上海中考数学题型分析

合集下载

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。

2024年上海市中考数学试题+答案详解

2024年上海市中考数学试题+答案详解

2024年上海市中考数学试题+答案详解(试题部分)1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A. 55x y +<+B. 55x y −<−C. 55x y >D. 55x y −>−2. 函数2()3xf x x −=−的定义域是( ) A. 2x =B. 2x ≠C. 3x =D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( ) A. 260x x −= B.290x -=C. 2660x x −+=D. 2690x x −+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( ) A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7. 计算:()324x =___________.8. 计算()()a b b a +−=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示) 11. 若正比例函数y kx =的图像经过点(7,13)−,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球. 15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =uur r,若2AE EC =,则DC =___________(结果用含a ,b 的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|124(1+−.20. 解方程组:2234026x xy y x y ⎧−−=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m −,且与直线24y x =−+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.22. 同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示); ②小平行四边形的底、高和面积(结果用h 表示); (2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =. 24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫− ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q . ①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标. 25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市中考数学试题+答案详解(答案详解)1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A. 55x y +<+B. 55x y −<−C. 55x y >D. 55x y −>−【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C . 2. 函数2()3xf x x −=−的定义域是( ) A. 2x = B. 2x ≠C. 3x =D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键. 【详解】解:函数2()3xf x x −=−的定义域是30x −≠,解得3x ≠, 故选:D .3. 以下一元二次方程有两个相等实数根的是( ) A. 260x x −= B.290x -=C. 2660x x −+=D. 2690x x −+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=−>时,方程有两个不相等实数根;当240b ac ∆=−=时,方程的两个相等的实数根;当24<0b ac ∆=−时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=−−⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意; B .()2Δ0419360=−⨯⨯−=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=−−⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意; D .()2Δ64190=−−⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意; 故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B 【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类, 四种花的方差最小的为乙种类和丁种类,方差越小越稳定, ∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( ) A. 菱形 B. 矩形 C. 直角梯形 D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBCOADSS=,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBCOAD SS∴=,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBCOADSSOC BF OB CH OD AE OA DG ∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形, 故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解:圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =−=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x =___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可. 【详解】解:()326464xx =,故答案为:664x .8. 计算()()a b b a +−=______. 【答案】22b a − 【解析】【分析】根据平方差公式进行计算即可. 【详解】解:()()a b b a +−()()b a b a =+−22b a =−,故答案为:22b a −.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9.1=,则x =___________. 【答案】1 【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x −>,则可得出211x −=,求出x 即可. 【详解】解:根据题意可知:210x −>, ∴211x −=, 解得:1x =, 故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯ 【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)−,则y 的值随x 的增大而___________.(选填“增大”或“减小”) 【答案】减小 【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =−,结合正比例函数的性质,即可得出y 的值随x 的增大而减小. 【详解】解:正比例函数y kx =的图象经过点(7,13)−, 137k ∴−=,解得:137k =−,又1307k =−<, y ∴的值随x 的增大而减小.故答案为:减小.12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 是菱形, ∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒−∠=︒−︒=︒, 故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩, 解得50500k b =⎧⎨=⎩, ∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个, ∵摸到绿球的概率是35, ∴球的总数为3355x x ÷=个, ∴白球的数量为532x x x −=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =uur r ,若2AE EC =,则DC =___________(结果用含a ,b 的式子表示).【答案】23a b − 【解析】 【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+. 【详解】解:四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=−=−, ∴23DC a b =−, 故答案为:23a b −. 16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解, ∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=, 由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=, ∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人), 故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】 【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折的性质知:FCD FC D ''∠=∠, CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。

上海市中考数学易错点与考点归纳

上海市中考数学易错点与考点归纳

上海市中考数学易错点与考点归纳一.先解决几个最值得关注的问题。

1.中考题型和难度比例。

6道选择24分,12道填空48分,7道大题78分。

难度比例是8:1:1就是120分基础题,15分中档题,15分拔高题。

15拔高题是填空18题,24题和25题第三问。

2.关于今年数学难不难。

大家不要传说今年中考会很难,途听道说,信了,你就输了。

我见证了这么多年中考,还真没有见到那一年特别难!就算难,大家一起难,谁怕谁啊,是不?再说了,难也就那15分难,就算我一点都不会做,步骤分我还不能拿点啊。

3.关于粗心的解决办法。

1、习惯于依赖知识点,看到题马上就用知识点去写,忽略了问题问什么,题目条件是什么。

粗心基本是看到题目非常熟悉,想都不想就做,导致错误。

解释:看到题目感觉很熟悉很简单,想都不想就开始算,结果一不小心方向就错了,没有弄清楚问题是什么,忽略了题目条件表述和你以前熟悉的题型上细微的差别,导致做错。

这是过于想当然造成的,中了命题人的陷阱。

四条建议:一、慢慢读题,至少两遍。

二、验算工整,防止计算错误,也方便检查。

三、回头检查,主要是检查没有把握的题目。

四、深挖根源。

对粗心的相关知识点要梳理。

二.重头戏来了,命题陷阱!我列举出了中考绝大多数易错点,本来想在后面贴上一些例题,考虑到时间太紧,文件太大学生看不完,就用文字表述。

我带了几十年数学,有什么心态方面、答题技巧等等问题都可以加我Q聊,我争取回答,并想给大家一些上海历年的中考题,今年押题猜题的资料,希望能帮助到各位家长!一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆.以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.易错点3:平方根、算术平方根、立方根的区别.填空题必考。

上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。

大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。

试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。

二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。

外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。

上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。

2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。

2、统计的分值约占10% ,这与外地没有太大的区别。

3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。

三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。

(2)换元(化为整式方程),外地中考没有这一考点。

(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。

最新上海市中考数学考点分析及分值分布资料

最新上海市中考数学考点分析及分值分布资料

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。

大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。

试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。

二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。

外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。

上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。

2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。

2、统计的分值约占10% ,这与外地没有太大的区别。

3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。

三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。

(2)换元(化为整式方程),外地中考没有这一考点。

(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。

上海市2023年中考数学真题及答案解析

上海市2023年中考数学真题及答案解析

上海市2023年中考数学真题及答案解析【注意:本文仅提供参考,实际考试请以教育部门发布的官方真题为准】一、选择题题目解析1. 小明从家到学校的路程共有5公里,他骑自行车一次骑行2/5的距离。

他一共用了多长时间?选项解析:题目中提到小明骑行2/5的距离,即2/5 * 5公里 = 2公里。

进而,我们可以计算出他骑行2公里所需要的时间。

答案:根据题目分析,小明骑行2公里所需要的时间为2公里/ 骑行速度 = 2公里 / 骑行速度,这里骑行速度未提及,所以无法计算具体时间。

答案为无法确定。

2. 某商品原价为300元,现在打八折出售,折后价格是多少?选项解析:题目中提到打八折,即原价 * 0.8,我们可以直接计算出折后价格。

答案:300元 * 0.8 = 240元。

答案为240元。

二、填空题题目解析1. 下图中国地图的颜色表示的是哪个省份?解析:根据题目中的提示,通过判断地图颜色可以得出对应的省份名称。

答案:由于无法提供具体地图,所以无法确定具体省份名称。

答案为无法确定。

2. 160 ÷ 8 = ____解析:题目中提到除法运算,我们可以直接计算出结果。

答案:160 ÷ 8 = 20。

答案为20。

三、解答题题目解析1. 如果a = 3, b = 4,则(a + b)² = ____解析:题目中给出了a和b的值,我们可以带入计算。

答案:(a + b)² = (3 + 4)² = 7² = 49。

答案为49。

2. 请用两种方法计算 2² + 3² + 4² + 5²的值。

解析:题目要求我们计算一个数列的和,我们可以分别列出每一项的平方然后相加,或者使用数列求和公式进行计算。

答案:方法一:2² + 3² + 4² + 5² = 4 + 9 + 16 + 25 = 54。

方法二:利用数列求和公式:n(n+1)(2n+1)/6,其中n为项数。

上海市中考数学典型试题分析--学生版

上海市中考数学典型试题分析--学生版

一、 选择题这部分试题试题侧重于考查基本的概念、法则.例1 下列方程中有实数根的是( )(A )11=+x x ;(B )02122=++xx ;(C ) 222-=-x x x ;(D )222-=-x x x .例2 下列方程中有实数根的是( )(A )013=+-x ; (B )523-=-+-x x ;(C )x x -=-23; (D )x x -=+2.例3 如图 ,在△ABC 中,AB =AC ,AD 、AE 为高,那么下例四个角中与∠1不一定相等的角是( ) (A )∠2; (B )∠3; (C )∠4; (D )∠5.例4如果b a >,那么下列各式中一定正确的是( )(A) 22b a >; (B )b c a c ->-; (C )c b c a +>+; (D )bc ac >.B例5 已知,0a b << 那么下列不等式组中无解的是( )(A )⎩⎨⎧>>;,b x a x (B )⎩⎨⎧-<->;,b x a x (C )⎩⎨⎧-<>;,b x a x (D )⎩⎨⎧<->.,b x a x例6 二次函数x x y 32-=的图像不经过的象限是( )(A)第一象限; (B )第二象限; (C )第三象限; (D )第四象限.二、 填空题这部分试题试题着重考查基础知识.例1. 不等式12)21(->-x 的解是____________________.例2. 写出一个图像经过第一、二、四象限的一次函数_________________.例3. 二次函数x x y 422-=的图像的顶点坐标是______________.例4. 已知一个直角三角形的三边长是三个连续的整数,那么较长的直角边的长为__________.例5. 如图 ,在△ABC 中,点D 在BC 边上,△ABD 绕点A 旋转后与△ACE 重合,如果∠ECB =100°,那么旋转角的大小是_______度.例6. 已知正方形桌子桌面边长为80cm ,要买一块正方形桌布,如图铺设时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,那么要买桌布的边长是 cm (精确到个位,备用数据:73.13,41.12≈≈).三、 简答题(这部分试题试题侧重于考查基本的运算及统计的有关知识.)例1 已知222=-x x ,将下式先化简,再求值:1)3)((3)3)((1)(2--+-++-x x x x x .例2 计算:.231341651222------+-x x x x x x例3 解不等式组:⎪⎩⎪⎨⎧-≥-->+(2) .356634(1) ),1(513x x x x例4 解方程:.236532+--=+x x x例5 解方程组⎪⎩⎪⎨⎧=+-=-(2).04(1) ,04222xy x y x例6 抛物线x x y 422-=经过平移,能否与抛物线1622-+=x x y 重合?如果能够,请说明可以怎样平移;如果不能,请说明理由.例7 如果函数(2)y m x m =-+的图像不经过第三象限, 求m 的取值范围.例8 如图1,在直角坐标平面中,O 为坐标原点,点A 在x 轴的正半轴上,点B 的坐标为(0,–3),且AO =BO ,二次函数y x bx c =++2的图像经过点A 、B ,且顶点为M .求:(1) 这个二次函数的解析式; (2) 四边形AOBM 的面积.例9 如图,在矩形ABCD 中,AB =15,AD =9,点E 、F 分别在BC 、CD 边上,△ABE 沿直线AE 翻折后与△AFE 重合,求CE 的长.E B图1例10 已知,点A 、B 、C 在圆O 上,AB 是圆O 的内接正十二形的一边,BC 是圆O 的内接正四边形的一边,求以AC 为一边的圆O 的内接正多边形的边数.例11已知:在梯形ABCD 中,AD//BC ,AB=15,CD=13,AD=8,∠B 是锐角,sin B 54 .求:BC 的长.四、 解答题这部分试题试题侧重于考查知识运用、基本论证、实际应用以及综合运用.1.基本几何论证题证明一个命题是真命题的思考方法有:从结论出发进行思考逐步寻求结论成立的条件,这种“执果索因”的方法称为“分析法”;从条件出发根据已有的公理、定理、定义等逐步推理得出结论,这种“由因导果”的方法称为“综合法”;对于某些较为复杂的问题可采用将上述两种方法结合起来思考的“两头凑”的方法.要证明一个命题为假命题可用举反例的方法.在进行几何证明时,总是根据题目所给的条件,利用几何学中的定义、公理、定理和推论等,分析、推得结论的正确或错误.几何中的证明题涉及所有几何知识,其中最基本的是证明线段相等,证明角相等,另外我们经常还遇到如何证明两条直线平行,两条直线垂直,一个三角形是等腰三角形、直角三角形,两个三角形全等,两个三角形相似,一个四边形是平行四边形、矩形、菱形、正方形、梯形,一条直线是圆的切线等等问题,这要我们总结一些基本的方法.例1已知:如图,在四边形ABCD 中, AD //BC , BD ⊥AD ,点E 、F 分别是边AB 、CD 的中点,DE =BF .求证:∠A =∠C .例2 如图, 在△ABC 中, 点AD ⊥BC ,点D 为垂足,AD AC CD AB ⋅=⋅.求证:AB AC AD BC ⋅=⋅.例3 如图,已知△ABC 中,AB =AC ,点D 在BC 边上,∠DAC =90°.(1) 当∠B=30°时,求证:BD =CD 21; (2) 当BD =CD 21时,∠B 是否一定为30°?如果一定,请给出证明;如果不一定,请说明理由.例4 已知:如图,△ABC 中,点E 在中线BD 上, ABD DAE ∠=∠.求证:(1)DB DE AD ⋅=2; (2)ACB DEC ∠=∠.A CD E B2. 应用性问题例1 甲、乙两人同时从A 地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s (千米)关于时间t (分钟)的函数图像如图所示;乙慢跑所行的路程s (千米)关于时间t (分钟)的函数解析式为1(060)12s t t =≤≤. (1) 在图中画出乙慢跑所行的路程关于时间的函数图像; (2)乙慢跑的速度是每分钟 千米;(3)甲修车后行驶的速度是每分钟 千米;(4)甲、乙两人在出发后,中途 分钟时相遇.例2沪杭磁悬浮新型交通建设项目正在规划研究,现假设上海到杭州的铁路与磁悬浮的路程均为168千米,磁悬浮列车行驶的平均速度比现在的铁路列车行驶的平均速度每分钟快5.5千米,乘坐磁悬浮列车比现在的铁路列车要少用88分钟,问磁悬浮列车平均每分钟行驶几千米?分钟)例3如图,有一块长为80米,宽为50米的长方形绿地.其中有三条笔直的道路(图中的阴影部分,道路的一边AD与长方形绿地的一边平行,且道路的出入口的边AB、CD、EF、GH、HI、IJ的长度都相同),其余的部分种植绿化,已知道路面积为352平方米,求道路出入口的边的长度.例4如图1,路灯A的高度为7米,在距离路灯正下方B点20米处有一墙壁CD,CD ⊥BD,如果身高为1.6米的学生EF站立在线段BD上(EF⊥BD,垂足为F,EF<CD),他的影子的总长度为3米, 求该学生到路灯正下方B点的距离BF的长.近年中考应用题均是以实际生活中的各种各样问题为问题背景不同类型的试题,问题涉及我们身边所发生的事,或我们所熟悉的事物,或我们生活中问题或生产、经营中的问题;解决问题时所运用的知识主要是初中阶段各方面的主干性知识,各一些重要的数学思想方法,如字母表示数的思想、方程思想、变量与函数思想、图形分解组合思想、运动变化思想、转化的思想等等;有时还会综合几种和几种思想方法.重点考查解决问题的能力,主要体现“稳中有变、稳中有进及培养实践能力和创新精神”的命题指导思想.3.代数型综合题这里代数型综合题指的是综合运用数、式、方程、函数等初中代数的知识解决的问题,出现较多的是涉及一元二次方程根的判别式及根系关系的应用,函数图像与坐标轴交点的确定,根据函数的基本性质结合具体条件解决问题,待定系数法确定函数解析式.有时在此基础之上再结合有关的几何知识,如几何图形的判定、面积等几何量的计算、图形位置关系的确定等等.例1 在直角坐标平面内,把直线)0(>=k kx y 向左平移5个单位后与x 轴交于点A ,与y 轴交于点B ,且使方程041)(2=++-+BO x BO AO x 有两个相等的实数根.求k 的值.例2如图,反比例函数的图象与二次函数c bx x y ++-=2的图象在第一象限内相交于A 、B 两点,A 、B 两点的纵坐标分别为1(1) 求反比例函数的解析式; (2) 求二次函数的解析式.例3 已知一次函数421+-=x y 的图像与x 轴、y 轴分别相交于点A 、B .梯形AOBC 的边AC = 5.(1)求点C 的坐标;(2)如果点A 、C 在一次函数y k x b =+(k 、b 为常数,且k <0)的图像上,求这个一次函数的解析式.例 4 如图,一次函数b x y +=2的图像与x 轴、y 轴分别相交于点A 、B ,□ABCO 的顶点A 、B 、C 在一个二次函数的图像上,此二次函数图像顶点的横坐标为1.求:(1)b 的值; (2)二次函数的解析式.例5如图,在直角坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg ∠OAB =2.二次函数22y x mx =++的图像经过点A 、B ,顶点为D . (1) 求这个二次函数的解析; (2) 将△OAB 绕点A 顺时针旋转900后,点B 落到点C 的位置.将上述二次函数图像沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图像的函数解析式;(3) 设(2)中平移后所得二次函数图像与y 轴的交点为B 1,顶点为D 1.点P 在平移后的二次函数图像上,且满足△PBB 1的面积是△PDD 1面积的2倍,求点P 的坐标.说明 本题以二次函数为母体,结合三角比、图形的旋转、平移和三角形面积的有关知识,将代数与几何有机的结合在一起,体现了数形结合、图形运动、分类讨论等数学思想,并运用了待定系数法、配方法、全等变形、面积比转化为线段比等一些重要的数学方法.解题的难点是利用图形平移的性质,并将三角形的面积比转化为高的比.4.几何型综合题例1如图,正方形ABCD中,AB=6.用一块含45°角的三角板,把45°角的顶点放在D 点,将三角板绕着点D旋转,使这个45°角的两边与线段AB、BC分别相交于点E、F(点E 与点A、B不重合).(1)由几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论;(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域;由.说明本题在于考查学生的实践操作能力和探究问题能力,第(1)题是在操作—观察—猜想—论证的过程中探究结论的.在论证的过程中,通过图形的运动—旋转来解决的. 在(2)、(3)问中,利用函数、方程思想,探究问题的可能性,这种操作探究性问题正在成为中考命题中的一个热点.例2如图,线段AB=1,点C在线段AB上,以AC为半径的⊙A与以CB为半径的⊙C相交于点D,BD的延长线与⊙A相交于点E,CD、AE的延长线相交于点F.(1)求证:∠ADB=3∠B;(2)设⊙C的半径为x,EF的长为y,求y与x的函数解析式,并写出定义域;说明本题体现了数与形的结合与变量与函数的思想.本题中两个极端的位置虽不能取到,但可利用运动变化的思想,把一般情况转化成特殊情况,充分利用这两个特殊位置的值求得结果.例3在△ABC中,∠B=15°,△ABC的面积为2,过点A作AD⊥AB交BC或BC的延长线于点D, MN垂直平分BD,垂足为N,交AB于M.(1)求证:BM=2AD;(2)设BC=x,BD=y.求y与x之间的函数解析式,并写出函数定义域.说明本题利用辅助线将一般三角形转化成特殊直角三角形,充分运用特殊直角三角形的边之间的关系探求线段之间的数量关系.并且体现数形结合、变量与函数等数学思想.例4 如图, 等边△ABC 的边长为1, 点D 、E 分别在AB 、BC 边上,DE 将△ABC 分成面积相等的两部分,点F 、G 在AC 边上,DF//BC ,EG//AB , 设AF =x ,CG =y .(1)求y 与x 之间的函数解析式,并写出它的定义域;(2)试问以AF 、FG 、GC 的长为三边的长能否构成直角三角形?请说明理由.说明 本题是三角形知识与函数知识结合的综合问题,具有较强的探索性,解题借助于代数式的恒等变形及整体代换进行几何论证的方法,体现了运动变化、变量与函数、数形结合等多种数学的思想方法.第(2)题用面积方法证明更为简明扼要,分别延长DF 、EG 相交于G ,可证明△BDE ≌△MED ,则S△MED=S△BDE=ADEC ABC S S 四边形=∆21,得MFG CEG ADF S S S ∆∆∆=+, 即222434343FG CG AF =+,所以222FG CG AF =+.。

上海市中考数学考点分析及分值分布.doc

上海市中考数学考点分析及分值分布.doc

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。

大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。

试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。

二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。

外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。

上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。

2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。

2、统计的分值约占10% ,这与外地没有太大的区别。

3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。

三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。

(2)换元(化为整式方程),外地中考没有这一考点。

(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。

上海中考数学考点分布

上海中考数学考点分布

上海中考数学考点分布各题型的考点分布大致如下(1) 选择题以基础性知识为主,考查学生对数学概念的掌握,同时沿承这几年的规律,会有一道统计题放在代数部分里。

大家特别要注意基础概念里的某些细节。

考点集中在以下八个模块:●数与式的运算●函数和函数的相关感念●方程与不等式●初步统计●相交线与平行线●相似三角形●四边形●圆与正方形选择题24分,由4道代数题和2道几何题组成,前四个考点每年都考,总体难度很低,这部分细心最重要!(2) 填空题12道填空题涉及数与式、不等式、函数、概率、统计、平面向量、三角比、三角形以及四边形、圆等知识点,主要考查学生对书本上知识的掌握程度。

考点集中在以下八个模块:●函数与函数的相关概念●数与式及其的运算●代数方程与不等式●统计与概率●平面向量●三角形●四边形●圆以上是近10年上海中考填空题最常考的知识点,去年的填空题里基本也都考到了,从第7~18题填空题考了8代数+4几何的形式。

(3) 解答题第19-23解答题的总体难度适中,主要以基础为主。

各道题的题型设置在前几年的中考卷也能找到出处。

19、实数计算题或不等式计算题20、分式方程题或分式计算题21、函数解答题或解直角三角解答题22、三角比应用题或函数应用题23、三角形/四边形/圆的几何证明题24、二次函数与几何的综合题25、相似三角形+解三角形/圆的综合题通过近三年的中考趋势,我们发现,新定义问题的频繁出现指引着我们接下来的学习,孩子在已有知识上的快速阅读理解力和嵌套已知模型和知识体系的能力变得尤为重要;对于压轴题,能够综合运用各知识点和模型,将几何版块的各知识点进行交融。

最新上海市中考数学考点分析及分值分布

最新上海市中考数学考点分析及分值分布

最新上海市中考数学考点分析及分值分布根据上海市中考数学考点的分析及分值分布,可以得出以下结论:1.整数与有理数的运算(6-8分):整数和有理数的四则运算是数学的基础,考点涉及加减乘除和混合运算等。

考生需要掌握运算规则和技巧,避免计算错误。

2.分数与小数的转化(6-8分):考点涉及分数到小数的转化和小数到分数的转化。

考生需要熟练掌握分数与小数的关系,明确二者的转换方法。

3.特殊符号的应用(4-6分):特殊符号的应用是一种常见的考察方式,主要包括绝对值、约数、倍数、质因数分解等。

考生需要熟练掌握这些符号的含义和应用场景。

4.几何图形的认识(6-8分):几何图形是中考数学的重要考点,包括对线段、角、三角形、四边形等基本图形的认识和性质的了解。

考生需要熟悉基本图形的特点和性质,能够进行简单的图形判断和推理。

5.几何图形的计算(8-10分):几何图形的计算是数学中考的难点,主要包括计算周长、面积、体积等。

考生需要掌握计算方法和公式,能够灵活运用于实际问题中。

6.数据的整理和分析(8-10分):数据的整理和分析是数学中常见的考点,包括制表、解读表格、统计图形等。

考生需要具备数据处理和分析能力,能够从图表中获取信息和结论。

7.方程和不等式的应用(8-10分):方程和不等式的应用是中考数学的难点,考点涉及一元一次方程、一元一次不等式、简单的二元一次方程和二元一次不等式等。

考生需要掌握解方程和不等式的方法和技巧,能够应用于实际问题中。

8.统计与概率(6-8分):统计与概率是中考数学的重点考点,包括统计图表的制作和解读、频率和概率的计算等。

考生需要熟悉统计与概率的基本概念和计算方法。

在上海市中考数学中,各个考点的分值分布大致如下:-一、二级考点(6-8分):整数与有理数的运算、分数与小数的转化、特殊符号的应用、几何图形的认识等。

-三、四级考点(8-10分):几何图形的计算、数据的整理和分析、方程和不等式的应用等。

-五级考点(10-12分):统计与概率。

上海中考数学2012—2020题型分析

上海中考数学2012—2020题型分析

上海中考数学卷分析08年课改后,改为现在的25题题型,难度分布如下图:整套试卷共25题,6道选择题,12道填空题,7道解答题。

其中较难题目为18题(4分),24题(12分),25题(14分)第一部分选择题(6×4分=24分)1~6题为选择题,题目比较基础,1~4为代数知识,考察学生基本理解及计算能力,5、6考察学生几何知识的初级理解和能力。

代数方面:从2012~2020,9年选择题分布中,代数式的运算、初步统计,几乎每年均有出现,二次根式、代数方程等也均有涉及,函数方面知识出现频率较高,二次函数出现次数最多,其余为一次函数或反比例函数。

几何方面:主要考察圆(2012)与四边形(2013,2014),其中2015为两者综合。

其他如:(2012)比例线段(2013)角与直线(2014)正多边形(2015)等。

1、代数式运算:1)、(2012上海)的有理化因式是()A B+C D-2、函数及其相关概念1)、(2010上海)在平面直角坐标系中,反比例函数kyx=(k<0)图象的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2)、(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)3、统计初步1)、(2013上海)数据0,1,1,3,3,4的中位线和平均数分别是()(A)2和2.4;(B)2和2;(C)1和2;(D)3和24、四边形1)、(2014年上海市)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍5、圆1)、(2012上海)如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是()A.外离B.相切C.相交D.内含第二部分填空题(12×4分=48分)中考填空题共12题,从2008年课改后,为7~18题,其中7~17为基础题,18为较难题目。

上海中考数学解析

上海中考数学解析

上海中考数学解析
上海中考数学试题的解析会根据实际的题目进行具体分析,以下是一些可能出现的题型和解析方式:
1. 选择题:上海中考数学选择题通常涉及到各个知识点的运用。

解析时可以先看题目的条件和要求,然后根据知识点进行分析,排除一些不可能的选项,最终选择正确的答案。

2. 填空题:上海中考数学填空题主要考察基本概念和运算能力。

解析时可以根据题目中的条件和要求,进行计算和推理,填入适当的空格,同时注意计算过程和单位的使用。

3. 客观题:上海中考数学的客观题通常是解答问题、计算和证明等。

解析时可以先审题,理解题目要求,然后根据题目中给出的条件进行计算或推理,最终给出准确的答案。

4. 解答题:上海中考数学的解答题一般需要进行证明、计算或解决实际问题。

解析时需要先理解题目要求,然后根据给出的条件和已知信息进行分析和推理,最后给出完整的解答过程和答案。

总的来说,上海中考数学试题解析主要是从审题、分析、计算和推理等方面进行,要注重理解题意、正确运用知识点、按照要求进行计算和推理,并注意答案的合理性和解答过程的清晰性。

上海中考数学题型及占分比

上海中考数学题型及占分比

上海中考数学卷的题型及占分比如下:
1.选择题:共30小题,每题2分,共60分。

2.填空题:共12小题,每题4分,共48分。

3.解答题:共7道大题,每道题目有多个小问,考查的规律基本是固定的。

上海市《考纲》要求数与代数的内容约占50%,空间与图形的约占35%。

具体到各个大题中,代数约占90分,几何约占60分,比例在6∶4。

在整份试卷中,易、中等难度的题目占比较大,得分率超过88%。

而得分率相对较低的则是15分、5分、4分这三种分值的试题,得分率分别为78%、70%和60%。

以上信息仅供参考,具体的中考数学题型及占分比以教育部门发布的信息为准。

上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。

大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。

试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。

二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。

外地试卷的内容分布:数与代数约占48.7% ;空间与几何占42% ;统计与概率约占9.3%。

上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6 : 4。

2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。

2、统计的分值约占10%,这与外地没有太大的区别。

3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。

三、考点分析1方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。

(2)换元(化为整式方程),外地中考没有这一考点。

(3)—元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目一一多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)一一多以情境化的形式出现;③“方程思想”层面上的应用一一-是以“横向”联系、“知识综合”“解决实际问题或变化过程的即时性(阶段性)问题”为主。

上海中考数学知识点占比

上海中考数学知识点占比

上海中考数学知识点占比摘要:一、上海中考数学知识点概述二、中考各模块题目难度及分值分布1.1-18题各4分2.19-22题各10分3.23、24题各12分4.25题14分三、针对不同难度题目的应对策略四、提高数学中考成绩的建议正文:一、上海中考数学知识点概述上海中考数学试题涵盖了初中学段的核心知识点,主要包括数与代数、几何与测量、函数与图像、统计与概率等内容。

试题旨在考察学生的数学基础、思维能力和应用能力。

二、中考各模块题目难度及分值分布1.1-18题:这部分题目难度一般,每题分值为4分。

其中,第18题难度略高。

2.19-22题:这部分题目难度一般,每题分值为10分。

试题主要包括代数、几何、函数等方面的综合应用。

3.23、24题:这部分题目难度中等,每题分值为12分。

试题主要考察学生的综合分析能力和创新思维。

4.25题:这部分题目难度中偏上,分值为14分。

试题通常涉及复杂的数学模型和综合应用。

三、针对不同难度题目的应对策略1.针对1-18题:这类题目占比较大,学生应该确保掌握基本知识点,加强基础训练,提高解题速度。

2.针对19-22题:这类题目难度适中,学生需要熟练掌握知识点,并学会运用综合性思维解决问题。

3.针对23、24题:这类题目难度中等,学生要在理解知识点的基础上,培养自己的分析能力和创新思维。

4.针对25题:这类题目难度较高,学生需要充分理解题意,运用数学模型和策略进行解答。

四、提高数学中考成绩的建议1.强化基础知识:中考数学试题以基础题为主,强化基础知识是提高成绩的关键。

2.提高解题速度:考试时间有限,学生需要在规定时间内完成题目。

提高解题速度有助于学生更好地完成试题。

3.培养综合能力:中考数学试题涉及多个知识点的综合应用,学生需要学会将知识点融会贯通。

4.加强模拟训练:通过模拟试题和真题训练,了解自己的薄弱环节,提高应试能力。

上海中考数学压轴题各题型解题方法总结18题

上海中考数学压轴题各题型解题方法总结18题

上海中考数学压轴题各题型解题方法总结18题题型一:翻折问题;性质:翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图:已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【解题策略分析】解决动态问题需要我们运用运动与变化的观点去观察与研究图形,把握图形运动与变化的全过程,在运动中找出不变的因素,利用不变的因素来解决变化的问题。

(1)通过翻折后与原图形全等找出等量关系;(2)联结原点和翻折后的点,必定关于折痕对称(或者用折痕是对称点的垂直平分线);(3)跟其他线段中点结合构造中位线;(4)做垂线运用“双勾股”。

图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件找到隐含条件;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论。

图形翻折之“翻折角度”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题(比如平行、垂直等);5.利用好三角形的内角和、外角性质。

图形翻折之“翻折面积”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段和角度;4.利用翻折并结合题目中的特殊条件(比如平行、垂直)解题;5.利用好勾股定理、相似、等高三角形面积关系等转化成线段关系。

题型二:旋转问题;旋转三要素旋转中心旋转方向:顺时针;逆时针旋转角度性质:旋转前后两个图形全等:边相等,角相等会找新的相似:以旋转角为顶角的两个等腰三角形相似,相似后对应角相等旋转后点落在边上、直线上、射线上画图:点的旋转图形的旋转:可以把图形的旋转转化为点的旋转,从而画圆1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.挖掘题目中的特殊条件:题目中有哪些角相等?哪些边相等?4.准确画出旋转后的图形是解题的关键.图形旋转之“旋转边长”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转前后相等的线段或角度,根据题意准确画图;4.利用旋转并结合题目中的特殊条件解题;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论;图形旋转之“旋转面积”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转前后相等的线段或角度,根据题意准确画图;4.观察所求图形面积形状,结合面积公式、相似、等高模型求解;5.部分题目注意分类讨论;图形旋转之“旋转角度”题型解题方法与策略:1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻找旋转旋转角、旋转前后相等的线段、相等的角度,根据题意准确画图;4.利用内角和、外角性质并结合题目中的特殊条件解题;5.部分题目注意分类讨论;题型三:平移问题平移图形的特征1.平移前后的图形全等2.图形上每一个点平移的距离和方向都是相同的平移之“函数中的图象平移”题型解题方法与策略:1.寻找平移方法和距离;2.化简原函数解析式,并在坐标系中画出原函数大致图象;3.根据要求画出平移后函数的图象;4.结合平移前后对应点坐标以及二次函数对称轴和进行相关计算和求解;5.部分题目注意分类讨论。

上海中考数学加油卡题目解析

上海中考数学加油卡题目解析

上海中考数学加油卡题目解析一、上海中考数学加油卡题目概述1.题目背景上海中考数学加油卡题目是为了激发学生学习数学的兴趣,提高数学素养,培养学生解决问题的能力。

这类题目通常以实际生活中的问题为背景,具有一定的趣味性和挑战性。

2.题目类型与难度加油卡题目涵盖了初中数学的主要知识点,包括代数、几何、函数、统计等。

难度上,一般分为基础题、提高题和拓展题三个层次,以满足不同层次学生的需求。

3.考查知识点这类题目不仅考查了学生的基本概念掌握程度,还注重考查学生的分析问题、解决问题的能力。

通过对加油卡题目的解答,可以检验学生在各个知识点的掌握情况。

二、题目解析示例1.例题1:解析与步骤题目:一辆汽车从甲地出发,以60千米/小时的速度向乙地行驶,行驶3小时后,离甲地还有180千米。

请问甲、乙两地之间的距离是多少?解析:设甲、乙两地之间的距离为x千米。

根据速度、时间、路程的关系,可得60×3=x-180,解得x=300。

所以,甲、乙两地之间的距离是300千米。

2.例题2:解析与步骤题目:已知等差数列的前5项和为35,第5项与第1项的比为3:1,求该等差数列的通项公式。

解析:设等差数列的公差为d,首项为a1。

根据题意,可得以下方程组:a5 = a1 + 4d = 3a15a1 + 10d = 35解得a1=1,d=2。

所以,该等差数列的通项公式为an=1+2(n-1)=2n-1。

3.例题3:解析与步骤题目:如图,四边形ABCD中,AB=4,BC=6,CD=4,AD=6,AC=BD=5。

求四边形ABCD的面积。

解析:连接AC、BD交于点E。

因为AC=BD,所以△ABC≌△ADC。

又因为AB=4,BC=6,所以BE=2,CE=3。

同理,DE=3,DF=2。

所以,四边形ABCD的面积为S△ABC+S△ADC=1/2×AB×CE+1/2×AD×DF=1/2×4×3+1/2×6×2=12。

上海中考数学25题方法总结(一)

上海中考数学25题方法总结(一)

上海中考数学25题方法总结(一)上海中考数学25题方法总结前言作为一名资深的创作者,在为上海中考数学25题的解答方法总结时,我认为有必要对这些题目进行细致的分析和总结,帮助考生更好地应对考试。

正文1. 了解考试要求在解答上海中考数学25题时,首先要了解考试的要求。

这不仅包括对知识点的掌握程度,还包括对题目类型和解题技巧的理解。

只有全面了解考试要求,才能更好地准备考试。

2. 熟悉题目类型上海中考数学25题所涉及的题目类型较为多样,包括选择题、填空题、解答题等。

针对不同的题型,我们需要掌握不同的解题方法和技巧。

比如,对于选择题,可以通过排除法确定答案;对于填空题,可以通过代入法验证解答的正确性;对于解答题,可以通过列方程或绘制图形来求解。

3. 提升解题速度在上海中考数学25题中,时间是非常宝贵的。

为了提升解题速度,我们可以通过刷题来熟悉题目的解答过程,培养自己的思维敏捷性。

此外,还可以利用一些简便的计算方法,如近似计算、倒推法等,来快速得到答案。

4. 夯实基础知识无论是解答选择题还是解答解答题,都需要有扎实的基础知识作为铺垫。

因此,在备考过程中,我们要不断夯实基础知识,掌握各种定理和公式,并能够灵活运用于解题过程中。

5. 练习真题和模拟题最后,为了更好地应对上海中考数学25题,我们需要充分练习真题和模拟题。

通过模拟考试,我们可以了解自己的考试水平和薄弱环节,并及时调整备考计划,提高解题能力和应考水平。

结尾通过以上几点的总结,我们可以发现在应对上海中考数学25题时,除了基础知识的扎实掌握外,熟悉题目类型、提升解题速度和练习真题都是非常重要的。

希望这篇总结能够对即将参加上海中考的同学提供一些实用的建议和方法。

*注:以上方法仅代表个人观点,具体解题方法还需根据题目具体情况灵活运用。

正文(续)6. 考前复习策略在备考过程中,合理的复习策略是非常重要的。

可以根据自己的掌握程度,将复习时间合理分配给不同的知识点和题型。

上海市2023中考数学各部分分数

上海市2023中考数学各部分分数

上海市2023中考数学各部分分数上海市2023年中考数学考试已经落下帷幕,广大考生和家长最关心的莫过于各部分的分数。

在这里,我们将为您详细解析上海市2023年中考数学各部分的分数分布,并分析历年中考数学分数的变化趋势,为广大考生提供一些应对策略和建议。

首先,根据上海市2023年中考数学考试大纲,数学总分为150分。

接下来,我们来看一下各部分的分数分布:1.选择题:共20题,每题3分,共计60分。

2.填空题:共10题,每题3分,共计30分。

3.解答题:共8题,每题40分,共计320分。

4.附加题:共2题,每题40分,共计80分。

从分数分布上看,选择题和填空题较为基础,解答题和附加题则对考生的数学素养和思维能力有较高要求。

因此,在备考过程中,考生应注重基础知识的学习和运用,同时加强解题能力的训练。

对比历年中考数学分数,我们可以发现以下趋势:1.数学总分逐渐提高:随着教育改革的推进,数学在中考中的地位越发重要,总分也在逐年提高。

2.解答题难度逐年加大:为选拔优秀学子,中考数学解答题的难度逐年上升,对考生的数学素养和思维能力提出更高要求。

3.注重综合素质的考查:除了纯数学知识外,近年来的中考数学试题越来越注重考查考生的综合素质,如逻辑思维、分析问题和解决问题的能力等。

面对这些趋势,考生在备考过程中应注重以下几点:1.打牢基础知识:数学考试的基础知识占比很高,考生要重视基础知识的学习和巩固。

2.提高解题能力:通过大量练习,熟练掌握各类题型的解题方法和技巧。

3.注重综合素质的培养:学会分析问题、解决问题,培养自己的逻辑思维能力。

4.关注历年真题:研究历年中考数学试题,了解出题规律和趋势,为自己的备考提供指导。

总之,上海市2023年中考数学各部分的分数分布和历年中考数学分数变化为我们提供了宝贵的参考信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海中考数学题型分析
题型2013年2012年2011年2010年
第1题二次根式的定义概念代数式的项系数概念分数小数实数(无理数的概念)第2题一元二次方程定义数据不等式的性质反比例函数
第3题函数的平移不等式的意义二次根式一元二次方程跟与系
数关系
第4题数据收集整理二次根式的概念运算二次函数数据收集整理
第5题平行线分线段相似三
角形
轴对称中心对称三角形全等的概念命题
第6题梯形圆圆与矩形小结合圆的位置关系
第7题因式分解有理数的运算有理数的运算有理数的运算
第8题不等式的解法因式分解因式分解整式运算
第9题有理数的运算正比例函数一元二次方程的运用因式分解
第10题向量的加减运算无理方程函数的定义域概念不等式的解法
第11题函数的定义运用一元二次方程反比例函数的概念无理方程的解
第12题概率二次函数的平移一次函数的性质函数的概念
第13题统计概率概率函数的平移
第14题圆统计一元二次方程的运用概率
第15题全等三角形向量向量向量
第16题一次函数的运用相似三角形的运用平行线的性质相似三角形
第17题特殊三角形定义新题型圆一次函数
第18题三角形翻折三角形翻折三角形旋转图形旋转
第19题实数的运算实数的运算实数运算实数的运算
第20题二元二次方程组分式方程的解法二元二次方程组分式方程
第21题正比例反比例函数锐角三角比圆圆
第22题旋转三角梯形一次函数的运用数据收集整理统计数据收集整理统计
第23题四边形证明相似四边形证明四边形证明梯形尺规作图
第24题二次函数三角形数形
结合
二次函数角结合二次函数四边形结合二次函数四边形结合
第25题函数四边形圆综合动
点移动扇形图象函数结合动
点移动
函数三角形动点结合圆相似三角形三角比
动点移动结合
考点分析:
二次根式的定义概念必考,以选择填空为主,直接考的一般只有一题 4 函数的平移重点选择填空一般一题 4 统计一般情况是,两小题一大题或者三个小题12 一元二次方程重点,直接考一题一般选择或者填空 4 整式运算必考内容一般以有理数的运算,因式分解俩三小题8 函数的概念必考内容填空一次函数反比例特殊的函数8 实数的运算必考,一大题
方程组必考二元二次方程组分式方程组
不等式必考填空选择
无理方程填空选择一般一题
向量的运算必考一题
★三角形必考内容,全等相似直角三角形动点移动对称计算证明大题小题都有★四边形平行四边形矩形正方形菱形梯形证明计算对称旋转大小题综合
★圆证明计算综合(和四边形三角形)
★二次函数大题小题综合。

相关文档
最新文档