光的反射、折射、全反射

合集下载

光的折射、全反射、干涉、衍射、偏振

光的折射、全反射、干涉、衍射、偏振

光的折射一、知识点梳理1. 光的反射定律:光从一种介质射到另一种介质的分界面时发生反射。

反射光线与入射光线、法线处在同一平面内,反射光线与入射光分别位于法线的两侧。

2. 光的折射现象,光的折射定律:折射光线与入射光线、法线处于同一平面内,折射光线与入射光线分别位于法线两侧,入射角的正弦与折射角的正弦成正比。

注意两角三线的含义折射率 (光线从介质Ⅰ——介质Ⅱ)12sin sin v v r i n ==折射现象的光路可逆性3.折射率:入射角的正弦与折射角的正弦的比。

(1)折射率的物理意义:表示介质折射光的本领大小的物理量 (2)折射率大小的决定因素——介质、光源(频率)在其它介质中的速度vcn ,式中n 为介质的折射率,n >1,故v <c 注意:(1)介质的折射率rin sin sin =是反映介质光学性质的物理量,它的大小由介质本身决定,同时光的频率越高,折射率越大,而与入射角、折射角的大小无关。

(2)某一频率的光在不同介质中传播时,频率不变但折射率不同,所以光速不同,波长也不同(与机械波相同);不同频率的光在同一介质中传播时,折射率不同,所以光速不同,波长也不同(与机械波的区别).频率越高,折射率越大。

4.折射时的色散:含有多种颜色的光被分解为单色光的现象叫光的色散。

(1)光通过棱镜时将向棱镜的横截面的底边方向偏折 (2)通过棱镜成像偏向顶点(3)实验表面,一束白光进入棱镜而被折射后,在屏上的光斑是彩色的,说明光在折射时发生了色散。

(4)光的色散规律:红光通过棱镜后偏折的程度比其他颜色的光的要小,而紫光的偏折程度比其他颜色的光要大。

说明透明物质对于波长不同的光的折射率是不同的。

波长越长,折射 率越小。

5.应用(一般方法):分析光的折射时,一般需作出光路图,以便应用折射规律及光路图中提供的几何关系来解答。

在实际应用中,常见方法是:①三角形边角关系法;②近似法,即利用小角度时,θ≈tanθ≈sinθⅠ Ⅱ的近似关系求解。

光的反射折射全反射练习题

光的反射折射全反射练习题

光的反射折射全反射练习题光的反射、折射和全反射练题1.关于光的折射现象,正确的说法是光的传播方向发生改变,因此答案为选项 C。

2.关于光的反射和折射现象,正确的说法有:光发生反射时,光的传播方向可能偏转 90°,光发生折射时,一定伴随着反射,因此答案为选项 ABC。

3.关于折射率,正确的说法有:介质的折射率与入射角的正弦成正比,介质的折射率与光在该介质中的传播速度成反比,因此答案为选项 CD。

4.要使光由玻璃射入空气时折射光线与反射光线成 90°夹角,则入射角应为 30°,因为 sin 30°=1/2,而玻璃的折射率为n=光在真空中的速度/光在玻璃中的速度=1/1.5=2/3,所以根据折射定律,sinθ2=n12sinθ1,即sinθ2=2/3sin30°,解得sinθ2=1/2,所以θ2=30°。

5.图中判断正确的是 CO 是入射光,OB 为反射光,OA 为折射光,因为入射光线 CO 在界面上发生了反射 OB 和折射OA,符合光的反射和折射定律。

8.光线从真空射入介质,根据偏折定律,sinθ1/n=sinθ2,其中θ1 为入射角,θ2 为折射角,n 为介质的折射率,代入数据可得sinθ2=1/1.73sinθ1,所以θ2<θ1,说明光线向界面法线偏折,因此选项 BCD 均正确。

9.光线 a 的频率比光线 b 高,根据光的色散现象,水对光线 a 的折射率比对光线 b 的折射率小,因为光线 a 的传播速度更快,所以在水中的传播速度也更快,因此选项 AC 均正确。

10.光线由空气透过半圆形玻璃砖时,发生了全反射现象,因为入射角大于临界角,所以光线被完全反射回玻璃中,正确的光路图为选项丙。

当光线由玻璃砖射入空气时,根据折射定律可得sinθ2=n12sinθ1,其中 n12=1.5,θ1=90°-45°=45°,代入求解可得sinθ2=1/1.5sin45°,所以θ2=41.81°,正确的光路图为选项丁。

光的反射与折射知识点总结

光的反射与折射知识点总结

光的反射与折射知识点总结光是一种波动现象,具有传播的性质。

当光线从一个介质传播到另一个介质时,会发生反射和折射现象。

本文将对光的反射和折射的知识点进行总结,并探讨其相关的应用。

一、光的反射:光的反射是指光束从一个介质射向另一个介质的界面时,部分或全部光线发生改变方向的现象。

根据光线射入界面的角度不同,分为入射角、反射角和法线的关系。

1. 入射角:光线射入界面与法线的夹角。

2. 反射角:光线反射出界面与法线的夹角。

根据菲涅尔定律,入射角和反射角之间呈现一定的关系:反射定律:入射角等于反射角,即θ1 = θ2。

光的反射广泛应用于日常生活和科学研究中,例如平面镜的反射原理是基于光的反射进行设计的。

此外,反光衣、反光标识等也是利用光的反射使人或物更加容易被察觉和警示。

二、光的折射:光的折射是指光束从一种介质传播到另一种介质时,发生方向改变的现象。

根据斯涅尔定律,入射角、折射角和两种介质的折射率之间存在一定的关系。

1. 入射角:光线射入第一个介质与法线的夹角。

2. 折射角:光线射出第二个介质与法线的夹角。

根据斯涅尔定律,入射角、折射角和两种介质的折射率之间呈现如下关系:n1sinθ1 =n2sinθ2其中,n1和n2分别表示两种介质的折射率,θ1和θ2分别表示入射角和折射角。

光的折射在日常生活和科技应用中也发挥着重要的作用。

例如,棱镜的光的折射特性被应用于光谱分析、光学仪器等领域。

此外,近视眼镜、放大镜等光学器具也是基于光的折射原理进行设计的。

三、光的全反射:当光线从光密介质射向光疏介质的界面时,入射角大于临界角时,光不再折射,而是发生全反射现象。

光的全反射在光纤通信、显微镜、光电传感等领域得到广泛应用。

临界角的计算公式为:θc = arcsin(n2/n1)其中,n1表示光密介质的折射率,n2表示光疏介质的折射率。

光的反射和折射是光学的基本现象,对于理解和应用光学原理具有重要意义。

通过对光的反射和折射的了解,我们可以解释和应用许多与光有关的现象,并且进一步推动科学技术的发展。

光的反射折射知识点总结

光的反射折射知识点总结

光的反射折射知识点总结光的反射和折射是光学中的重要概念。

通过了解这些概念,我们可以更好地理解光在不同介质中的传播规律,解释现象,设计光学系统等。

以下是光的反射和折射知识点的总结。

1.光的反射光的反射是指光线从一个介质界面上反射回原介质的现象。

根据反射规律,入射光线、反射光线和法线三者共面,并且入射角等于反射角。

2.反射定律反射定律是指入射角θ₁和反射角θ₂之间的关系,即sinθ₁/sinθ₂=n₂/n₁,其中n₁和n₂分别为入射介质和反射介质的折射率。

3. 镜面反射和 diffused反射在光线与光滑表面相交时,发生镜面反射。

镜面反射的特点是反射光线具有明确的方向和角度,可以形成清晰的像。

在光线与粗糙表面相交时,发生diffused反射,反射光线呈现出随机分布,不能形成清晰的像。

4.光的折射光的折射是指光线从一种介质传播到另一种介质时的偏折现象。

当光线从一种介质进入另一种介质时,根据折射定律,入射角θ₁、折射角θ₂和介质的折射率n之间有关系sinθ₁/sinθ₂=n₂/n₁。

5.折射率折射率是描述介质对光的折射能力的物理量。

折射率越高,光在介质中的传播速度越慢。

折射率和波长有关,一般情况下,折射率随着波长的增加而减小。

6.全反射当光线从折射率较高的介质射入折射率较低的介质时,入射角大于临界角时,发生全反射现象。

全反射的特点是光线完全被折射,没有发生透射。

临界角是指入射角达到使得折射角为90度的最小值。

全反射经常用于光纤通信系统中,保证光信号可以在光纤中长距离传输。

7.光的色散色散是指不同波长的光线在经过折射后的偏折程度不同的现象。

由于折射率和波长有关,不同波长的光线在介质中的传播速度和偏折角度不同,从而形成彩虹等现象。

8. Snell定律Snell定律是描述光的折射现象的定律,即n₁sinθ₁=n₂sinθ₂。

该定律适用于折射率不随入射角度变化的情况。

9. Huygens原理Huygens原理是光的波动理论中的重要原理之一、该原理认为每一个点上的波前可以看作无数个点源发出的次波的重叠,通过这些次波的重叠,可以解释光的传播、反射和折射等现象。

光的反射与折射光线在介质中的行为

光的反射与折射光线在介质中的行为

光的反射与折射光线在介质中的行为光的反射与折射:光线在介质中的行为光是一种电磁波,在自由空间中的传播速度为299,792,458 m/s。

当光线遇到不同介质的界面时,会发生反射和折射现象。

本文将探讨光线在介质中的行为,包括反射、折射以及相关定律和现象。

一、光的反射反射是指光线遇到介质边界时,部分能量返回原来的介质的现象。

我们常见的镜面反射就是其中一种形式。

具体而言,光线入射到介质边界时,其反射光线与入射光线之间的角度关系遵循反射定律,即入射角等于反射角。

为了更好地理解反射定律,我们可以通过实验进行验证。

准备一块平整的镜子,将光线垂直照射到镜子上,可以观察到光线正好与镜子面呈现相同的角度反射出去。

同样,从倾斜角度照射时,反射光线依然遵循入射角等于反射角的定律。

二、光的折射折射是指光线遇到介质边界时改变传播方向的现象,这是由于光在不同介质中的传播速度不同所导致的。

根据折射定律,入射光线与介质边界法线的夹角与折射光线与法线的夹角之间满足入射角与折射角的正弦比相等。

这一定律由斯涅尔定律提出,也称为斯涅尔定律。

折射现象可以通过实验来观察和验证。

将光线从空气中射入一杯水中,可以看到光线在入射到水面时发生弯曲,并且在水中传播时的方向也发生了改变。

根据斯涅尔定律,当光线由空气射入水中时,入射角较大,光线向法线弯曲;而当光线由水中射入空气时,入射角较小,光线离开法线弯曲。

三、折射率与介质特性折射定律中涉及到的折射率是描述光在不同介质中传播速度差异的物理量。

折射率是介质中光速度与真空中光速度的比值,通常用符号n 表示。

根据折射率的定义,真空的折射率为1,而其他介质的折射率则大于1。

折射率越大,说明光在该介质中传播速度越慢。

不同介质的光传播速度取决于介质的密度和光的频率。

当光穿过介质时,与介质中的原子或分子相互作用,导致光的传播速度受到阻碍。

这也解释了为什么不同介质具有不同的折射率。

四、全反射当光从一个折射率较高的介质射入折射率较低的介质中,入射角度超过一定临界角时,将发生全反射现象。

知识讲解 光的反射、折射、全反射

知识讲解  光的反射、折射、全反射

光得反射、折射、全反射【学习目标】1.通过实例分析掌握光得反射定律与光得折射定律.2.理解折射率得定义及其与光速得关系.3.学会用光得折射、反射定律来处理有关问题.4.知道光疏介质、光密介质、全反射、临界角得概念.5.能判定就是否发生全反射,并能分析解决有关问题.6.了解全反射棱镜与光导纤维.7.明确测定玻璃砖得折射率得原理.8.知道测定玻璃砖得折射率得操作步骤.9.会进行实验数据得处理与误差分析.【要点梳理】要点一、光得反射与折射1.光得反射现象与折射现象如图所示,当光线入射到两种介质得分界面上时,一部分光被反射回原来得介质,即反射光线,这种现象叫做光得反射.另一部分光进入第二种介质,并改变了原来得传播方向,即光线,这种现象叫做光得折射现象,光线称为折射光线.折射光线与法线得夹角称为折射角().2.反射定律反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线得两侧;反射角等于入射角.3.折射定律(1)内容:折射光线跟入射光线与法线在同一平面内,折射光线与入射光线分别位于法线得两侧.入射角得正弦跟折射角得正弦成正比.即常数.如图所示.也可以用得数学公式表达,为比例常数.这就就是光得折射定律.(2)对折射定律得理解:①注意光线偏折得方向:如果光线从折射率()小得介质射向折射率()大得介质,折射光线向法线偏折,入射角大于折射角,并且随着入射角得增大(减小)折射角也会增大(减小);如果光线从折射率大得介质射向折射率小得介质,折射光线偏离法线,入射角小于折射角,并且随着入射角得增大(减小)折射角也会增大(减小).②折射光路就是可逆得,如果让光线逆着原来得折射光线射到界面上,光线就会逆着原来得人射光线发生折射,定律中得公式就变为,式中、分别为此时得入射角与折射角.4.折射率——公式中得(1)定义.实验表明,光线在不同得介质界面发生折射时.相同入射角得情况下.折射角不同.这意味着定律中得值就是与介质有关得,表格中得数据,就是在光线从真空中射向介质时所测得得值,可以瞧到不同介质得值不同,表明值与介质得光学性质有关,人们把这种性质称为介质得折射率.实际运用中我们把光从真空斜射人某种介质发生折射时,入射角得正弦跟折射角得正弦之比。

光纤传输数据的原理

光纤传输数据的原理

光纤传输数据的原理
光纤传输数据的原理是利用光的反射、折射和全反射原理。

光纤由内部有高折射率的纤芯和外部有低折射率的包层组成。

当光线从高折射率的纤芯中进入低折射率的包层时,由于光线的入射角小于临界角,光线会发生全反射而保持在纤芯内部传播。

光线在纤芯中不断地进行全反射,从而在光纤中传输。

为了使光纤能够传输数据,通常会采用调制的方式,在光纤中输入光脉冲或光信号。

这些光脉冲或光信号可以通过调制光源产生,如激光器。

当光脉冲或光信号经过光纤传输时,其强度、频率或相位会发生相应的变化。

在接收端,光纤的末端会连接到光纤接收器。

光纤接收器会将光信号转换为电信号,然后经过解调和处理等步骤来恢复原始的数据。

光纤接收器通常包括光探测器和转换器等组件,用于检测光信号并将其转换为电信号。

光纤传输数据具有高带宽、低损耗、抗电磁干扰等优点,因此被广泛应用于高速、大容量的数据传输领域,如互联网、通信网络和数据中心等。

光的反射_折射和全反射的理解与应用

光的反射_折射和全反射的理解与应用

闭合时 , R2 就为某一个值. 可见开关 S由断开变为闭合相当于 R2 的阻值 减小 ,从而总电流增大 ,内电压增加 ,外电压减小 ,于是电压表的读数变
小. 依据“串反并同 ”原理 ,可知当 R2 的阻值减小时 ,与 R3 串联的电流表 的读数将减小 ,故选项 AB 正确.
例 2 如图 2 所示 ,电源电动势为 E, 内阻为 r,闭
点是物像对称. 分析光的反射问题时 ,关键要抓住反射规律和平面镜成像
的特点 .
例 1 如图 1所示 , S 为一在 xy 平面内的点光源.
一平面镜垂直于 xy 平面放置 ,它与 xy 平面的交线为
MN , MN 与 x 轴的夹角 θ = 30°. 现保持 S 不动 ,令平面
镜以速率 v沿 x轴正方向运动 ,则 S 经平面镜所成的像
A. 红光的偏折最大 ,紫光的偏折最小
B. 红光的偏折最小 ,紫光的偏折最大
C. 玻璃对红光的折射率比紫光大
图3
D. 玻璃中紫光的传播速度比红光大
根据光的色散规律可知 ,折射率 n越大 ,光的偏折越大. 对
同一种介质 ,红光的折射率 n 最小 ,偏折最小 ;紫光的折射率 n
最大 ,偏折最大. 又由 n = c可知 ,折射率 n越大 ,传播速度 v越 v
合开关 S后各灯能正常发光. 如果某一时刻 L1 的灯丝 烧断 ,则 ( ).
A. L3 变亮 , L2 , L4 变暗
B. L2 、L3 变亮 , L4 变暗 C. L4 变亮 , L2 、L3 变暗
图2
D. L3 、L4 变亮 , L2 变暗
当 L1 的灯丝烧断时 , L1 便处于断路状态 ,这相当于 L1 的
光线垂直 bc面射出. 所以选项 BD 正确.

光的反射与折射中的全反射

光的反射与折射中的全反射

光的反射与折射中的全反射在我们日常生活中,光线的反射与折射是非常常见的现象。

无论是镜子中的自己的倒影,还是水面上的阳光折射,都是我们经常能够观察到的。

然而,在光的反射与折射中,还存在着一个特殊的现象,那就是全反射。

全反射是指当光线从一种介质射向另一种折射率较小的介质时,入射角大于一个临界角时,光线将完全反射回原来的介质中,而不发生折射的现象。

这种现象在我们的日常生活中也是非常常见的,比如水中的鱼儿从水中看陆地,就会发生全反射。

全反射的发生是由于光在不同介质中的传播速度不同所造成的。

当光从光密度较大的介质射向光密度较小的介质时,光的传播速度会发生改变。

根据斯涅尔定律,光线在两个介质之间的折射角与入射角之间存在一个正弦关系。

当入射角大于临界角时,根据正弦函数的性质,折射角将大于90度,即光线无法穿过界面而完全反射回原来的介质中。

全反射的现象不仅仅发生在光线从水射向空气的情况下,还可以发生在其他介质之间的界面上。

比如光线从玻璃射向空气,或者从水晶射向空气时,也会发生全反射。

这种现象在光学仪器的设计中是非常重要的,比如光纤通信中的光信号传输就是基于全反射的原理。

全反射的应用还可以在生物学和医学领域中找到。

人类的眼睛中有一个特殊的结构叫做晶状体,它能够通过调节自身的形状来改变光线的折射,从而使得光线能够准确地聚焦到视网膜上。

在眼镜的设计中,也会利用全反射的原理来制作反射镜,从而改变光线的传播方向。

除了在实际应用中的重要性,全反射也是光的传播特性的一个重要方面。

通过研究全反射现象,我们可以更好地理解光的传播规律,并且能够应用到更广泛的领域中。

例如,在光学器件的设计中,全反射可以用来控制光线的传播路径,从而实现光的聚焦、分光等功能。

总结起来,光的反射与折射中的全反射是一个非常有趣且重要的现象。

它不仅在日常生活中经常出现,还在科学研究和技术应用中发挥着重要的作用。

通过深入研究全反射现象,我们可以更好地理解光的传播规律,并且能够应用到更广泛的领域中,为人类的生活带来更多的便利和发展。

光的反射与折射的规律

光的反射与折射的规律

光的反射与折射的规律光在传播过程中会发生反射和折射两种现象,这两种现象符合一定的规律。

了解光的反射和折射的规律对于我们理解光的行为以及应用光学原理有着重要的意义。

一、光的反射光的反射是指光线从一种介质射入另一种介质后,沿入射角等于反射角的方向传播的现象。

根据反射规律,我们可以得出以下结论:1. 入射角等于反射角:当光线从一种介质射入另一种介质时,入射角(以光线与法线的夹角表示)等于反射角,即入射角i等于反射角r。

2. 反射平面:光线在反射时,会落在一个确定的平面上,该平面称为反射平面。

反射平面由入射光线与垂直于介质界面的法线确定。

3. 法线垂直于界面:光线在反射过程中,入射光线、反射光线以及介质界面上的法线在同一平面内,并且入射光线和反射光线关于法线对称。

光的反射广泛应用于日常生活和科学研究中。

例如,我们使用镜子看到反射的图像,这是基于光的反射规律;光的反射还被应用于光学器件的设计和光学实验的测量等领域。

二、光的折射光的折射是指光从一种介质射入另一种介质时,改变传播方向并传播到新介质中的现象。

光的折射也遵循一定的规律。

1. 斯涅尔定律:斯涅尔定律是描述光的折射规律的基本原理。

它表明光线在两种不同介质之间传播时,入射角i、折射角r以及两种介质的折射率n之间存在以下关系:n₁sin(i) = n₂sin(r)。

其中,n₁和n₂分别是两种介质的折射率。

斯涅尔定律告诉我们,光在不同介质中传播时,会因介质的光密度不同而改变传播方向,折射角的大小与入射角和介质的折射率有关。

2. 全反射现象:当光从光密度较大的介质射入光密度较小的介质时,根据折射规律,入射角越大,折射角也会越大。

当入射角达到临界角时,折射角等于90°,此时发生全反射现象。

全反射发生时,光线完全被反射回原介质中,不再折射到另一种介质中。

光的折射对于镜片、透镜等光学器件的设计和应用具有重要作用。

通过改变光线的折射角度,可以实现光的聚焦、投影和成像等功能。

光的反射与折射

光的反射与折射

光的反射与折射光的反射与折射是光学领域中重要的现象,对于理解光的传播和相互作用具有重要的意义。

光的反射是指光线遇到物体表面时,部分或全部从物体表面弹回的现象。

光的折射则是指光线从一种介质传播到另一种介质时,由于介质的折射率不同而改变传播方向的现象。

在本文中,我们将详细探讨光的反射与折射的原理及其相关应用。

一、光的反射当光线照射到物体表面时,根据光的性质,可以发生三种类型的反射:镜面反射、漫反射和全反射。

1. 镜面反射镜面反射指的是光线照射到光滑表面后,按照入射角等于反射角的规律,沿着特定方向反射出去的现象。

这种反射由于光线的反射角度固定,所以可以形成清晰的影像。

例如,镜面反射是我们日常生活中常见的现象,如镜子反射出来的人像。

2. 漫反射漫反射是指光线照射到粗糙表面后,在各个方向上以不规则方式散射的现象。

这种反射使得光线在表面上扩散,并且不会形成清晰的影像。

如石头、砖墙等表面都具有漫反射的特性。

3. 全反射全反射是指光线从光密介质射入光疏介质时,当入射角大于一个临界角时,光线将无法通过界面,而会完全反射回原介质内部的现象。

这种反射常见于光线从光密介质(如玻璃)射入光疏介质(如空气)时,如水面的反射。

二、光的折射光的折射是指当光线从一种介质传播到另一种介质时,由于介质的折射率不同而改变传播方向的现象。

光线在折射时会发生折射角的变化,符合斯涅尔定律,即入射角的正弦与折射角的正弦成正比。

这一定律可以用下式表示:n1sinθ1 = n2sinθ2其中,n1和n2分别代表光线所在介质的折射率,θ1和θ2分别代表光线在两种介质中的入射角和折射角。

例如,当光线从空气射入水中时,由于水的折射率高于空气,光线被折射向水平面法线方向。

这也解释了为什么我们在水池中看到的物体会有一定程度的偏移。

三、光的反射与折射在实际应用中的意义光的反射与折射在生活和科学研究中具有广泛的应用。

以下是一些实际应用的例子:1. 镜面和透镜光的镜面反射和折射是制造镜子和透镜的基础。

第6-8讲 光的反射、折射、全反射、干涉、衍射

第6-8讲  光的反射、折射、全反射、干涉、衍射

第 6 讲光的直线传播及光的反射一、光的直线传播和光速(一)基本概念:1.光源:把发光的物体叫做光源。

例如:太阳、电灯、燃烧的蜡烛。

2.光的作用:使物体发热、使照相底片感光、使光电池具有电能3.光源的能量转化。

把其它形成的能转变为光能。

(电灯,把电能转化为光能。

蜡烛,把化学能转化为光能。

太阳,把核能转化为光能。

)4.介质:光能够在其中传播的物质叫做介质。

5.光的传播规律:光在同一均匀介质中,沿直线传播。

6.光线:表示光束传播方向的有向直线。

7.光束:有一定关系的一些光线的集合。

8.眼睛判断物体远近的原理:根据两只眼睛对物体的视线间的夹角,判断物体的位置。

做图法:用物体发出或反射出两条光线,把这两条光线向相反的方向延长,它们的交点就是物体所在的位置。

9.影子的形成:光线照到不透明的物体上,在物理背光面形成的光线照不到的黑暗区域。

10.本影:物体背后完全不受光照的区域。

11.半影:本影周围只有部分光线照到的区域。

12.影响本影和半影面积大小的因素是:发光体的面积和发光体到物体的远近发光体的面积越大,本影面积越小,半影面积越大。

发光体距物体距离越近,本影面积和半影面积越大,越远二者面积越小。

13.光的传播速度c=300000000米/秒14.小孔成像的原理是:光在同一均匀介质中沿直线传播。

月牙通过树叶缝在地上形成的像仍然是月牙,方向正好和天上的月牙方向相反。

(二)针对练习1.判断(1)光源可以发射出无数条光线(2)光线实际上是不存在的(3)光线就是很细的光束(4)光线是用来表示光传播方向的直线(5)白天在月球的本影区域内可见到日全食(6)白天在月球的半影区域里看到的是日偏食(7)夜间在月球全部处于地球半影区域时,能看到月偏食(8)夜里在月球全部处于地球半影区域时,能看到月全食(9)点光源对物体只能形成本影2.小孔成像的原理是。

3.工棚顶上有一个三角小孔,当太阳透过该小孔到达地面时,光斑是;这是现象,形成该现象的原因是__________4.光在真空中的传播速度为;太阳光从发出到达用8分20秒时间,则太阳到地球的距离应该是_________km5.月食时,人站在区域时看到的是月全食;站在区域时看到的是月偏食。

光的反射与折射的规律

光的反射与折射的规律

光的反射与折射的规律光是一种电磁波,具有粒子性和波动性。

当光线遇到边界或介质时,会发生反射和折射两种现象。

本文将探讨光的反射与折射的规律以及与这些规律相关的现象。

一、光的反射规律光的反射是指光线遇到边界时,按照一定的规律发生反射现象。

根据光的反射规律,入射光线、反射光线和法线(垂直于边界的直线)在同一平面上。

例如,当一束光线从空气射向光滑的平面镜时,光线会发生反射。

根据反射规律可以得出以下结论:1. 入射角等于反射角:入射角是入射光线与法线的夹角,反射角是反射光线与法线的夹角。

根据实验观察和验证,当光线垂直于平面镜时,入射角和反射角都为0度;入射角增大时,反射角也会相应增大。

2. 光的反射是镜面反射:镜面反射是指光线遇到光滑表面时,反射光线保持方向和入射光线相同,并且光线沿着法线平面反射。

镜面反射的特点是反射光线呈对称分布。

二、光的折射规律光的折射是指光线从一种介质进入另一种介质时,发生方向改变的现象。

根据光的折射规律,入射光线、折射光线和法线在同一平面上。

例如,当一束光线从空气射向水中时,光线会发生折射。

根据折射规律可以得出以下结论:1. 斯涅尔定律:光线通过两种介质的边界时,入射角、折射角和介质的折射率之间满足斯涅尔定律。

斯涅尔定律的数学表达式为n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和折射角。

2. 光在光疏介质到光密介质的折射时,入射角增大,折射角减小。

反之,光在光密介质到光疏介质的折射时,入射角减小,折射角增大。

三、与反射和折射相关的现象1. 光的色散现象:根据折射规律,光的折射率与波长有关。

由此产生了光的色散现象。

当白光通过三棱镜等介质时,光的折射率与波长不同,导致折射角度不同,从而将白光分解成各个颜色的光谱。

2. 全反射现象:当光从光密介质射向光疏介质时,入射角大于临界角时,折射光线无法通过介质边界,而发生全反射现象。

全反射常见于光在光纤中的传播以及水面形成的“水下折光棱镜”。

高中物理必修之知识讲解 光的反射、折射、全反射

高中物理必修之知识讲解  光的反射、折射、全反射

光的反射、折射、全反射【学习目标】1.通过实例分析掌握光的反射定律与光的折射定律. 2.理解折射率的定义及其与光速的关系.3.学会用光的折射、反射定律来处理有关问题.4.知道光疏介质、光密介质、全反射、临界角的概念. 5.能判定是否发生全反射,并能分析解决有关问题. 6.了解全反射棱镜和光导纤维.7.明确测定玻璃砖的折射率的原理. 8.知道测定玻璃砖的折射率的操作步骤. 9.会进行实验数据的处理和误差分析.【要点梳理】要点一、光的反射和折射1.光的反射现象和折射现象如图所示,当光线入射AO 到两种介质的分界面上时,一部分光被反射回原来的介质,即反射光线OB ,这种现象叫做光的反射.另一部分光进入第二种介质,并改变了原来的传播方向,即光线OC ,这种现象叫做光的折射现象,光线OC 称为折射光线.折射光线与法线的夹角称为折射角(2θ).2.反射定律反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角.3.折射定律(1)内容:折射光线跟入射光线和法线在同一平面内,折射光线和入射光线分别位于法线的两侧.入射角的正弦跟折射角的正弦成正比.即12sin sin θθ=常数.如图所示.也可以用sin sin in r=的数学公式表达,n 为比例常数.这就是光的折射定律. (2)对折射定律的理解:①注意光线偏折的方向:如果光线从折射率(1n )小的介质射向折射率(2n )大的介质,折射光线向法线偏折,入射角大于折射角,并且随着入射角的增大(减小)折射角也会增大(减小);如果光线从折射率大的介质射向折射率小的介质,折射光线偏离法线,入射角小于折射角,并且随着入射角的增大(减小)折射角也会增大(减小).②折射光路是可逆的,如果让光线逆着原来的折射光线射到界面上,光线就会逆着原来的人射光线发生折射,定律中的公式就变为12sin 1sin nθθ=,式中1θ、2θ分别为此时的入射角和折射角. 4.折射率——公式中的n (1)定义.实验表明,光线在不同的介质界面发生折射时.相同入射角的情况下.折射角不同.这意味着定律中的n 值是与介质有关的,表格中的数据,是在光线从真空中射向介质时所测得的n 值,可以看到不同介质的n 值不同,表明n 值与介质的光学性质有关,人们把这种性质称为介质的折射率.实际运用中我们把光从真空斜射人某种介质发生折射时,入射角1θ的正弦跟折射角2θ的正弦之比。

高中物理光的反射和折射公式总结

高中物理光的反射和折射公式总结

高中物理光的反射和折射公式总结高中物理光的反射和折射公式1. 反射定律&alpha;=i {&alpha;; 反射角,i:入射角}2. 绝对折射率( 光从真空中到介质n=c/v=sini /sinj{ 光的色散,可见光中红光折射率小,n: 折射率,c: 真空中的光速,v:介质中的光速,i入射角,j折射角}3. 全反射:1) 光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n;2) 全反射的条件:光密介质射入光疏介质; 入射角等于或大于临界角注:(1) 平面镜反射成像规律: 成等大正立的虚像,像与物沿平面镜对称;(2) 三棱镜折射成像规律: 成虚像, 出射光线向底边偏折像的位置向顶角偏移;(3) 光导纤维是光的全反射的实际应用, 放大镜是凸透镜, 近视眼镜是凹透镜;(4) 熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;(5) 白光通过三棱镜发色散规律:紫光靠近底边出射见。

高中物理光知识点高中物理光的衍射知识点1. 的衍射现象光在遇到障碍物时, 偏离直线传播方向而照射到阴影区域的现象叫做光的衍射.2. 发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小, 或者跟波长差不多时, 光才能发生明显的衍射现象.(3) 衍射图样①单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹但间距和亮度不同. 白光衍射时, 中央仍为白光, 最靠近中央的是紫光, 最远离中央的是红光.②圆孔衍射:明暗相间的不等距圆环.③泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑, 这是光能发生衍射的有力证据之高中物理光的偏振知识点自然光通过偏振片P之后,只有振动方向与偏振片的透振方向一致的光才能顺利通过,也就是说,通过偏振片P的光波,在垂直于传播方向的平面上,沿着某个特定的方向振动,这种光叫偏振光。

通过偏振片P 的偏振光,再通过偏振片Q如果两个偏振片的透振方向平行,则可以通过;如果两个偏振片的透振方向垂直,则不能透过Q。

什么是光的反射和折射

什么是光的反射和折射

什么是光的反射和折射光的反射和折射是物理学中的基本概念,涉及到光在不同介质中传播时的现象。

下面将分别对光的反射和折射进行详细的介绍。

一、光的反射光的反射是指光线在传播过程中遇到障碍物被反射出去的现象。

光线传播到两种不同介质的表面上时,会发生反射现象。

例如,光线传播到平面镜、球面镜等光滑的表面上时,会发生反射。

1.反射定律:反射定律是描述光的反射现象的基本规律,包括以下三个方面的内容:(1)入射光线、反射光线和法线在同一平面内;(2)入射光线和反射光线分居在法线的两侧;(3)入射角等于反射角。

2.镜面反射和漫反射:根据反射面的不同,光的反射分为镜面反射和漫反射。

镜面反射是指光线射到光滑表面上的反射,如平面镜、球面镜等。

漫反射是指光线射到粗糙表面上的反射,如光线照到地面上、物体表面等。

二、光的折射光的折射是指光线在传播过程中,从一种介质进入另一种介质时,传播方向发生改变的现象。

光线传播到两种不同介质的界面时,会发生折射。

1.折射定律:折射定律是描述光在介质界面折射现象的基本规律,包括以下三个方面的内容:(1)入射光线、折射光线和法线在同一平面内;(2)入射光线和折射光线分居在法线的两侧;(3)入射角和折射角之间满足正弦定律:n1sin(θ1) = n2sin(θ2),其中n1和n2分别为入射介质和折射介质的折射率,θ1和θ2分别为入射角和折射角。

2.斯涅尔定律:斯涅尔定律是光的折射现象的另一种表达方式,即入射光线、折射光线和法线三者之间的夹角关系:cos(θ1)/cos(θ2) = n2/n1。

3.正常折射和全反射:当光线从光密介质进入光疏介质时,折射角小于入射角,这种折射现象称为正常折射;当光线从光密介质进入光疏介质时,折射角大于90°,这种现象称为全反射。

通过以上介绍,我们可以了解到光的反射和折射是光在传播过程中遇到不同介质时产生的现象,它们遵循相应的定律和规律。

这些知识点对于中学生来说,是光学学习的基础内容,对于深入理解光的传播和光学设备的工作原理具有重要意义。

高中物理公式总结--光的反射和折射

高中物理公式总结--光的反射和折射

高中物理公式总结:光的反射和折射
光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

高三物理光的反射折射和全反射1

高三物理光的反射折射和全反射1

咐呼州鸣咏市呢岸学校高三物理光的反射、折射和全反射北【本讲信息】一. 教学内容:光的反射、折射和全反射第一节:光的反射1. 光的直线传播a. 同种均匀介质中直线传播b. 光速c. 光源〔点光源〕、光线、光束〔反映光的性质、平行、会聚、发散〕d. 典型现象:小孔成“像〞、日食、月食、本影、半影A. 本影 B、C、D半影A. 日全食 B、D日偏食 C. 日环食小孔成“像〞类似发光体的一个亮斑2. 光的反射:光到达两介质的交界面时,要发生反射和折射〔1〕反射律:空间关系三线共面量i’=i〔2〕平面镜成像:a. 平面镜作用:改变光束的传播方向,不改变光束的聚散性。

物点发出的一束发散光束,经平面镜反射后,出射光束仍是发散光束。

光线入射方向保持不变时,平面镜绕沿镜外表的轴转过α角,反射光线将转过2α角。

b. 像的形成:出射光束假设能相交于一点〔或反向线交于一点〕形成。

像点实像点虚像入射光线必过物点,反射光线必过像点。

c. 观像:反射光线进入人眼即可,可直接看虚像。

观像范围即找反射光线范围,找反射光线的边界光线。

d. 成像规律:正立、大、虚像、物像对于平面镜对称。

e. 成像作图法:利用反射律作图或对称法作图;在进行平面镜成像作图时,要紧紧抓住物像对称的特点。

通常先根据物、像对称特点确像〔或物〕的位置,再补画必要的入射光线和反射光线,利用反射光线过虚像点确反射光线。

注意:光线的反向线画成虚线,且不加箭头,虚像也要画成虚线,实际光线必须画成实线还要加箭头。

第二节:光的折射、全反射1. 折射律:空间关系:三线共面,分居两侧当光线进入不同介质,折射角不同,常数不同,对光的偏折作用不同。

2. 折射率:折射率是反映介质光学性质的物理量。

它的大小由介质本身及光的频率共同决,与入射角、折射角的大小无关。

介质折射率n越大,表示介质折光本领,折射光线相对入射光线偏折越大。

3. 全反射〔会判断,会画光路图〕〔1〕产生全反射条件:a光密→光疏〔光密:n大,v小〕i↑折射光线变暗,反射光线变亮〔能量分配〕b. i>C〔临界角〕借助于找边界光线〔2〕临界角4. 棱镜〔1〕三棱镜〔棱镜是光密介质〕a. 几何光路图,偏向角δ,n大,δ大三棱镜作用:光线向厚部偏折,不改变光束性质成像特点:像向顶角偏移〔大、正立、虚像〕〔2〕色散光路图:原因:1°白光是复色光〔红、橙、黄、绿、蓝、靛、紫七色光〕2°各种色光在同种介质中n不同〔v不同〕<由结果分析:δδ红紫〔3〕全反射棱镜:截面为腰直角三角形的棱镜改变光线的传播方向跟平面镜相同,由于平面镜镀银面吸收能量多,成像质量差;而全反射棱镜几乎反射,反射效果好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的反射、折射、全反射【学习目标】1.通过实例分析掌握光的反射定律与光的折射定律.2.理解折射率的定义及其与光速的关系.3.学会用光的折射、反射定律来处理有关问题.4.知道光疏介质、光密介质、全反射、临界角的概念.5.能判定是否发生全反射,并能分析解决有关问题.6.了解全反射棱镜和光导纤维.7.明确测定玻璃砖的折射率的原理.8.知道测定玻璃砖的折射率的操作步骤.9.会进行实验数据的处理和误差分析.【要点梳理】要点一、光的反射和折射1.光的反射现象和折射现象如图所示,当光线入射AO 到两种介质的分界面上时,一部分光被反射回原来的介质,即反射光线OB ,这种现象叫做光的反射.另一部分光进入第二种介质,并改变了原来的传播方向,即光线OC ,这种现象叫做光的折射现象,光线OC 称为折射光线.折射光线与法线的夹角称为折射角(2θ).2.反射定律反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角.3.折射定律(1)内容:折射光线跟入射光线和法线在同一平面内,折射光线和入射光线分别位于法线的两侧.入射角的正弦跟折射角的正弦成正比.即12sin sin θθ=常数.如图所示.也可以用sin sin i n r=的数学公式表达,n 为比例常数.这就是光的折射定律. (2)对折射定律的理解:①注意光线偏折的方向:如果光线从折射率(1n )小的介质射向折射率(2n )大的介质,折射光线向法线偏折,入射角大于折射角,并且随着入射角的增大(减小)折射角也会增大(减小);如果光线从折射率大的介质射向折射率小的介质,折射光线偏离法线,入射角小于折射角,并且随着入射角的增大(减小)折射角也会增大(减小).②折射光路是可逆的,如果让光线逆着原来的折射光线射到界面上,光线就会逆着原来的人射光线发生折射,定律中的公式就变为12sin 1sin nθθ=,式中1θ、2θ分别为此时的入射角和折射角. 4.折射率——公式中的n(1)定义.实验表明,光线在不同的介质界面发生折射时.相同入射角的情况下.折射角不同.这意味着定律中的n 值是与介质有关的,表格中的数据,是在光线从真空中射向介质时所测得的n 值,可以看到不同介质的n 值不同,表明n 值与介质的光学性质有关,人们把这种性质称为介质的折射率.实际运用中我们把光从真空斜射人某种介质发生折射时,入射角1θ的正弦跟折射角2θ的正弦之比。

,叫做这种介质的折射率:12sin sin n θθ=. (2)对折射率的理解.①折射率与光速的关系:某种介质的折射率,等于光在真空中的传播速度c 跟光在这种介质中传播速度v 之比,即c n v=,单色光在折射率较大的介质中光速较小. ②折射率n 是反映介质光学性质的物理量,它的大小由介质本身及人射光的频率决定,与入射角、折射角的大小无关,“折射率与sin i 成正比,跟sin r 成反比”的说法和“折射率n 跟光速”成反比的说法是错误的.5.视深问题(1)视深是人眼看透明物质内部某物点时像点离界面的距离.在中学阶段,一般都是沿着界面的法线方向去观察,在计算时,由于入射角很小,折射角也很小,故有:111222sin tan sin tan θθθθθθ≈≈,这是在视深问题中经常用到的几个关系式.(2)当沿竖直方向看水中的物体时,“视深”是实际深度的1n倍,n 为水的折射率. 6.玻璃砖对光的折射常见的玻璃砖有半圆形玻璃砖和长方形玻璃砖.对于半圆形玻璃砖,若光线从半圆面射入,且其方向指向圆心,则其光路图如图甲所示.对于两个折射面相互平行的长方形玻璃砖,其折射光路如图乙所示,光线经过两次折射后,出射光线与入射光线的方向平行,但发生了侧移.物点通过玻璃砖亦可以成虚像.如图丙所示为其示意图.7.折射成像的画法应用折射定律,确定物点发出的任意两条入射光线的折射光线,即可找到折射所成的像.如图所示.8.画光路图应注意的问题(1)光线实际是从哪个物体发出的;(2)是从光密介质向光疏介质传播的还是从光疏介质射向光密介质;(3)必要的时候还需要借助光的可逆性原理;(4)注意作图时一定要规范,光线与法线、光线的反向延长线等应用,实线和虚线区分.9.关于大气层的折射率及光现象——蒙气差地球大气层的密度不均匀,越接近地球,表面密度越大,折射率也越大.光由真空进入空气中时,传播方向只有微小的变化,虽然如此,有时仍然不能不考虑空气的折射效应.图示表示来自一个遥远天体的光穿过地球大气层时被折射的情景.覆盖着地球表面的大气,越接近地表越稠密,折射率也越大.我们可以把地球表面上的大气看做是由折射率不同的许多水平气层组成的.星光从一个气层进入下一个气层时,要折向法线方向.结果,我们看到的这颗星星的位置,比它的实际位置要高一些.这种效应越是接近地平线就越明显.我们看到的靠近地平线的星星的位置,要比它的实际位置高ρ︒.这种效应叫做蒙气差,是天文观测中必须考虑的.要点二、全反射1.光疏介质和光密介质光在各种介质中的传播速度和介质相对真空的折射率都是不相同的.两种介质相比较光在其中传播速度大,而折射率小的介质叫光疏介质;光在其中传播速度小,而折射率大的介质叫光密介质.2.对光疏介质和光密介质的理解(1)光疏介质和光密介质是相对而言的,并没有绝对的意义.例如:水晶(1.55n =)对玻璃(1.5n =)是光密介质,而对金刚石来说( 2.427n =),就是光疏介质.同一种介质到底是光疏介质还是光密介质,是不确定的.(2)光若从光密介质进入光疏介质时,折射角大于入射角;反之,光由光疏介质进入光密介质时,折射角小于入射角.(3)光疏和光密是从介质的光学特性来说的,并不是它的密度大小.例如,酒精的密度比水小,但酒精和水相比酒精是光密介质.(4)光疏介质和光密介质的比较.要点诠释:光疏介质、光密介质是对确定的两种介质而言的.任何两种透明介质都可以通过比较光在其中速度的大小或折射率的大小来判定谁是光疏介质或光密介质.3.全反射(1)全反射现象.光由光密介质射向光疏介质时,折射角大于入射角.当入射角增人,反射光增强,折射光减弱,继续增大入射角,当折射角达到90︒时,折射光全部消失,入射光全部被反射回原介质,当入射角再增大时.入射光仍被界面全部反射回原介质,这种现象叫全反射.(2)对全反射的理解.①全反射是光的折射的特殊现象,全反射现象还可以从能量变化角度加以理解.当光线从光密介质射入光疏介质,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,发生了全反射.②发生全反射的条件:光线从光密介质射向光疏介质;入射角大于或等于临界角.③全反射遵循的规律:光由光密介质进入光疏介质发生全反射时,仍然遵守反射定律.有关计算仍依据反射定律进行.4.临界角(1)临界角的定义:折射角为90︒时的入射角称为全反射临界角,简称临界角,用C 表示. 要点诠释:①光从光密介质射向光疏介质时,只要入射角大于或等于临界角C ,一定会发生全反射现象.②一般情况下,光由一种介质到达另一种介质时,光既有反射又有折射,即光的能量有一部分反射回原介质中:而另,一部分则进入其他介质中.发生全反射时,光的能量全部反射回原介质中.(2)临界角C 的表示式:由折射定律知,光由某介质射向真空(或空气)时,若刚好发生全反射,则sin 901sin sin n C C︒==. 所以1sin C n =,即1arcsin C n =.5.应用全反射解决实际问题的基本方法(1)确定光是由光疏介质进入光密介质还是由光密介质进入光疏介质.(2)若光由光密介质进入光疏介质时,则根据1sin Cn确定临界角,看是否发生全反射.(3)根据题设条件,画出入射角等于临界角的“临界光路”.(4)运用几何关系、三角函数关系、反射定律等进行判断推理,运算及变换进行动态分析或定量计算.6.应用全反射解释自然现象(1)对“海市蜃楼”的解释:由于光在空气中的折射和全反射,会在空中出现“海市蜃楼”.在海面平静的日子,站在海滨,有时可以看到远处的空中出现了高楼耸立、街道棋布、山峦重叠等景象.这种景象的出现是有原因的.当大气层比较平静时,空气的密度随温度的升高而减小,对光的折射率也随之减小,海面上空的空气温度比空中低,空气的折射率下层比上层大.我们可以粗略地把空中的大气分成许多水平的空气层,如图所示,下层的折射率较大.远处的景物发出的光线射向空中时,不断被折射,射向折射率较低的上一层的入射角越来越大,当光线的入射角大到临界角时,就会发生全反射现象.光线就会从高空的空气层中通过空气的折射逐渐返回折射率较低的下一层.在地面附近的观察者就可以观察到由空中射来的光线形成的虚像.这就是海市蜃楼的景象.如图所示.(2)对沙漠上、柏油路上的蜃景的解释:在沙漠里也会看到蜃景,太阳照到沙地上,接近沙面的热空气层比上层空气的密度小,折射率也小.从远处物体射向地面的光线,进入折射率小的热空气层时被折射,入射角逐渐增大,也可能发生全反射.人们逆着反射光线看去,就会看到远处物体的倒景(如图),仿佛是从水面反射出来的一样.沙漠里的行人常被这种景象所迷惑,以为前方有水源而奔向前去,但总是可望而不可即.在炎热夏天的柏油马路上,有时也能看到上述现象.贴近热路面附近的空气层同热沙面附近的空气层一样,比上层空气的折射率小.从远处物体射向路面的光线,也可能发生全反射,从远处看去,路面显得格外明亮光滑,就像用水淋过一样.(3)水或玻璃中的气泡为何特别明亮?由图可知,也是光线在气泡的表面发生全反射的结果.7.光纤通信全反射现象在通信中有、重要的作用,光导纤维之所以能传光、传像,就是利用了光的全反射现象,光导纤维是一种透明的玻璃纤维丝,直径只有1m 100m μμ~.如图所示,它是由内芯和外套两层组成,内芯的折射率大于外套的折射率,光由一端进入,在两层的界面上经多次全反射,从另一端射出.光导纤维可以远距离传播光,光信号又可以转换成电信号,进而变为声音、图像.如果把许多(上万根)此导纤维合成一束,并使两端的纤维按严格相同的次序排列,就可以以传输图像.要点三、测定玻璃砖的折射率1.实验目的(1)明确光通过玻璃时的入射角、折射角.(2)掌握测定玻璃折射率的方法.2.实验原理如图所示abcd 为两面平行的玻璃砖.入射角为1θ和折射角为2θ,据12sin sin n θθ=计算出玻璃的折射率.3.实验器材白纸,图钉,大头针,直尺,铅笔,量角器,平木板,长方形玻璃砖.4.实验步骤及调整安装(1)把白纸用图钉钉在木板上.(2)如图所示,在白纸上画一条直线aa '作为界面,画一条线段AO 作为入射光线,并通过O 点画出界面aa '的法线NN '.(3)把长方形的玻璃砖放在白纸上,使它的一个长边跟aa '对齐,并画出玻璃砖的另一个长边bb '. (4)在AO 线段上竖直的插上两枚大头针12P P 、.(5)在玻璃砖的bb '一侧竖直地插上大头针34P P 、,调整眼睛视线,使3P 能同时挡住1P 和2P 的像,使4P 能挡住P 3本身和1P 和2P 的像.(6)记下34P P 、的位置,移去玻璃砖和大头针,过34P P 、引直线O B ′与bb '交于O ',连接OO ',OO '就是玻璃砖内的折射光线的路径,入射角1AON θ=∠,折射角2O ON θ=∠''. (7)用量角器量出入射角θ1和折射角θ2的度数.(8)从三角函数表中查出入射角和折射角的正弦值,记入自己设计的表格里.(9)用上面的方法分别求出入射角为15304560︒︒︒︒、、、和75︒时的折射角.查出入射角和折射角的正弦值,把这些数据也记在表格里.(10)算出不同入射角时12sin sin θθ的值.比较一下,看它们是否接近一个常数,求出几次实验中测的12sin sin θθ的平均值,就是玻璃的折射率. 5.注意事项(1)用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖当尺子画玻璃砖的另一边bb '.(2)实验过程中,玻璃砖在纸上的位置不可移动.(3)大头针应竖直地插在白纸上,且玻璃砖每一侧两枚大头针1P 与2P 、P 3与4P 间的距离应大一些,以减少确定光路方向时造成的误差.(4)实验时入射角不宜过小,否则会使测量误差大,也不宜过大,否则在bb '一侧看不到12P P 、的像.(5)由于要多次改变入射角重复实验,所以人射线与出射线要一一对应编号,以免混乱.(6)玻璃砖应选用宽度较大的,宜在5 cm 以上.若宽度太小,则测量误差较大.6.数据处理及误差分析此实验是通过测量入射角和折射角,然后查数学用表,找出入射角和折射角的正弦值,再代入12sin sin n θθ=中求玻璃的折射率.除运用此方法之外,还有以下处理数据的方法. (1)处理方法一:在找到入射光线和折射光线以后,以入射点O 为圆心,以任意长为半径画圆,分别与AD 交于C 点,与OO '(或OO '的延长线)交于D 点,过C D 、两点分别向N N '作垂线,交N N '于C D 、′′,用直尺量出CC '和DD '的长.如图所示.由于 1'sin CC CO θ=,2'sin DD DO θ=, 而CO DO =,所以折射率:112sin 'sin 'CC n DD θθ==. 重复以上实验,求得各次折射率计算值,然后求其平均值即为玻璃砖折射率的测量值.(2)处理方式二:根据折射定律可得 12s i n s i n n θθ=. 因此有 211sin sin nθθ=. 要点诠释:在多次改变入射角、测量相对应的入射角和折射角上,以1sin θ值为横坐标、以2sin θ值为纵坐标,建立直角坐标系,如图所示.描数据点,过数据点连线得一条过原点的直线.求解图线斜率,设斜率为k ,则1k n=,故玻璃砖折射率1n k =. 7.方法推广插针法的作用是找出玻璃砖内的光路,其关键是确定入射点和出射点,而入射点和出射点是利用插针后确定的直线与界面相交而得到的,故实验的关键是插准大头针,画准玻璃砖边界线,而与所选玻璃砖两边平行与否无关.如用半圆形、圆形或三角形玻璃砖,均可测出其折射率,光路如图所示.【典型例题】类型一、光的反射和折射例1.如图所示,光线以入射角1θ从空气射向折射率n =(1)当入射角145θ=︒时,反射光线与折射光线间的夹角θ为多少?(2)当入射角1θ为多少时,反射光线和折射光线垂直?【思路点拨】根据题意画出正确的光路图,利用几何关系确定光路中的边、角关系,要注意入射角、折射角的确定,利用反射、折射定律求解。

相关文档
最新文档