高考复习专题:函数
高考数学专题复习《函数的单调性与最大值》PPT课件
解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(
)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)
高考数学专题复习 函数的单调性(学生版)
第二讲 函数的单调性【套路秘籍】1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值【套路修炼】考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间. (4)求函数f (x )=x -ln x 的单调区间.(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4)3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 3.设a =ln22,b =ln33,c =1e ,则( )A . c <a <bB . c <b <aC . a <b <cD . b <a <c 4.已知x =1.10.1,y =0.91.1,z =log 2343,则x ,y ,z 的大小关系是( )A . x >y >zB . y >x >zC . y >z >xD . x >z >y考向三 单调性的运用二---解不等式【例3】(1)f(x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)(2)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]【举一反三】1.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A . (0,23)B . (0,23)∪(1,+∞) C . (1,+∞) D . (0,1)2.设函数f (x )={2x , x ≥0x , x <0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A . (−∞ , −1]B . (1 , +∞)C . (−1 , 0)D . (−∞ , 0)3.定义在R 上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则满足f(log 12x)>0的x 的集合为______.4.设函数f(x)=x 3+1,若f(1−2a)<f(a),则实数a 的取值范围是 _______。
高考数学: 函数专题2
第11讲 函数复习专题2.函数图象与零点一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1 答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x-e-x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-2sin cos ++x xx x的图象大致是( )A. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)0a >()y x x a =-答案:C解析:由图②知,图象关于y轴对称,对应的函数是偶函数.对于A,当x>0时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为( )A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x 的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即的图象如图,结合图象可得的根方程有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
高考数学一轮复习函数与方程
对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零
点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录
(多选)有如下说法,其中正确的有
(
)
A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (
)
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,
2020年高考数学复习题:函数的单调性与最值
函数的单调性与最值[基础训练]1.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12 C .m >-12D .m <-12答案:B 解析:由2m -1<0⇒m <12. 2.已知函数y =1x -1,那么( )A .函数的单调递减区间为(-∞,1),(1,+∞)B .函数的单调递减区间为(-∞,1)∪(1,+∞)C .函数的单调递增区间为(-∞,1),(1,+∞)D .函数的单调递增区间为(-∞,1)∪(1,+∞)答案:A 解析:在每个区间内都单调递减,但不可用“并集”形式.3.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x-1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 答案:D 解析:由题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13, 解得12≤x <23.4.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案:D 解析:由x 2-4>0,得x <-2或x >2.又y =log 12u为减函数,故f (x )的单调递增区间为(-∞,-2).5.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:C 解析:充分性:x >0,当a <0时,则f (x )=|(ax -1)x |=-ax 2+x 为开口向上的二次函数,且对称轴为x =12a <0,故f (x )为增函数;当a =0时,f (x )=x 为增函数.必要性:当a ≠0时,f ⎝ ⎛⎭⎪⎫1a =0,f (0)=0,f (x )在(0,+∞)上为增函数,则1a <0,即a <0;f (x )=x 时,为增函数,此时a =0,故a ≤0.综上,a ≤0为f (x )在(0,+∞)上为增函数的充分必要条件. 6.[2019湖北华大新联盟考试]若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案:B 解析:易知函数f (x )=2|x -a |+3的增区间在为[a ,+∞),减区间为(-∞,a ].因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a >1. 故选B.7.[2019山东潍坊四县联考]已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,23 B .(0,+∞)C.⎝ ⎛⎭⎪⎫0,23 D .(-∞,0)∪⎝ ⎛⎭⎪⎫23,+∞答案:C 解析:∵f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),∴⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1, 解得0<a <23.故选C.8.[2016天津卷]已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫12,32解析:由题意知,函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<212,解得12<a <32.9.函数y =x -x (x ≥0)的最大值为________.答案:14 解析:令t =x ,则t ≥0,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14.10.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.答案:[0,1) 解析:易知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.画出g (x )的图象如图所示,其递减区间是[0,1).11.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明:任取x 1,x 2∈(0,+∞),且x 2>x 1, 则x 2-x 1>0,x 1x 2>0.f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解:∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2. 易得a =25.[强化训练]1.[2019河南安阳一模]已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0;②对定义域内的任意x ,都有f (x )=f (-x ).则符合上述条件的函数是( )A .f (x )=x 2+|x |+1 B .f (x )=1x -x C .f (x )=ln|x +1| D .f (x )=cos x答案:A 解析:由题意,得f (x )是偶函数,在(0,+∞)上递增.对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0,故f (x )在(0,+∞)上递增,符合题意;对于B ,函数f (x )是奇函数,不符合题意;对于C ,由x +1≠0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不符合题意;对于D ,函数f (x )在(0,+∞)上不单调递增,不符合题意.故选A.2.[2019河北石家庄一模]已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为 ( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}答案:A 解析:∵奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,∴函数f (x )在(-∞,0)上单调递增,且f (-1)=0,则-1<x <0或x >1时,f (x )>0;x <-1或0<x <1时,f (x )<0.∴不等式f (x -1)>0,即-1<x -1<0或x -1>1, 解得0<x <1或x >2.故选A.3.[2019山东济宁二模]已知y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案:C 解析:由题意易知f (x )在(0,+∞)上是减函数, 又∵|a |=ln π>1,b =(ln π)2>|a |,0<c =ln π2<|a |, ∴f (c )>f (|a |)>f (b ). 又由题意知f (a )=f (|a |), ∴f (c )>f (a )>f (b ). 故选C.4.[2019甘肃天水月考]定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)答案:A 解析:∵f (x )是偶函数,∴f (-2)=f (2). 又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x2)-f(x1)x2-x1<0,∴f(x)在[0,+∞)上是减函数.又∵1<2<3,∴f(1)>f(2)=f(-2)>f(3),故选A.5.[2019河南郑州一模]已知定义在R上的奇函数f(x)满足f(x +2e)=-f(x)(其中e=2,718 2…),且在区间[e,2e]上是减函数,令a=ln 22,b=ln 33,c=ln 55,则f(a),f(b),f(c)的大小关系(用不等号连接)为()A.f(b)>f(a)>f(c) B.f(b)>f(c)>f(a)C.f(a)>f(b)>f(c) D.f(a)>f(c)>f(b)答案:A解析:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),∴f(x+2e)=f(-x),∴函数f(x)的图象关于直线x=e对称,∵f(x)在区间[e,2e]上为减函数∴f(x)在区间[0,e]上为增函数,又易知0<c<a<b<e,∴f(c)<f(a)<f(b),故选A.6.[2019安徽蚌埠二模]已知单调函数f(x),对任意的x∈R 都有f[f(x)-2x]=6,则f(2)=( )A.2 B.4 C.6 D.8答案:C解析:设t=f(x)-2x,则f(t)=6,且f(x)=2x+t,令x=t,则f(t)=2t+t=6,∵f(x)是单调函数,f(2)=22+2=6,∴t=2,即f(x)=2x+2,则f(2)=4+2=6,故选C.7.[2019河北邯郸月考]已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是________.答案:(-∞,-2]∪[2,+∞) 解析:∵函数y =f (x )是R 上的偶函数,∴y =f (x )的图象关于y 轴对称. 又∵y =f (x )在(-∞,0]上是增函数,则y =f (x )在(0,+∞)上是减函数,f (a )≤f (2), ∴|a |≥2,∴a ≤-2或a ≥2. 8.[2019广东深圳模拟]已知函数f (x )=⎩⎪⎨⎪⎧a x,x <0,(a -3)x +4a ,x ≥0满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.答案:⎝ ⎛⎦⎥⎤0,14解析:由任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,知f (x )在R 上为减函数,则需⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)·0+4a ,解得0<a ≤14.9.[2019甘肃兰州一模]已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,x ≤0,2ax -1,x >0(a是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数; ③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2. 其中正确命题的序号是________.答案:①③④ 解析:根据题意可得函数图象如图所示.①由图象易得在点x =0处函数f (x )有最小值-1,故正确; ②由图象易得函数f (x )在R 上不是单调函数,故错误; ③因为f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,且f (x )在(0,+∞)上单调递增,所以当x =12时,函数取得最小值,求得a 的取值范围是a >1,故正确;④因为函数在(-∞,0)上的图象是下凹的,所以任取两点连线应在图象的上方,即f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2,故正确. 故正确的命题为①③④.10.[2019河北石家庄模拟]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1.若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明; (2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1], 因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在[-1,1]上单调递增. (2)因为f (x )在[-1,1]上单调递增,所以⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1,解得-32≤x <-1.(3)因为f (1)=1,f (x )在[-1,1]上单调递增, 所以在区间[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0对a ∈[-1,1]恒成立.下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0. ①若m =0,则g (a )=0≥0, 对a ∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,所以m≤-2或m≥2.所以m的取值范围是{m|m=0或m≥2或m≤-2}.。
高考综合复习 专题7 函数的概念与性质专题练习
高考综合复习专题七函数的概念与性质专题练习一.选择题1.下列函数既是奇函数,又在区间[-1,1]上单调递减的是()A.f(x)=sinxB.f(x)=-C.f(x)=D.f(x)=2.函数,若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1, -D.1,3.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是()A.(-∞,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.(-2,2)4.已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)= ,则当x<-2时,f(x)=()A.-B.C.-D.-5.已知y=f(x)是R上的减函数,且y=f(x)的图象经过点A(0,1)和点B(3,-1),则不等式<1的解集为()A.(-1,2)B.(0,3)C.(-∞,-2)D.(-∞,3)6.已知f(x)是定义在R上的单调函数,实数≠,≠-1, =,.若,则()A.<0B.=0C.0<<1D.≥17.若函数f(x)=(a>0,a≠1)在区间(-,0)内单调递增,则a的取值范围是()A.[-,1)B.[,1)C.(,+∞)D.(1, )8.已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=现有4个命题:①f(x)是周期函数,且周期为2;②当x∈[1,2]时,f(x)=2x-;③f(x)为偶函数;④f(-2005.5)= .其中正确命题的个数是()A.1B.2C.3D.4二.填空题.1.若函数f(x)= (a≠0)的图象关于直线x=2对称,则a=.2.已知函数y=f(x)的反函数为y=g(x),若f(3)=-1,则函数y=g(x-1)的图象必经过点.3.定义在R上的函数f(x)对一切实数x都有f[f(x)]=x,则函数f(x)图象的自身关于对称.4.设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当x∈(0,1]时,f(x)=2x,则f(17.5)=.三.解答题.1.设函数f(x)=,求使f(x)≥2的x的取值范围.2.已知函数f(x)= (a,b为常数),且方程f(x)-x+12=0有两个实根为=3,=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式f(x)< .3.设f(x)是定义在R上的增函数,若不等式f(1-ax-)<f(2-a)对任意x∈[0,1]都成立,求实数a的取值范围.4.已知定义在R上的函数f(x)对任意实数,满足关系f(+)=f()+f()+2.(1)证明:f(x)的图象关于点(0,-2)对称.(2)若x>0,则有f(x)>-2,求证:f(x)在R上为增函数.(3)若数列满足=-,且对任意n∈N﹡有=f(n),试求数列的前n项和.答案与解析:一.选择题.1.选D.分析:这里f(x)为奇函数,由此否定B.C;又f(x)在[-1,1]上单调递减,由此否定A.故应选D.2.选C.分析:注意到这里a的可能取值至多有3个,故运用代值验证的方法.当a=1时,由f(1)+f(a)=2得f(1)=1;由f(x)的表达式得f(1)==1,故a=1是所求的一个解,由此否定B.当a=-时,由f(x)的表达式得f(-)=sin=1,又f(1)=1,故f(1)+f(-)=2,a=-是所求的一个解,由此否定A.D.本题应选C.3.选D.分析:由f(x)在(-∞,0)上是减函数,且f(x)为偶函数得f(x)在(0,+∞)上是增函数,∴f(x)在(-∞,-2]上递减,在[2,+∞)上递增.又∵f(2)=0, ∴f(-2)=0∴f(x)在(-∞,-2]上总有f(x)≥f(-2)=0,①f(x)在[2,+∞)上总有f(x)≥f(2)=0②∴由①②知使f(x)<0的x的取值范围是(-2,2),应选D.4.选C.分析:由f(x)的图象关于直线x=-1对称得f(x)=f(-2-x)①∴当x<-2时, -2-x>0∴再由已知得f(-2-x)= ②于是由①②得当x<-2时f(x)= ,即f(x)= -.应选C.5.选A.分析:由已知条件得f(0)=1,f(3)=-1,∴(※)又f(x)在R上为减函数.∴由(※)得0<x+1<3-1<x<2故应选A.6.选A.分析:注意到直接推理的困难,考虑运用特取——筛选法.在选项中寻觅特殊值.当=0时, =,=,则,由此否定B,当=1时,= ,f()=f(),则,由此否定D;当0<<1时, 是数轴上以分划定点,所成线段的定比分点(内分点),是数轴上以>1分划上述线段的定比分点(内分点),∴此时又f(x)在R上递减,∴由此否定C.因而应选A.7.选B.分析:令u=g(x)= ,y=f(x)则y=由题意知当x∈(-,0)时,u>0注意到g(0),故u=g(x)在(-,0)上为减函数.①又y=f(x)在(-,0)上为增函数,∴y=在u的相应区间上为减函数.∴0<a<1再由①得u'=g'(x)= 在(-,0)上满足u'≤0②而u'=在(-,0)上为减函数,且是R上的连续函数.③∴由②③得u'(-)≤0∴-a≤0,即a≥④于是由①,④得≤a<1应选B.点评:从复合函数的“分解”切入.利用复合函数的单调性与所“分解”出的内层函数与外层函数的单调性之间的联系(同增异减)初步确定a的取值范围0<a<1.但是,由于u=为x的三次函数, u'为x的二次函数.故还要从u'在(-,0)上的符号入手进一步确认a的正确的范围.”粗” 、“细”结合,双方确定所求参数的范围,乃是解决这类问题的基本方略.8.选B.分析:从认知f(x)的性质入手,由f(x)+f(x-1)=1得f(x-1)=1-f(x)(※)∴f(x-2)=1-f(x-1)(※※)∴由(※),(※※)得f(x)=f(x-2)∴f(x)为周期函数,且2是f(x)的一个周期.(1)由上述推理可知①正确.(2)当x∈[1,2]时,有x-1∈[0,1].∴由题设得f(x)=1-f(x-1)=1-(x-1)=2x-x,由此可知②正确(3)由已知条件以及结果①、②得,又f()=,∴f()≠f(-)∴f(x)不是偶函数即③不正确;(4)由已知条件与f(x)的周期性得f(-2005.5)=f(-2005.5+2×1003)= f()=故④不正确.于是由(1)(2)(3)(4)知,本题应选B.二.填空题.1.答案: .分析:由题设知f(0)=f(4)(a≠0),∴(a≠0)0<=1(a≠0)4a-1=1或4a-1=-1(a≠0)a=即所求a=.2.答案: (0,3)分析:f(3)=-1y=f(x)的图象经过点(3,-1)y=g(x)的图象经过点(-1,3)g(-1)=3g(0-1)=3y=g(x)的图象经过点(0,3).3.答案:直线y=x分析:根据函数的定义,设x为f(x)定义域内的任意一个值,则f(x)为其相应的函数值,即为y,即y= f(x),则有x=( y)①又由已知得f[f(x)]=f(y)= x②∴由①②知f(x)与其反函数(x)为同一函数,∴函数f(x)的图象自身关于直线y=x对称.4.答案:1分析: 从认知f(x)的性质切入已知f(x+3)=1-f(x)①以-x代替①中的x得f(-x+3)=1-f(-x)②又f(x)为偶函数∴f(-x)=f(x)③∴由②③得f(-x+3)=1-f(x)④∴由①④得f(3+x)=f(3-x)f(x)图象关于直线x=3对称f(-x)=f(6+x)∴由③得f(x)=f(6+x)即f(x)是周期函数,且6是f(x)的一个周期.⑤于是由③⑤及另一已知条件得f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=1三.解答题.1.分析:注意到f(x)为复合的指数函数,故考虑令u=,而后利用指数函数的性质将所给不等式转化为关于u的不等式解.解:令u=, y=f(x),则y=2为u的指数函数.∴f(x)≥2≥2≥u≥①∴f(x) ≥≥②(1)当x≥1时,不等式②(x+1)-(x-1) ≥2≥成立.(2)当-1≤x<1时,由②得,(x+1)-(1-x) ≥x≥即≤x<1;(3)当x<-1时,由②得-(x+1)-(1-x) ≥即-2≥不成立.于是综合(1)(2)(3)得所求的x的取值范围为[,1]∪[1,+∞),也就是[,+∞)点评:对于复合函数y=f[p(x)],令u=p(x),将其分解为y=f(u),u=p(x).于是所给问题转化为内层函数u=p(x)的问题或转化为外层函数y=f(u)的问题.这种分解----转化的手法,是解决复合指数函数或复合对数函数的基本策略.2.分析:注意到f(x)为分式函数,故相关方程为分式方程,相关不等式为分式不等式,因此,求解此类问题要坚定地立足于求解分式问题的基本程序:移项,通分,分解因式;化“分”为“整”以及验根等等.解:(1)将=3, =4分别代入方程得由此解得∴f(x)= (x≠2).(2)原不等式<-<0<0<0(x-2)(x-1)(x-k)>0注意到这里k>1,(ⅰ)当1<k<2时,原不等式的解集为(1,k)∪(2,+∞);(ⅱ)当k=2时,原不等式(x-2)2(x-1)>0x>1且x≠2.∴原不等式的解集为(1,2)∪(2,+∞);(ⅲ)当k>2时,原不等式的解集为(1,2) ∪(k,+∞);于是综合(ⅰ) (ⅱ) (ⅲ)得当1<k≤2时,原不等式解集为(1,k)∪(2,+∞);当k>2时,原不等式解集为(1,2) ∪(k,+∞);点评:在这里,运用根轴法求解不等式(x-2)(x-1)(x-k)>0快捷准确.此外,在分式不等式转化为高次不等式后,分类讨论时不可忽略对特殊情形:k=2的讨论;综合结论时需要注意相关情况的合并,以最少情形的结论给出最佳答案.3.分析:所给不等式含有抽象的函数符号f,故首先需要“反用”函数的单调性定义脱去“f”,转化为普通的含参不等式的问题.进而,再根据个人的熟重和爱好选择不同解法.解:∵f(x)是R上的增函数.∴不等式f(1-ax-)<f(2-a) 对任意x∈[0,1]都成立.不等式1-ax-<2-a对任意x∈[0,1]都成立+ax-a+1>0对任意x∈[0,1]都成立①解法一: (向最值问题转化,以对称轴的位置为主线展开讨论.)令g(x)= +ax-a+1,则①式g(x)>0对任意x∈[0,1]都成立.g(x)在区间[0,1]上的最小值大于0.②注意到g(x)图象的对称轴为x=-(1)当-≤0即a≥0时,由②得g(0)>0-a+1>0a<1,即0≤a<1;(2)当0<-≤1时,即-2≤a<0时,由②得g(-)>01-a->0+4a-4<0<8当-2≤a<0时,这一不等式也能成立.(3)当->1即a<-2时.由②得g(1)>02>0即当a<-2时,不等式成立.于是综合(1)(2)(3)得所求实数a的取值范围为[0,1)∪[-2,0]∪(-∞,-2), 即(-∞,1).解法二: (以△的取值为主线展开讨论)对于二次三项式g(x)= +ax-a+1,其判别式△=+4(a-1)=+4a-4△<0<8--2<a<-2(1)当△<0时,g(x)>0对任意x∈[0,1]都成立,此时--2<a<-2;(2)当△≥0时,由g(x)>0对任意x∈[0,1]都成立得-2≤a<1或a≤--2.于是由(1)(2)得所求a的取值范围为(--2,-2)∪[-2,1)∪(-∞, --2]即(-∞,1).点评:解法一归统为最值问题,以g(x)图象的对称轴的位置为主线展开讨论;解法二直面g(x)>0在x∈[0,1]上成立,以g(x)的判别式△的取值为主线展开讨论,两种解法各有千秋,都解决这类问题的主要策略.以××为主线展开讨论,这是讨论有理有序,不杂不漏的保障.4.分析:为了认知和利用已知条件,从”特取”切入:在已知恒等式中令==0得f(0)=-2.为利用f(0)=-2,寻觅f(x)的关系式,又在已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2故得f(x)+f(-x)=-4证明(1),由此式展开.对于(2)面对抽象的函数f(x),则只能运用定义;对于(3),这里a n=f(n),a n+1=f(n+1),因此,从已知恒等式入手寻觅{a n}的递推式或通项公式,便称为问题突破的关键.解:(1)证明:在已知恒等式中令==0得f(0)=-2①又已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2∴f(x)+f(-x)=-4②设M(x,f(x))为y=f(x)的图象上任意一点则由②得③∴由③知点M(x,f(x))与N(-x,f(-x))所成线段MN的中点坐标为(0,-2),∴点M与点N关于定点(0,-2)对称.④注意到点M在y=f(x)图象上的任意性,又点N亦在y=f(x)的图象上,故由④知y=f(x)的图象关于点(0,-2)对称.(2)证明:设,为任意实数,且<,则->0∴由已知得f(-)>-2⑤注意到=(-)+由本题大前提中的恒等式得f()=f[(-)+] =f(-)+ f()+2∴f()-f()=f (-)+2⑥又由⑤知f (-)+2>0,∴由⑥得f()-f()>0,即f()>f().于是由函数的单调性定义知,f(x)在R上为增函数.(3)解:∵a n=f(n),∴a1=f(1)=-,a n+1=f(n+1)又由已知恒等式中令=n, =1得f(n+1)=f(n)+f(1)+2∴a n+1= a n+∴a n+1-a n=(n∈N﹡)由此可知,数列{ a n }是首项为=-,公差为的等差数列.∴=-n+×即=(n2-11n).点评:充分认识与利用已知条件中的恒等式,是本题解题的关键环节. 对于(1)由此导出f(x)+f(-x)=-4;对于(2)由此导出f()=f()+f(-)+2;对于(3)由此导出f(n+1)=f(n)+f(1)+2即a n+1-a n=.。
2023届全国高考数学复习:专题(函数的极值)重点讲解与练习(附答案)
2023届全国高考数学复习:专题(函数的极值)重点讲解与练习 1.函数的极小值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都小,f′(x0)=0;而且在点x=x0附近的左侧f′(x)<0,右侧f′(x)>0.则x0叫做函数y=f(x)的极小值点,f(x0)叫做函数y=f(x)的极小值.如图1.图1图22.函数的极大值:函数y=f(x)在点x=x0的函数值f(x0)比它在点x=x0附近其他点的函数值都大,f′(x0)=0;而且在点x=x0附近的左侧f′(x)>0,右侧f′(x)<0.则x0叫做函数y=f(x)的极大值点,f(x0)叫做函数y=f(x)的极大值.如图2.3.极小值点、极大值点统称为极值点,极小值和极大值统称为极值.对极值的深层理解:(1)极值点不是点;(2)极值是函数的局部性质;(2)按定义,极值点x i是区间[a,b]内部的点(如图),不会是端点a,b;(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)根据函数的极值可知函数的极大值f(x0)比在点x0附近的点的函数值都大,在函数的图象上表现为极大值对应的点是局部的“高峰”;函数的极小值f(x0)比在点x0附近的点的函数值都小,在函数的图象上表现为极小值对应的点是局部的“低谷”.一个函数在其定义域内可以有许多极小值和极大值,在某一点处的极小值也可能大于另一个点处的极大值,极大值与极小值没有必然的联系,即极小值不一定比极大值小,极大值不一定比极小值大;(5)使f′(x)=0的点称为函数f(x)的驻点,可导函数的极值点一定是它的驻点.驻点可能是极值点,也可能不是极值点.例如f(x)=x3的导数f′(x)=3x2在点x=0处有f′(0)=0,即x=0是f(x)=x3的驻点,但从f(x)在(-∞,+∞)上为增函数可知,x=0不是f(x)的极值点.因此若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点;(6)函数f(x)在[a,b]上有极值,极值也不一定不唯一.它的极值点的分布是有规律的,如上图,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的.考点一 根据函数图象判断极值【方法总结】(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12[例2] 给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的拐点.已知f (x )=ax +3sin x -cos x .(1)求证:函数y =f (x )的拐点M (x 0,f (x 0))在直线y =ax 上;(2)x ∈(0,2π)时,讨论f (x )的极值点的个数.[例3] (2021ꞏ天津高考节选)已知a >0,函数f (x )=ax -x ꞏe x .(1)求函数y =f (x )在点(0,f (0))处的切点的方程;(2)证明f (x )存在唯一极值点.【对点训练】1.函数f (x )=2x -x ln x 的极值是( )A .1eB .2eC .eD .e 22.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =03.函数f (x )=12x 2+ln x -2x 的极值点的个数是( )A .0B .1C .2D .无数4.函数f (x )=(x 2-x -1)e x (其e =2.718…是自然对数的底数)的极值点是 ;极大值为 .5.已知函数f (x )=ax 3-bx +2的极大值和极小值分别为M ,m ,则M +m =( )A .0B .1C .2D .46.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1737.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 28.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为210.若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=________.11.已知函数f (x )=e x (x -1)-12e a x 2,a <0.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的极小值.12.已知函数f (x )=e x +2x .(1)求函数f (x )的图象在(1,f (1))处的切线方程;(2)证明:函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . (4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( ) A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞)(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2[例2] 已知曲线f (x )=x e x -23ax 3-ax 2,a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数y =f (x )有三个极值点,求实数a 的取值范围.【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .12.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .03.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .54.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( )A .(e ,e)B .(e ,2)C .(2,e)D .(e ,+∞)7.已知函数f (x )=x ln x -ax 在(1,+∞)上有极值,则实数a 的取值范围为( )A .⎝⎛⎦⎤-∞,14B .⎝⎛⎭⎫-∞,14C .⎝⎛⎦⎤0,14 D .0,14 8.若函数f (x )=x 2-x +a ln x 有极值,则实数a 的取值范围是________.9.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.10.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e[例1](1)函数f (x )=x 2e -x 的极大值为__________,极小值为________. 答案 4e -2 0 解析 f (x )的定义域为(-∞,+∞),f ′(x )=-e -x x (x -2).当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0;当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2. (2)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点答案 D 解析 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.(3)已知函数f (x )=2e f ′(e)ln x -x e ,则f (x )的极大值点为( )A .1eB .1C .eD .2e答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e >0,解得0<x <2e ,令f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .(4)已知e 为自然对数的底数,设函数f (x )=(e x -1)ꞏ(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值答案 C 解析 因为f ′(x )=(x -1)k -1[e x (x -1+k )-k ],当k =1时,f ′(1)>0,故1不是函数f (x )的极值点.当k =2时,当x 0<x <1(x 0为f (x )的极大值点)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.故f (x )在x =1处取到极小值.故选C .(5)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.(6)设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( )A .xf (x )在(0,+∞)上单调递增B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值126.若x =-2是函数f (x )=13x 3-ax 2-2x +1的一个极值点,则函数f (x )的极小值为( )A .-113B .-16C .16D .1736.答案 B 解析 由题意,得f ′(x )=x 2-2ax -2.又x =-2是函数f (x )的一个极值点,所以f ′(-2)=2+4a =0,解得a =-12.所以f (x )=13x 3+12x 2-2x +1,所以f ′(x )=x 2+x -2=(x +2)(x -1).当x <-2或x>1时,f ′(x )>0;当-2<x <1时,f ′(x )<0.所以函数y =f (x )的单调递增区间为(-∞,-2),(1,+∞),单调递减区间为(-2,1).当x =1时,函数y =f (x )取得极小值,为f (1)=13+12-2+1=-16.故选B .7.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 27.答案 B 解析 由题意得,f ′(x )=2x 2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52.8.已知函数f (x )=x ln x ,则( )A .f (x )的单调递增区间为(e ,+∞)B .f (x )在⎝⎛⎭⎫0,1e 上是减函数 C .当x ∈(0,1]时,f (x )有最小值-1e D .f (x )在定义域内无极值8.答案 BC 解析 因为f ′(x )=ln x +1(x >0),令f ′(x )=0,所以x =1e ,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,x =1e 是极小值点,所以A 错误,B 正确;当x ∈(0,1]时,根据单调性可知,f (x )min =f ⎝⎛⎭⎫1e =-1e ,故C 正确;显然f (x )有极小值f ⎝⎛⎭⎫1e ,故D 错误.故选BC .9.(多选)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为29.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x =(2)证明:令h (x )=e x (x -1)-2,则h ′(x )=e x ꞏx ,所以x ∈(-∞,0)时,h ′(x )<0,x ∈(0,+∞)时,h ′(x )>0.当x ∈(-∞,0)时,易知h (x )<0,所以f ′(x )<0,f (x )在(-∞,0)上没有极值点.当x ∈(0,+∞)时,因为h (1)=-2<0,h (2)=e 2-2>0,所以f ′(1)<0,f ′(2)>0,f (x )在(1,2)上有极小值点.又因为h (x )在(0,+∞)上单调递增,所以函数f (x )仅有唯一的极小值点.考点三 已知函数的极值(点)求参数的值(范围)【方法总结】由函数极值求参数的值或范围讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验导数为0的点两侧导数是否异号.【例题选讲】[例1](1)若函数f (x )=x (x -m )2在x =1处取得极小值,则m =________.答案 1 解析 由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x )=3(x -1)(x -3),当1<x <3时,f ′(x )<0;当x <1或x >3时,f ′(x )>0,此时f (x )在x =1处取得极大值,不合题意,当m =1时,f ′(x )=(x -1)(3x-1).当13<x <1时,f ′(x )<0;当x <13x >1时,f ′(x )>0,此时f (x )在x =1处取得极小值,符合题意,所以m=1.(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________.答案 11 解析 f ′(x )=3x 2+6ax +b ,由题意得⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,∴f (x )在R 上单调递增,∴f (x )无极值,所以a =1,b =3不符合题意,当a =2,b =9时,经检验满足题意.∴a +b =11.(3)若函数f (x )的导数f ′(x )=⎝⎛⎭⎫x -52(x -k )k (k ≥1,k ∈Z ),已知x =k 是函数f (x )的极大值点,则k = . 答案 1 解析 因为函数的导数为f ′(x )=⎝⎛⎭⎫x -52(x -k )k ,k ≥1,k ∈Z ,所以若k 是偶数,则x =k ,不是极值点,则k 是奇数,若k <52,由f ′(x )>0,解得x >52或x <k ;由f ′(x )<0,解得k <x <52,即当x =k 时,函数f (x )取得极大值.因为k ∈Z ,所以k =1.若k >52,由f ′(x )>0,解得x >k 或x <52;由f ′(x )<0,解得52<x <k ,即当x=k 时,函数f (x )取得极小值,不满足条件.(4)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.答案 a >-1 解析 f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a ,所以f ′(x )=1x-ax +a -1=-ax 2+1+ax -x x =-(ax +1)(x -1)x.①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是a >-1.(5)若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间⎝⎛⎭⎫12,1内有极大值,则a 的取值范围是( )A .⎝⎛⎭⎫1e ,+∞ B .(1,+∞) C .(1,2) D .(2,+∞) 答案 C 解析 f ′(x )=ax -(1+2a )+2x =ax 2-(2a +1)x +2x (a >0,x >0),若f (x )在区间⎝⎛⎭⎫12,1内有极大值,即f ′(x )=0在⎝⎛⎭⎫12,1内有解,且f ′(x )在区间⎝⎛⎭⎫12,1内先大于0,后小于0,则⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12>0,f ′(1)<0,即⎩⎪⎨⎪⎧14a -12(2a +1)+212>0,a -(2a +1)+2<0,解得1<a <2,故选C .(6)若函数f (x )=x 2-x +a ln x 在[1,+∞)上有极值点,则实数a 的取值范围为 ;答案 (-∞,-1] 解析 函数f (x )的定义域为(0,+∞),f ′(x )=2x -1+a x =2x 2-x +a x,由题意知2x 2-x +a =0在R 上有两个不同的实数解,且在[1,+∞)上有解,所以Δ=1-8a >0,且2×12-1+a ≤0,所以a ∈(-∞,-1].(7)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫0,12 解析 f (x )=x (ln x -ax ),定义域为(0,+∞),f ′(x )=1+ln x -2ax .由题意知,当x >0时,1+ln x -2ax =0有两个不相等的实数根,即2a =1+ln x x有两个不相等的实数根,令φ(x )=1+ln x x (x >0),∴φ′(x )=-ln x x 2.当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0,∴φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,且φ(1)=1,当x →0时,φ(x )→-∞,当x →+∞时,φ(x )→0,则0<2a <1,即0<a <12.(8) (2021ꞏ全国乙)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( )A .a <bB .a >bC .ab <a 2D .ab >a 2答案 D 解析 法一 (特殊值法)当a =1,b =2时,函数f (x )=(x -1)2(x -2),画出该函数的图象如图1所示,可知x =1为函数f (x )的极大值点,满足题意.从而,根据a =1,b =2可判断选项B ,C 错误;当a =-1,b =-2时,函数f (x )=-(x +1)2(x +2),画出该函数的图象如图2所示,可知x =-1为函数f (x )的极大值点,满足题意.从而,根据a =-1,b =-2可判断选项A 错误.所以当a >e 2时,在x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减,在x ∈(-1,x 1)时,f ′(x )>0,f (x )单调递增,在x ∈(x 1,x 2)时,f ′(x )<0,f (x )单调递减,在x ∈(x 2,+∞)时,f ′(x )>0,f (x )单调递增.故实数a 的取值范围是⎝⎛⎭⎫e 2,+∞. 【对点训练】1.若函数f (x )=(x +a )e x 的极值点为1,则a =( )A .-2B .-1C .0D .11.答案 A 解析 f ′(x )=e x +(x +a )e x =(x +a +1)e x .由题意知f ′(1)=e(2+a )=0,∴a =-2.故选A .2.已知函数f (x )=x (x -c )2在x =2处有极小值,则实数c 的值为( )A .6B .2C .2或6D .02.答案 B 解析 由f ′(2)=0可得c =2或6.当c =2时,结合图象(图略)可知函数先增后减再增,在x=2处取得极小值;当c =6时,结合图象(图略)可知,函数在x =2处取得极大值.故选B .3.已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R )的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( )A .-8122B .13C .2D .53.答案 C 解析 由题意,f ′(x )=3ax 2+2bx +c ,因为f ′(x )≤0的解集为{x |-2≤x ≤3},所以a >0,且-2+3=-2b 3a ,-2×3=c 3a ,则3a =-2b ,c =-18a ,f (x )的极小值为f (3)=27a +9b +3c -17=-98,解得a =2,b =-3,c =-36,故选C .4.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 .4.答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1 =0有两个不等实根,故Δ=(-4c )2-12>0,解得c >32或c <-32c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 5.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则实数a 的取值范围是________.5.答案 (-∞,-1) 解析 由y ′=e x +a =0得x =ln (-a )(a <0),显然x =ln (-a )为函数的极小值点,又ln (-a )>0,∴-a >1,即a <-1.6.若函数f (x )=(2-a )⎣⎡⎦⎤(x -2)e x -12ax 2+ax 在⎝⎛⎭⎫12,1上有极大值,则实数a 的取值范围为( ) A .(e ,e) B .(e ,2) C .(2,e) D .(e ,+∞)6.答案 B 解析 令f ′(x )=(2-a )(x -1)(e x -a )=0,得x =ln a ∈⎝⎛⎭⎫12,1,解得a ∈(e ,e),由题意知,当x ∈⎝⎛⎭⎫12,ln a 时,f ′(x )>0,当x ∈(ln a ,1)时,f ′(x )<0,所以2-a >0,得a <2.综上,a ∈(e ,2).故选11.已知函数f (x )=x ln x -12ax 2-2x 有两个极值点,则实数a 的取值范围是________.11.答案 ⎝⎛⎭⎫0,1e 2 解析 f (x )的定义域为(0,+∞),且f ′(x )=ln x -ax -1.根据题意可得f ′(x )在(0,+∞) 上有两个不同的零点,则ln x -ax -1=0有两个不同的正根,从而转化为a =ln x -1x 有两个不同的正根,所以y =a 与y =ln x -1x的图象有两个不同的交点,令h (x )=ln x -1x ,则h ′(x )=2-ln x x 2,令h ′(x )>0得0<x <e 2,令h ′(x )<0得x >e 2,所以函数h (x )在(0,e 2)为增函数,在(e 2,+∞)为减函数,又h (e 2)=1e 2,x →0时,h (x )→-∞,x →+∞时,h (x )→0,所以0<a <1e 2.12.已知函数f (x )=x e x -a .若f (x )有两个零点,则实数a 的取值范围是( )A .[0,1)B .(0,1)C .⎝⎛⎭⎫0,1eD .⎣⎡⎭⎫0,1e 12.答案 C 解析 f ′(x )=1-x e x ,所以f ′(x ),f (x )的变化如下表: x(-∞,1) 1 (1,+∞) f ′(x )+ 0 - f (x ) 极大值 若a =0,x >0时,f (x )>0,f (x )最多只有一个零点,所以a ≠0.若f (x )有两个零点,则1e -a >0,即a <1e ,结合a =0时f (x )的符号知0<a <1e C .。
高考数学专题复习:指数函数
高考数学专题复习:指数函数一、单选题1.设函数13,1()2,1x x x f x a x ⎧-<⎪=⎨⎪≥⎩,若5[()]46f f =,则a =( )A .2B .12 C .34D .782.设函数3,1()2,1x x a x f x x +≤⎧=⎨>⎩,若183f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则a =( ) A .74-B .54C .2D .54或23.若函数()1,121,14xxx f x a x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩的值域为(),a +∞,则a 的最大值为( ) A .14B .12C .1D .24.已知指数函数()xf x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .3±B .3C.D5.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞6.函数y = )A .(,3)-∞B .(,3]-∞C .(3,)+∞D .[3,)+∞7.已知133a =,159b =,295c =,则a ,b ,c的大小关系是( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.指数函数2x y =的图象一定经过点( )A .()0,1B .()1,1C .()1,1-D .()1,1-9.已知函数()()231xg x a a R =-∈+是奇函数,则函数()g x 的值域为( ) A .()1,1- B .()1,-+∞C .(]1,1-D .(),1-∞10.函数()11x f x a -=+(0a >且1a ≠)恒过定点P ,则点P 的坐标为( )A .0,1B .()1,1C .()2,1D .1,211.已知函数()f x 为奇函数,当0x <时,()22xf x =+,则()1f =( )A .4-B .52-C .4D .5212.已知函数221,02,()()1,20,x x f x g x ax x x ⎧-≤≤==+⎨--≤<⎩,对12[2,2],[2,2]x x ∀∈-∃∈-,使()()12g x f x =成立,则实数a 的取值范围是( )A .[1,1]-B .51,2⎡⎤⎢⎥⎣⎦C .[2,2]-D .55,22⎡⎤-⎢⎥⎣⎦二、填空题13.已知函数2,1()2,1x x x f x x -≥⎧=⎨<⎩,则((3))f f 的值为________.14.已知函数()xf x a =(0a >且1a ≠),()12f =,则函数()f x 的解析式是________.15.若函数()()()()()54731211xa x a x f x a x ⎧-+-<⎪=⎨-≥⎪⎩是R 上的单调递减函数,则实数a 的取值范围是________.16.已知函数2()89f x x x =++,2()422x x g x +=-+-.若对于任意的1[5,]x a ∈-,存在2(0,)x ∈+∞,使得()()12f x g x =成立,则a 的最大值为________. 三、解答题17.若函数31()31x x a af x --=-为奇函数.(1)求a 的值; (2)求函数的值域.18.已知函数()131x mf x =++为奇函数. (1)求实数m 的值;(2)判断并证明函数()f x 的单调性;(3)求不等式()21102f x x --+<的解集.19.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对在意的[1,2)t ∈-,不等式()()22220f t t f t k ++->恒成立,求k 的取值范围.20.已知函数1()(0xx b f x a a a-=+>且1)a ≠是奇函数. (1)求b 的值;(2)令函数()()1x g x f x a =--,若关于x 的方程2()3t g x t +=+在R 上有解,求实数t 的取值范围.21.已知函数()323,()3x x f x g x =-⋅=.(1)当[1,2]x ∈时,求函数()[()1]()h x f x g x =+⋅的值域;(2)如果对任意的[1,2]x ∈不等式[]2()()3f x m g x ≥-恒成立,求实数m 的取值范围.22.设a 是实数,函数()()2xx f x ee a x R =+-∈(1)求证:函数()f x 不是奇函数; (2)若a y x =在0,单调递减,求满足不等式()2f x a >的x 的取值范围;(3)求函数()f x 的值域(用a 表示).参考答案1.A 【分析】根据给定的分段函数求出5()6f 的值,列出关于a 的方程即可得解. 【详解】依题意,551()32662f =⋅-=,则25[()](2)6f f f a ==,于是得24a =,解得2a =或2a =-(不符合题意,舍去), 所以2a =. 故选:A 2.C 【分析】求出113f a ⎛⎫=+ ⎪⎝⎭,然后根据1a +的范围分类计算求解.【详解】由已知113f a ⎛⎫=+ ⎪⎝⎭,0a ≤时,1(1)3(1)83f f f a a a ⎛⎫⎛⎫=+=++= ⎪ ⎪⎝⎭⎝⎭,54a =,不合题意,0a >时,11(1)283a f f f a +⎛⎫⎛⎫=+== ⎪⎪⎝⎭⎝⎭,2a =. 综上,2a =. 故选:C . 3.B 【分析】分别求出1x <和1≥x 时的()f x 的范围,然后结题意可得12a ≤且1142a +≥,从而可求出a 的范围,进而可得答案 【详解】解:当1x <时,1()2x f x ⎛⎫= ⎪⎝⎭,则1111222x ⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,即1(),2f x ⎛⎫∈+∞ ⎪⎝⎭当1≥x 时,1()4xf x a ⎛⎫=+ ⎪⎝⎭,则1111444x a a a a ⎛⎫⎛⎫<+≤+=+ ⎪ ⎪⎝⎭⎝⎭,即1(),4f x a a ⎛⎤∈+ ⎥⎝⎦,因为()f x 的值域为(),a +∞, 所以12a ≤且1142a +≥,解得1142a ≤≤, 所以a 的最大值为12, 故选:B 4.D 【分析】根据函数图像变换法则求出函数的解析式,建立方程关系进行求解即可 【详解】解:将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,则()3x g x a =,再将()g x 的图象向右平移2个单位长度,则得到的函数关系数为2233x xy a a a -==, 因为所得图象恰好与函数()f x 的图象重合,所以231a=,23a =,解得a a =, 故选:D 5.C 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >,101yy+∴>-, ∴11y -<<,即函数()f x 的值域为(1,1)-. 故选:C6.D 【分析】由对数函数的单调性直接求解即可. 【详解】由题意得280x -≥,所以322x ≥,解得3x ≥. 故选:D. 7.C 【分析】利用幂函数和指数函数的性质比较大小即可 【详解】∵111365399a b ==<=,21119993525273c a ==<==, ∴c a b <<. 故选:C . 8.A 【分析】结合选项中的点,带入函数解析式检验即可得出结果. 【详解】当0x =时,0221x y ===,所以指数函数2x y =的图象一定经过点()0,1,故A 正确; 当1x =时,12221x y ===≠,所以指数函数2x y =的图象不经过点()1,1,故B 错误;当1x =-时,112212x y -===≠,所以指数函数2x y =的图象不经过点()1,1-,故C 错误; 当1x =时,12221x y ===≠-,所以指数函数2x y =的图象不经过点()1,1-,故D 错误; 故选:A. 9.A 【分析】由()00g =可构造方程求得1a =,验证可知满足题意;根据30x >,由不等式的性质可求得()g x 的范围,从而得到所求值域.【详解】由题意知:()g x 定义域为R ,()g x 为定义在R 上的奇函数,()0201031g a a ∴=-=-=+,解得:1a =, 此时()23113131xx x g x -=-=++,()()1113311313x x x xg x g x ---===-++,满足题意; 30x >,311x ∴+>,20231x ∴<<+,22031x ∴-<-<+,()11g x ∴-<<, 即()g x 的值域为()1,1-. 故选:A. 10.D 【分析】根据指数函数过定点求解即可. 【详解】解:因为指数函数x y a =(0a >且1a ≠)过定点0,1, 所以令10x -=得1,2x y ==所以函数()11x f x a -=+(0a >且1a ≠)恒过定点()1,2P故选:D 11.B 【分析】由奇函数的性质有(1)(1)=--f f ,结合0x <的函数解析式即可求值. 【详解】由题设知:15(1)(1)(22)2f f -=--=-+=-.故选:B 12.A 【分析】作出函数()f x 的图象,根据条件求出两个函数最值之间的关系,结合数形结合即可得到结论. 【详解】解:作出函数221,02(),20x x f x x x ⎧-=⎨--<⎩的图象如图:则当[2x ∈-,2],()f x 的最大值为()23f =,最小值(2)4f -=-,若0a =,()1g x =,此时满足1[2x ∀∈-,2],2[2x ∃∈-,2],使12()()g x f x =成立, 若0a ≠,则直线()g x 过定点(0,1)B ,若0a >,要使对1[2x ∀∈-,2],2[2x ∃∈-,2],使12()()g x f x =成立, 则满足()()max max g x f x ,且()()min min g x f x , 即213a +且214a -+-, 即1a 且52a, 此时满足01a <,若0a <,要使对1[2x ∀∈-,2],2[2x ∃∈-,2],使12()()g x f x =成立, 则满足()()max max g x f x ,且()()min min g x f x , 即213a -+且214a +-, 即1a -且52a -, 此时满足11a -<, 综上11a -,故选:A 13.12 【分析】根据分段函数的解析式代入求值即可. 【详解】由2,1()2,1xx x f x x -≥⎧=⎨<⎩, 则11((3))(1)22f f f -=-==.故答案为:1214.()()2xf x x R =∈【分析】由()12f =可求得a 的值,即可得出函数()f x 的解析式. 【详解】由已知可得()12f a ==,因此,()2xf x =.故答案为:()()2xf x x R =∈.15.34,55⎡⎫⎪⎢⎣⎭【分析】由分段函数的两段都递减,两个端点的函数值满足左大右小可得. 【详解】解:函数()()()()()54731211xa x a x f x a x ⎧-+-<⎪=⎨-≥⎪⎩是R 上的单调递减函数, 所以()()5400211547321a a a a a ⎧-<⎪<-<⎨⎪-+-≥-⎩,解得4511235a a a ⎧<⎪⎪⎪<<⎨⎪⎪≥⎪⎩,即3455a ≤<,所以实数a 的取值范围是34,55⎡⎫⎪⎢⎣⎭.故答案为:34,55⎡⎫⎪⎢⎣⎭.16.1- 【分析】由已知可得,函数()f x 在区间[5,]a -上的值域是()g x 在(0,)+∞上的值域的子集,分别求出函数()f x 的值域和()g x 的值域,利用集合之间的包含关系求解即可. 【详解】若对于任意的1[5,]x a ∈-,存在2(0,)x ∈+∞,使得()()12f x g x =成立, 即函数()f x 在区间[5,]a -上的值域是()g x 在(0,)+∞上的值域的子集.当(0,)x ∈+∞时,21x >,所以222()422(2)422(22)22x x x x x g x +=-+-=-+⨯-=--+≤, 所以()(,2]g x ∈-∞,又22()89(4)7f x x x x =++=+-的图象开口向上,其对称轴为4x =-, 当54a -<<-时,函数()f x 的值域为2[+89,6]a a +-,符合题意; 当43a --≤≤时,函数()f x 的值域为[7,6]--,符合题意; 当3a >-时,函数()f x 的值域为2[7,+89]a a -+,要满足题意,则2892a a ++≤,解得71a -≤≤-,又3a >-,所以31a -<≤-, 综上51a -<≤-所以实数a 的最大值为1-. 故答案为:1- 【点睛】方法点睛:等式任意性和存在性的混合问题,可以转化为两个函数在各自定义域下的值域包含问题.17.(1)12a =-;(2)11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)由于()f x 为奇函数,所以可得()()f x f x -=-,从而可求出a 的值; (2)由(1)可得11()231xf x =---,然后由30x >结合不等式的性可求出函数的值域 【详解】解:(1)函数31()31x x a af x --=-为奇函数.∴31313131x x x x a a a a------=---,即3313x x x a a a a --=--+,2(31)13x x a ∴-=-可得:12a =-.(2)由(1)可知1113(31)111222()3131231x x x x xf x -----===-----. 由310x -≠,得0x ≠, 所以30x >且31x ≠所以1310x -<-<或310x ->, 所以1131x <--或1031x >-, 所以1112312x-->-或1112312x --<--, 所以函数()f x 的值域为11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭18.(1)2m =-;(2)()f x 在R 上单增,证明见解析;(3){}01x x <<. 【分析】(1)由奇函数的性质可知()00f =,求得m 后,再验证函数是奇函数;(2)利用单调性的定义,判断函数的单调性;(3)()112f =,不等式变形为()()211f x x f --<-,利用函数的单调性求x 的取值范围. 【详解】 解:(1)()f x 为奇函数,定义域为R ,∴()0f x =,即102m+=, ∴2m =-,经检验,符合题意.(2)()f x 为R 上的增函数,设12x x <,则()()()()()121212122332231313131x x x x x x f x f x ----=-=++++,12x x <,∴1233x x <,1310x +>,2310x +>,∴()()120f x f x -<, ∴()f x 在R 上单增.(3)()2111312f =-=+ ∴()()2110f x x f --+<, ∴()()211f x x f --<-,()f x 为奇函数,()()11f f -=-,∴()()211f x x f --<-,()f x 为R 上增函数,∴211x x --<-, ∴01x <<,所以不等式的解集是{}01x x <<. 19.(1)2,1a b ==;(2)[)16,+∞ 【分析】(1)根据()00=f ,可得1b =,再由11f f即可求解,最后检验即可;(2)先判断()f x 的单调性,利用单调性解不等式 . 【详解】解:(1)∵因为()f x 是R 上的奇函数, 所以()00=f ,即102ba-+=+,解得1b =. 从而有121()2x x f x a+-+=+. 又由11f f,知1121241a a-+-+=-++,解得2a =. 经检验,当2a =,1b =时,121()22x x f x +-+=+,此时111211221222()(22)2x x x x x x f x f x --+++-+-+-+==+-=--+=+,满足题意.所以2a =,1b =(2)由(1)知:121()22x x f x +-+=+. 任取12,x x R ∈且12x x <,则1212121212111111122121(21)(22)(22)(21)2222(22)(22)()()x x x x x x x x x x f x f x ++++++-+-+-++-+-+-=+-=+++1212121111222222(22)(22)x x x x x x ++++-+-+=++2112221122(22)(22)x x x x ++++-=++因为12x x <,所以1222x x <,所以212222x x ++>,所以12()()f x f x > 所以121()22x x f x +-+=+为减函数.所以对任意的[1,2)t ∈-,不等式()()22220f t t f t k ++->恒成立等价于对任意的[1,2)t ∈-,不等式()()()222222f t t f t k f k t +>--=-恒成立,所以2222t t k t +<-对任意的[1,2)t ∈-恒成立, 所以232t t k +<对任意的 [1,2)t ∈-恒成立,因为二次函数性质得函数232y t t =+在区间[1,2)t ∈-上的函数值满足1163y -≤<,所以16k ≥,即k 的取值范围为[)16,+∞ 20.(1) 0b = (2) 532t -<<- 【分析】(1)由()f x 的定义域为R ,且奇函数,则(0)0f =,从而可求出答案. (2)由题意1()1xg x a -=-,先求出函数()g x 的值域,方程2()3t g x t +=+在R 上有解,则max 2()3t g x t +>+,从而得出答案. 【详解】(1)函数1()(0)xxb f x a a a -=+>的定义域为R ,又()f x 是奇函数 所以(0)110f b b =+-==当0b =时,1()xx f x a a =-,11()()xx x xf x a a f x a a --⎛⎫-==-=- ⎪⎝⎭-- 满足()f x 是奇函数,所以0b =(2) 11()()111x xxx xg x f x a a a a a --=--=--=- 由0x a >,则10x a >,所以10x a -<,所以111x a-<--即()g x 的值域为()1-∞-,方程2()3t g x t +=+在R 上有解,则213t t +<-+,解得532t -<<- 所以满足条件的实数t 的取值范围:532t -<<- 21.(1)[]126,6--;(2)(,24]-∞. 【分析】(1)由题设令3[3,9]x t =∈,则()()242k t h x t t ==-,根据二次函数的性质即可求值域;(2)由题设结合(1)2(32)(3)t m t -≥-在[3,9]t ∈上恒成立,当3t =时易知不等式恒成立,当(3,9]t ∈时,令2(32)()(3)t t t ϕ-=-则只需min ()m t ϕ≤,结合基本不等式即可求参数范围.【详解】(1)由题设,若3[3,9]x t =∈,∴()()()()224242212k t h x t t t t t ==-=-=--+,则对称轴为1t =且开口向下, ∴[3,9]t ∈上()k t 单调递减,即()()[]126,6k t h x =∈--, ∴()h x 的值域为[]126,6--.(2)由(1)知:2(32)(3)t m t -≥-在[3,9]t ∈上恒成立, ∴当3t =时,2(323)(33)m -⨯≥-,即90≥对任意m 都成立,当(3,9]t ∈,即3(0,6]t -∈时,2(32)9944(3)12(3)33t m t t t t t -≤=+=-++---恒成立,∴9()4(3)1212243t t t ϕ=-++≥=-当且仅当9[3,9]2t =∈等号成立,∴仅需min ()m t ϕ≤,即24m ≤即可. ∴实数m 的取值范围(,24]-∞.22.(1)证明见解析;(2)答案见解析;(3)答案见解析. 【分析】(1)根据奇函数的性质(0)0f =是否成立,即可证明;(2)由题设易知0a <,令0x t e =>,则()()[(1)]0h t t a t a =-++>,讨论102a >>-、112a -≤<-、1a <-,求解集即可.(3)令0x t e =>,则2()()||f x g t t t a ==+-,讨论0a ≤、102a ≥>、12a >,结合分段函数的性质求值域范围. 【详解】(1)由题意,(0)1|1|0f a =+-≠,而()f x 定义域为x ∈R ,与奇函数的性质矛盾, ∴函数()f x 不是奇函数,得证. (2)a y x =在0,单调递减,则0a <,即2()x x f x e e a =+-,∴2()f x a >,令0x t e =>,则22()()()[(1)]0h t t t a a t a t a =+-+=-++>, 当102a >≥-,有(1)t a <-+或t a >,故解集为0t >,此时x ∈R ;当112a -≤<-有t a <或(1)t a >-+,故解集为0t >,此时x ∈R ;当1a <-,有(1)t a >-+,此时ln[(1)]x a >-+;综上,10a -≤<时,x ∈R ;1a <-时,(ln[(1)],)x a ∈-++∞. (3)令0x t e =>,则2()()||f x g t t t a ==+-, 当0a ≤时,2()(0)g t t t a g a =+->=-; 当102a ≥>时, 1、若t a ≥,22()()g t t t a g a a =+-≥=;2、若0a t >>,)22211()(),24g t t t a t a a a ⎡=-+=-+-∈⎣; 此时2()g t a ≥; 当12a >时, 1、若t a ≥,22211()()()24g t t t a t a g a a =+-=+--≥=;2、若0a t >>,221111()()()2424g t t t a t a g a =-+=-+-≥=-,此时1()4g t a ≥-.综上,0a ≤时,()f x ∈(,)a -+∞;102a ≥>时,()f x ∈2[,)a +∞; 12a >时,()f x ∈1[,)4a -+∞;。
高考三角函数复习专题
三角函数复习专题一、核心知识点归纳:★★★1、正弦函数、余弦函数和正切函数的图象与性质:★★2.正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===R 为ABC ∆外接圆半径2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩ ⇒ sin 2sin 2sin 2a A R b B R c C R ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆===③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩三、例题集锦: 考点一:三角函数的概念1.如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .1若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值;2设函数()f OP OQ α=⋅,求()αf 的值域. 2.已知函数2()22sin f x x x =-.Ⅰ若点(1,P在角α的终边上,求()f α的值; Ⅱ若[,]63x ππ∈-,求()f x 的值域.考点二:三角函数的图象和性质3.函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.Ⅰ求()f x 的最小正周期及解析式;Ⅱ设()()cos 2g x f x x =-,求函数()g x 在区间[0,]x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换4.已知函数x x x f 2cos )62sin()(+-=π.1若1)(=θf ,求θθcos sin ⋅的值;2求函数)(x f 的单调增区间.3求函数的对称轴方程和对称中心 5.已知函数2()2sin cos 2cos f x x x x ωωω=-0x ω∈>R ,,相邻两条对称轴之间的距离等于2π.Ⅰ求()4f π的值;Ⅱ当 02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值. 6、已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R . Ⅰ求函数()f x 的最小正周期及函数()f x 的单调递增区间;Ⅱ若0()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值.7、已知πsin()410A +=,ππ(,)42A ∈. Ⅰ求cos A 的值; Ⅱ求函数5()cos 2sin sin 2f x x A x =+的值域.考点六:解三角形8.已知△ABC 中,2sin cos sin cos cos sin A B C B C B =+. Ⅰ求角B 的大小;Ⅱ设向量(cos , cos 2)A A =m ,12(, 1)5=-n ,求当⋅m n 取最 小值时,)4tan(π-A 值.9.已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. Ⅰ求)4(πf 的值;Ⅱ若)2,0(π∈x ,求)(x f 的最大值;Ⅲ在ABC ∆中,若B A <,21)()(==B f A f ,求AB BC 的值.10、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. Ⅰ求角A 的大小;Ⅱ若a =求△ABC 面积的最大值.11、 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .9第题图Ⅰ求角A 的大小;Ⅱ设函数2cos 2cos 2sin 3)(2x x xx f +=,当)(B f 取最大值23时,判断△ABC 的形状.12、在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. Ⅰ求tan A ; Ⅱ求ABC ∆的面积.13、在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. Ⅰ求角C 的大小; Ⅱ求sin sin A B +的最大值.高三文科---三角函数专题11.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45- B .35- C .35 D .452.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为)2,2(0-P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为3.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间0t =时,点A 的坐标是13(,)22,则当012t ≤≤时,动点A 的纵坐标y 关于t 单位:秒的函数的单调递增区间是A 、[]0,1B 、[]1,7C 、[]7,12D 、[]0,1和[]7,124.函数f (x)Asin(wx ),(A,w,=+φφ)为常数,)0,0>>w A 的部分图象如图所示,则f (0)____的值是5.已知函数f (x)A tan(x )=ω+ϕω>0,2π<ϕ,y f (x)=的部分图象如下图,则f24π=__________. 6. 函数f x=sinx -cosx +6π的值域为A . -2 ,2B .33C .-1,1D .-33 8.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 A ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦14.定义在⎪⎭⎫⎝⎛20π,的函数y=6cosx 图像与y=5tanx 图像的交点为P,过点P 作PP 1⊥x轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为 .16.如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数sin 2y x =, sin()6y x π=+,sin()3y x π=-的图像如下,结果发现其中有一位同学作出的图像有错误,那么有错误..的图像是 A B C D17.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是20.设sin 1+=43πθ(),则sin 2θ=A 79- B 19- C 19 D 7922.已知,2)4tan(=+πx 则x x2tan tan 的值为__________25.若tan θ+1tan θ=4,则sin 2θ=A .15B . 14C . 13D . 1226.已知α为第二象限角,33cos sin =+αα,则cos2α=A 555527.若02πα<<,02πβ-<<,1cos ()43πα+=,3cos ()42πβ-=则cos ()2βα+= A33 B 33-53 D 628. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 . 29.在△ABC 中,角A 、B 、C 所对应的边为c b a ,,1若,cos 2)6sin(A A =+π 求A 的值;2若c b A 3,31cos ==,求C sin 的值.30.如图,△ABC 中,AB=AC=2,BC=3点D 在BC 边上,∠ADC=45°,则AD 的长度等于___.31.在ABC ∆中,内角A,B,C 所对的边分别是c b a ,,,已知8b=5c,C=2B,则cosC=A257 B 257- C 257± D 2524 34.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c =35. 如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=A 、31010 B 、1010 C 、510 D 、51536. 在ABC ∆中,角,,A B C 所对边长分别为,,a b c , 若2222a b c +=,则cos C 的最小值为A .3. 22C . 12D . 12-37.在ABC 中,60,3B AC ==则2AB BC +的最大值为 . 39. 设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>43. 已知函数()tan(2),4f x x =+πⅠ求()f x 的定义域与最小正周期;II 设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小45. 设函数22())sin 4f x x x π=++. I 求函数()f x 的最小正周期;II 设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.47.设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω Ⅰ求函数y f (x )= 的值域Ⅱ若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.48. 函数2()6cos 33(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.Ⅰ求ω的值及函数()f x 的值域; Ⅱ若083()f x =,且0102(,)33x ∈-,求0(1)f x +的值. 52. 已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c --= 1求A ; 2若2a =,ABC ∆的面积为3;求,b c .53.在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5C .Ⅰ求tan C 的值; Ⅱ若a 2求∆ABC 的面积.54.在△ABC中,角A ,B ,C 的对边分别为a ,b ,c .已知,sin()sin()444A b C cB a πππ=+-+= 1求证: 2B C π-=2若2a =,求△ABC 的面积.56.已知向量(cos sin ,sin )x x x ωωω=-a ,(cos sin ,23cos )x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.Ⅰ求函数()f x 的最小正周期;Ⅱ若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围. 57.在ABC ∆中,已知3AB AC BA BC =. 1求证:tan 3tan B A =; 2若5cos 5C =,求A 的值.58. 已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_____.59.已知ABC ∆ 的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______60.已知等比数列{a n }的公比q=3,前3项和313.3S = I 求数列{a n }的通项公式;II 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为a 3,求函数fx 的解析式.63.函数22xy sin x =-的图象大致是 64.函数fx=sin x ωϕ+的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.1若6πϕ=,点P 的坐标为0,332,则ω= ; 2求∆ABC 面积65设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.I 求BII 若1sin sin 4A C =,求C .66在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =++.Ⅰ求A ;Ⅱ设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.67在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.Ⅰ求sin A 的值;Ⅱ若a =5b =,求向量BA 在BC 方向上的投影68已知函数()sin cos f x x a x =+的一个零点是3π4. Ⅰ求实数a 的值;Ⅱ设22()[()]2sin g x f x x =-,求()g x 的单调递增区间.69在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=.Ⅰ求证:,,a b c 成等比数列; Ⅱ若1,2a c ==,求△ABC 的面积S .三角函数1、在ABC ∆中,已知内角3A π=,边BC =设内角B x =,面积为y .1求函数()y f x =的解析式和定义域; 2求y 的最大值.2、已知a =coos α,sin α,b =coos β,sin β,其中0<α<β<π. 1求证:a +b 与a -b 互相垂直;2若k a +b 与a -k b 的长度相等,求β-α的值k 为非零的常数.3、已知3sin22B A ++cos 22BA -=2, cocacobs ≠0,求tanAtanB 的值; 5、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,记→→•=BC AB f )(θ, 1求)(θf 关于θ的表达式; 2求)(θf 的值域;6、已知向量],2[),2cos ),122(cos(),2cos ),122(sin(ππππ∈-+=+=x x x b x x a ,函数b a x f ⋅=)(.I 若53cos -=x ,求函数)(x f 的值;II 将函数)(x f 的图象按向量c =)0)(,(π<<m n m 平移,使得平移后的图象关于原点对称,求向量c .9、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n ;I 求锐角B 的大小;II 如果2b =,求ABC ∆的面积ABC S ∆的最大值; 10、已知向量()()3cos2,1,1,sin2,,m a x n b a x a b R ==-∈,集合{}2cos ,22M x x x ππ⎡⎤=∈-⎢⎥⎣⎦,若函数()f x m n x M =∈在时,取得最大值3,最小值为-1,求实数,a b 的值16、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= I 求cos B 的值;II 若2=⋅BC BA ,且22=b ,求c a 和b 的值.21、已知向量m =()B B cos 1,sin -, 向量n = 2,0,且m 与n 所成角为错误!,其中A 、B 、C 是ABC ∆的内角;ABC1201求角B 的大小;2求 C A sin sin +的取值范围;26、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A,43cos =A , 1求B C cos ,cos 的值;2若227=⋅BC BA ,求边AC 的长; 30、已知ABC △的面积为3,且满足60≤⋅≤AC AB ,设AB 和AC 的夹角为θ. I 求θ的取值范围;II 求函数)4(sin 2)(2πθθ+=f -θ2cos 3的最大值与最小值.33、已知△ABC 的面积为3,且06,AB AC AB AC θ→→→→≤•≤设和的夹角为; 1求θ的取值范围;2求函数22()(sin cos )f θθθθ=+-的最大值和最小值; 36、已知A B 、是△ABC 的两个内角,向量2cos, sin 22A B A Ba +-=(),若6||2a =. Ⅰ试问B A tan tan ⋅是否为定值若为定值,请求出;否则请说明理由; Ⅱ求C tan 的最大值,并判断此时三角形的形状. 38、在△ABC 中,已知35=BC ,外接圆半径为5. Ⅰ求∠A 的大小; Ⅱ若ABC AC AB ∆=⋅,求211的周长. 40、如图A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A 点的坐标为)54,53(,三角形AOB 为正三角形. Ⅰ求COA ∠sin ;Ⅱ求2||BC 的值.45、已知函数fx=4sin 24π42x ππ≤≤1求)(x f 的最大值及最小值;2若不等式|fx -m|<2恒成立, 求实数m 的取值范围49、已知函数fx =·,其中=sin ωx +cos ωx,错误!cos ωx,=cos ωx -sin ωx,2sin ωx ω>0,若fx 相邻的对称轴之间的距离不小于错误!. 1求ω的取值范围;2在△ABC 中,a,b,c 分别为A,B,C 的对边,a =错误!,b+c =3,当ω最大时,fA =1,求△ABC 的面积.56、已知角C B A ,,为ABC ∆的三个内角,其对边分别为c b a ,,,若)2sin ,2cos (A A -=m ,)2sin ,2(cos A A =n ,32=a ,且21=⋅n m .1若ABC ∆的面积3=S ,求c b +的值. 2求c b +的取值范围.59、在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且tanA -tanB=1+tanA ·tanB .1若a 2-ab =c 2-b 2,求A 、B 、C 的大小;2已知向量m =sinA,cosA,n =cosB,sinB,求|3m -2n |的取值范围.62、已知函数0)6(,cos sin cos 2)(2=+=πf x x a x x f1求函数)(x f 的最小正周期及单调增区间;2若函数)(x f 的图象按向量)1,6(-=πm 平移后得到函数)(x g 的图象,求)(x g 的解析式.64、设向量)2,(),,0(),0,1(),sin ,cos 1(),sin ,cos 1(ππβπαββαα∈∈=-=+=c b a ,2sin,3,,2121βαπθθθθ-=-求且的夹角为与的夹角为与c b c a 的值;68已知A 、B 、C 为ABC ∆的三个内角,向量65(,cos )22A B A B +-=a ,且3|| 5.5=a 1求tan tan A B 的值;2求C 的最大值,并判断此时ABC ∆的形状.74、在△ABC 中,,0),1,(),cos ,sin 3(),2cos ,(cos πλ≤≤--x C x x B x x A 若△ABC 的重心在y 轴负半轴上,求实数λ的取值范围.76、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若).(R k k BC BA AC AB ∈=⋅=⋅ Ⅰ判断△ABC 的形状; Ⅱ若k c 求,2=的值.77、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos B C ba c=-+2. I 求角B 的大小;II 若b a c =+=134,,求△ABC 的面积.78、已知ABC ∆中,a 、b 、c 是三个内角A 、B 、C 的对边,关于x 的不等式2cos 4sin 60x C x C ++<的解集是空集. 1求角C 的最大值;2若72c =,ABC ∆的面积S =求当角C 取最大值时a b +的值. 84、在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c Bb+=. Ⅰ求角A ; Ⅱ若m (0,1)=-,n ()2cos ,2cos 2C B =,试求|m +n |的最小值. 90、已知锐角△ABC 三个内角为A 、B 、C,向量22sin ,cos sin pA A A 与向量sin cos ,1sin qA A A 是共线向量.Ⅰ求角A. Ⅱ求函数232sin cos 2C By B 的最大值.96、已知]),0[,0)(cos()(πωωπ∈Φ>Φ+=x x f 是R 上的奇函数,其图像关于直线43=x 对称,且在区间]41,41[-上是单调函数,求ω和Φ的值; 98、已知向量(1tan ,1),(1sin 2cos 2,3)x x x =-=++-b a ,记().f x =⋅b a1求fx 的值域及最小正周期;2若224f f ααπ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭其中0,2πα⎛⎫∈ ⎪⎝⎭,求角.α。
高考函数复习题目
高考函数复习题目一、选择题1. 函数f(x) = 2x^2 + 3x - 5的图像关于x轴对称,那么f(x)的图像关于y轴对称的函数g(x)可以表示为:A. g(x) = 2x^2 - 3x - 5B. g(x) = -2x^2 + 3x + 5C. g(x) = -2x^2 - 3x + 5D. g(x) = 2x^2 + 3x + 52. 若函数f(x) = x^3 - 3x^2 + 2x + 1在区间[-1, 2]上单调递增,则f(x)的导数f'(x)满足:A. f'(x) ≥ 0B. f'(x) ≤ 0C. f'(x) > 0D. f'(x) < 0二、填空题3. 已知函数y = √x + 1,当x = 4时,y的值是______。
4. 函数f(x) = x^2 - 2x + 3的最小值是______。
三、解答题5. 求函数f(x) = x^3 - 6x^2 + 11x - 6在区间[1, 5]上的极值。
6. 已知函数f(x) = 2x - 1,g(x) = x^2 + 3x + 2,求f(g(x))的表达式。
四、综合题7. 某工厂生产一种产品,其成本函数为C(x) = 100 + 20x,其中x为生产数量。
求当x在[10, 50]区间内时,成本函数的最小值。
8. 已知函数f(x) = x^2 + bx + c,若f(1) = 3,f(2) = 8,求b和c的值,并写出函数的表达式。
五、证明题9. 证明函数f(x) = x^3 - 3x^2 + 2x + 1在x = 2处取得极小值。
10. 证明函数f(x) = sin(x) + cos(x)在区间[0, π/2]上单调递增。
六、应用题11. 某公司计划在新市场销售一种新产品,预计销售函数为S(x) =100 - 0.5x,其中x为销售价格(单位:元)。
求当销售价格在[50, 150]区间内时,销售函数的最大值。
高考数学总复习:函数的概念与性质
高考数学总复习:函数的概念与性质知识网络目标认知考试大纲要求:1. 了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;2. 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3. 了解简单的分段函数,并能简单应用.4. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.5. 会运用函数图象理解和研究函数的性质.重点:会求一些简单函数的定义域和值域,理解分段函数及其简单应用,会运用函数图象理解和研究函数的性质。
难点:分段函数及其简单应用;运用函数图象理解和研究函数的性质.知识要点梳理知识点一:函数的概念1.映射设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
理解:(1)映射是从集合A到集合B的“一对一”或“多对一”两种特殊的对应.(2)映射中的两个集合可以是数集,点集或其它集合.(3)集合A到集合B的映射f:A→B是一个整体,具有方向性;f:A→B 与f:B→A 一般情况下是不同的映射.(4)给定一个集合A到集合B的映射f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有f:a→b,则b叫做a的象,a叫做b的原象.(5)映射允许集合B中的元素在集合A中没有原象.2.函数的定义(1)传统定义:设在某一变化过程中有两个变量x和y,如果对于某一X围内x 的每一个值,y都有唯一的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数).(2)现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值X围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合C={f(x)|x∈A}叫做函数的值域.理解:①集合A、B是两个非空数集;②f表示对应法则;③f:A→B为从集合A到集合B的一个映射;④值域C B。
高考数学一轮复习考点知识专题讲解4---函数的概念及其表示
高考数学一轮复习考点知识专题讲解函数的概念及其表示考点要求1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集. 3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×) (2)函数y =f (x )的图象可以是一条封闭曲线.(×) (3)y =x 0与y =1是同一个函数.(×) (4)函数f (x )=⎩⎨⎧x -1,x ≥0,x 2,x <0的定义域为R .(√)教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是()答案C2.下列各组函数相等的是()A .f (x )=x 2-2x -1(x ∈R ),g (s )=s 2-2s -1(s ∈Z )B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案C3.(2022·长沙质检)已知函数f (x )=⎩⎨⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12等于() A .-1B .2C.3D.12答案D解析∵f ⎝ ⎛⎭⎪⎫12=log 312<0,∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域 例1(1)函数f (x )=lg(x -1)+1x -2的定义域为() A .(1,+∞) B .(1,2)∪(2,+∞) C .[1,2)∪(2,+∞) D .[1,+∞) 答案B解析要使函数有意义,则⎩⎨⎧x -1>0,x -2≠0,解得x >1且x ≠2,所以f (x )的定义域为(1,2)∪(2,+∞).(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案[1,3]解析∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是() A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案B解析由题意,得⎩⎨⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞). 2.已知函数f (x )=x 1-2x,则函数f (x -1)x +1的定义域为() A .(-∞,1) B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案D解析令1-2x >0, 即2x <1,即x <0.∴f (x )的定义域为(-∞,0). ∴函数f (x -1)x +1中,有⎩⎨⎧x -1<0,x +1≠0,解得x <1且x ≠-1. 故函数f (x -1)x +1的定义域为(-∞,-1)∪(-1,1). 思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1(1)函数f (x )=11-4x2+ln(3x -1)的定义域为() A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12 C.⎣⎢⎡⎭⎪⎫-12,14D.⎣⎢⎡⎦⎥⎤-12,12 答案B解析要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎨⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12.(2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________. 答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2(1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为______.答案f (x )=lg 2x -1(x >1)解析令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________.答案x 2+2x +1解析设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , ∴2ax +b =2x +2, 则a =1,b =2. ∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1. 教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案-2x 3-43x解析∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x ,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x. 思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2(1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案-x 2+2x ,x ∈[0,2] 解析令t =1-sin x , ∴t ∈[0,2],sin x =1-t , ∴f (t )=1-sin 2x =1-(1-t )2 =-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝ ⎛⎭⎪⎫x 2+1x 2=x 4+1x 4,则f (x )=__________.答案x 2-2,x ∈[2,+∞) 解析∵f ⎝ ⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3(1)已知f (x )=⎩⎨⎧cosπx ,x ≤1,f (x -1)+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值为()A.12B .-12C .-1D .1 答案D解析f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3 =cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,-x +1,x <1.若f (a )=2,则a 的值为________; 若f (a )<2,则a 的取值范围是________. 答案4或-1(-1,4) 解析若f (a )=2,则⎩⎨⎧a ≥1,log 2a =2或⎩⎨⎧a <1,-a +1=2,解得a =4或a =-1, 若f (a )<2,则⎩⎨⎧a ≥1,log 2a <2或⎩⎨⎧a <1,-a +1<2,解得1≤a <4或-1<a <1,即-1<a <4. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于()A .-32B.22C.32D. 2 答案B解析f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22.2.(2022·百校联盟联考)已知函数f (x )=⎩⎨⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案0解析当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)(2022·河北冀州一中模拟)设f (x )=⎩⎨⎧x +2x -3,x ≥1,x 2+1,x <1.则f (f (-1))=_______,f (x )的最小值是_______. 答案022-3 解析∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3. (2)(2022·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 答案⎝ ⎛⎭⎪⎫-12,+∞ 解析当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立. 综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是() A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3] 答案D解析∵f (x )=3-xlg x,∴⎩⎨⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()答案B解析A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2].3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎨⎧4x -12,x <1,a x,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于() A.12B.34C .1D .2 答案D解析f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫78=f (3)=a 3, 得a 3=8,解得a =2.4.下列函数中,与y =x 是相等函数的是() A .y =(x )2B .y =x 2 C .y =lg10x D .y =10lg x 答案C解析y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =(x )2=x 的定义域为[0,+∞),故不是相等函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是相等函数; 对于C 选项,函数y =lg10x =x ,且定义域为R ,故是相等函数;对于D 选项,y =10lg x =x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是相等函数.5.设函数f (x -2)=x 2+2x -2,则f (x )的表达式为() A .x 2-2x -2B .x 2-6x +6 C .x 2+6x -2D .x 2+6x +6 答案D解析令t =x -2,∴x =t +2,∴f (t )=(t +2)2+2(t +2)-2=t 2+6t +6, ∴f (x )=x 2+6x +6.6.函数f (x )=⎩⎨⎧2x-5,x ≤2,3sin x ,x >2,则f (x )的值域为()A .[-3,-1]B .(-∞,3]C .(-5,3]D .(-5,1] 答案C解析当x ≤2时,f (x )=2x -5, ∴0<2x ≤4,∴f (x )∈(-5,-1], 当x >2时,f (x )=3sin x , ∴f (x )∈[-3,3], ∴f (x )的值域为(-5,3].7.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是()答案A解析由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.8.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是() ①f (x )=x -1x ;②f (x )=ln 1-x1+x;③f (x )=1ex x-;④f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.A .②③B.①②④ C .②③④D.①④ 答案D解析对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意; 对于②,f (x )=ln1-x1+x, 则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =111exx-=e x -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于④,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足“倒负”变换.9.已知f (x 5)=lg x ,则f (100)=________. 答案25解析令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案(1,4]解析依题意⎩⎨⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是________. 答案⎣⎢⎡⎭⎪⎫-1,12解析∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0). 故⎩⎨⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎨⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案[-2,0)∪(0,1] 解析当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.(2018·全国Ⅰ)设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案D解析当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0. 14.设函数f (x )=⎩⎨⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案[2,+∞) 解析当a ≥1时,2a ≥2.∴f (f (a ))=f (2a )=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a , ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为() A .(-1,0) B .(-2,0) C .(0,1) D.⎝ ⎛⎭⎪⎫-12,0答案C解析由题意,知-1<x +1<1,则f (x )的定义域为(-1,1).令-1<2x -1<1,得0<x <1.∴f (2x -1)的定义域为(0,1).16.若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中不具有H 性质的是() A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0)D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2答案B解析若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝ ⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝ ⎛⎭⎪⎫其中a =f ⎝ ⎛⎭⎪⎫x 1+x 22,b =f (x 1)+f (x 2)2.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.。
高考数学专题复习:函数y=Asin(ωx+φ)的图像和性质
高考数学专题复习:函数y=Asin(ωx+φ)的图像和性质一、单选题1.将函数sin 2()4y x x π⎛⎫=+∈ ⎪⎝⎭R 的图象向右平移8π个单位长度,再把所得图象上各点的横坐标缩短到原来的12,纵坐标不变,则所得图象的函数解析式为( ) A .cos y x =B .cos 4y x =C .sin y x =D .sin 4y x =2.若函数()()sin 046f x x πωω⎛⎫=-<< ⎪⎝⎭的图象向左平移3π个单位长度后关于y 轴对称,则ω=( )A .2B .12C .1D .33.函数π()sin 2+4f x x ⎛⎫= ⎪⎝⎭的图像,向右平移π4个单位长度后得到函数()g x 的解析式为( )A .()sin 2g x x =B .π()sin(2+)4g x x =C .π()sin(2)4g x x =-D .3π()sin(2)4g x x =+4.已知函数()sin f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>得到.若方程1()2g x =在(0,)π上恰有6个根,则ω的取值范围是( )A .195,3⎛⎤⎥⎝⎦B .195,3⎡⎫⎪⎢⎣⎭C .2913,62⎛⎤ ⎥⎝⎦D .2913,62⎡⎫⎪⎢⎣⎭5.()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向左平移ϕ个单位,恰与()5sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的取值可能是( )A .3π B .512π C .2π D .712π 6.为了得到sin 2y x =,x ∈R 的图象,只需把cos 2y x =,x ∈R 图像上所有的点( ). A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度7.将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图象,若()()129g x g x ⋅=,且[]12,0,2x x π∈,则12x x -的值为( )A .2πB .πC .2π D .4912π8.设函数()sin (0)6f x x πωωω⎛⎫=++> ⎪⎝⎭的图象如图,则函数f (x )的图象的对称轴方程为( )A .3x k ππ=+(k ∈Z ) B .26k x ππ=+(k ∈Z ) C .26k x ππ=-(k ∈Z ) D .3x k ππ=-(k ∈Z )9.已知函数()πsin()cos 3x f x x =+的图像向右平移3π个单位,再将图像上所有点的横坐标缩小到原来的一半,纵坐标不变,得到函数g (x )的图象,若()()()121214g x x x x g ⋅=≠,则12||x x -的最小值为( ) A .π 4B .2πC .πD .2π10.已知函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,()sin g x x =,要得到函数()y f x =的图象,只需将函数y g x 的图象上的所有点( )A .横坐标缩短为原来的12,再向左平移π3个单位得到B .横坐标缩短为原来的12,再向左平移π6个单位得到C .横坐标伸长为原来的2倍,再向左平移π3个单位得到D .横坐标伸长为原来的2倍,再向左平移π6个单位得到11.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移3π个单位; B .向左平移6π个单位;C .向右平移3π个单位; D .向右平移6π个单位12.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则下列说法正确的个数为( )①3πϕ=;②()f x 在区间,03π⎛-⎫⎪⎝⎭上单调递增;③()f x 的一条对称轴为512x π=;④要想将()f x 变成一个偶函数,可以将()f x 的图象向左平移12π个单位.A .1个B .2个C .3个D .4个二、填空题13.将函数()sin 2f x x =的图像向左平移()0ϕϕ>个单位得到函数()cos2g x x =的图像,则ϕ的最小值是________.14.已知函数1()4sin 26f x x ππ⎛⎫=+ ⎪⎝⎭,将函数f (x )的图象上所有点的横坐标变成原来的12倍,纵坐标不变,得到函数g (x )的图象,且当x ∈1,3a ⎡⎤-⎢⎥⎣⎦时,()[]2,4g x ∈-,则a 的取值范围是________.15.将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于原点对称,则ϕ的一个取值为________.16.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的部分图象如图所示,()sin(2)g x A x ωϕ=-,给出以下说法:①将()y f x =的图象向左平移34个单位长度可以得到()g x 的图象;②()g x 的图象关于直线x =1对称; ③()g x 的图象关于点5(,0)2成中心对称;④()g x 在719(,)44上单调递减.其中所有正确说法的编号是________ 三、解答题 17.已知函数sin ωφf xA xB (其中A ,ω,ϕ,B 均为常数,0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式及其递增区间;(2)若先将函数()f x 图象上所有点的横坐标变为原来的12倍(纵坐标不变),再将图象向左平移m (0m >)个单位长度,得到函数()g x 的图象,若()g x 是偶函数,求实数m 的最小值.18.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示:(1)求函数()f x 的解析式;(2)将函数()y f x =的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值及函数取最大值时相应的x 值.19.已知函数()()sin (0,0,02)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)若()()((0,))2g x f x t t π=+∈为偶函数,求t 的值.20.已知函数()2sin f x x ω=其中常数0>ω.(1)若()y f x =在2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图象向左平移6π个单位长度,再向上平移1个单位长度,得到函数()y g x =的图象,区间[],a b (,a b ∈R 且a b <)满足:()y g x =在[],a b 上至少含有100个零点,在所有满足上述条件的[],a b 中,求b a -的最小值.21.某同学用“五点法”画函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一周期内的图象时,列表并填入的部分数据如下表:(1)请写出上表的122x x y ,,及函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位,再将所得图象上各点的横坐标缩小为原来的12,纵坐标不变,得到函数()g x 的图象,求()g x 的解析式及()12log y g x ⎡=⎢⎣⎦的定义域.22.已知函数()2cos(2)(0)f x x ϕϕπ=+<<. (1)若π=ϕ,完成下列表格并在给定的坐标系中,画出函数f (x )在[0,]π上的图象;(2)若f (x )为奇函数,求ϕ;(3)在(2)的前提下,将函数f (x )的图象向右平移6π个单位长度后,再将得到的图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数g (x )的图象,求g (x )的单调递减区间.参考答案1.D 【分析】根据图象平移,伸缩变换的原则,结合所给方程,化简整理,即可得答案. 【详解】将sin 2()4y x x π⎛⎫=+∈ ⎪⎝⎭R 的图象向右平移8π个单位长度,得到图象的解析式为sin 2sin 284y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,再将sin 2y x =的图象上各点的横坐标缩短到原来的12,纵坐标不变,则所得图象的函数解析式为sin 4y x =, 故选:D . 2.A 【分析】先求出平称后的函数解析式,再由其图像关于y 轴对称,可得其为偶函数,从而可求出ω的值 【详解】解:函数()()sin 046f x x πωω⎛⎫=-<< ⎪⎝⎭的图象向左平移3π个单位长度后的解析式为sin sin 3636y x x πππωπωω⎡⎤⎛⎫⎛⎫=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为其图像关于y 轴对称, 所以,362k k Z πωπππ-=+∈,解得32,k k Z ω=+∈, 因为04ω<<,所以2ω=, 故选:A 3.C 【分析】由平移变换得解析式.【详解】向右平移π4个单位长度后得:()sin 2()sin(2)444g x x x πππ⎡⎤=-+=-⎢⎥⎣⎦.故选:C . 4.A 【分析】由图象变换得出()g x 的表达式,求出1()2g x =的解,正数解从小到大排序后,π大于第六个解,不小于第7个解,由此可得结论. 【详解】由题意()sin()6g x x πω=-,由1sin()62x πω-=,得(1)66k x k ππωπ-=+-,1(1)66k x k πππω⎡⎤=++-⎢⎥⎣⎦,k Z ∈, (1)66k k πππ++-中正数依次为3π,π,73π,3π,133π,5π,193π,…,1()2g x =在(0,)π上恰有6个根,则5193πππωω<≤,解得1953ω<≤.故选:A . 5.D 【分析】首先根据平移规律,写出平移后的图象,再根据两图象重合,列式求ϕ的值. 【详解】()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图像向左平移ϕ个单位后得()sin 23y x πϕ⎡⎤=+-⎢⎥⎣⎦,0ϕ>,与图象()5sin 26g x x π⎛⎫=+ ⎪⎝⎭重合,所以522,36k k Z ππϕπ-=+∈,解得:7,12k k Z πϕπ=+∈, 当0k =时,712πϕ=. 故选:D 6.B 【分析】由诱导公式可得cos 2sin(2)2y x x π==+,结合sin()y A x ωϕ=+的图像变换规律即可得出结论.【详解】由诱导公式可得cos 2sin(2)sin 2()24y x x x ππ==+=+,所以将函数图像上的点向右平移4π个单位长度,即可得到sin 2y x =的图像. 故选:B 7.B 【分析】根据函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的解析式,再利用正弦函数的最大值,可得1()g x 和2()g x 相差一个周期的整数倍,从而判断1232x ππ+=,22232x πππ+=+或1232x ππ+=,22232x πππ+=+,进而求得12x x -的值.【详解】解:将函数()2sin(2)6f x x π=+的图象向左平移12π个单位,再向上平移1个单位,得到()2sin(2)13g x x π=++的图象.若12()()9g x g x ⋅=,则1()g x 和2()g x 都取得最大值3, 故1()g x 和2()g x 相差一个周期的整数倍. 由[]12,0,2x x π∈,则122,2,43333x x πππππ⎡⎤++∈+⎢⎥⎣⎦, 故1232x ππ+=,22232x πππ+=+, 或1232x ππ+=,22232x πππ+=+,所以12x x π-= 故选:B . 8.B 【分析】由图象得2ω=,再由正弦函数的对称轴方程可得答案. 【详解】 由图象可知,132ω+=,所以2ω=,所以 ()sin 226f x x π⎛⎫=++ ⎪⎝⎭,令()262x k k Z πππ+=+∈得()26k x k Z ππ=+∈, 故选:B. 9.B 【分析】先对函数化简,得1()sin 223f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数图像变换规律求出()1sin 423g x x π⎛⎫=- ⎪⎝⎭,由()()()121214g x x x x g ⋅=≠,可得1x 与2x 都是波峰或波谷的横坐标,从而可得答案 【详解】因为()sin cos 3f x x x π⎛⎫=+= ⎪⎝⎭1sin cos 2x x x ⎛⎫+= ⎪ ⎪⎝⎭1cos24x x =111sin 2sin 22223x x x π⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭的图像向右平移3π个单位得1sin 2233y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1sin 223x π⎛⎫=- ⎪⎝⎭,再将图像上所有点的横坐标缩小到原来的一半得到()1sin 423g x x π⎛⎫=- ⎪⎝⎭,因为()()1214g x g x ⋅=,所以()()1212g x g x ==或()()1212g x g x ==-,因为1x 与2x 都是波峰或波谷的横坐标,所以12min2x x T π-==,故选:B . 10.B 【分析】根据正弦函数图象变化前后的解析式,确定图象的变换过程. 【详解】由()πsin 2()6f x x =+,而()sing x x =,∴将函数yg x 的图象上的所有点横坐标缩短为原来的12,再向左平移π6个单位得到()y f x =.故选:B 11.B 【分析】根据两个函数的解析式的特征,结合正弦型函数图像的变换性质进行求解即可.【详解】因为sin 2sin[2]36y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像向左平移6π个单位即可, 故选:B 12.C 【分析】先根据图象特征求ω和ϕ,判断①正确,得到解析式,再利用代入验证法判断②正确③错误,利用图象平移判断④正确,即得正确说法的个数. 【详解】由图象知,7ππ2π4π123T ω⎛⎫=-== ⎪⎝⎭,所以2ω=,函数()()2f x x ϕ=+, 由图象过π,03⎛⎫⎪⎝⎭知,2,3k k Z πϕππ⨯+=+∈,而2πϕ<,故π3ϕ=,故①正确,()32πin f x x ⎛⎫=+ ⎪⎝⎭.,03x π⎛⎫∈- ⎪⎝⎭时,222,,333x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝-⎭-,所以函数单调递增,②正确;512x π=时,37πsin 2sin 16x π⎛⎫+=≠± ⎪⎝⎭,所以512x π=不是对称轴,③错误;()32πin f x x ⎛⎫=+ ⎪⎝⎭向左平移12π个单位得ππ2221232πy x x x ⎡⎤=⎢⎥⎣⎦⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭是偶函数,所以④正确.综上,说法正确的个数为3个. 故选:C. 13.4π【分析】将cos 2x 化为sin 22x π⎛⎫+ ⎪⎝⎭,进而通过平移得到答案.【详解】由已知可得sin 2()cos2sin 22x x x πϕ⎛⎫+==+ ⎪⎝⎭,∴222k πϕπ=+,∴,4k k πϕπ=+∈Z ,∵0ϕ>,∴ϕ的最小值是4π. 故答案为:4π. 14.1,13⎡⎤⎢⎥⎣⎦【分析】利用图象变换知识可得()4sin()6g x x ππ=+,结合正弦函数的图象与性质可得结果.【详解】由题意可得()4sin()6g x x ππ=+,当1,3x a ⎡⎤∈-⎢⎥⎣⎦时,(),666x a πππππ⎡⎤+∈-+⎢⎥⎣⎦,又()[]2,4g x ∈-,结合正弦函数的图象可得7266a ππππ≤+≤,所以113a ≤≤.故答案为:1,13⎡⎤⎢⎥⎣⎦.15.4π 【分析】根据平移后的可得函数()cos(22)g x x ϕ=+,根据题意可得(0)0g =可得22k πϕπ=+,取一值即可得解. 【详解】将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度, 可得()cos(22)g x x ϕ=+,由函数()g x 的图象关于原点对称, 可得(0)cos(2)0g ϕ==, 所以22k πϕπ=+,42k ππϕ=+, 当0k =时,4πϕ=.故答案为:4π 16.①②③ 【分析】由给定的函数图象求出ω和ϕ并写出()f x ,()g x 的解析式,然后对四个命题逐一分析判断作答.【详解】令函数()f x 周期为T ,观察图象得75()3244T =--=,即6T =,则23T ππω==, 又当74x =时,()f x 取得最大值,于是有72()342k k Z ππϕπ⋅+=+∈,因||2ϕπ<,则有0,12k πϕ==-,所以()sin(),()sin()31236f x A xg x A x ππππ=-=+,因33()sin[()]sin()4341236f x A x A x ππππ+=+-=+,即g (x )的图象可以由y =f (x )的图象向左平移34个单位长度得到,①正确; 由()362x k k Z ππππ+=+∈得函数()g x 图象的对称轴为13()x k k Z =+∈,于是得直线x =1是g (x )图象的一条对称轴,②正确; 由()36x k k Z πππ+=∈得13()2x k k Z =-∈,()g x 图象的对称中心为1(3,0)()2k k Z -∈,则点5(,0)2是()g x 图像的一个对称中心,③正确; 当719(,)44x ∈时,37(,)3644x ππππ+∈,所以()g x 在7(,4)4单调递减,在19(4,)4上单调递增,④错误.故答案为:①②③17.(1)()sin 223f x x π⎛⎫=-+ ⎪⎝⎭;递增区间为:5(,)()1212k k k Z ππππ-++∈;(2)524π. 【分析】(1)根据图象可得函数的解析式为()sin 223f x x π⎛⎫=-+ ⎪⎝⎭,再解不等式222232k x k πππππ-<-<+,即可得到答案;(2)由题意()()sin 423g x x m π⎡⎤=+-+⎢⎥⎣⎦,()g x sin 4423x m π⎛⎫=+-+ ⎪⎝⎭,由()g x 是偶函数,得432m k πππ-=+,k ∈Z ,从而求得答案;【详解】 (1)由图可知:3112A -==,3122B +==,31173212122T πππ⎛⎫=--= ⎪⎝⎭, 所以2T ππω==,所以2ω=,所以()()sin 22f x x ϕ=++.由1111sin 21126f ππϕ⎛⎫⎛⎫=++=⎪⎪⎝⎭⎝⎭,得113262k ππϕπ+=+,k ∈Z , 所以23k πϕπ=-,k ∈Z ,因为2πϕ<,所以3πϕ=-.所以()sin 223f x x π⎛⎫=-+ ⎪⎝⎭.递增区间为:5(,)()1212k k k Z ππππ-++∈.(2)由题意:()()sin 423g x x m π⎡⎤=+-+⎢⎥⎣⎦,()g x sin 4423x m π⎛⎫=+-+ ⎪⎝⎭因为()g x 是偶函数,所以432m k πππ-=+,k ∈Z ,所以5424k m ππ=+,k ∈Z , 因为0m >,所以当0k =时,m 的最小值为524π. 18.(1)2sin 23y x π⎛⎫=+ ⎪⎝⎭;(2)24x π=时,函数()g x 在0,4⎡⎤⎢⎥⎣⎦π区间上的最大值为2.【分析】(1)根据函数的最值求出A 的值,根据函数的最小正周期求出ω的值,根据函数的最值点求出ϕ的值即得解;(2)首先求出()2sin 43g x x π⎛⎫=+ ⎪⎝⎭,再根据不等式的性质和三角函数的图象和性质求出最大值及函数取最大值时相应的x 值. 【详解】解:(1)如图可知,2,4126A T πππ⎡⎤⎛⎫==⨯--= ⎪⎢⎥⎝⎭⎣⎦,∴22Tπω==. ∵2sin 22122πϕπϕ⎧⎛⎫⨯+= ⎪⎪⎪⎝⎭⎨⎪<⎪⎩, ∴3πϕ=,即函数解析式为2sin 23y x π⎛⎫=+ ⎪⎝⎭;(2)根据图象变换原则得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭,∵0,4x π⎡⎤∈⎢⎥⎣⎦,∴44,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴2sin 4[3x π⎛⎫+∈ ⎪⎝⎭,当432x ππ+=,即24x π=时,函数()g x 在0,4⎡⎤⎢⎥⎣⎦π区间上的最大值为2.19.(1)())3f x x π=+;(2)12π.【分析】(1)利用函数图象信息求出A ,周期T 而得ω,再由最小值点求出ϕ即可作答; (2)利用正余弦型函数的奇偶性列式计算即得. 【详解】(1)由图知A =函数()f x 周期为T ,则373()41264T πππ=--=,T π=,于是得22T πω==,则()()2f x x ϕ=+,由77())1212f ππϕ⋅+=7322,122k k Z ππϕπ⋅+=+∈,解得2,3k k Z πϕπ=+∈,而02ϕπ<<,则3πϕ=,所以函数()f x的解析式为())3f x x π=+;(2)由(1)知()()2)3x t g x f x t π=+++=为偶函数,从而有2,32t k k Z πππ+=+∈,解得,122k t k Z ππ=+∈,又(0,)2t π∈,所以12t π=.20.(1)(30,4⎤⎥⎦;(2)1483π. 【分析】(1)求出()()2sin 0f x x ωω=>的单调递增区间,根据42232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩解不等式组可得答案;(2)求出()g x 的零点相邻间隔依次为3π和23π,利用三角函数的性质进行求解即可.【详解】(1)由()2222k x k k Z πππωπ-≤≤+∈得()2222k k x k Z ππππωωωω-≤≤+∈,()2sin f x x ω=的单调递增区间为()22,22k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦, 若()y f x =在2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以令0k =,则22x ππωω-≤≤()0ω>, 根据题意有42232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得304ω<≤所以ω的取值范围是(30,4⎤⎥⎦.(2)由()2sin 2f x x =可得,()2sin 212sin 2163g x x x ππ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()0g x =可得1sin 232x π⎛⎫+=- ⎪⎝⎭,4x k ππ∴=-或712x k k Z ππ=-∈,,即()g x 的零点相邻间隔依次为3π和23π,故若()y g x =在[],a b 上至少含有100个零点,则b a -的最小值为21484950333πππ⨯+⨯=. 21.(1)1224π7π,,33x x y ===1π()23f x x ⎛⎫=+ ⎪⎝⎭;(2)()π6g x x ⎛⎫=+ ⎪⎝⎭;2π2π,2π,Z 3k k k ⎛⎫+∈ ⎪⎝⎭.【分析】(1)利用五点法依次代入计算参数,,A ωϕ,即得解析式,再代入计算解得122x x y ,,即可; (2)先利用图象变换得到()g x 的解析式,再根据对数的性质得到()g x ,即解不等式π1sin 62x ⎛⎫+> ⎪⎝⎭,即得结果.【详解】解:(1)依题意可知,20332πωϕππωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩,解得123ωπϕ⎧=⎪⎪⎨⎪=⎪⎩,又ππsin 32f A A ⎛⎫=== ⎪⎝⎭1π()23f x x ⎛⎫=+ ⎪⎝⎭,故由11ππ23x +=,21π3π232x +=,解得124π7π,33x x ==,又2221π3π()232f x y x ⎛⎫+== ⎪⎝⎭= (2)函数()f x 的图象向右平移3π个单位,得到1ππ1π23326y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得图象上各点的横坐标缩小为原来的12,纵坐标不变,得到函数()π6g x x ⎛⎫=+ ⎪⎝⎭; 函数()12log y g x ⎡=⎢⎣⎦中,()0g x >,即()g x 所以()π6g x x ⎛⎫=+> ⎪⎝⎭π1sin 62x ⎛⎫+> ⎪⎝⎭,所以ππ5π2π2π,Z 666k x k k +<+<+∈,解得2π2π2π,Z 3k x k k <<+∈, 所以()12log y g x ⎡=⎢⎣⎦的定义域为2π2π,2π,Z 3k k k ⎛⎫+∈ ⎪⎝⎭. 22.(1)答案见解析;(2)2ϕπ=;(3)52,2()66k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 【分析】(1)先填表,再作出函数的图象; (2)由题得2k πϕπ=+,给k 取值即得解;(3)求出()2sin 3g x x π⎛⎫=-- ⎪⎝⎭,再利用复合函数单调性原理和三角函数的图象求解.【详解】解:(1)函数f (x )在[0,]π的图象如下:(2)由()2cos(2)f x x ϕ=+,因为f (x )为奇函数,则2k πϕπ=+,又0ϕπ<<,所以2ϕπ=. (3)由(2)知()2sin 2f x x =-,向右平移6π个单位长度后,再将得到的图象上各点的横坐标变为原来的2倍后,可得()2sin 3g x x π⎛⎫=-- ⎪⎝⎭.由22232k x k πππππ--+,得522()66k x k k ππππ-++∈Z . 从而可得g (x )的单调递减区间为52,2()66k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .。
高考数学复习专题知识梳理—函数的概念与性质
高考数学复习专题知识梳理—函数的概念与性质1.函数的概念定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数三要素对应关系y =f (x ),x ∈A 定义域自变量x 的取值范围值域与x 的值相对应的y 的函数值的集合{f (x )|x ∈A }思考1:(1)有人认为“y =f (x )”表示的是“y 等于f 与x 的乘积”,这种看法对吗?(2)f (x )与f (a )有何区别与联系?提示:(1)这种看法不对.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为x 是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示定义R{x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.3.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x ),x ∈Q ,,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.4.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数.5.增函数与减函数的定义条件一般地,设函数f (x )的定义域为I ,区间D ⊆I :如果∀x 1,x 2∈D ,当x 1<x 2时都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)结论那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D 上是减函数图示思考1:增(减)函数定义中的x 1,x 2有什么特征?提示:定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.6.函数最大值与最小值最大值最小值条件设函数y=f(x)的定义域为I,如果存在实数M满足:∀x∈I,都有f(x)≤M f(x)≥M∃x0∈I,使得f(x0)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值几何意义f(x)图象上最高点的纵坐标f(x)图象上最低点的纵坐标思考:若函数f(x)≤M,则M一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.7.函数的奇偶性奇偶性偶函数奇函数条件设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I结论f(-x)=f(x)f(-x)=-f(x)图象特点关于y轴对称关于原点对称思考:具有奇偶性的函数,其定义域有何特点?提示:8.幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.9.幂函数的图象在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=x 12,y=x-1的图象如图所示:10.幂函数的性质11.常见的几类函数模型<解题方法与技巧>1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.典例1:(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B 中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]3.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.典例2:设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=1 12 .(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.4.求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.典例3:1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].5.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值.6..已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.典例4:求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.(2),,,解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.(3)-x≥0,-1≥0,解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x+1≠0,-x≥0,解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.已知函数f(x)+1,x≤-2,2+2x,-2<x<2,x-1,x≥2.(1)求f (-5),f (-3),f (2)若f (a )=3,求实数a 的值.[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-2 3.∵=-52+1=-32,而-2<-32<2,∴+=94-3=-34.(2)当a ≤-2时,a +1=3,即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0.∴(a -1)(a +3)=0,解得a =1或a =-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意.当a ≥2时,2a -1=3,即a =2符合题意.综上可得,当f (a )=3时,a =1或a =2.7.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.典例5:证明函数f (x )=x +1x在(0,1)上是减函数.[思路点拨]设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2)――→变形判号:f (x 1)>f (x 2)――→结论减函数[证明]设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)12(x 1-x 2)(x 1-x 2)+x 2-x 1x 1x 2(x 1-x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0,∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x在(0,1)上是减函数.8.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.典例6:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨](1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→求x 的范围(1)(-∞,-4](2)(-∞,1)[(1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]9.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.典例7:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.[解](1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2),所以f (x )在(-1,+∞)上为增函数.(2)由(1)知f (x )在[2,4]上单调递增,所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.10.解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.典例8:一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x x N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入-年总投资)(1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?[解](1)当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y x 2+32x -100,0<x ≤20,-x ,x >20(x ∈N *).(2)当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润,最大年利润为156万元.即当该工厂年产量为16件时,取得最大年利润为156万元.11.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.典例9:已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).12.比较大小的求解策略,看自变量是否在同一单调区间上.(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.典例10:函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<B.f(1)<C.f(1)D.f(1)<[思路点拨]y=f(x+2)是偶函数―→[0,2]上f(x)的图象关于x=2对称――→比较大小递增B[∵函数f(x+2)是偶函数,∴函数f(x)的图象关于直线x=2对称,∴又f(x)在[0,2]上单调递∴f(1)<f(1)<13.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.典例11:(1)在函数y=1x2,y=2x2,y=x2+x,y=1中,幂函数的个数为() A.0B.1C.2D.3(2)若函数f(x)是幂函数,且满足f(4)=3f(2),则f________.(1)B(2)13[(1)∵y=1x2=x-2,∴是幂函数;y=2x2由于出现系数2,因此不是幂函数;y=x2+x是两项和的形式,不是幂函数;y=1=x0(x≠0),可以看出,常函数y=1的图象比幂函数y=x0的图象多了一个点(0,1),所以常函数y=1不是幂函数.(2)设f(x)=xα,∵f(4)=3f(2),∴4α=3×2α,解得α=log23,∴23=13.]14.解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x 12或y=x3)来判断.典例12:点(2,2)2f(x),g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-1 2,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,(1)当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)<g(x).。
新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程
新高考数学复习考点知识专题讲义第2讲基本初等函数、函数与方程[考情分析]1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1(1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝ ⎛⎭⎪⎫-e ,1e 答案B解析由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解, 即e -x +2-ln(x +a )-2=0在(0,+∞)上有解,即函数y =e -x 与y =ln(x +a )的图象在(0,+∞)上有交点. 函数y =ln(x +a )可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a <0时,向右平移,两函数总有交点,当a >0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y=ln(x+a),得1=ln a,即a=e,∴a<e.规律方法(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化.跟踪演练1(1)函数f(x)=ln(x2+2)-e x-1的大致图象可能是()答案A解析当x→+∞时,f(x)→-∞,故排除D;函数f(x)的定义域为R,且在R上连续,故排除B;f(0)=ln2-e-1,由于ln2>ln e=12,e-1<12,所以f(0)=ln2-e-1>0,故排除C.(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-1 2的解集是()A.(-∞,-1) B.(-∞,-1] C.(1,+∞) D.[1,+∞)答案A解析当x >0时,f (x )=1-2-x >0. 又f (x )是定义在R 上的奇函数,所以f (x )<-12的解集和f (x )>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1, 即x >1,则f (x )<-12的解集是(-∞,-1).故选A.考点二函数的零点 核心提炼判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1函数零点的判断例2(1)(2022·长沙调研)已知函数f (x )=⎩⎨⎧x e x ,x ≤0,2-|x -1|,x >0,若函数g (x )=f (x )-m 有两个不同的零点x 1,x 2,则x 1+x 2等于()A.2B.2或2+1 eC.2或3D.2或3或2+1 e答案D解析当x≤0时,f′(x)=(x+1)e x,当x<-1时,f′(x)<0,故f(x)在(-∞,-1)上单调递减,当-1<x≤0时,f′(x)>0,故f(x)在(-1,0]上单调递增,所以x≤0时,f(x)的最小值为f(-1)=-1e.又当x≥1时,f(x)=3-x,当0<x<1时,f(x)=x+1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y=m与f(x)的图象有两个不同的交点,且交点的横坐标分别为x1,x2,由图可知1<m<2或m=0或m=-1e.若1<m<2,则x1+x2=2;若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e .(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,则关于x 的方程f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为()A .1B .2C .3D .4 答案C解析对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,且函数f (x )是定义在R 上的偶函数,且f (6)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根.考向2求参数的值或取值范围例3(1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 答案[-3,0)解析设t =3-|x -2|(0<t ≤1), 由题意知a =t 2-4t 在(0,1]上有解, 又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t <0,∴实数a 的取值范围是[-3,0).(2)已知函数f (x )=⎩⎨⎧x +3,x >a ,x 2+6x +3,x ≤a ,若函数g (x )=f (x )-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 答案[-3,-1)∪[3,+∞)解析由题意得g (x )=⎩⎪⎨⎪⎧x +3-2x ,x >a ,x 2+6x +3-2x ,x ≤a ,即g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点,即g(x)的图象与x轴有两个交点.若当x≤a时,g(x)=x2+4x+3有两个零点,则令x2+4x+3=0,解得x=-3或x=-1,则当x>a时,g(x)=3-x没有零点,所以a≥3.若当x≤a时,g(x)=x2+4x+3有一个零点,则当x>a时,g(x)=3-x必有一个零点,即-3≤a<-1,综上所述,a∈[-3,-1)∪[3,+∞).规律方法利用函数零点的情况求参数值(或取值范围)的三种方法跟踪演练2(1)已知偶函数y=f(x)(x∈R)满足f(x)=x2-3x(x≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x >0,-1x,x <0,则y =f (x )-g (x )的零点个数为()A .1B .3C .2D .4 答案B解析作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f (x )-g (x )有3个零点.(2)(多选)已知函数f (x )=⎩⎨⎧x +2a ,x <0,x 2-ax ,x ≥0,若关于x 的方程f (f (x ))=0有8个不同的实根,则a 的值可能为() A .-6B .8C .9D .12 答案CD解析当a ≤0时,f (x )仅有一个零点x =0,故f (f (x ))=0有8个不同的实根不可能成立.当a >0时,f (x )的图象如图所示,当f (f (x ))=0时,f 1(x )=-2a ,f 2(x )=0,f 3(x )=a .又f (f (x ))=0有8个不同的实根,故f 1(x )=-2a 有三个根,f 2(x )=0有三个根,f 3(x )=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a >-a 24且a <2a ,解得a >8且a >0,综上可知,a >8.专题强化练一、单项选择题1.(2022·全国Ⅰ)设a log 34=2,则4-a 等于() A.116B.19C.18D.16 答案B解析方法一因为a log 34=2, 所以log 34a =2, 所以4a =32=9, 所以4-a =14a =19. 方法二因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f (x )=ln x +2x -6的零点一定位于区间()A.(1,2) B.(2,3) C.(3,4) D.(4,5)答案B解析函数f(x)=ln x+2x-6在其定义域上连续且单调,f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+2×3-6=ln3>0,故函数f(x)=ln x+2x-6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax和g(x)=log a(x+2)(a>0且a≠1)的大致图象可能为()答案A解析由题意知,当a>0时,函数f(x)=2-ax为减函数.若0<a<1,则函数f(x)=2-ax的零点x0=2a∈(2,+∞),且函数g(x)=log a(x+2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax的零点x0=2a∈(0,2),且函数g(x)=log a(x+2)在(-2,+∞)上为增函数.故A 正确.4.(2022·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则()A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案B解析4a =6>4,a >1,b =12log 4=-2,c 3=35<1,0<c <1,故a >c >b .5.(2022·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)() A .60B .63C .66D .69 答案C 解析因为I (t )=K1+e -0.23(t -53),所以当I (t *)=0.95K 时,*0.23531et K⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95,即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1,∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln19, ∴t *=ln190.23+53≈30.23+53≈66.6.(2022·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是() A .1<a <2B .0<a <2,a ≠1 C .0<a <1D .a ≥2 答案A解析令u (x )=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a >1,且u (x )min >0,∴Δ=a 2-4<0,∴1<a <2,∴a 的取值范围是1<a <2.7.(2022·太原质检)已知函数f (x )=⎩⎨⎧e x ,x >0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g (x )=f (x )+kx 恰好有两个零点,则实数k 等于() A .-2eB .eC .-eD .2e 答案C解析g (x )=f (x )+kx =0,即f (x )=-kx ,如图所示,画出函数y =f (x )和y =-kx 的图象, -2x 2+4x +1=-kx ,即2x 2-(4+k )x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k )2+8>0,且x 1x 2=-12, 故g (x )在x <0时有且仅有一个零点, y =-kx 与y =f (x )在x >0时相切.当x >0时,设切点为(x 0,-kx 0),f (x )=e x , f ′(x )=e x ,f ′(x 0)=0e x =-k ,0e x =-kx 0, 解得x 0=1,k =-e.8.已知函数f (x )=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的解,则a 的取值范围是() A .(1,2) B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 答案D解析作出f (x )=⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0的图象如图所示.设t =f (x ),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f (x )的图象有三个不同的交点时才满足条件, 所以1<a <2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a <2,且a ≠32. 二、多项选择题9.(2022·临沂模拟)若10a =4,10b =25,则() A .a +b =2B .b -a =1 C .ab >8lg 22D .b -a >lg6 答案ACD解析由10a =4,10b =25,得a =lg4,b =lg25,则a +b =lg4+lg25=lg100=2,故A 正确;b-a=lg25-lg4=lg 254>lg6且lg254<1,故B错误,D正确;ab=lg4·lg25=4lg2·lg5>4lg2·lg4=8lg22,故C正确.10.已知函数f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,则()A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数答案AB解析∵f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,∴f(x)+g(x)=log a(x+1)+log a(1-x),由x+1>0且1-x>0得-1<x<1,故A对;由f(-x)+g(-x)=log a(-x+1)+log a(1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵-1<x<1,∴f(x)+g(x)=log a(1-x2),∵y=1-x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C错;∵f(x)-g(x)=log a(x +1)-log a(1-x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D错.11.(2022·淄博模拟)已知函数y =f (x )是R 上的奇函数,对于任意x ∈R ,都有f (x +4)=f (x )+f (2)成立.当x ∈[0,2)时,f (x )=2x -1.给出下列结论,其中正确的是() A .f (2)=0B .点(4,0)是函数y =f (x )图象的一个对称中心C .函数y =f (x )在区间[-6,-2]上单调递增D .函数y =f (x )在区间[-6,6]上有3个零点 答案AB解析对于A ,因为f (x )为奇函数且对任意x ∈R ,都有f (x +4)=f (x )+f (2),令x =-2,则f (2)=f (-2)+f (2)=0,故A 正确;对于B ,由A 知,f (2)=0,则f (x +4)=f (x ),则4为f (x )的一个周期,因为f (x )的图象关于原点(0,0)成中心对称,则(4,0)是函数f (x )图象的一个对称中心,故B 正确;对于C ,因为f (-6)=0,f (-5)=f (-5+4)=f (-1)=-f (1)=-1,-6<-5,而f (-6)>f (-5),所以f (x )在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f (0)=0,f (2)=0,所以f (-2)=0,又4为f (x )的一个周期,所以f (4)=0,f (6)=0,f (-4)=0,f (-6)=0,所以函数y =f (x )在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f (x )=⎩⎪⎨⎪⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞),则下列结论正确的是()A .任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1B .函数y =f (x )在[4,5]上单调递增C .函数y =f (x )-ln(x -1)有3个零点D .若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132 答案ACD解析f (x )=⎩⎨⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞)的图象如图所示,当x ∈[2,+∞)时,f (x )的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1恒成立,故A 正确;函数y =f (x )在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f (x )在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f (x )的图象有3个交点,∴函数y =f (x )-ln(x -1)有3个零点,故C 正确;若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确. 三、填空题13.(2022·全国Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln2)=8,则a =________. 答案-3解析当x >0时,-x <0,f (-x )=-e -ax .因为函数f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=e -ax ,所以f (ln2)=e -a ln2=⎝⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f (x )=|lg x |,若f (a )=f (b )(a ≠b ),则函数g (x )=⎩⎨⎧x 2+22x +5,x ≤0,ax 2+2bx ,x >0的最小值为________. 答案2 2解析因为|lg a |=|lg b |,所以不妨令a <b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a <1),所以g (x )=⎩⎨⎧(x +2)2+3,x ≤0,ax +2ax ,x >0,当x ≤0时,g (x )=(x +2)2+3≥3,取等号时x =-2; 当x >0时,g (x )=ax +2ax ≥2ax ·2ax =22,当且仅当x =2a 时,等号成立, 综上可知,g (x )min =2 2.15.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.答案11-2π解析由题意知,当x <0时, f (x )=⎩⎪⎨⎪⎧-2x 1-x ,x ∈(-1,0),|x +3|-1,x ∈(-∞,-1],作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F (x )=f (x )-1π的所有零点之和为11-2π. 16.对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案[3,4]解析由题意知,函数f (x )的零点为x =2, 设g (x )的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3.21 / 21 方法一因为函数g (x )的图象开口向上,所以要使g (x )的至少一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0,或⎩⎪⎨⎪⎧ g (1)>0,g (3)>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a <103,得3≤a ≤4. 故实数a 的取值范围为[3,4].方法二因为g (μ)=μ2-aμ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4.故实数a 的取值范围为[3,4].。
高考数学《函数》专题复习
函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习专题(一)函数
一、高考导航
对口高考函数基本题型
1、 求函数的定义域及值域,理解函数的解析式
解决这些问题的关键要根据各种限制条件及解析式的类型进行综合分析。
2、 理解函数的单调性、奇偶性和反函数
单调性指在定义域的某区间上自变量的变化与函数值变化的关系,通常根据单调性的定义、图形、求差比较法及求导法来判断或证明。
函数的奇偶性的前提条件是定义域要关于原点对称,判断函数的奇偶性要紧扣定义、图形特点进行综合分析。
解有关反函数的问题时,要学会灵活应用反函数的定义、性质及图像关系来分析。
3、 理解指数对数的运算及指数对数函数的性质
讨论指数对数函数的图像与性质,一般与指数式、对数式的运算结合在一起,一方面要熟练掌握指数对数函数的性质,尤其是单调性,另一方面要熟练应用指数、对数运算法则及求函数解析式的基本方法,进行综合运算。
4、 解函数应用题
解函数应用题关键是对实际问题中的数据、信息进行提炼与加工,建立函数关系,再应用求导法等方法解决问题。
二、对口高考真题回访
1、已知x
x x f +-=33lg )(,若)0(,)(≠=m n m f ,则=-)(m f ( ) A .n
1- B .n 1 C . n - D .n 2、若函数32
-=x y 与)(x g y =的图像关于直线x y =对称,则_________)(=x g 。
3、函数)1lg(1
1)(++-=x x x f 的定义域是 ( ) A .)1,(--∞ B. )1,1(- C.(1, +∞) D. )1,1(-Y (1,+∞)
4、设奇函数))((R x x f y ∈=存在反函数)(1x f y -=,当0≠a 时,一定在函数)(1x f y -=的图像的点是 ( )
A .)),((a a f --
B .)),((a a f -
C .))(,(a f a --
D .))(,(a f a - 答案:1、C 2、 3、D 4、A
三、例题解析
)0(3log 2>
+=x x y
例1、已知1
1log )(-+=x x x f a ,(1)求)(x f 的定义域;(2)判断)(x f 的奇偶性;(3)求不等式0)(>x f 的解。
解:(1)因为011>-+x
x ,所以 11<<-x (2)因为)(11log 11log )(x f x
x x x x f a a -=-+-=-+-=- 所以)(x f 是奇函数
(3)011log )(>-+=x
x x f a
, 当1>a 的时候,111>-+x
x , 所以10<<x 。
当10<<a 的时候,1110<-+<x
x , 所以01<<-x 。
点评
1、根据函数解析式来定义域关键要全面找出所有限制条件,再求出它的交集。
2、函数是高中数学的主线,函数与不等式、方程的交汇常是高考命题的热点。
例2、已知函数x
x x f 1)(lg -=,(1)求函数)(x f 的解析式;(2)讨论的)(x f 单调性;(3)当)1,1(-∈x 时,函数)(x f 满足0)1()1(2<-+-k f k f ,求实数k 的取值范围。
解:(1)x x x x x f lg lg 10
1101)(lg -=-=,所以x x x f --=1010)( (2)0)1010(10ln )(>+='-x x x f ,所以)(x f 在),(+∞-∞上是增函数
(3))(x f 的定义域为R ,且为奇函数,又在),(+∞-∞上是增函数,
则)1()1()1(2
2-=--<-k f k f k f 由 ⎪⎩
⎪⎨⎧<-<-<-<--<-1111111122k k k k 得 21<<k
点评1、求函数解析式的常用方法有配方法、待定系数法、换元法及解方程组法。
2、函数极限、连续与导数是函数单元的进一步延伸,在对口高考中,函数常与极限、导数结合起来命题。
例3、已知长方体的长、宽、高成等差数列,当长方体的底面周长为20时,求长方体的体积的最大值。
解:设长方体的长、宽、高分别为d x x d x +-,,,
体积为y ,则102-=x d
x x x d x x y 100403)(2322-+-=-=
01008092=-+-='x x y ,5.138.7或≈x
125.70,5.1;73.234,38.7-≈=≈=y x y x 时当时当。
答:长方体体积的最大值为234.73.
点评
函数应用题解题步骤如下:
1、建立函数关系;
2、应用有关函数知识解决问题;
3、检验作答:结合问题的实际意义,经检验后做出回答。
其中,难点是对题中的信息进行提炼与加工,找到变量之间的数量等式关系,再根据变量之间的因果关系,设好自变量和因变量。
在解决问题时,若要求较复杂的函数的最大值或最小值,一般要用求导法来解。
四、考场练兵
练习1、已知x x f a 2log )(=,当)1,0(∈x 时0)(>x f ,则a 的取值范围是( )
A .210<<a
B .10<<a
C .1>a
D .2
1>a 2、已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( )
A .2)(x x f =
B .)1(1)(2
≥+=x x x f
C .)1(22)(2≥+-=x x x x f
D .)1(2)(2≥-=x x x x f
3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(x f x f -=+,则)4(),2(),1(f f f 的大小关系是 ( )
A .)4()2()1(f f f >>
B .)4()2()1(f f f <<
C .)4()1()2(f f f <<
D .)1()4()2(f f f <<
4、)(log )(b ax x f a +=的图像过A (2,1),且)(1x f
-的图像过B (3,5)。
(1)求)(x f 的定义域;(2)求)1(2x f y +-=的单调区间。
5、已知x x a x f 2
112)(+-⋅=在R 上是奇函数。
(1)求a 的值; (2)求1)(1>-x f 的解集。
6、长16cm 的金属丝被分割成两段,一段弯成一个圆周,另一段弯成一个正方形。
应如何分割,使圆和正方形的面积之和最大?
答案:1、A 2、B 3、C
4、解:(1)解⎩⎨⎧=+=+8
522b a b a 得2,2-==b a ,)22lg()(-=x x f
(2))42lg(2-=x y ,递增区间为),2(+∞
5、解:(1)由0)0(=f 得1=a ;(2)13
1<<x 6、解:设弯成一个圆周的金属丝长度为xcm ,弯成正方形的长度为(16-x)cm 则圆的半径为cm x π2,正方形的边长为cm x 4
16- 圆和正方形的面积之和 162)16
141()416()2(
222+-+=-+=x x x x y πππ )160(<<x 0284=-+='x y ππ,04.7≈x 根据实际意义,函数在)16,0(内必有最大值,
所以当x 为7、04cm 时,圆和正方形的面积之和最大。