数字电子技术基础课后答案
数字电子技术基础课后答案
数字电子技术基础课后答案第一篇:数字电子技术基础1. 什么是布尔代数?布尔代数是一种数学运算,用于解释数字电子技术中的逻辑运算。
它由乔治·布尔发明,以处理逻辑思维,并用于数字电路的设计和分析。
2. 什么是逻辑门?举例说明。
逻辑门是一种数字电路,执行布尔逻辑运算操作。
在逻辑门中,输入和输出都是数字信号。
常见的逻辑门有与门(AND)、或门(OR)和非门(NOT)等。
例如,一个与门的输出只有在所有输入都是 1 的时候才为 1。
3. 什么是触发器?举例说明。
触发器是一种数字电路,用于存储二进制位。
它可以在两个状态之间切换,称为 set(1)和 reset(0)。
触发器通常用于存储数据或构建计数器和时序器。
例如,D 触发器可以用于存储单个比特数据。
4. 什么是计数器?举例说明。
计数器是一种数字电路,用于计数。
它可以用预设值计数或者递增计数。
计数器在时序电路和数字信号处理中应用广泛。
例如,一个简单的四位二进制计数器可能从 0000 开始,递增到 1111。
5. 什么是编码器?举例说明。
编码器是一种数字电路,用于将一个符号编码转换为另一个符号编码。
编码器通常用于数字信号压缩和传输中,并且可以用于键盘编码,控制器设计和其他数字信号处理应用。
例如,使用二进制输入,BCD 编码器可以将四个输入位转换为十进制数字。
6. 什么是译码器?举例说明。
译码器是一种数字电路,用于将一种编码转换为另一种编码。
它可以将数字信号从一种格式(如二进制)转换为另一种格式(如 BCD)。
译码器也可以用于输出数字信号的选择性控制,如一个多路选择器或一个Demux。
例如, 4-16 译码器将 4 个输入线路变为 16 个输出线路。
7. 什么是多路复用器?举例说明。
多路复用器(MUX)是一种数字电路,将多个输入值选择性地转移到一个单独的输出通道。
它通常用于数字信号处理和通信应用中,例如在多路转接和数字电视中。
例如,一个 4 通道 MUX 可以选择 4 个输入通道中的一个在其单个输出通道上输出。
《数字电子技术基础》课后习题及参考答案
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
《数字电子技术基础》课后习题及参考答案
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。
(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。
000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。
数字电子技术基础(第4版)_课后习题答案
第一章1.1二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16 (2)(127)10=(1111111)2=(7F)161621016210)3.19()1010 1(11001.101(25.7)(4))A D7030.6()0101 0000 0111 1101 0110 (0.0110(0.39)(3) B ====1.8用公式化简逻辑函数(1)Y=A+B (3)Y=1)=+(解:1A A 1)2(=+++=+++=+++=C B A C C B A C B Y CB AC B A Y ADC C B AD C B C B AD DC A ABD CD B A Y =++=++=++=)()(Y )4(解:(5)Y=0 (7)Y=A+CDE ABCD E C ABCD CE AD B BC CE AD B BC Y CE AD B BC B A D C AC Y =+=⋅+=+⋅=++++=)()()()()()6(解:CB AC B C B A A C B A C B A C B A C B C B A A C B A C B A C B A Y C B A C B A C B A Y +=++=+++=++++=++++⋅+=++++++=)())(())()(())()((8解:)(D A D A C B Y ++=)9(E BD E D BF E A AD AC Y ++++=)10(1.9 (a) C B C B A Y += (b) C B A ABC Y +=(c) ACD D C A D C A B A Y D AC B A Y +++=+=21,(d) C B A ABC C B A C B A Y BC AC AB Y +++=++=21, 1.10 求下列函数的反函数并化简为最简与或式(1)C B C A Y += (2)DC A Y++=CB C B AC C B AC B A BC AC C A B A BC AC C A B A Y BCAC C A B A Y +=++++=⋅+++=+++=+++=))((]))([())(())(()3(解: (4)C B A Y ++=DC ABD C B D C A D C B D A C A C D C B C A D A Y CD C B C A D A Y =++=+++=++++=+++=)())(())()(()5(解: (6)0=Y1.11 将函数化简为最小项之和的形式CB AC B A ABC BC A C B A C B A C B A ABC BC A CB A AC B B A BC A C B AC BC A Y CB AC BC A Y +++=++++=++++=++=++=)()()1(解:D C B A CD B A D C B A ABCD BCD A D C B A Y +++++=)(2)13()()()(3CD B A BCD A D BC A D C B A D C B A ABCD D ABC D C AB D C AB CD B A D C B A D C B A D C B A CD AB B A B A B A ACD D AC D C A D C A CD A D C A D C A D C A B BCD D BC D C B D C B CD B D C B D C B D C B A Y CDB A Y ++++++++++++=+++++++++++++++++++=++=解:)((4)CD B A D ABC D BC A D C AB D C AB CD B A ABCD BCD A Y +++++++= (5)MN L N M L N LM N M L N M L N M L Y +++++=1.12 将下列各函数式化为最大项之积的形式(1)))()((C B A C B A C B A Y ++++++= (2)))()((C B A C B A C B A Y ++++++= (3)76430M M M M M Y ⋅⋅⋅⋅= (4)13129640M M M M M M Y ⋅⋅⋅⋅⋅= (5)530M M M Y ⋅⋅=1.13 用卡诺图化简法将下列函数化为最简与或形式:(1)D A Y +=(3)1=Y (2)D C BC C A B A Y +++= (4)B AC B A Y ++=B A DC Y ++=AC B A Y +=(5)D C B Y ++= (6)C B AC B A Y ++=(7)C Y = (9)D C A C B D A D B Y +++=(8))14,11,10,9,8,6,4,3,2,1,0(),,,(m D C B A Y ∑= (10)),,(),,(741m m m C B A Y ∑=D A D C B Y ++=ABC C B A C B A Y ++=1.14化简下列逻辑函数(1)D C B A Y +++= (2)D C A D C Y += (3)C A D AB Y ++= (4)D B C B Y += (5)E D C A D A E BD CE E D B A Y +++++=1.20将下列函数化为最简与或式(1)AD D C B D C A Y ++= (2)AC D A B Y ++= (3)C B A Y ++= (4)D B A Y +=第二章2.1解:Vv v V V v T I mA I mA Vv T V v a o B o B BS B o B 10T 3.0~0(2.017.0230103.0207.101.57.05I V 5v 1021.5201.510V 0v )(i i ≈≈∴<=×≈=−≈∴−=×+−=截止,负值,悬空时,都行)饱和-=时,=当截止时,=当都行)=饱和,,-=悬空时,都行)饱和。
数字电子技术基础课后答案
数字电子技术基础课后答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章逻辑代数基础、用布尔代数的基本公式和规则证明下列等式。
、求下列函数的反函数。
、写出下列函数的对偶式。
、证明函数 F 为自对偶函数。
、用公式将下列函数化简为最简“与或”式。
、逻辑函数。
若A 、B 、C 、D 、的输入波形如图所示,画出逻辑函数 F 的波形。
、逻辑函数 F 1 、 F 2 、 F 3 的逻辑图如图 2 — 35 所示,证明 F 1 =F 2 =F 3 。
、给出“与非”门、“或非”门及“异或”门逻辑符号如图 2 — 36 ( a )所示,若 A 、 B 的波形如图 2 — 36 ( b ),画出 F 1 、F 2 、 F 3 波形图。
、用卡诺图将下列函数化为最简“与或”式。
、将下列具有无关最小项的函数化为最简“与或”式;、用卡诺图将下列函数化为最简“与或”式;用卡诺图化简下列带有约束条件的逻辑函数、用最少的“与非”门画出下列多输出逻辑函数的逻辑图。
第二章门电路由 TTL 门组成的电路如图所示,已知它们的输入短路电流为 I is = ,高电平输入漏电流 I iH = 40。
试问:当 A=B=1 时, G 1 的灌电流(拉,灌)为; A=0 时, G 1 的拉电流(拉,灌)为120。
图中示出了某门电路的特性曲线,试据此确定它的下列参数:输出高电平 U OH = 3V ;输出低电平 U OL = ;输入短路电流 I iS = ;高电平输入漏电流 I iH = ;阈值电平 U T = ;开门电平 U ON = ;关门电平 U OFF = ;低电平噪声容限 U NL = ;高电平噪声容限 U NH = ;最大灌电流 I OLmax = 15mA ;扇出系数 N= 10 .TTL 门电路输入端悬空时,应视为高电平;(高电平,低电平,不定)此时如用万用表测量其电压,读数约为(, 0V ,)。
数字电子技术基础课后习题及参考答案
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
全版《数字电子技术基础》课后习题答案.docx
00
01
11
10
0
0
1
0
1
1
1
0
1
0
另有开关S,只有S=1时,Y才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC
A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
4.15、
(2)解:
1、写出逻辑函数的最小项表达式
2、将逻辑函数Y和CT74LS138的输出表达式进行比较
(45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001)余3BCD
(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000)余3BCD
(374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD
二、
3、√
4、√
三、
5、A
7、C
练习题:
4.1;解:(a) ,所以电路为与门。
(b) ,所以电路为同或门
4.5、解:当M=0时, ,同理可推:
,
所以此时电路输出反码。
当M=1时, ,同理可推:
,
所以此时电路输出原码。
4.7、
4.9、解:设三个开关分别对应变量A、B、C,输出Y’,列出卡诺图如下:
《数字电子技术基础》课后习题及参考答案#(精选.)
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
数字电子技术基础课后答案
数字电子技术基础课后答案第一章1.1 选择题答案1.C2.D3.A4.B1.2 填空题答案1.二进制2.163.2^n4.霍尔定律1.3 简答题答案1.数字系统的特征:离散性、离散性变量、离散性元件。
2.多位二进制数的表示:每一位上的位权是2的倍数,从右到左依次是1、2、4、8、16,即从低到高位权递增。
3.数字电路中的常用逻辑门:与门、或门、非门、异或门。
4.二进制加法器:用于实现二进制数的加法操作,可以分为半加器和全加器两种。
第二章2.1 选择题答案1.B2.C3.A4.D2.2 填空题答案1.与非门2.非3.低电平4.与非门2.3 简答题答案1.逻辑代数的基本运算:与运算、或运算、非运算。
2.逻辑门的基本类型:与门、或门、非门。
3.逻辑电位表示:用两个不同的电平来表示逻辑0和逻辑1,常用的是低电平表示逻辑0,高电平表示逻辑1。
4.逻辑门的输入输出关系:根据输入的逻辑电平,逻辑门会产生对应的输出电平。
第三章3.1 选择题答案1.C2.B3.D4.A3.2 填空题答案1.或非门2.与非门3.反相器4.同或门3.3 简答题答案1.反相器的功能:将输入信号的逻辑电平反转。
2.与非门和或非门的功能:与非门将与门的输出进行反向,或非门将或门的输出进行反向。
3.同或门的功能:在输入信号相同的情况下,输出逻辑1;在输入信号不同的情况下,输出逻辑0。
4.逻辑门的级联:逻辑门可以通过级联连接,实现复杂的逻辑功能。
第四章4.1 选择题答案1.C2.D3.A4.B4.2 填空题答案1.半加器2.与非门3.非门4.不可用4.3 简答题答案1.半加器的功能:用于实现两个单独的二进制位的相加操作,产生和位和进位位。
2.全加器的功能:用于实现三个二进制位的相加操作,包括输入的两个二进制位和进位位,产生和位和进位位。
3.二进制加法器的级联:通过将多个全加器级联连接,可以实现多位二进制数的相加操作。
4.数字比较器的功能:用于比较两个多位二进制数的大小,根据比较结果输出大于、小于或等于的信号。
《数字电子技术基础》课后习题及参考答案
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
数字电子技术基础课后习题及答案
第1章习题与参考答案【题1-1】将以下十进制数转换为二进制数、八进制数、十六进制数。
〔1〕25;〔2〕43;〔3〕56;〔4〕78解:〔1〕25=〔11001〕2=〔31〕8=〔19〕16〔2〕43=〔101011〕2=〔53〕8=〔2B〕16〔3〕56=〔111000〕2=〔70〕8=〔38〕16〔4〕〔1001110〕2、〔116〕8、〔4E〕16【题1-2】将以下二进制数转换为十进制数。
〔1〕10110001;〔2〕10101010;〔3〕11110001;〔4〕10001000解:〔1〕10110001=177〔2〕10101010=170〔3〕11110001=241〔4〕10001000=136【题1-3】将以下十六进制数转换为十进制数。
〔1〕FF;〔2〕3FF;〔3〕AB;〔4〕13FF解:〔1〕〔FF〕16=255〔2〕〔3FF〕16=1023〔3〕〔AB〕16=171〔4〕〔13FF〕16=5119【题1-4】将以下十六进制数转换为二进制数。
〔1〕11;〔2〕9C;〔3〕B1;〔4〕AF解:〔1〕〔11〕16=〔00010001〕2〔2〕〔9C〕16=〔10011100〕2〔3〕〔B1〕16=〔1011 0001〕2〔4〕〔AF〕16=〔10101111〕2【题1-5】将以下二进制数转换为十进制数。
〔1〕1110.01;〔2〕1010.11;〔3〕1100.101;〔4〕1001.0101解:〔1〕〔1110.01〕2=14.25〔2〕〔1010.11〕2=10.75〔3〕〔1001.0101〕2=9.3125【题1-6】将以下十进制数转换为二进制数。
〔1〕20.7;〔2〕10.2;〔3〕5.8;〔4〕101.71解:〔1〕20.7=〔10100.1011〕2〔2〕10.2=〔1010.0011〕2〔3〕5.8=〔101.1100〕2〔4〕101.71=〔1100101.1011〕2【题1-7】写出以下二进制数的反码与补码〔最高位为符号位〕。
《数字电子技术基础》课后习题答案
《数字电子技术基础》课后习题答案《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1) 十六进制转二进制: 4 5 C0100 0101 1100二进制转八进制:010 001 011 1002 13 4十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2) 十六进制转二进制: 6 D E . C 80110 1101 1110 . 1100 1000二进制转八进制:011 011 011 110 . 110 010 0003 3 3 6 . 6 2十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1 758.78125)10所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3) 十六进制转二进制:8 F E . F D1000 1111 1110. 1111 1101二进制转八进制:100 011 111 110 . 111111 0104 3 7 6 . 7 7 2十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*1 6-2=(2302.98828125)10所以:(8FE.FD)16=(100011111110.11111101)2=(4376.772)8=(2302.98828125)10(4) 十六进制转二进制:7 9 E . F D0111 1001 1110 . 1111 1101二进制转八进制:011 110 011 110 . 111 111 0103 6 3 6 . 7 7 2十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16 -2=(1950. 98828125)10所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1 950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD (45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则二、2、×4、×三、1、B3、D5、C练习题:2.2:(4)解:Y=AB̅+BD+DCE+A̅D=AB̅+BD+AD+A̅D+DCE=AB̅+BD+D+DCE=AB̅+D (B +1+CE ) =AB̅+D (8)解:Y =(A ̅+B ̅+C ̅)(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(A ̅+B ̅+C ̅+DE ) =[(A ̅+B ̅+C ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅+(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅](A ̅+B ̅+C ̅+DE ) =(ABC +DE )(ABC ̅̅̅̅̅̅+DE ) =DE 2.3:(2)证明:左边=A +A ̅(B +C)̅̅̅̅̅̅̅̅̅̅̅̅ =A +A ̅+(B +C)̅̅̅̅̅̅̅̅̅̅=A +B̅C ̅ =右式所以等式成立(4)证明:左边= (A̅B +AB ̅)⨁C = (A̅B +AB ̅)C ̅+ (A ̅B +AB ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅C = (A ̅BC ̅+AB ̅C ̅)+A ̅B ̅̅̅̅⋅AB̅̅̅̅̅⋅C =A̅BC ̅+AB ̅C ̅+(A +B ̅)(A ̅+B )C =A̅BC ̅+AB ̅C ̅+(AB +A ̅B ̅)C =A̅BC ̅+AB ̅C ̅+ABC +A ̅B ̅C 右边= ABC +(A +B +C )AB ̅̅̅̅⋅BC ̅̅̅̅⋅CA̅̅̅̅ =ABC +(A +B +C )[(A̅+B ̅)(B ̅+C ̅)(C ̅+A ̅)] =ABC +(A +B +C )(A̅B ̅+A ̅C ̅+B ̅+B ̅C ̅)(C ̅+A ̅)=ABC +(A +B +C )(A̅B ̅C ̅+A ̅C ̅+B ̅C ̅+A ̅B ̅) =ABC +AB̅C ̅+A ̅BC ̅+A ̅B ̅C 左边=右边,所以等式成立 2.4(1)Y ′=(A +B ̅C ̅)(A ̅+BC) 2.5(3)Y ̅=A ̅B ̅(C ̅+D ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ C ̅D ̅(A ̅+B ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2.6:(1)Y =AB +AC +BC=AB (C +C̅)+AC (B +B ̅)+BC (A +A ̅) =ABC +ABC ̅+AB ̅C +A ̅BC 2.7:(1)Y =A ̅B ̅+B ̅C ̅+AC +B ̅C 卡诺图如下: B C A 00 0111100 1 1 1111所以,Y=B̅+AC2.8:(2)画卡诺图如下:B C A 0001 11 100 1 1 0 11 1 1 1 1Y(A,B,C)=A+B̅+C̅2.9:(1)画Y(A,B,C,D)=∑m(0,1,2,3,4,6,8)+∑d(10,11,12,13,14)如下:CDAB00 01 11 1000 1 1 1 101 1 111 ×××10 1 ××Y (A,B,C,D )=A̅B ̅+D ̅ 2.10:(3)解:化简最小项式: Y =AB +(A̅B +C ̅)(A ̅B ̅+C ) =AB +(A̅B A ̅B ̅+A ̅BC +A ̅B ̅C ̅+C ̅C ) =AB (C +C̅)+A ̅BC +A ̅B ̅C ̅ =ABC +ABC ̅+A ̅BC +A ̅B ̅C ̅ =∑m (0,3,6,7)最大项式:Y =∏M(1,2,4,5) 2.13:(3)Y =AB̅+BC ̅+AB ̅C ̅+ABC ̅D ̅ =AB̅(1+C ̅)+BC ̅(1+AD ̅) =AB̅+BC ̅ =AB̅+BC ̅̿̿̿̿̿̿̿̿̿̿̿̿ = AB̅̅̅̅̅∙BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅技能题:2.16 解:设三种不同火灾探测器分别为A 、B 、C ,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:B C A 00 01 11 10 0 0 0 1 0 1 0 1 1 1Y =AB +AC +BC=AB +AC +BC ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=AB ̅̅̅̅⋅AC ̅̅̅̅⋅BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=(A ̅+B ̅)(A ̅+C ̅)(B ̅+C ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅+B ̅̅̅̅̅̅̅̅̅+A ̅+C ̅̅̅̅̅̅̅̅̅+B ̅+C ̅̅̅̅̅̅̅̅̅第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空;二、1、√8、√;三、1、A4、D练习题:3.2、解:(a)因为接地电阻4.7k Ω,开门电阻3k Ω,R>R on ,相当于接入高电平1,所以Y =A ̅B ̅1̅̅̅̅̅̅=A +B +0=A +B(e) 因为接地电阻510Ω,关门电0.8k Ω,R<R off ,相当于接入高电平0,所以、Y =A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A̅⋅B ̅∙1̅̅̅̅̅̅̅̅̅̅=A +B +0=A +B3.4、解:(a) Y1=A+B+0̅̅̅̅̅̅̅̅̅̅̅̅̅=A+B̅̅̅̅̅̅̅̅(c) Y3=A+B+1̅̅̅̅̅̅̅̅̅̅̅̅̅=1̅=0(f) Y6=A⋅0+B⋅1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅3.7、解:(a) Y1=A⨁B⋅C=(A̅B+AB̅)C=A̅BC+AB̅C3.8、解:输出高电平时,带负载的个数2020400===IHOHOH I I NG 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===ILOLOL I I NG 反相器可带17个同类反相器3.12EN=1时,Y 1=A , Y 2=B ̅EN=0时,Y 1=A ̅, Y 2=B3.17根据题意,设A为具有否决权的股东,其余两位股东为B、C,画卡诺图如下,BCA00 01 11 100 0 0 0 01 0 1 1 1则表达结果Y的表达式为:Y=AB+AC=AB+AC̿̿̿̿̿̿̿̿̿̿̿̿=AB̅̅̅̅⋅AC̅̅̅̅̅̅̅̅̅̅̅̅̅̅逻辑电路如下:技能题:3.20:解:根据题意,A、B、C、D变量的卡诺图如下:CD AB00 01 11 1000 0 0 0 001 0 0 0 011 0 1 1 110 0 0 0 0Y =ABC +ABD =ABC +ABD ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=ABC ̅̅̅̅̅̅⋅ABD ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、3、√4、√三、5、A7、C练习题:4.1;解:(a) Y =A⨁B +B ̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅B +AB ̅+B ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅B +B ̅̅̅̅̅̅̅̅̅̅̅=A ̅+B̅̅̅̅̅̅̅̅̅=AB ,所以电路为与门。
数字电子技术基础课后答案全解
【 3-5】用卡诺图化简下列带有约束条件的逻辑函数
(1) P1 A, B, C, D
m(3,6,8,9,11,12)
(0,1,2,13,14,15) AC BD BCD (或ACD)
d
(2) P2(A,B,C,D)= m(0,2,3,4,5,6,11,12)
(8,9,10,13,14,15) BC BC D
有” 1”
4、摩根定理表示为: A B = A B ; A B = A B 。
5、函数表达式 Y= AB C D ,则其对偶式为 Y = ( A B)C D 。
6、根据反演规则,若 Y= AB C D C ,则 Y ( AB C D) C 。
7、指出下列各式中哪些是四变量 A B C D 的最小项和最大项。在最小项后的(
(1) F1 = ABC AB 1
(2) F2 = ABCD ABD ACD AD
(3) F3 AC ABC ACD CD A CD
(4) F4 A B C ( A B C ) ( A B C ) A BC
【 3-3】 用卡诺图化简下列各式
(1) F1 BC AB ABC AB C
(3) F3 AC AC BC BC AB AC BC
第 3 页 /共 46 页
CMOS
A F1
10k
(a)
TTL
A
B
F2
100
(b)
CMOS
A
B
F3
51
(c)
TTL
A
B
F4
100k
CMOS
A
B
F5
10k
(d)
解: (a) F1 A (b)
(e) 图 4.4
数字电子技术基础课后答案(太原理工大学教科书)
《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(全)数字电子技术基础课后答案
【题
(
解:(1)A=0,B=0
(2)A=0,B=1或C=1
(3)A=1,B=0,C=1
(4)A=0,B=1或C=0
【题
(
解:(1)
A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
(2)
当A取1时,输出Y为1,其他情况Y=0。
【题
(
(
解:(1)左边 右边
【题
(1)
解:(1)25=(0010 0101)BCD
(
(
(
【题
解:4位数格雷码;
0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、
第
【题
图题2-1
解:
【题
图题2-2
解:
【题
图题2-3
解:
【题
图题2-4
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
数字电子技术基础课后答案(李雪飞)(精品)
第1章[题1.1](1)模拟,数字(2)逻辑真值表,逻辑函数式,逻辑图,卡诺图(3)正逻辑,负逻辑(4)脉冲幅度U m ,脉冲周期T ,脉冲宽度t w (5)占空比[题1.2](1)c (2) d (3)d (4)a (5)c (6)b (7)b (8)a (9)c (10) [题1.3](1)(215)D ,(D7)H (2)(100)D ,(64)H (3)(158.828125)D ,(9E.D4)H [题1.4](1)(2942)D (2)(10010010.01110101)BCD[题1.5](1)原码和补码都是01001 (2)原码是11101,补码是10011[题1.6](1)()[]D C D C ++=+++=A C B A Y(2)()E A D A C B A E D C B A Y /++=+=(3)()()()()[]C B A BC A C AB C B A C A C B B A C B A C B A Y +++=++++++= [题1.7] (1)()[]D C A D C C B A Y ++=+++='(2)()()D B AC C B D C C B B A Y ++=+++=[题1.8]略[题1.9] 表1-18(a )对应的逻辑函数是C B A BC A C B A Y ++=,逻辑图为表1-18(b )对应的逻辑函数是D C C A C B D C AB D C AB D C B A D C B A D C B A D C B A D C B A Y ++=++++++=[题1.10](1)BC A C B A C B A C AB ABC Y ++++=(2)MNQ Q N M Q N M Q N M NQ M Y ++++=[题1.11](1)C A C A B A C A C A B A Y =++=(2)B A B A Y =+=(3)C B A C B A Y ⋅=+=(4)B AC B AC C B B A AC Y =+=++=[题1.12](1)1=Y(2)()0=++=B A C B AD CD A B A Y(3)()()C B C A C B A C B A BC A C B A C B A BC A C B A Y +=+++=++=(4)1=Y(5)Y=B A C A C B ++(6)1=Y(7)D AC C A D C Y ++=(8)D C D A B Y ++=[题1.13](1)C B C A Y+= (2)AC B A Y+= (3)C B A D C A D C A C B A Y+++= (4)D AB CD A C B Y++= (5)D C A D C BD C A D A Y++++=(6)D B AC B A D B Y +++=(7)BD D C A C B A D C A C B A Y ++++=(8)AB C B C A Y ++=(9)C Y =(10)D C D A B Y ++=[题1.14](1)D B A D C A AD Y ++=(2)C B Y +=(3)C A Y +=(4)D C D B B A Y ++=(5)C B C B D Y ++=第2章[题2.1](1)小规模集成门电路、中规模集成门电路、大规模集成门电路和超大规模集成门电路(2)阈值电压或门槛电压(3)噪声容限(4)输入短路电流(5)扇出系数(6)高电平、低电平和高阻态(7)连接在一起、一恒定逻辑值、逻辑1、逻辑0[题2.2](1)d (2)b (3)b (4)b (5)B C (6)c (7)a[题2.3][题2.4][题2.5]解:根据mA 8(max)OL =I 时V 25.0OL ≤V 的要求可得204.08|I |8n IL ==≤ 而根据V 2.3OH ≥V 时mA 4.0(max)OH -=I 又可求得2002.04.0I 4.0I |I |n IH IH max OH ===≤')( 故G M 最多可驱动20个同样的反相器。
《数字电子技术基础》课后习题答案
《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1)十六进制转二进制:45 C010*********二进制转八进制:010*********2134十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2)十六进制转二进制:6D E.C8011011011110.11001000二进制转八进制:011011011110.1100100003336.62十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1758.78125)10所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3)十六进制转二进制:8F E.F D100011111110.11111101二进制转八进制:100011111110.1111110104376.772十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10所以:(8FE.FD)16=(100011111110.11111101)2=(437 6.772)8=(2302.98828125)10 (4)十六进制转二进制:79E.F D011110011110.11111101二进制转八进制:011110011110.1111110103636.772十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16-2=(1950. 98828125)10所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD(45.36)10 =(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10 =(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10 =(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则 二、 2、×4、× 三、 1、B 3、D5、C练习题:2.2:(4)解:Y =AB̅+BD +DCE +A D =AB̅+BD +AD +A D +DCE =AB̅+BD +D +DCE =AB̅+D (B +1+CE ) =AB̅+D (8)解:Y =(A +B ̅+C )(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(A +B ̅+C +DE ) =[(A +B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅+(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅](A +B ̅+C +DE ) =(ABC +DE )(ABC ̅̅̅̅̅̅+DE ) =DE2.3:(2)证明:左边=A +A (B +C)̅̅̅̅̅̅̅̅̅̅̅̅ =A +A +(B +C)̅̅̅̅̅̅̅̅̅̅ =A +B̅C ̅ =右式所以等式成立(4)证明:左边= (A B +AB̅)⨁C = (A B +AB ̅)C + (A B +AB̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅C = (A BC +AB ̅C )+A B ̅̅̅̅⋅AB̅̅̅̅⋅C =A BC +AB̅C +(A +B ̅)(A +B )C =A BC +AB̅C +(AB +A B ̅)C =A BC +AB̅C +ABC +A B ̅C 右边= ABC +(A +B +C )AB̅̅̅̅⋅BC ̅̅̅̅⋅CA ̅̅̅̅ =ABC +(A +B +C )[(A +B̅)(B ̅+C )(C +A )]=ABC +(A +B +C )(A B̅+A C +B ̅+B ̅C )(C +A ) =ABC +(A +B +C )(A B̅C +A C +B ̅C +A B ̅) =ABC +AB̅C +A BC +A B ̅C 左边=右边,所以等式成立 2.4(1)Y ′=(A +B̅C )(A +BC) 2.5(3)Y ̅=A B ̅̅̅̅(C +D ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ C D ̅̅̅̅̅(A +B ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2.6:(1)Y =AB +AC +BC=AB (C +C̅)+AC (B +B ̅)+BC (A +A ̅) =ABC +ABC̅+AB ̅C +A ̅BC 2.7:(1)Y =A B̅+B ̅C +AC +B ̅C 卡诺图如下:所以,Y =B2.8:(2)画卡诺图如下:Y(A,B,C)=A +B̅+C2.9:(1)画Y (A,B,C,D )=∑m (0,1,2,3,4,6,8)+∑d(10,11,12,13,14)如下:Y (A,B,C,D )=A B̅+D ̅2.10:(3)解:化简最小项式:Y =AB +(A B +C )(A B̅+C ) =AB +(A B A B̅+A BC +A B ̅C +C C ) =AB (C +C )+A BC +A B̅C =ABC +ABC ̅+A BC +A B ̅C =∑m (0,3,6,7)最大项式:Y =∏M(1,2,4,5)2.13:(3)Y =AB̅+BC +AB ̅C +ABC D ̅ =AB̅(1+C )+BC (1+AD ̅) =AB ̅+BC =AB ̅+BC ̿̿̿̿̿̿̿̿̿̿̿̿ = AB ̅̅̅∙BC ̅̅̅̅̅̅̅̅̅̅̅技能题:2.16 解:设三种不同火灾探测器分别为A 、B 、C ,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:Y =AB +AC +BC =AB +AC +BC ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿ =AB ̅̅̅̅⋅AC̅̅̅̅⋅BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =(A +B ̅)(A +C )(B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =A +B ̅̅̅̅̅̅̅̅+A +C ̅̅̅̅̅̅̅̅+B ̅+C̅̅̅̅̅̅̅̅第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空; 二、 1、√ 8、√; 三、 1、A 4、D练习题:3.2、解:(a)因为接地电阻4.7k Ω,开门电阻3k Ω,R>R on ,相当于接入高电平1,所以Y =A B 1̅̅̅̅̅̅=A +B +0=A +B (e) 因为接地电阻510Ω,关门电0.8k Ω,R<R off ,相当于接入高电平0,所以、 Y =A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅⋅B ̅∙1̅̅̅̅̅̅̅̅̅̅=A +B +0=A +B3.4、解:(a) Y 1=A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅(c) Y 3=A +B +1̅̅̅̅̅̅̅̅̅̅̅̅̅=1̅=0(f) Y 6=A ⋅0+B ⋅1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅3.7、解:(a) Y 1=A⨁B ⋅C =(A B +AB̅)C =A B C +AB ̅C3.8、解:输出高电平时,带负载的个数2020400===IH OH OH I I N G 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===IL OL OL I I N G 反相器可带17个同类反相器3.12EN=1时,Y 1=A , Y 2=B̅ EN=0时,Y 1=A̅, Y 2=B3.17根据题意,设A 为具有否决权的股东,其余两位股东为B 、C ,画卡诺图如下,则表达结果Y 的表达式为:Y =AB +AC =AB +AC ̿̿̿̿̿̿̿̿̿̿̿=AB ̅̅̅̅⋅AC̅̅̅̅̅̅̅̅̅逻辑电路如下:技能题:3.20:解:根据题意,A 、B 、C 、D 变量的卡诺图如下:Y =ABC +ABD =ABC +ABD ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=ABC̅̅̅̅̅̅⋅ABD ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C练习题:4.1;解:(a) Y =A⨁B +B ̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +AB ̅+B ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +B ̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅̅=AB ,所以电路为与门。
数字电子技术基础课后答案全解主编_杨春玲_王淑娟
第3章 逻辑代数及逻辑门【3-1】 填空1、与模拟信号相比,数字信号的特点是它的 离散 性。
一个数字信号只有两种取值分别表示为0 和1 。
2、布尔代数中有三种最基本运算: 与 、 或 和 非 ,在此基础上又派生出五种基本运算,分别为与非、或非、异或、同或和与或非。
3、与运算的法则可概述为:有“0”出 0 ,全“1”出 1;类似地或运算的法则为 有”1”出”1”,全”0”出”0” 。
4、摩根定理表示为:A B ⋅=A B + ;A B +=A B ⋅。
5、函数表达式Y=AB C D ++,则其对偶式为Y '=()A B C D +⋅。
6、根据反演规则,若Y=AB C D C +++,则Y =()AB C D C ++⋅ 。
7、指出下列各式中哪些是四变量A B C D 的最小项和最大项。
在最小项后的( )里填入m i ,在最大项后的( )里填入M i ,其它填×(i 为最小项或最大项的序号)。
(1) A +B +D (× ); (2) ABCD (m 7 ); (3) ABC ( × ) (4)AB (C +D ) (×); (5) A B C D +++ (M 9 ) ; (6) A+B+CD (× ); 8、函数式F=AB+BC+CD 写成最小项之和的形式结果应为m ∑(3,6,7,11,12,13,14,15),写成最大项之积的形式结果应为M (∏ 0,1,2,4,5,8,9,10 )9、对逻辑运算判断下述说法是否正确,正确者在其后( )内打对号,反之打×。
(1) 若X +Y =X +Z ,则Y=Z ;( × ) (2) 若XY=XZ ,则Y=Z ;( × ) (3) 若X ⊕Y=X ⊕Z ,则Y=Z ;(√ ) 【3-2】用代数法化简下列各式(1) F 1 =1ABC AB += (2) F 2 =ABCD ABD ACD AD ++=(3)3F AC ABC ACD CD A CD=+++=+ (4) 4()()F A B C A B C A B C A BC=++⋅++⋅++=+【3-3】 用卡诺图化简下列各式(1) 1F BC AB ABC AB C =++=+ (2) 2F AB BC BC A B=++=+(3) 3F AC AC BC BC AB AC BC =+++=++ (4) 4F ABC ABD ACD CD ABC ACD A D=+++++=+或AB AC BC ++(5) 5F ABC AC ABD AB AC BD =++=++ (6) 6F AB CD ABC AD ABC A BC CD=++++=++(7) 7F AC AB BCD BD ABD ABCD A BD BD =+++++=++ (8) 8 F AC AC BD BD ABCD ABCD ABCD ABCD=+++=+++(9) 9()F A C D BCD ACD ABCD CD CD =⊕+++=+(10)F 10=10F AC AB BCD BEC DEC AB AC BD EC =++++=+++【3-4】 用卡诺图化简下列各式(1) P 1(A ,B ,C )=(0,1,2,5,6,7)m AB AC BC =++∑(2) P 2(A ,B ,C ,D )=(0,1,2,3,4,6,7,8,9,10,11,14)m AC AD B CD =+++∑ (3)P 3(A ,B ,C ,D )=(0,1,,4,6,8,9,10,12,13,14,15)m AB BC AD BD =+++∑(4) P 4 (A ,B ,C ,D )=17M M A BC BC D •=+++ 【3-5】用卡诺图化简下列带有约束条件的逻辑函数(1)()1,,,(3,6,8,9,11,12)(0,1,2,13,14,15)()d P A B C D m AC BD BCD ACD =+=++∑∑或 (2) P 2(A ,B ,C ,D )=(0,2,3,4,5,6,11,12)(8,9,10,13,14,15)dm BC BC D +=++∑∑(3) P 3 =()A C D ABCD ABCD AD ACD BCD ABD ++++=++或 AB +AC =0 (4) P 4 =A B ABCD ABCD +=+(A B C D 为互相排斥的一组变量,即在任何情况下它们之中不可能两个同时为1) 【3-6】 已知: Y 1 =AB AC BD ++ Y 2 =ABCD ACD BCD BC +++ 用卡诺图分别求出Y Y 12⋅, Y Y 12+, Y Y 12⊕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章逻辑代数基础1.1 、用布尔代数的基本公式和规则证明下列等式。
1.2 、求下列函数的反函数。
1.3 、写出下列函数的对偶式。
1.4 、证明函数F 为自对偶函数。
1.5 、用公式将下列函数化简为最简“与或”式。
1.6 、逻辑函数。
若 A 、B 、C 、D 、的输入波形如图所示,画出逻辑函数 F 的波形。
1.7 、逻辑函数F 1 、F 2 、F 3 的逻辑图如图2 — 35 所示,证明F 1 =F 2 =F 3 。
1.8 、给出“与非”门、“或非”门及“异或”门逻辑符号如图2 — 36 (a )所示,若A 、B 的波形如图2 — 36 ( b ),画出F 1 、 F 2 、 F 3 波形图。
1.9 、用卡诺图将下列函数化为最简“与或”式。
1.10 、将下列具有无关最小项的函数化为最简“与或”式;1.11 、用卡诺图将下列函数化为最简“与或”式;1.12 用卡诺图化简下列带有约束条件的逻辑函数1.13 、用最少的“与非”门画出下列多输出逻辑函数的逻辑图。
第二章门电路2.1 由TTL 门组成的电路如图2.1 所示,已知它们的输入短路电流为I is =1.6mA ,高电平输入漏电流I iH = 40。
试问:当A=B=1 时,G 1 的灌电流(拉,灌)为3.2mA ;A=0时,G 1 的拉电流(拉,灌)为120。
2.2 图2.2 中示出了某门电路的特性曲线,试据此确定它的下列参数:输出高电平U OH = 3V ;输出低电平U OL = 0.3V ;输入短路电流I iS = 1.4mA ;高电平输入漏电流I iH = 0.02mA ;阈值电平U T = 1.5V ;开门电平U ON = 1.5V ;关门电平U OFF = 1.5V ;低电平噪声容限U NL = 1.2V ;高电平噪声容限U NH = 1.5V ;最大灌电流I OLmax = 15mA ;扇出系数N= 10 .2.3 TTL 门电路输入端悬空时,应视为高电平;(高电平,低电平,不定)此时如用万用表测量其电压,读数约为1.4V (3.6V ,0V ,1.4V )。
2.4 CT74 、CT74H 、CT74S 、CT74LS 四个系列的TTL 集成电路,其中功耗最小的为CT74LS ;速度最快的为CT74S ;综合性能指标最好的为CT74LS 。
2.5 CMOS 门电路的特点:静态功耗极低(很大,极低);而动态功耗随着工作频率的提高而增加(增加,减小,不变);输入电阻很大(很大,很小);噪声容限高(高,低,等)于TTL 门。
2.6 集电极开路门(OC 门)在使用时须在输出与电源之间接一电阻(输出与地,输出与输入,输出与电源)。
2.7若G 2 的悬空的输入端接至0.3V ,结果如下表2.9 输入悬空时为高电平,M= “ 0 ” , V M =0.2V , 三态门输出为高阻, M 点电位由后面“与或非”门的输入状态决定,后面与门中有一输入为 0 ,所以 V M =0V 。
2.102.11 上图中门 1 的输出端断了,门 2 、 3 、 4 为高电平输入,此时 V M =1.6V 左右。
2.12 不能正常工作,因为不能同时有效,即不能同时为低电平。
2.13 图为由TTL “与非”门组成的电路,输入 A 、 B 的波形如图所示,试画出 V 0 的波形。
2.14 图中门 1 、 2 、 3 均为 TTL 门电路,平均延迟时间为 20ns ,画出 V O 的波形。
2--81 、 Y 1 =ABCDE Y2 =A+B+C+D+E2 、该扩展方法不适用于 TTL 门电路。
对与门而言,当扩展端 C=0.3V 时,其输入电压约为 1V ,已大于 U iLmax (0.8V) ;对或门而言,当扩展端 C=U OHmin =2.4V 时,其输入电压约为 1.7V ,已小于 U iHmin (2V) ;2--92--10 乙的说法正确,因为该点的电压有可能是变化的,此时万用表测得的是电压的平均值, 1.8V 的读数完全正常。
3.6 结果如下表:3.7 1. 真值表 : 3. 表达式: F 2 =M ,3.8 1 、真值表3.93.113.12 把 BCD 8421 码转换为 BCD 5421 码,前五个数码不需改变,后五个数码加 3 。
据此可得加数低两位的卡诺图,所以3.141 、2 、用八选一数据选择器和门电路实现。
3.15 用 8 选 1 数据选择器实现下列函数:第四章触发器和定时器4.14.2 ( 1 )特性表 (CP=0 时,保持; CP=1 时如下表 )(2) 特性方程(3) 该电路为锁存器(时钟型 D 触发器)。
CP=0 时,不接收 D 的数据; CP=1 时,把数据锁存。
( 但该电路有空翻 )4.3 (1) 、 C=0 时该电路属于组合电路; C=1 时是时序电路。
(2) 、(3) 、输出 Q 的波形如下图。
4.44.54.64.7 1 、 CP 作用下的输出 Q 1 Q 2 和 Z 的波形如下图; 2 、 Z 对 CP 三分频。
4.8 由得 D 触发器转换为 J-K 触发器的逻辑图如下面的左图;而将 J-K 触发器转换为 D 触发器的逻辑图如下面的右图。
4.11 1 、 555 定时器构成多谐振荡器。
2 、 u c, u o 1 , u o 2的波形3 、 u o 1 的频率,u o 2 的频率 f 2 =158H z4 、如果在 555 定时器的第 5 脚接入 4V 的电压源,则 u o 1 的频率变为4.12 图 (a) 是由 555 定时器构成的单稳态触发电路。
1 、工作原理(略);2 、暂稳态维持时间 t w =1.1RC=10ms(C 改为 1) ;3 、 u c 和 u o 的波形如下图:4 、若 u i 的低电平维持时间为 15m s ,要求暂稳态维持时间 t w 不变,可加入微分电路4.13 由 555 定时器构成的施密特触发器如图 (a) 所示1 、电路的电压传输特性曲线如左下图;2 、 u o 的波形如右下图;3 、为使电路能识别出 u i 中的第二个尖峰,应降低 555 定时器 5 脚的电压至 3V 左右。
4 、在 555 定时器的 7 脚能得到与 3 脚一样的信号,只需在 7 脚与电源之间接一电阻。
4.14 延迟时间 t d =1.1 × 1 × 10=11s扬声器发出声音的频率。
第五章时序数字电路5.1 解:5.2 解:5.3 解:逻辑功能:可自启动的同步五进制加法计数器。
5.4逻辑功能:移位寄存器型四进制计数器。
5.55.6 解:( 1 )当 X 1 X 2= “ 00 ” ;初始状态为“ 00 ” 时:逻辑功能:电路实现2 分频。
( 2 )当X 1 X 2 = “ 01 ”;初始状态为“ 00 ”时逻辑功能:电路实现 3 分频。
(3 )当X 1 X 2 = “ 11 ” ;初始状态为“ 00 ” 时:逻辑功能:电路实现 4 分频。
5.75.8 (1) 基本 R-S 触发器( × ) ; (2) 同步 R-S 触发器(× );(3) 主从 J-K 触发器 ( 能); (4) 维持阻塞 D 触发器 ( 能);(5) 边沿 J-K 触发器 ( 能 ) ; (6) CMOS 主从 D 触发器(能)。
5.9 根据题意,很容易画出下面的逻辑图:5.10 解:四种状态应使用 2 个触发器。
设: Q 1 =Y 1, Q 0 =Y 0用 D 触发器设计;5.11 解:用 J — K 触发器设计一个 4 进制计数器, Q 1 Q 0为变量译码器的输入。
5.12 解:5.13 解:设 S 0 :初始及检测成功状态; S 1 :输入一个“ 1 ” 状态; S 2 :输入“ 10 ” 状态;S 3 :输入“ 101 ” 状态; X :输入; Z :输出。
从 JK 的卡诺图可以看出电路的简化结果相似,以方案三画逻辑电路5.14 解:从时序图可得出状态图为:5.15 解:方法一:从时序图中可以看出将 Y 1 、 Y 2 、Z 为输出时,每经过 8 个时钟为一个循环。
同理,从卡诺图可以求出:方法二:从时序图中可以看出 Y 1 Y 2的状态为00 → 11 → 01 → 10 → 00 。
设:则状态图、状态表为:显然,方法二的结果比方法一的结果要简单得多。
其逻辑图为:5.16 解: ZW 的状态为 00 、 01 、 10 、 11 ,所以设:输出 Z=Q 1 ; W=Q 0 ;输入: X5.17 解: 1 、状态转换图2.Qd 对 CP 十分频, Qd 的占空比是 50% 。
5.18 答案:图 (a) 是七进制计数器,图 (b) 是十进制计数器,图 (c) 是十进制计数器 (6 7 ... 15 6)1 、若将图 (a) 中与非门 G 的输出改接至 C r 端,而令 L D =1 ,电路变为六进制2 、图 (b) 电路的输出采用的是余三码。
5.19 答案:方法是用90 ÷ 16=5 … 10 ,高位用 0101 作译码状态 , 低位用1010 作译码状态,由此得到了置数端L D 的连接方式。
5.20 答案:图 (a) 为三进制,图 (b) 为四进制,图 (c) 为七进制,图 (d) 为十二进制,图 (e) 为三十七进制5.21 解: 1. 对应 CP 的输出 Q a Q d Q c 和 Qb 的波形和状态转换图如下图:2 、按 Q a Q d Q c Qb 顺序电路给出的是 BCD 5421 码3 、按 Q d Q c QbQ a 顺序电路给出的编码如下图:5.22 答案:当 MN 为各种不同输入时,可组成四种不同进制的计数器第六章大规模集成电路6.1 填空1 、按构成材料的不同,存储器可分为磁芯和半导体存储器两种。
磁芯存储器利用正负剩磁来存储数据;而半导体存储器利用器件的开关状态来存储数据。
两者相比,前者一般容量较大;而后者具有速度快的特点。
2 、半导体存储器按功能分有 ROM 和 RAM 两种。
3 、 ROM 主要由地址译码器和存储矩阵两部分组成。
按照工作方式的不同进行分类, ROM 可分为固定内容的 ROM 、 PROM 和 EPROM 三种。
4 、某 EPROM 有 8 数据线, 13 位地址线,则其存储容量为 2 13 × 8 。
5 、 PLA 一般由与 ROM 、或 ROM 和反馈逻辑网络三部分组成。
6.26.36.46.56.6第七章数模与模数转换器7.1 填空1 、 8 位 D/A 转换器当输入数字量只有最高位为高电平时输出电压为 5V, 若只有最低位为高电平,则输出电压为 40mV 。
若输入为 10001000 ,则输出电压为 5.32V 。