新人教版八年级数学下册各章知识点及练习题

合集下载

人教版初中八年级数学下册第十八章《平行四边形》知识点(含答案解析)

人教版初中八年级数学下册第十八章《平行四边形》知识点(含答案解析)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .43.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个6.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组.7.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .48.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个9.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .510.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠11.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 12.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 13.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③14.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2415.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)18.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.19.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.20.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.21.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm .22.如图,在正八边形ABCDEFGH 中,AE 是对角线,则EAB ∠的度数是__________.23.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.24.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.25.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).26.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题27.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.28.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.29.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.30.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m ),绳子正好拉直,已知工作人员身高(DE )为1.7m ,求宣传牌(AB )的高度.。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

人教版八年级数学下册正方形知识点及同步练习、含答案

人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

人教版八年级下册数学专题复习及练习(含解析):轴对称

人教版八年级下册数学专题复习及练习(含解析):轴对称

专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。

这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。

4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。

知识点2:轴对称的性质(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5。

勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,c b a H G FE DC B A b ac b a c c a b c a b a b c c b aE D C B A时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6。

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。

2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。

4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

第17章勾股定理章末知识点分类训练2021-2022学年人教版八年级数学下册

第17章勾股定理章末知识点分类训练2021-2022学年人教版八年级数学下册

2021-2022学年人教版八年级数学下册《第17章勾股定理》章末知识点分类训练(附答案)一.勾股定理1.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.12.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣483.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm24.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2 B.4 C.8 D.165.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.6.如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm28.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.9.如图所示,在△ABC中,BD是AC边上的中线,BD⊥BC,∠ABC=120°,AB=8,则BC 的值为()A.3 B.4 C.5 D.610.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.11.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对12.将一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =30°,∠A=45°,AC=6,则CD的长为()A.2B.6﹣3C.6﹣2D.313.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB =,则CD=.14.如图,△ABC中,∠A=90°,AB=2,AC=4,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.15.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.16.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为.17.如图,等边三角形ABC中,M为AC上一点,AM=2,CM=8,P,Q分别为AB,BC上的动点,且∠PMQ=60°,则AP2+CQ2的最小值为.18.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.19.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.二.勾股定理的证明20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.三.勾股定理的逆定理21.△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=1::2C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:522.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5 B.6 C.D.5或23.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 24.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形25.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形26.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.27.如图,在边长为1的小正方形组成的网格中,四边形ABCD的顶点都在格点上.(1)求四边形ABCD的周长;(2)连接AC,试判断△ACD的形状,并说明理由.四.勾股数28.在下各组数中,是勾股数的一组是()A.B.5,6,7C.0.3,0.4,0.5 D.40,41,929.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.五.勾股定理的应用30.如图一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1331.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.32.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.33.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB =1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.六.平面展开-最短路径问题34.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.35.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm36.如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点A和点C相对,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度最小为()A.10 B.8 C.5 D.1137.如图,圆柱形玻璃杯,高为11cm,底面周长为16cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为.(结果保留根号)38.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm39.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.40.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.41.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.3542.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.参考答案一.勾股定理1.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.2.解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.3.解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F 的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.4.解:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选:B.5.解:在Rt△ABC中,AB2=AC2+BC2,AB=3,S阴影=S△AHC+S△BFC+S△AEB=×+×+×=(AC2+BC2+AB2)=AB2,=×32=.故图中阴影部分的面积为.6.解:过点A作AE∥BC交CD于点E,∵AB∥DC,∴四边形AECB是平行四边形,∴AB=EC,BC=AE,∠BCD=∠AED,∵∠ADC+∠BCD=90°,DC=2AB,∴AB=DE,∠ADC+∠AED=90°,∴∠DAE=90°,那么AD2+AE2=DE2,∵S1=AD2,S2=AB2=DE2,S3=BC2=AE2∴S2=S1+S3.故答案为:S2=S1+S3.7.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.8.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.9.解:过点A作AE⊥BC,交CB的延长线于E.∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵AB=8,∴BC=4,故选:B.10.解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD===4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故选:A.11.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=7+,故选:C.12.解:如图,过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=6,∴BC=AC=6,∵AB∥CF,∴BM=BC×sin45°=6×=6,CM=BM=6,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=6÷=2,∴CD=CM﹣MD=6﹣2.故选:C.13.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.14.解:如图,当PD=PB时,连接PA交BD于点H,过P作PE⊥AC于E,PF⊥AB于F.∵点D是AC边的中点,AC=4,∴AD=DC=2,∵AB=2,∴AB=AD,∵PB=PD,∴PA垂直平分线段BD,∴∠PAB=∠PAD,∴PE=PF,∵•AB•PF+•AC•PE=•AB•AC,∴PE=PF=,在Rt△ABD中,AB=AD=2,∴BD=AB=2,∵PA垂直平分BD,∴BH=DH=AH=BD=,∠PAE=∠APE=45°,∴PE=AE=,∴PA=PE=,PH=PA﹣AH=,在Rt△PBH中,PB===;当BD=BP′时,BP′=2,综上所述,线段BP的长度为2或,故答案为:2或.15.解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1∵EC>0∴EC=1.另解:依据AD⊥BC,BD=2CD,E是AD的中点,即可得判定△CDE∽△BDA,且相似比为1:2,∴=,即CE=1.故答案为:116.解:四边形DEFA是正方形,面积是4;△ABF,△ACD的面积相等,且都是×1×2=1.△BCE的面积是:×1×1=.则△ABC的面积是:4﹣1﹣1﹣=.在直角△ADC中根据勾股定理得到:AC==.设AC边上的高线长是x.则AC•x=x=,解得:x=.17.解:∵△ABC是等边三角形,∴∠A=∠C=90°,∴∠APM+∠AMP=120°,∵∠PMQ=60°,∴∠QMC+∠AMP=120°,∴∠APM=∠QMC,∴△APM∽△CMQ,∴,∴AP•CQ=AM•MC=16,设AP=x(x>0),CQ=y(>0),即xy=16,∵(x﹣y)2>0,即x2﹣2xy+y2≥0,当且仅当x=y时,(x﹣y)2有最小值,∴x2﹣2xy+y2=0,即x2+y2=2xy=32,∴AP2+CQ2的最小值为32.故答案为:32.18.解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴四边形ABDC的面积=S△ABC+S△BCD=×12×5+×3×4=36.19.解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.二.勾股定理的证明20.解:(2)因为S△ABC=S△ABI+S△BIC+S△AIC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.三.勾股定理的逆定理21.解:A、由b2=(a+c)(a﹣c)可得:c2+b2=a2,可以组成直角三角形,故此选项不符合题意;B、12+()2=22,可以组成直角三角形,故此选项不符合题意;C、由∠C=∠A﹣∠B,∠A+∠B+∠C=180°,可得:∠A=90°,可以组成直角三角形,故此选项不符合题意;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=75°,∴不能构成直角三角形,故选项符合题意;故选:D.22.解:当4是直角三角形的斜边时,32+x2=42,解得x=;当4是直角三角形的直角边时,32+42=x2,解得x=5.故使此三角形是直角三角形的x的值是5或.故选:D.23.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.24.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.25.解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.26.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.27.解:(1)由题意可知AB==3,AD==,DC==2,BC==,∴四边形ABCD的周长=AB+BC+CD+AD=+3+3;(2)△ACD是直角三角形,理由如下:∵AD=,DC=2,AC=5,∴AD2+CD2=AC2,∴△ACD是直角三角形.四.勾股数28.解:A、∵不是整数,∴此选项不符合题意.B、∵52+62≠72,∴此选项不符合题意;C、∵不是整数,∴此选项符合题意;D、∵402+92=412,∴此选项符合题意;故选:D.29.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.五.勾股定理的应用30.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.31.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.32.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.33.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.六.平面展开-最短路径问题34.解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.35.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选:C.36.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为3dm,∴AB=3dm,BC=BC′=4dm,∴AC2=32+42=25,∴AC=5dm.∴这圈金属丝的周长最小为2AC=10dm.故选:A.37.解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,A′C2=A′D2+CD2=82+122=208,∴CA′=4cm答:蚂蚁到达蜂蜜的最短距离的是4cm.故答案为4cm.38.解:由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202,所以彩带最短是52cm.故选:D.39.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.40.解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.41.解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.42.解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.。

人教版八年级数学下册名校课堂知识点训练(基础):一次函数的图象和性质

人教版八年级数学下册名校课堂知识点训练(基础):一次函数的图象和性质

《一次函数的图象与性质》基础训练知识点1 画一次函数图象1.已知函数23y x =-+.(1)在如图所示的平面直角坐标系中,画出这个函数的图象;(2)写出这个函数的图象与x 轴、y 轴的交点的坐标.知识点2 一次函数图象的平移2.(2019·湘潭)将一次函数3y x =的图象向上平移2个单位长度,所得图象的函数解析式为_________.3.若直线2y kx =+是由直线21y x =--平移得到的,则k =___________,即直线21y x =--沿y 轴向_________平移了__________个单位长度.知识点3 一次函数的图象与性质4.在平面直角坐标系中,一次函数1y x =-的图象是( )A. B. C. D.5.(2019·广安)一次函数23y x =-的图象经过的象限是( )A.一、二、三B.二、三、四C.一、三、四D.一、二、四6.(2018·常德)若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.0k <7.(2018·沈阳)在平面直角坐标系中,一次函数y kx b =+的图象如图所示,则k和b 的取值范围是( )A.00k b >>,B.00k b ><,C.00k b <>,D.00k b <<,8.(2019·天津)直线21y x =-与x 轴的交点坐标为_________.9.请你写出y 随着x 的增大而减小的一次函数解析式(写出一个即可):_________.10.(2019·成都)已知一次函数(3)1y k x =-+的图象经过第一、二、四象限,则k 的取值范围是___________.【变式】(2019·潍坊)当直线(22)3y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_________.11.已知关于x 的一次函数(21)3y m x m =++-.(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行于直线33y x =-,求m 的值;(3)当m 取何值时,函数图象与y 轴交点在x 轴下方?易错点1 忽视正比例函数是特殊的一次函数而致错12.一次函数y kx b =+不经过第三象限,则下列选项正确的是( )A.00k b <>,B.00k b <<,C.00k b <≤,D.00k b <≥, 易错点2 距离与坐标的转化未进行分类讨论而致错13.若直线6y kx =-与坐标轴围成的三角形面积为9,则k =__________.参考答案1.解:(1)图略.(2)函数23y x =-+与x 轴、y 轴的交点的坐标分别是3,0,(0,3)2⎛⎫ ⎪⎝⎭. 2.32y x =+ 3.2- 上 3 4.B 5.C 6.B 7.C 8.1,02⎛⎫ ⎪⎝⎭9.21y x =-+(答案不唯一,只要0k <即可) 10.3k <【变式】13k <<11.解:(1)3m =.(2)1m =.(3)3m <且12m ≠-. 12.D 13.2±。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

新人教版八年级数学下册勾股定理知识点和典型例习题1 (2)

新人教版八年级数学下册勾股定理知识点和典型例习题1 (2)

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为22()2S a b a a b b =+=++ 所以22a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长cbaHG F ED CBAbacbac ca bcab a bc cbaED CB A边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

新人教版八年级下册数学各章专项训练试题第17章 勾股定理(含答案)

新人教版八年级下册数学各章专项训练试题第17章 勾股定理(含答案)

第17章勾股定理专项训练专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.(第1题)2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C 坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据21≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( )A.13 cm B.40 cm C.130 cm D.169 cm(第3题)(第4题)4.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是________.用对称法求平面中最短问题5.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.(第5题)6.高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B 两城镇到P的距离之和最小.求这个最短距离.(第6题)用展开法求立体图形中最短问题类型1 圆柱中的最短问题(第7题)7.如图,已知圆柱体底面圆的半径为2π,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).类型2 圆锥中的最短问题8.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?2·1·c·n·j·y(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.(第8题)类型3 正方体中的最短问题9.如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.(第9题)类型4 长方体中的最短问题10.如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2.巧用勾股定理解折叠问题名师点金:折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角;(2)在图形中找到一个直角三角形,然后设图形中某一线段的长为x ,将此直角三角形的三边长用数或含有x 的代数式表示出来;(3)利用勾股定理列方程求出x ;(4)进行相关计算解决问题.巧用全等法求折叠中线段的长1.(中考·泰安)如图①是一直角三角形纸片,∠A =30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C ′处,折痕为BD ,如图②,再将图②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,则折痕DE 的长为( )(第1题) A.83cm B .2 3 cm C .2 2 cm D .3 cm巧用对称法求折叠中图形的面积2.如图所示,将长方形ABCD 沿直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,求△BED 的面积.(第2题)巧用方程思想求折叠中线段的长3.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第3题)巧用折叠探究线段之间的数量关系4.如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC 于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.(第4题)专训3.利用勾股定理解题的7种常见题型名师点金:勾股定理建立起了“数”与“形”的完美结合,应用勾股定理可以解与直角三角形有关的计算问题,证明含有平方关系的几何问题,作长为n(n为正整数)的线段,解决实际应用问题及专训一、专训二中的最短问题、折叠问题等,在解决过程中往往利用勾股定理列方程(组),有时需要通过作辅助线来构造直角三角形,化斜为直来解决问题.利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC中,∠ABC=90°,点D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.(第1题)利用勾股定理作长为n的线段2.已知线段a,作长为13a的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC中,∠ABC=90°,CD⊥AD,AD2=2AB2-CD2.求证:AB=BC.(第3题)利用勾股定理证明线段之间的平方关系4.如图,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=BC2+AP2.(第4题)利用勾股定理解非直角三角形问题5.如图,在△ABC 中,∠C =60°,AB =14,AC =10.求BC 的长.(第5题)利用勾股定理解实际生活中的应用6.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h ⎝ ⎛⎭⎪⎫即503 m/s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15 s ,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第6题)利用勾股定理探究动点问题7.如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm/s 的速度移动,设运动的时间为t 秒.(1)求BC 边的长;(2)当△ABP 为直角三角形时,借助图①求t 的值;(3)当△ABP 为等腰三角形时,借助图②求t 的值.(第7题)答案专训11.4(第2题)2.解:(1)如图,过点C 作AB 的垂线,交AB 的延长线于点E.∵∠ABC =120°,∴∠BCE =30°.在Rt △CBE 中,∵BC =20 km ,∴BE =10 km.由勾股定理可得CE =10 3 km.在Rt △ACE 中,∵AC2=AE2+CE2=(AB +BE)2+CE2=8 100+300=8 400, ∴AC =2021≈20×4.6=92(km).(2)选择乘“武黄城际列车”.理由如下:乘客车需时间t1=8060=113(h),乘“武黄城际列车”需时间t2≈92180+2040=1190(h). ∵113>1190,∴选择乘“武黄城际列车”.(第3题)3.C 点拨:将台阶面展开,连接AB ,如图,线段AB 即为壁虎所爬的最短路线.因为BC =30×3+10×3=120(cm),AC =50 cm ,在Rt △ABC 中,根据勾股定理,得AB2=AC2+BC2=16 900,所以AB =130 cm.所以壁虎至少爬行130 cm.5.解:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP.(第5题)易知BD ⊥AC ,且BO =OD ,∴BP =PD ,则BP +EP =ED ,此时最短.∵AE =3,AD =1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52,∴ED =BP +EP =5.6.解:如图,作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,则点P 即为所建的出口.此时A 、B 两城镇到出口P 的距离之和最小,最短距离为AC 的长.作AD ⊥BB ′于点D ,在Rt △ADC 中,AD =A ′B ′=8 km ,DC =6 km.∴AC =AD2+DC2=10 km ,∴这个最短距离为10 km.(第6题)7.2 2 点拨:将圆柱体的侧面沿AD 剪开并铺平得长方形AA ′D ′D ,连接AC ,如图.线段AC 就是小虫爬行的最短路线.根据题意得AB =2π×2π×12=2.在Rt △ABC 中,由勾股定理,得AC2=AB2+BC2=22+22=8,∴AC =8=2 2.(第7题)8.解:(1)圆锥 (2)扇形(3)把此立体图形的侧面展开,如图所示,AC 为蜗牛爬行的最短路线.(4)在Rt △ASC 中,由勾股定理,得AC2=102+52=125,∴AC =125=5 5.故蜗牛爬行的最短路程为5 5. (第8题)(第9题)9.解:(1)蚂蚁能够最快到达目的地的可能路径有如图的AC ′1和AC1.(2)如图,AC ′1=42+(4+4)2=4 5. AC1=(4+4)2+42=4 5.所以蚂蚁爬过的最短路径的长是45. 10.解:分为三种情况:(1)如图①,连接EC ,在Rt △EBC 中,EB =12+8=20(cm),BC =12×30=15(cm). 由勾股定理,得EC =202+152=25(cm).(2)如图②,连接EC.根据勾股定理同理可求CE =673 cm>25 cm. (3)如图③,连接EC.根据勾股定理同理可求CE =122+(30+8+15)2= 2 953(cm)>25 cm. 综上可知,小虫爬行的最短路程是25 cm.(第10题)专训21.A2.解:由题意易知AD ∥BC ,∴∠2=∠3.∵△BC ′D 与△BCD 关于直线BD 对称,∴∠1=∠2.∴∠1=∠3.∴EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB2+AE2=BE2,∴42+(8-x)2=x2.∴x =5.∴DE =5.∴S △BED =12DE ·AB =12×5×4=10. 解题策略:解决此题的关键是证得ED =EB ,然后在Rt △ABE 中,由BE2=AB2+AE2,利用勾股定理列出方程即可求解.2-1-c-n-j-y3.(1)证明:在正方形ABCD 中,AD =AB ,∠D =∠B =90°.∵将△ADE 沿AE 对折至△AFE ,∴AD =AF ,DE =EF ,∠D =∠AFE =90°.∴AB =AF ,∠B =∠AFG =90°.又∵AG =AG ,∴Rt △ABG ≌Rt △AFG(HL).(2)解:∵△ABG ≌△AFG ,∴BG =FG.设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CE =DE =EF =3,∴EG =3+x.∴在Rt △CEG 中,32+(6-x)2=(3+x)2,解得x =2.∴BG =2.4.(1)证明:由题意知,AF =CF ,AE =CE ,∠AFE =∠CFE ,又四边形ABCD 是长方形,故AD ∥BC ,∴∠AEF =∠CFE.∴∠AFE =∠AEF.∴AE =AF =EC =CF.(2)解:由题意知,AE =EC =a ,ED =b ,DC =c ,由∠D =90°知,ED2+DC2=CE2,即b2+c2=a2.专训3(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC 中,点D 为AC 边的中点,∴BD ⊥AC ,BD 平分∠ABC(等腰三角形三线合一),∴∠ABD =∠CBD =45°,又易知∠C =45°, ∴∠ABD =∠CBD =∠C.∴BD =CD.∵DE ⊥DF ,BD ⊥AC ,∴∠FDC +∠BDF =∠EDB +∠BDF.∴∠FDC =∠EDB.在△EDB 与△FDC 中,⎩⎪⎨⎪⎧∠EBD =∠C ,BD =CD ,∠EDB =∠FDC ,∴△EDB ≌△FDC(ASA),∴BE =FC =3.∴AB =7,则BC =7.∴BF =4.在Rt △EBF 中,EF2=BE2+BF2=32+42=25,∴EF =5.2.2a ;3a3.证明:∵CD ⊥AD ,∴∠ADC =90°,即△ADC 是直角三角形.由勾股定理,得AD2+CD2=AC2.又∵AD2=2AB2-CD2,∴AD2+CD2=2AB2.∴AC2=2AB2.∵∠ABC=90°,∴△ABC是直角三角形.由勾股定理,得AB2+BC2=AC2,∴AB2+BC2=2AB2,故BC2=AB2,即AB=BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.(第4题)4.证明:如图,连接BM.∵PM⊥AB,∴△BMP和△AMP均为直角三角形.∴BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.∴BP2+PM2=BC2+CM2.又∵CM=AM,∴CM2=AM2=AP2+PM2.∴BP2+PM2=BC2+AP2+PM2.∴BP2=BC2+AP2.(第5题)5.思路导引:过点A 作AD ⊥BC 于D ,图中出现两个直角三角形——Rt △ACD 和Rt △ABD ,这两个直角三角形有一条公共边AD ,借助这条公共边可建立起两个直角三角形之间的联系.解:如图,过点A 作AD ⊥BC 于点D.∴∠ADC =90°.又∵∠C =60°,∴∠CAD =90°-∠C =30°,∴CD =12AC =5. ∴在Rt △ACD 中,AD =AC2-CD2=102-52=5 3. ∴在Rt △ABD 中,BD =AB2-AD2=11.∴BC =BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.【来源:6.思路导引:(1)要求点B 和点C 的坐标,只要分别求出OB 和OC 的长即可.(2)由(1)可知BC 的长度,进而利用速度公式求得汽车在这段限速路上的速度,并与503比较即可. 解:(1)在Rt △AOB 中,∵∠BAO =60°,∴∠ABO =30°,∴OA =12AB. ∵OA =100 m ,∴AB =200 m.由勾股定理,得OB =AB2-OA2=2002-1002=1003(m).在Rt △AOC 中,∵∠CAO =45°,∴∠OCA =∠OAC =45°.∴OC =OA =100 m .∴B(-1003,0),C(100,0). (2)∵BC =BO +CO =(1003+100)m ,1003+10015≈18>503, ∴这辆汽车超速了.7.解:(1)在Rt △ABC 中,BC2=AB2-AC2=52-32=16,∴BC =4 cm.(2)由题意知BP =t cm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,即t =4;②如图②,当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm ,在Rt △ACP 中,AP2=32+(t -4)2,在Rt △BAP 中,AB2+AP2=BP2,即52+[32+(t -4)2]=t2,解得t =254. 故当△ABP 为直角三角形时,t =4或t =254.(第7题(2))(3)①如图①,当BP =AB 时,t =5;②如图②,当AB =AP 时,BP =2BC =8 cm ,t =8;(第7题(3))③如图③,当BP =AP 时,AP =BP =t cm ,CP =|t -4|cm ,AC =3 cm ,在Rt △ACP 中,AP2=AC2+CP2,所以t2=32+(t -4)2,解得t =258. 综上所述:当△ABP 为等腰三角形时,t =5或t =8或t =258.第17章 勾股定理 专项训练专训1.证垂直在解题中的应用名师点金:证垂直的方法:(1)在同一平面内,垂直于两条平行线中的一条直线;(2)等腰三角形中“三线合一”;(3)勾股定理的逆定理:在几何中,我们常常通过证垂直,再利用垂直的性质来解各相关问题.利用三边的数量关系说明直角1.如图,在△ABC 中,点D 为BC 边上一点,且AB =10,BD =6,AD =8,AC =17,求CD 的长.(第1题)利用转化为三角形法构造直角三角形2.如图,在四边形ABCD中,∠B=90°,AB=2,BC=5,CD=5,AD=4,求S四边形ABCD.(第2题)利用倍长中线法构造直角三角形3.如图,在△ABC中,D为边BC的中点,AB=5,AD=6,AC=13,求证:AB⊥AD.(第3题)利用化分散为集中法构造直角三角形4.在△ABC中,CA=CB,∠ACB=α,点P为△ABC内一点,将CP绕点C顺时针旋转α得到CD,连接AD.(1)如图①,当α=60°,PA=10,PB=6,PC=8时,求∠BPC的度数;(2)如图②,当α=90°时,PA=3,PB=1,PC=2时,求∠BPC的度数.(第4题)利用“三线合一”法构造直角三角形5.如图①,在△ABC中,CA=CB,∠ACB=90°,D为AB的中点,M,N分别为AC,BC 上的点,且DM⊥DN.(1)求证:CM+CN=2BD;(2)如图②,若M,N分别在AC,CB的延长线上,探究CM,CN,BD之间的数量关系.(第5题)专训2.全章热门考点整合应用名师点金:本章主要学习了勾股定理、勾股定理的逆定理及其应用,勾股定理揭示了直角三角形三边长之间的数量关系.它把直角三角形的“形”的特点转化为三边长的“数”的关系,是数形结合的典范,是直角三角形的重要性质之一,也是今后学习直角三角形的依据之一.本章的考点可概括为:两个概念,两个定理,两个应用.两个概念a.互逆命题1.有下列命题:①直角都相等;②内错角相等,两直线平行;③如果a+b>0,那么a>0,b>0;④相等的角都是直角;⑤如果a>0,b>0,那么ab>0;⑥两直线平行,内错角相等.(1)③和⑤是互逆命题吗?(2)你能说出③和⑤的逆命题各是什么吗?(3)请指出哪几个命题是互逆命题.b.互逆定理2.下列四个定理中,存在逆定理的有( )个.(1)有两个角相等的三角形是等腰三角形;(2)全等三角形的对应角相等;(3)同位角相等,两直线平行.A.0 B.1 C.2 D.33.写出下列各命题的逆命题,并判断是不是互逆定理.(1)全等三角形的对应边相等;(2)同角的补角相等.两个定理a.勾股定理4.如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD.若AB=8,BD=5,求CD的长.(第4题)b.勾股定理的逆定理5.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形.(2)小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是锐角三角形、直角三角形、钝角三角形?2-1-c-n-j-y两个应用a.勾股定理的应用6.如图,在公路l旁有一块山地正在开发,现需要在C处爆破.已知C与公路上的停靠站A的距离为300 m,与公路上的另一停靠站B的距离为400 m,且CA⊥CB.为了安全起见,爆破点C周围半径250 m范围内(包括250 m)不得有人进入.问:在进行爆破时,公路AB 段是否有危险?需要暂时封锁吗?(第6题)b.勾股定理逆定理的应用7.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距5 n mile的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行40 n mile,乙巡逻艇每小时航行30 n mile,航向为北偏西37°,问:甲巡逻艇的航向?(第7题)答案专训11.解:∵AD2+BD2=100=AB2,∴△ABD为直角三角形,且∠ADB=90°.在Rt△ACD中,CD2+AD2=AC2,∴CD =AC2-AD2=172-82=15.2.解:连接AC.在Rt △ACB 中,AB2+BC2=AC2,∴AC =3,∴AC2+AD2=CD2.∴△ACD 为直角三角形,且∠CAD =90°,∴S 四边形ABCD =12×2×5+12×3×4=6+ 5.(第3题)3.证明:如图,延长AD 至点E ,使DE =AD ,连接CE ,BE.∵D 为BC 的中点,∴CD =BD.又∵AD =DE ,∠ADC =∠BDE ,∴△ADC ≌△EDB ,∴BE =AC =13.在△ABE 中,AE =2AD =12,∴AE2+AB2=122+52=169.又∵BE2=132=169,∴AE2+AB2=BE2,∴△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AD.点拨:本题运用倍长中线法构造全等三角形证明线段相等,再利用勾股定理的逆定理证明三角形为直角三角形,从而说明两条线段垂直.4.解:(1)如图①,连接DP ,易知△DCP 为等边三角形,易证得△CPB ≌△CDA ,∴∠BPC =∠ADC,∠CDP=60°,AD=6,DP=8,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=150°,∴∠BPC=150°.(第4题)(2)如图②,连接DP,易得△DCP为等腰直角三角形,易证得△CPB≌△CDA,∴∠BPC=∠ADC,∠CDP=45°,AD=1,DP=2CD=22,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=135°,∴∠BPC=135°.5.(1)证明:如图①,连接CD,∵DM⊥DN,∴∠MDC+∠CDN=90°.∵∠ACB=90°,AC=CB,D为AB的中点,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CDN+∠NDB=90°.∴∠MDC=∠NDB.∵CD⊥AB,∠BCD=45°,∴CD=BD.在△CMD和△BND中,∵∠MDC=∠NDB,∠MCD=∠NBD,CD=BD,∴△CMD≌△BND,∴CM=BN.∴CM+CN =BN+CN=BC.在Rt△CBD中,∠B=45°,∠CDB=90°,∴BC=2BD.∴CM+CN=2BD.(2)解:CN-CM=2BD,如图②,连接CD,证法同(1).(第5题)专训二1.解:(1)由于③的题设是a+b>0,而⑤的结论是ab>0,故⑤不是由③交换命题的题设和结论得到的,所以③和⑤不是互逆命题.(2)能.③的逆命题是如果a>0,b>0,那么a+b>0.⑤的逆命题是如果ab>0,那么a>0,b>0.(3)①与④,②与⑥分别是互逆命题.2.C3.解:(1)逆命题:三条边对应相等的两个三角形全等.原命题与其逆命题都是真命题且都是定理,所以它们是互逆定理.2·1·c·n·j·y(2)逆命题:如果两个角相等,那么这两个角是同一个角的补角.原命题是真命题,但其逆命题是假命题,所以它们不是互逆定理.4.解:设CD=x,在Rt△ABC中,有AC2+(CD+BD)2=AB2,整理,得AC2=AB2-(CD+BD)2=64-(x+5)2.①在Rt△ADC中,有AC2+CD2=AD2,整理,得AC2=AD2-CD2=25-x2.②由①②两式,得64-(x+5)2=25-x2,解得x=1.4,即CD的长是1.4.点拨:勾股定理反映了直角三角形三边长之间的数量关系,利用勾股定理列方程思路清晰、直观易懂.5.解:(1)锐角;钝角(2)a2+b2=22+42=20,∵c为最长边,2+4=6,∴4≤c<6.①由a2+b2>c2,得c2<20,0<c<25,∴当4≤c<25时,这个三角形是锐角三角形;②由a2+b2=c2,得c2=20,c=25,∴当c=25时,这个三角形是直角三角形;③由a2+b2<c2,得c2>20,c>25,∴当25<c<6时,这个三角形是钝角三角形.6.思路导引:要判断公路AB 段是否需要暂时封锁,只需要判断点C 到公路l 的距离是否大于250 m .若大于250 m ,则不需要暂时封锁;若小于或等于250 m ,则需要暂时封锁. 解:如图,过点C 作CD ⊥AB 于点D.在Rt △ABC 中,因为BC2+AC2=AB2,BC =400 m ,AC =300 m ,(第6题)所以AB2=4002+3002=5002,所以AB =500 m.因为SRt △ABC =12AB ·CD =12BC ·AC , 所以500×CD =400×300,所以CD =240 m.因为240<250,所以公路AB 段有危险,需要暂时封锁.7.解:AC =40×0.1=4(n mile),BC =30×0.1=3(n mile).因为AB =5 n mile ,所以AB2=BC2+AC2,所以∠ACB =90°.因为∠CBA =90°-37°=53°,所以∠CAB =37°,所以甲巡逻艇的航向为北偏东53°.。

最新人教版初中八年级数学下册第17章 勾股定理 课后同步练习题含答案解析

最新人教版初中八年级数学下册第17章 勾股定理 课后同步练习题含答案解析

第十七章勾股定理17.1 勾股定理(1)课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个 (B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.第11题第12题12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图),探究S1+S2与S3的关系.参考答案1.a2+b2,勾股定理. 2.(1)13; (2)9; (3)2,; (4)1,.3.. 4.5,5. 5.132cm. 6.A. 7.B. 8.C.9.(1)a=45cm.b=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.10.B. 11. 12.4. 13.14.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.17.1 勾股定理(2)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.第3题第4题4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).325223.5.310(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)(B) (C)(D)三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米. 2123105658第9题第10题10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.参考答案1.13或 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.米. 9. 10.25. 11. 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .17.1 勾股定理(3)课堂学习检测一、填空题 1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.二、选择题6.已知直角三角形的周长为,斜边为2,则该三角形的面积是( ).(A) (B) (C) (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)(B)或 (C) (D)或三、解答题 .11923⋅3310.2232-62+4143217741242478.如图,在Rt△ABC中,∠C=90°,D、E分别为BC和AC的中点,AD=5,BE=求AB的长.9.在数轴上画出表示及的点.综合、运用、诊断10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.102101312.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.参考答案1. 2.16,19.2. 3.5,5. 4. 5.6,,. 6.C . 7.D8. 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB = 9.图略. 10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则 15.128,2n -1.17.2 勾股定理的逆定理课堂学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号);343415,342.432a 3633.132.1324422=+k m ,3213,31102222+=+=622=-AB AF .172,34=∴=AC AB4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)(C) (D)10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形(B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.3,2,1===c b a 43,1,45===c b a 6,3,2===c b a13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?CB 41拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17.9.D . 10.C . 11.C .12.CD =9. 13.14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0.18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数).51。

人教版八年级数学下册矩形知识点及同步练习

人教版八年级数学下册矩形知识点及同步练习

学科:数学教学内容:矩形学习目标1.了解矩形的概念及与平行四边形的关系.2.掌握矩形的性质及识别方法.3.能灵活地运用矩形的有关知识的计算和证明.学法指导矩形是特殊的平行四边形,平行四边形具有的性质矩形也具有,并且它还具有自己的特殊性.基础知识讲解1.矩形的概念有一个角为直角的平行四边形叫矩形.由概念可知,矩形首先是平行四边形,只是增加一个角是直角这个特殊条件.2.矩形的性质(1)具有平行四边形的一切性质.(2)矩形的四个内角是直角.(3)矩形的对角线相等且互相平分.(4)矩形即是中心对称图形又是轴对称图形.3.矩形的识别方法(1)有一个内角是直角的平行四边形是矩形.(2)对角线相等且互相平分的平行四边形为矩形.4.矩形的识别方法运用时应注意以下几点(1)用有一个内角是直角的平行四边形来判定一个四边形是否是矩形时须同时满足两个条件;一是有一个角是直角,二是平行四边形,也就是说有一个角是直角的四边形不一定是矩形,必须加上平行四边形这个条件才是矩形.(2)用“对角线相等的平行四边形是矩形”来判定一个四边形是否是矩形时也必须满足两个条件:一是对角线相等,二是平行四边形.重点难点重点:矩形的定义,性质及识别方法.难点:矩形的性质及识别方法的灵活运用.易错误区分析运用矩形的识别方法来判断四边形是否是矩形时易忽略满足的条件例1.对角线相等的四边形是矩形,这个结论正确吗?错解:这个结论正确正解:这个结论不正确分析:对角线相等的平行四边形才是矩形.典型例题例1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB =4cm ,求矩形对角线长.分析:注意到矩形的对角线相等且平分这个特性,不难求解. 解∵ABCD 为矩形 ∴AC =BD ,且OA=21AC ,OB=21BD ,∴OA=OB , ∵∠AOD=120°,∴∠AOB=60° ∴△AOB 为等边三角形∴OB =OA =AB =4,∴BD =2OB =2×4=8cm .例2.如图12-2-2所示:□ABCD 中AC ,BD 直交于O ,EF ⊥BD 垂足为O ,EF 分别交AD ,BC 于点E ,F ,且AE=EO=21DE.求证:□ABCD 为矩形分析:观察给出的已知图象的特征,要证□ABCD 为矩形,显然只要证AC =BD 即可,若Rt △DOE 的斜边上的中线OM ,易证△AOE ≌△DOM ,∴OA =OD 问题得证.证明:取DE 的中点M ,连结OM ,∴在Rt △DOE 中,OM=21DE=DM , ∴OE=AE=21DE ,∠OME=∠OEA ∴OM =OE ,DM =AE ,∠OMD =∠OEM , ∴△OMD ≌△OEA ,∴OA=OD , 在□ABCD 中,∵OA=21AC ,OD=21BD , ∴AC =BC ∴□ABCD 为矩形.例3.已知:如图所示,E 是已知矩形ABCD 的边CB 延长线上的一点,CE =CA ,F 是AE 的中点.求证:BF ⊥FD分析:由于CE =CA ,F 是AE 的中点,若连结CF ,则CF ⊥AE .所示∠AFC =90°.所以要证BF ⊥FD ,只须再证∠CFB =∠AFD .易知,只要证△AFD ≌△BCF .证法一:连结CF .因为CE =CA ,F 是AE 中点,所以CF ⊥AE .所以∠AFD+∠DFC =90°,因为四边形ABCD 为矩形,所以AD =BC ,∠ABC =∠BAD =90°. 又∵F 是Rt △ABE 斜边BE 的中点,所以BF =AF ,所以∠FAB =∠FBA ,所以∠FAD=∠FBC .所以△FAD≌△FBC.所以∠CFB=∠AFD,所以∠CFB+∠DFC=90°,即BF⊥FD.证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.例4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.例5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE解:OA=CO过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO∴∠EAO=∠E ∴CE=CA创新思维例1.如图所示△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在这一边的对边上,那么符合要求的矩形可以画两个:矩形ACBD和矩形AEFB.解答问题(1)设图(2)中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1 S2.(填“>”“<”“=”)(2)如图(3)中△ABC为钝角三角形,按短文中的要求把它补成矩形,则符合要求的矩形可以画 个,利用图(3)把它画出来.(3)过图(4)△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画 个,利用图(4)把它画出来.(4)在(3)中所画的矩形中,哪一个的周长最小?为什么? 分析:本题主要考查矩形的性质和计算. 解:(1)如图甲过点C 作CG ⊥AB 于G ,则CG=AE .∵S 1=2S △ABC =2×21×AB ·CG=AB ·CG ,S 2=AE ·AB=CG ·AB ∴S 1=S 2 (2)有2个如图乙(3)有3个如图丙(4)设矩形BCED ,ACHQ ,ABGF 的周长分别为L 1,L 2,L 3,BC =a ,AC =b ,AB =c .易知,这些矩形的面积相等,令其面积为S ,则有L 1=a a s 22+,L 2=b s 2+2b ,L 3cs2+2c , ∵L 1-L 2=s a 2+2a-(b b s 22+)=2(a-b )absab -,而ab ﹥s ,a ﹥b ∴L 1-L 2﹥0,即L 1﹥L 2.同理L 2>L 3.∴以AB 为边的矩形周长最小.例2.如图△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角线于点F.(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.分析:先证∠OCE =∠OEC 就有EO =CO ,同理有FO =CO ,即有EO =FO .当0运动到AC 的中点时,四边形AECF 对角钱互相平分.∠EcF =90°.则四边形AECF 为矩形.证明:(l )∵MN ∥BC ,∴∠1=∠3 又∵CE 为∠ACB 的角平分线,∴∠1=∠2,∴∠2=∠3,∴OE =OC ,同理可证OF =OC ,∴OE=OF(2)当O 运动到AC 的中点时,四边形AECF 为矩形,因为AO =OC ,OE =OF.解:由矩形的特征,AC =EF ,由AE ∥CF ,CE ∥AF 知BECD 是平行四边形,故AE =CF ,从而AC =FE . 中考练兵1.如图所示,在矩形ABCD 中,点E ,F 分别在AB ,CD 上BF ∥DF ,若AD =12cm ,AB =7cm ,且AE :EB=5:2,则阴影部分的面积为 .分析:由已知可判断四边形EBFD 是平行四边形.由平行线之间的距离处处相等,可知BE边上的高与AD的长相等.因此求BE的长是关键.本题还可运用平移的方法,将△AED沿AB方向平移,使DE与BF重合,得空白部分所组成的图形是长12cm,宽5cm的矩形,可求其面积,然后将矩形ABCD的面积,减去空白部分的面积,即可得阴影部分的面积.也可通过矩形的面积减去二个全等三角形的面积,而得出阴影部分面积。

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

第20章数据的分析专项训练专训1.平均数、中位数、众数实际应用四种类型名师点金:利用统计量中“三数”的实际意义解决实际生活中的一些问题时,关键要理解“三数”的特征,然后根据题目中的已知条件或统计图表中的相关信息,通过计算相关数据解答.平均数的应用a.平均数在商业营销中的决策作用1.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/kg,乙种糖果的单价为10元/kg,丙种糖果的单价为12元/kg.(1)若甲、乙、丙三种糖果数量按2∶5∶3的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果数量按6∶3∶1的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?b.平均数在人员招聘中的决策作用2.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目教学能力科研能力组织能力人员甲86 93 73乙81 95 79(1)根据实际需要,将教学能力、科研能力、组织能力三项测试得分按5∶3∶2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.(第2题)c.平均数在样本估计总体中的作用3.为了估计某市空气的质量情况,某同学在30天里做了如下记录:污染指数w 40 60 80 100 120 140天数 3 5 10 6 5 1其中w≤50时空气质量为优,50<w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为________.4.(图表信息题)某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用(第4题)平均数和中位数的应用5.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:(1)在图①中,“7分”所在扇形的圆心角等于______.(2)请你将如图②所示的统计图补充完整.(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分,请写出甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?甲校成绩统计表成绩7分8分9分10分人数11 0 8中位数和众数的应用6.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1~8这8个整数,现提供统计图的部分信息(如图所示),请解答下列问题:(第6题)(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3时为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.平均数、中位数、众数的综合应用7.甲、乙、丙三个家电厂家在广告中都声称,他们的某品牌节能灯在正确使用的情况下,使用寿命都不低于8年.后来质量检测部门对他们的产品进行抽查,抽查的各8个产品使用寿命的统计结果如下(单位:年):甲厂:6,6,6,8,8,9,9,12乙厂:6,7,7,7,9,10,10,12丙厂:6,8,8,8,9,9,10,10(1)把以上三组数据的平均数、众数、中位数填入下表.平均数众数中位数甲厂乙厂丙厂(2)估计这三个厂家的推销广告分别利用了哪一种统计量.(3)如果你是顾客,应该选哪个厂家的节能灯?为什么?专训2.方差的几种常见应用名师点金:用方差解决实际应用问题,主要是通过计算实际问题中数据的离散程度,从而得出哪个稳定性更好,进行“择优选用”.2·1·c·n·j·y工业方面的应用1.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据(单位:s)如下表:编一二三四五六七八九十号类型甲种电1 -3 -4 42 -2 2 -1 -1 2子钟乙种4 -3 -1 2 -2 1 -2 2 -2 1电子钟(1)计算甲、乙两种电子钟走时误差的平均数.(2)计算甲、乙两种电子钟走时误差的方差.(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你会买哪种电子钟?为什么?农业方面的应用2.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%,现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵树的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算估计,哪个山上的杨梅产量较稳定.(第2题)教育科技方面的应用3.七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答下列问题.进球数/个10 9 8 7 6 5一班人数/人 1 1 1 4 0 3二班人数/人0 1 2 5 0 2(1)分别求一班和二班选手进球数的平均数、众数、中位数.(2)如果要从这两个班中选出一个班代表本年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?社会生活方面的应用4.在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题: (1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s 甲2=23,数据11,15,18,17,10,19的方差s 乙2=353.(第4题)专训3.分析数据作决策的三种常见类型 名师点金:解决决策问题时,经常从数据的变化趋势及平均数、众数、中位数、方差等多个统计量进行分析,根据实际需要结合数据的特征,选择恰当的数据,作出合理的决策.用“平均数”决策1.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩/分甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由用“中位数、众数”决策2.某家电商场的一个柜组出售容积分别为268升、228升、185升、182升四种型号同一品牌的冰箱,每卖出一台冰箱,售货员就在一张纸上写出它的容积作为原始记录,到月底,柜组长清点原始记录,得到一组由10个182、18个185、66个228和16个268组成的数据.(1)这组数据的平均数有实际意义吗?(2)这组数据的中位数、众数分别等于多少?(3)这个商场总经理关心的是中位数还是众数,说明理由?3.公园里有甲、乙两群游客正在做团体游戏,甲群是同一居民小区的初中生在进行联谊游戏活动;乙群是居民小区的两位退休教师义务带领一群学前儿童在做游戏.调查这两群游客的年龄(单位:周岁)得到甲、乙两组数据:甲:12,13,13,13,14,14,14,14,14,15,15,15,16.乙:3,4,4,5,5,5,5,5,6,6,56,58.(1)求甲、乙两组数据的平均数、中位数、众数.(2)在各组数据的平均数、中位数和众数中,哪几个能反映各群游客的年龄特征?用“方差”决策4.为选派一名学生参加全市实践活动技能竞赛,A,B两位同学在校实习基地现场进行加工直径为20 mm的零件的测试,他俩各加工的10个零件的相关数据(单位:mm)依次如图表所示:平均数方差完全符合要求个数A 20 0.026 2B 20 sB2 5根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些.(2)计算出sB2的大小,考虑平均数与方差,说明谁的成绩好些.(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参加竞赛较合适?说明你的理由.(第4题)专训4.七种常见热门考点名师点金:分析数据主要是根据数据的特征,恰当选择平均数、中位数、众数作出符合实际需要的分析,善于利用样本的数据估算总体的数据.本章要考查的主要考点可概括为:四个概念、三个应用.四个概念概念1 平均数1.某种蔬菜按品质分成三个等级销售,销售情况如下表:等级单价/(元/kg) 销售量/kg一等 5.0 20二等 4.5 40三等 4.0 40则售出蔬菜的平均单价为________.2.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是( )(第2题)A.2 B.2.8 C.3 D.3.3概念2 中位数3.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额/元 5 10 20 50人数/人10 13 12 15则学生捐款金额的中位数是( )A.13元B.12元C.10元D.20元概念3 众数3.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100 m男子比赛中,获得好成绩,成为历史上首位突破10 s大关的黄种人.下表是苏炳添近五次大赛参赛情况:比赛日期2012­8­4 2013­5­21 2014­9­28 2015­5­20 2015­5­31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩/s 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为( )A.10.06 s,10.06 s B.10.10 s,10.06 sC.10.06 s,10.08 s D.10.08 s,10.06 s概念4 方差4.在一次数学测试中,某小组五名同学的成绩(单位:分)如下表(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是( )A.80,2 B.80,10 C.78,2 D.78,106.在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是( )A.平均数是5 B.中位数是6C.众数是4 D.方差是3.2三个应用应用1 平均数、中位数、众数的应用7.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:2-1-c-n-j-y每人加工零件个数540 450 300 240 210 120 人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?应用2 方差的应用8.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:(第8题)乙校成绩统计表分数/分人数/人70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.应用3 用样本估计总体的应用(第9题)9.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的表和图(如图).组别个人年消费金额x/元频数(人数) 频率A x≤2 000 18 0.15B 2 000<x≤4 000 a bC 4 000<x≤6 000D 6 000<x≤8 000 24 0.20E x>8 000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=________,b=________,c=________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3 000名员工,请你估计个人旅游年消费金额在6 000元以上的人数.答案专训11.解:(1)9×2+10×5+12×32+5+3=10.4(元).答:混合后得到的什锦糖果的单价定为每千克10.4元才能保证获得的利润不变. (2)9×6+10×3+12×16+3+1=9.6(元).答:混合后得到的什锦糖果的单价定为每千克9.6元才能保证获得的利润不变. 2.解:(1)甲的成绩:86×5+93×3+73×25+3+2=85.5(分),乙的成绩:81×5+95×3+79×25+3+2=84.8(分),所以甲将被录用.(2)甲能,乙不一定能.理由:由频数分布直方图可知,85分及以上的共有7人, 因此甲能被录用,乙不一定能被录用. 3.2924.解:(1)50-6-12-16-8=8(名),补全统计图如图所示.(第4题)(2)由统计图可得x -=6×1+12×2+16×3+8×4+8×550=3(h),估计该校全体学生平均每天完成作业所用总时间为3×1 800=5 400(h).点拨:本题综合考查平均数的应用、样本估计总体以及由统计图获取信息的能力.5.解:(1)144°(2)4÷72°360°=20(人),20-8-4-5=3(人),补全统计图如图所示.(第5题)(3)由(2)知乙校的参赛人数为20人.因为两校参赛人数相等,所以甲校的参赛人数也为20人,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×120=8.3(分),中位数为7分.由于两个学校学生成绩的平均数一样,因此从中位数的角度进行分析.因为乙校学生成绩的中位数为8分,大于甲校学生成绩的中位数,所以乙校的成绩较好.(4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5人的成绩是10分,所以应选甲校.6.解:(1)因为把合格品数从小到大排列,第25个和第26个数据都为4,所以中位数为4.(2)众数的取值为4或5或6.(3)这50名工人中,单位时间内加工的合格品数低于3的人数为2+6=8(人),故估计该厂将接受技能再培训的人数为400×850=64(人).点拨:此题考查了条形统计图、用样本估计总体、中位数以及众数,弄清题意是解决本题的关键.7.解:(1)甲厂:8,6,8;乙厂:8.5,7,8;丙厂:8.5,8,8.5.(2)甲厂利用平均数或中位数;乙厂利用了平均数或中位数;丙厂利用了平均数或众数或中位数.(3)选丙厂的节能灯.因为无论从哪种统计量来看,与其他两个厂家相比,丙厂水平都比较高或持平,说明多数样本的使用寿命达到或超过8年. 专训21.解:(1)甲种电子钟走时误差的平均数是 110(1-3-4+4+2-2+2-1-1+2)=0(s), 乙种电子钟走时误差的平均数是110(4-3-1+2-2+1-2+2-2+1)=0(s). (2)s 甲2=110[(1-0)2+(-3-0)2+…+(2-0)2]=110×60=6,s 乙2=110[(4-0)2+(-3-0)2+…+(1-0)2]=110×48=4.8. (3)我会买乙种电子钟,因为平均走时误差相同,且甲种电子钟走时误差的方差比乙大,说明乙种电子钟的走时稳定性更好,所以乙种电子钟的质量更优.2.解:(1)x 甲=14(50+36+40+34)=40(kg),x 乙=14(36+40+48+36)=40(kg),估计甲、乙两山杨梅的产量总和为40×100×98%×2=7 840(kg). (2)s 甲2=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s 乙2=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,所以s 甲2>s 乙估计乙山上的杨梅产量较稳定.3.解:(1)一班进球平均数:110(10×1+9×1+8×1+7×4+6×0+5×3)=7(个),二班进球平均数:110(10×0+9×1+8×2+7×5+6×0+5×2)=7(个);一班投中7个球的有4人,人数最多,故众数为7个, 二班投中7个球的有5人,人数最多,故众数为7个;一班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个, 二班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个.(2)一班的方差s12=110[(10-7)2+(9-7)2+(8-7)2+4×(7-7)2+0×(6-7)2+3×(5-7)2]=2.6,二班的方差s22=110[0×(10-7)2+(9-7)2+2×(8-7)2+5×(7-7)2+0×(6-7)2+2×(5-7)2]=1.4,二班选手水平发挥更稳定,如果争取夺得总进球数团体第一名,应该选择二班;一班前三名选手的成绩突出,分别进10个、9个、8个球,如果要争取个人进球数进入学校前三名,应该选择一班.4.解:(1)因为x 甲=16(15+16+16+14+14+15)=15;x 乙=16(11+15+18+17+10+19)=15.甲路段的中位数为:15;乙路段的中位数为:16. 甲路段极差:16-14=2;乙路段极差:19-10=9. s 甲2=23,s 乙2=353.所以相同点:两段台阶路每一级台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差不同(2)甲段台阶路走起来更舒服一些,因为它的每一级台阶高度的方差小.(3)每一级台阶高度均整修为15 cm(原数据的平均数),使得方差为0,此时游客行走最方便.专训31.解:(1)丙将被录用.理由:甲的平均成绩为(85+70+64)÷3=73(分),乙的平均成绩为(73+71+72)÷3=72(分),丙的平均成绩为(73+65+84)÷3=74(分).因为74>73>72,所以候选人丙将被录用.(2)甲将被录用.理由:甲的测试成绩为(85×5+70×3+64×2)÷(5+3+2)=76.3(分),乙的测试成绩为(73×5+71×3+72×2)÷(5+3+2)=72.2(分),丙的测试成绩为(73×5+65×3+84×2)÷(5+3+2)=72.8(分),因为76.3>72.8>72.2,所以候选人甲将被录用.2.解:(1)这组数据的平均数没有实际意义.(2)这组数据共有110个数据,中位数应是从小到大排列后第55个和第56个数据的平均数,这两个数据都是228,这组数据中228出现的次数最多,所以这组数据的中位数、众数都是228.(3)商场总经理关心的是众数.理由:众数是228,表明容积为228升的冰箱的销量最大,它能为商场带来较多的利润,因此,这种型号的冰箱要多进货,其他的型号则要少进货.3.解:(1)甲组数据的平均数是14,中位数是14,众数是14;乙组数据的平均数是13.5,中位数是5,众数是5.(2)对于甲群游客,平均数、众数、中位数都能反映这群游客的年龄特征;对于乙群游客,只有中位数和众数能反映这群游客的年龄特征.4.解:(1)B(2)由统计图可知sB2=110×[5×(20-20)2+3×(19.9-20)2+(20.1-20)2+(20.2-20)2]=0.008,平均数相同,而sA2=0.026,此时有sA2>sB2,所以B 的波动性小,即B 的成绩较好.(3)派A 去参加竞赛较合适.理由:从图中折线走势可知,尽管A 的成绩前面起伏较大,但后来逐渐稳定,误差小,预测A 的潜力大,选派A 去参加竞赛更容易出好成绩. 专训4 1.4.4元/kg 2.C3.D 点拨:因为10+13+12+15=50(人),按照从小到大顺序排列的第25个和第26个数据都是20元,所以中位数=20+202=20(元).4.C5.C 点拨:根据题意得丙的得分为80×5-(81+79+80+82)=78(分),方差为15×[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]=2.故选C. 6.B7.解:(1)平均数是260个,中位数是240个,众数是240个.(2)不合理.因为表中数据显示,每月能完成260个的人数一共有4人,还有11人不能达到此定额,尽管260个是平均数,但不利于调动多数员工的积极性,而240个既是中位数,又是众数,是大多数人能达到的定额,故定额为240个较为合理. 8.解:(1)54° (2)6÷30%=20(人),20-6-3-6=5(人),统计图补充如下:(第8题)(3)20-1-7-8=4(人),x乙=707804901100820⨯+⨯+⨯+⨯=85(分).(4)因为s甲2<s乙2,所以甲校20名同学的成绩相对乙校较整齐.9.解:(1)36;0.30;120 补全条形统计图如图:(第9题)(2)C(3)估计个人旅游年消费金额在6 000元以上的人数为3 000×(0.10+0.20)=900(人).八年级数学下册知识点汇聚单元测试:第二十章(中考冲刺复习通用,含详解)一、选择题(每小题4分,共28分)1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(2021·天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(2013·雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(2013·重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(2013·营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2013年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(2013·扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(2013·威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(2013·黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.。

新人教版八年级下册数学教案包括每节课后练习及答案

新人教版八年级下册数学教案包括每节课后练习及答案

新人教版八年级下册数学教案包括每节课后练习及答案Revised by BLUE on the afternoon of December 12,2020.第十六章 分式16.1分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060. 3. 以上的式子v+20100,v-2060,a s,sv ,有什么共同点它们与分数有什么相同点和不同点五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0 (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义(1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义3. 当x 为何值时,分式 的值为0八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, ba s +2. X = 3. x=-1课后反思: 一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.xx 57+xx3217-xx x --221x802332xx x --212312-+x x“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据 3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, nm --2, nm 67--, yx 43---。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册知识点总结第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C ) 3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则: 分式乘方要把分子、分母分别乘方。

,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,nna a 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:nm n m a a a +=⋅;(2)幂的乘方:mnnm aa =)(;(3)积的乘方:nnn b a ab =)(; (4)同底数的幂的除法:nm nmaa a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)(();(b ≠0)7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.8.科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)例 1 如果abc=1,求证11++a ab +11++b bc +11++c ac =1bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;nnnba b a =)(CB C A B A ⋅⋅=C BCA B A ÷÷=2 已知a 1+b 1=)(29b a +,则a b +b a等于多少?第十七章 反比例函数1.定义:形如y =x k (k 为常数,k≠0)的函数称为反比例函数。

其他形式xy=k 1-=kx y xk y 1=2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; 当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

例 1一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示:(1)求y 与x 之间的函数关系式; (2)“E ”图案的面积是多少?(3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.第十八章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)例如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1),且P (1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、周长的最小值.xyBAOQPxyB CAOPQAC B D图7第十九章 四边形平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义 :邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S 菱形=1/2×ab (a 、b 为两条对角线) 正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理: 1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形 等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图线段的重心就是线段的中点。

平行四边形的重心是它的两条对角线的交点。

三角形的三条中线交于疑点,这一点就是三角形的重心。

宽和长的比是21-5(约为0.618)的矩形叫做黄金矩形。

例 如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F . (1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形例 已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.第二十章 数据的分析1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数(mode )。

4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流 6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

(第23题)EDB A F例 为了帮助贫困失学儿童,某团市委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息..捐给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例....分布的扇形统计图,图2是该校学生人均..存款..情况的条形统计图. (1)九年级学生人均存款元; (2)该校学生人均存款多少元?(3)已知银行一年期定期存款的年利率是2.25% (“爱心储蓄”免收利息税),且每351元能提供 给一位失学儿童一学年的基本费用,那么该校一学年能帮助多少为贫困失学儿童。

一、选择题(每小题3分,共36分)1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( )A .2个B .3个C .4个D .5个 2.下列运算正确的是( )A .y x y y x y --=--B .3232=++y x y x C .y x y x y x +=++22 D .y x y x x y -=-+122 3.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( ) A .2 B .2 C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º 9.某班抽取6名同学进行体育达标测试成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是15AB Oy xAB CD EA BEDC10.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个第11题图 第12题图第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 已知一组数据10,10,x ,8的众数与它的平均数相等,则这组数的中位数是 .14.观察式子:a b 3,-25a b ,37a b ,-49a b ,……,根据你发现的规律知,第8个式子为 .15.已知梯形的中位线长10cm ,它被一条对角线分成两段,这两段的差为4cm ,则梯形的两底长分别为 .16直线y=-x+b 与双曲线y=-x 1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2= .17.选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是____. 18.已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为_________.三、解答题(共6题,共46分)19.( 6分)解方程:011)1(222=-+-+xx x x20. (7分) 先化简,再求值:2132446222--+-•+-+a a a a a a a ,其中31=a .21.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=xk2的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积.22.(8分)小军八年级上学期的数学成绩如下表所示: 测验类别 平 时期中 考试 期末 考试 测验1 测验2 测验3 测验4 成绩11010595110108112(1)计算小军上学期平时的平均成绩;A B C D OxyABCE DOA BO xy A B Ox y期末 50%期中 40%平时10%XYA D BCPOB D AFE GC (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分? 23.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?24.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y (毫克)与时间x (分钟)成正比,药物喷洒完后,y 与x 成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.(1)求喷洒药物时和喷洒完后,y 关于x 的函数关系式;(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?四、探究题(本题10分)25.如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.五、综合题(本题10分)26.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .(1)求证:AD 平分∠CDE ; (2)对任意的实数b (b ≠0),求证AD ·BD 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.B A CA F ED C B 108 O x y (分钟) (毫克)A BCE O D xy。

相关文档
最新文档