater than 10V or when C OUT has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability. For C FF selection, see the Design Procedure section.Figure 25. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)OUTPUT CAPACITORC OUT— An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter.The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically 1% to 2% of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output. Using the capacitors listed in the tables, or similar types, will provide design solutions under all conditions.If very low output ripple voltage (less than 15 mV) is required, refer to the section on OUTPUT VOLTAGE RIPPLE AND TRANSIENTS for a post ripple filter.An aluminum electrolytic capacitor's ESR value is related to the capacitance value and its voltage rating. In most cases, higher voltage electrolytic capacitors have lower ESR values (see Figure 26 ). Often, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. The output capacitor for many different switcher designs often can be satisfied with only three or four different capacitor values and several different voltage ratings. See the quick design component selection tables in Table 1 and 4 for typical capacitor values, voltage ratings, and manufacturers capacitor types.Electrolytic ca pacitors are not recommended for temperatures below −25°C. The ESR rises dramatically at cold temperatures and typically rises 3X @ −25°C and as much as 10X at −40°C. See curve shown in Figure 27.Solid tantalum capacitors have a much better ESR spec for cold temperatures and are recommended for temperatures below −25°C.Figure 26. Capacitor ESR vs Capacitor Voltage Rating (Typical Low ESR Electrolytic Capacitor)CATCH DIODEBuck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the LM2596 using short leads and short printed circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5V and lower). Ultra-fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N5400 series are much too slow and should not be used.Figure 27. Capacitor ESR Change vs TemperatureINDUCTOR SELECTIONAll switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low.The LM2596 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation.In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 21 through 8). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 28.)Figure 28. (ΔI IND) Peak-to-Peak InductorRipple Current (as a Percentage of the Load Current)vs Load CurrentBy allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low.When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current.Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wound on a ferrite bobbin. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMl). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe. Also see section on OPEN CORE INDUCTORS.When multiple switching regulators are located on the same PC board, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents. A torroid or E-core inductor (closed magnetic structure) should be used in these situations.The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Coilcraft, and powdered iron toroid for Pulse Engineering.Exceeding an inductor's maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2596. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.。
LM2596降压模块在单片机系统中的应用
LM2596降压模块在单片机系统中的应用
想到单片机系统中的稳压降压模块大家第一时间会想到LM7805,AMS117等常用芯片作为单片机系统中的稳压模块,而且他们造价低廉,不需要外部扩展其它元件就可以直接使用所以得到了广泛的应用。
LM7805
但是LM7805有一个致命的缺点就是发热量高,而且输出电流较小,在单片机系统中如果外部器件电流很小选择7805是可以的,当我们需要驱动继电器等电流较大的模块时LM7805就显得力不从心,高的发热量意味着电源的损耗。
而且7805的输入电压如果在15V左右即使输出负载需要的电流很小其发热量也很高大约85摄氏度左右,所以必须要对其增加散热片或者散热风扇。
这就意味着成本及PCB布局的影响。
而LM2596是降压型电源管理单片集成电路的开关电压调节器,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。
固定输出版本有3.3V、5V、12V,可调版本可以输出小于37V的各种电压。
由于其为开关电压调节器所以自身发热量很小,输入电压范围宽与7805相比需要增加几个外部元件。
LM2596固定输出
从上图我们可以看到相比较于7805 LM2596多了四个外部元件,单其输出电流最大可以达到3A足以应对常见的单片机系统,而且输入电压范围广最高输入电压40V。
LM2596还有可调版本用可调版本做一个0-30v的大电流可调电源完全没有问题。
LM2596可调版本
上图是一个LM2596可调版本电路图,其可以输出0-37v的直流电压,相比较于LM317性能强太多。
lm2596正转负电路中二极管的作用
lm2596正转负电路中二极管的作用二极管在LM2596正转负电路中起着至关重要的作用。
在这个电路中,二极管被用来保护其他元件不受到反向电压的损害,并确保电路正常工作。
下面将详细介绍二极管在LM2596正转负电路中的作用。
我们需要了解什么是LM2596正转负电路。
LM2596是一种非隔离型降压变换器,可以将输入电压降低到较低的输出电压。
正转负电路是指将输入电压调整为低于输入电压的负输出电压。
这个电路常用于一些特殊应用,如负电源供电、放大器的双电源供电等。
在LM2596正转负电路中,二极管被放置在电路的输出端。
它的主要作用是防止负载反馈到输入端,从而保护其他元件不受损害。
当负载产生反向电压时,二极管会将这部分电压导向地,避免其对整个电路产生负面影响。
二极管还有助于提供电流稳定性。
在LM2596正转负电路中,负载可能会出现变化,导致电流波动。
二极管可以起到稳定电流的作用,保持电路的稳定性和正常工作。
除了以上作用,二极管还可以提供反向电压保护。
在实际应用中,可能会出现一些异常情况,如电源短路或负载短路等。
这时,二极管会将反向电压导向地,防止电路中其他元件受到损害。
需要注意的是,在选择二极管时,要考虑其正向电压降和反向电流容量。
正向电压降是指二极管正向导通时所需的电压降。
反向电流容量是指二极管在反向导通时所能承受的最大电流。
合适的二极管选择可以保证电路的性能和稳定性。
二极管在LM2596正转负电路中起着至关重要的作用。
它能够保护其他元件不受到反向电压的损害,并确保电路的正常工作。
同时,二极管还可以提供电流稳定性和反向电压保护。
正确选择和使用二极管可以确保电路的性能和稳定性。
LM2596高效开关降压模块
LM2596高效开关降压模块
板上带有电源指示发光二极管,蓝色的精密多圈密封式可调电阻,无论工作条件再恶劣也不会影响输出电压的精度。
如果我们把板上的使能跳线帽拔掉,再用单片机的3.3V~5V的电压可以控制模块的第5脚,可以控制LM2596模块的开启或者关闭。
典型工作效率测试如下:12V转5V=(4.93*0.998)/(11.99*0.501)*100%=82.3%(由于测试没考虑线上压降实际输出效率优于测试效率)
性能参数:
核心芯片:LM2596S
体积大小:47*26*14毫米
模块重量:15克
输入电压:4.75~35V
输出电压:1.25~26V任意可调
输出电流:最大3A,可长期工作在2A无需加散热片。
应用领域:数码产品电源系统、太阳能电源处理、LED产品,节能电器等。