河北省2020年中考模拟试卷数学模拟答案
2020年河北省中考数学模拟试卷
2020年河北省中考数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列四个图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.(5分)把0.0813写成10(110n a a ⨯<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.133.(5分)用量角器测得MON ∠的度数,下列操作正确的是( )A .B .C .D .4.(5分)将29.5变形正确的是( )A .2229.590.5=+B .29.5(100.5)(100.5)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+5.(5分) 如图,//AB CD ,AD 平分BAC ∠,若70BAD ∠=︒,那么ACD ∠的度数为()A .40︒B .35︒C .50︒D .45︒6.(5分)如图所示是测量一物体体积的过程:步骤一,将180ml 的水装进一个容量为300ml 的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内3(11)(mL cm = )A .310cm 以上,320cm 以下B .320cm 以上,330cm 以下C .330cm 以上,340cm 以下D .340cm 以上,350cm 以下7.(5分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=-D .18018032x x -=+ 8.(5分)小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数的饼图.根据图,下列关于班上所有学生投进球数的统计量,何者正确?( )A .中位数为3B .中位数为2.5C .众数为5D .众数为2 9.(5分)在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( ) A .233(1)1(1)(1)x x x x x -+--+- B .331)(1)(1x x x x --+-+ C .22(1)(1)x x x --+-D .21x -- 10.(5分)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个C .4个D .5个11.(5分)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设CAB α∠=,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α12.(5分)如图,在ABC ∆中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒13.(5分)如图,圆O 与正方形ABCD 的两边AB 、AD 相切,且DE 与圆O 相切于E 点.若圆O 的半径为5,且11AB =,则DE 的长度为何?( )A .5B .6C .30D .11214.(5分)在平面直角坐标系中,二次函数2()(0)y a x h a =-≠的图象可能是()A .B .C .D .15.(5分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2()21a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .616.(5分)小明同学在寻找上面图中小圆圈个数的规律时,利用了下面图中“分块计数法”根据小明的方法,猜想并判断下列说法不正确的是( )A .第5个图形有61个小圆圈B .第6个图形有91个小圆圈C .某个图小圆圈的个数可以为271D .某个图小圆圈的个数可以为621二、填空题(每题5分,满分20分,将答案填在答题纸上)17.(5分)比较大小:3 218.(5分)分解因式:244ab ab a -+= .19.(10分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:)km .笔直铁路经过A ,B 两地.(1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.20.(8分)已知关于x 的方程220x ax a -+=有两个相等的实数根,请先化简代数式112()111a a a -÷-++,并求出该代数式的值. 21.(8分)阅读与证明:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,证明以下结论:传说古希腊毕达哥拉斯(Pythagonas ,约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10⋯由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n 个三角形数可以用(1)(1)2n n n +表示. 任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.22.(9分)如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l ,交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC ∆的面积.23.(9分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴的正半轴上,6OA =,点B 在直线34y x =上,直线9:2l y kx =+与折线AB BC -有公共点.(1)点B 的坐标是 ;(2)若直线l 经过点B ,求直线l 的解析式:(3)对于一次函数9(0)2y kx k =+≠,当y 随x 的增大而减小时,直接写出k 的取值范围.24.(10分)某体育用品老板到厂家选购A 、B 两种品牌的护膝,若购进A 品牌的护膝5套,B 品牌的护膝6套,需要950元;若购进A 品牌的护膝3套,B 品牌的护膝2套,需要450元.(1)A 、B 两种品牌的护膝每套进价分别为多少元?(2)若销售1套A 品牌的护膝可获利30元,销售1套B 品牌的护膝可获利20元,根据市场需求,体育用品老板决定,购进B 品牌护膝的数量比购进A 品牌护膝数量的2倍还多4套,且B 品牌护膝最多可购进44套,这些护膝全部售出后,使总的获利不少于1200元,问有几种进货方案?25.(11分)如图,已知点(0,0)O ,(5,0)A -,(2,1)B ,抛物线2:()1(l y x h h=--+为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为c y ,求c y 的最大值,此时l 上有两点1(x ,1)y ,2(x ,2)y ,其中120x x >,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.26.(11分)如图,在ABC ∆中,5AB =,9AC =,272ABC S ∆=,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时,P 、Q 两点同时停止运动,以PQ 为边作正方形(PQEF P 、Q 、E 、F 按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.2020年河北省中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列四个图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是中心对称图形,是轴对称图形,故此选项错误;B 、不是中心对称图形,是轴对称图形,故此选项错误;C 、是中心对称图形,不是轴对称图形,故此选项正确;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选:C .2.(5分)把0.0813写成10(110n a a ⨯<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.13【解答】解:把0.0813写成10(110n a a ⨯<,n 为整数)的形式,则a 为8.13,故选:D .3.(5分)用量角器测得MON ∠的度数,下列操作正确的是( )A .B .C .D .【解答】解:量角器的圆心一定要与O 重合,故选:C .4.(5分)将29.5变形正确的是( )A .2229.590.5=+B .29.5(100.5)(100.5)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+【解答】解:22229.5(100.5)102100.50.5=-=-⨯⨯+,故选:C .5.(5分) 如图,//AB CD ,AD 平分BAC ∠,若70BAD ∠=︒,那么ACD ∠的度数为()A .40︒B .35︒C .50︒D .45︒ 【解答】解:AD 平分BAC ∠,70BAD ∠=︒,2140BAC BAD ∴∠=∠=︒, //AB CD ,18040ACD BAC ∴∠=︒-∠=︒,故选:A .6.(5分)如图所示是测量一物体体积的过程: 步骤一,将180ml 的水装进一个容量为300ml 的杯子中. 步骤二,将三个相同的玻璃球放入水中,结果水没有满. 步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内3(11)(mL cm = )A .310cm 以上,320cm 以下B .320cm 以上,330cm 以下C .330cm 以上,340cm 以下D .340cm 以上,350cm 以下【解答】解:300180120-=,120340÷=,120430÷= 故选:C .7.(5分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 【解答】解:设原来参加游览的同学共x 人,由题意得 18018032x x -=+. 故选:D .8.(5分)小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数的饼图.根据图,下列关于班上所有学生投进球数的统计量,何者正确?( )A .中位数为3B .中位数为2.5C .众数为5D .众数为2【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2; 因为不知道每部分的具体人数,所以无法判断中位数. 故选:D .9.(5分)在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( ) A .233(1)1(1)(1)x x x x x -+--+- B .331)(1)(1x x x x --+-+C .22(1)(1)x x x --+-D .21x -- 【解答】解:正确的解题步骤是: 原式233(1)1(1)(1)x x x x x -+=--+-, ∴开始出现错误的步骤是选项B .故选:B .10.(5分)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个C .4个D .5个【解答】解:(1)3-的绝对值是3,正确,故原题解答错误; (2)236()a a =,错误,故原题解答错误;(3)a 的相反数是:a -,错误,故原题解答正确; (4)2的倒数是22,错误,故原题解答错误; (5)2cos 452︒=,错误,故原题解答正确; 故选:A .11.(5分)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设CAB α∠=,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα【解答】解:90CAD ACD ∠+∠=︒,90ACD BCD ∠+∠=︒, CAD BCD ∴∠=∠,在Rt BCD ∆中,cos CDBCD BC∠=, cos cos CD hBC BCD α∴==∠, 故选:B .12.(5分)如图,在ABC ∆中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒【解答】解:90ACB ∠=︒,34B ∠=︒,56A ∴∠=︒,DE 是AC 的垂直平分线,DA DC ∴=, 56DCA A ∴∠=∠=︒, 905634BCD ∴∠=︒-︒=︒, 1803434112BDC ∴∠=︒-︒-︒=︒,故选:B .13.(5分)如图,圆O 与正方形ABCD 的两边AB 、AD 相切,且DE 与圆O 相切于E 点.若圆O 的半径为5,且11AB =,则DE 的长度为何?( )A .5B .6C .30D .112【解答】解:连接OM 、ON ,四边形ABCD 是正方形,11AD AB ∴==,90A ∠=︒,圆O 与正方形ABCD 的两边AB 、AD 相切, 90OMA ONA A ∴∠=∠=︒=∠, OM ON =,∴四边形ANOM 是正方形,5AM OM ∴==,AD 和DE 与圆O 相切,圆O 的半径为5,5AM ∴=,DM DE =, 1156DE ∴=-=,故选:B .14.(5分)在平面直角坐标系中,二次函数2()(0)y a x h a =-≠的图象可能是()A .B .C .D .【解答】解:二次函数2()(0)y a x h a =-≠的顶点坐标为(,0)h ,它的顶点坐标在x 轴上, 故选:D .15.(5分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2()21a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【解答】解:如图所示:2()21a b +=,22221a ab b ∴++=,大正方形的面积为13, 221138ab =-=,∴小正方形的面积为1385-=.故选:C .16.(5分)小明同学在寻找上面图中小圆圈个数的规律时,利用了下面图中“分块计数法”根据小明的方法,猜想并判断下列说法不正确的是( )A .第5个图形有61个小圆圈B .第6个图形有91个小圆圈C .某个图小圆圈的个数可以为271D .某个图小圆圈的个数可以为621【解答】解:设第n 个图形中小圆圈的个数为n a 个(n 为正整数).观察图形,可知:11a =,27231a ==⨯+,319361a ==⨯+,437491a ==⨯+,⋯,23(1)1331(n a n n n n n ∴=-+=-+为正整数). 当5n =时,253535161a =⨯-⨯+=; 当6n =时,263636191a =⨯-⨯+=;当2331271n n -+=时,解得:19n =-(舍去),210n =; 当2331621n n -+=时,解得:137449n -=,237449n +. 故选:D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 17.(5分)比较大小:3 > 22 【解答】解:239=,2(22)8=,98>, 322∴>,故答案为:>.18.(5分)分解因式:244ab ab a -+= 2(2)a b - . 【解答】解:244ab ab a -+2(44)a b b =-+--(提取公因式) 2(2)a b =-.--(完全平方公式) 故答案为:2(2)a b -.19.(10分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:)km .笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 20 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .【解答】解:(1)由A 、B 两点的纵坐标相同可知://AB x 轴,12(8)20AB ∴=--=;(2)过点C 作l AB ⊥于点E ,连接AC ,作AC 的垂直平分线交直线l 于点D , 由(1)可知:1(17)18CE =--=,12AE =,设CD x =, AD CD x ∴==,由勾股定理可知:222(18)12x x =-+, ∴解得:13x =,13CD ∴=,故答案为:(1)20;(2)13;三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 20.(8分)已知关于x 的方程220x ax a -+=有两个相等的实数根,请先化简代数式112()111a a a -÷-++,并求出该代数式的值. 【解答】解:关于x 的方程220x ax a -+=有两个相等的实数根,2(2)40a a ∴--=,即2440a a -=,4(1)0a a -=, 0a ∴=或1a =112211()111(1)(1)21a a a a a a a +-÷=⨯=-+++-- 10a -≠,∴取0a =. ∴原式1101==--. 21.(8分)阅读与证明:请阅读以下材料,并完成相应的任务. 任务:请根据以上材料,证明以下结论:传说古希腊毕达哥拉斯(Pythagonas ,约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10⋯由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n 个三角形数可以用(1)(1)2n n n +表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数; (2)连续两个三角形数的和是一个完全平方数.【解答】证明:(1)22(1)81441(21)2n n n n n +⨯+=++=+, ∴任意一个三角形数乘8再加1是一个完全平方数;(2)第n 个三角形数为(1)2n n +,第1n +个三角形数为(1)(2)2n n ++, ∴这两个三角形数的和为:2(1)(1)(2)(1)(22)(1)222n n n n n n n ++++++==+,即连续两个三角形数的和是一个完全平方数.22.(9分)如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l ,交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC ∆的面积.【解答】解:(1)由33y x =-+,令0y =,得330x -+=, 1x ∴=,(1,0)D ∴;(2)设直线2l 的解析表达式为y kx b =+, 由图象知:4x =,0y =; 3x =,32y =-,∴40332k b k b +=⎧⎪⎨+=-⎪⎩,∴326k b ⎧=⎪⎨⎪=-⎩, ∴直线2l 的解析表达式为362y x =-;(3)由33362y x y x =-+⎧⎪⎨=-⎪⎩, 解得23x y =⎧⎨=-⎩,(2,3)C ∴-,3AD =,193|3|22ADC S ∆∴=⨯⨯-=.23.(9分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴的正半轴上,6OA =,点B 在直线34y x =上,直线9:2l y kx =+与折线AB BC-有公共点.(1)点B 的坐标是 (8,6) ;(2)若直线l 经过点B ,求直线l 的解析式:(3)对于一次函数9(0)2y kx k =+≠,当y 随x 的增大而减小时,直接写出k 的取值范围.【解答】解:6OA =,矩形OABC 中,BC OA = 6BC ∴=点B 在直线34y x =上, 364x ∴=,解得8x = 故点B 的坐标为(8,6)故答案为(8,6)(2)将点(8,6)B 代入92y kx =+得 9682k =+,解得316k = ∴直线l 的解析式:39162y x =+ (3)一次函数9(0)2y kx k =+≠,必经过9(0,)2,要使y 随x 的增大而减小 y ∴值为902y , ∴代入9(0)2y kx k =+≠,解得9016k -< 24.(10分)某体育用品老板到厂家选购A 、B 两种品牌的护膝,若购进A 品牌的护膝5套,B 品牌的护膝6套,需要950元;若购进A 品牌的护膝3套,B 品牌的护膝2套,需要450元.(1)A 、B 两种品牌的护膝每套进价分别为多少元?(2)若销售1套A 品牌的护膝可获利30元,销售1套B 品牌的护膝可获利20元,根据市场需求,体育用品老板决定,购进B 品牌护膝的数量比购进A 品牌护膝数量的2倍还多4套,且B 品牌护膝最多可购进44套,这些护膝全部售出后,使总的获利不少于1200元,问有几种进货方案?【解答】解:(1)设A 品牌的护膝每套进价为x 元,B 品牌的护膝每套进价为y 元,依题意,得:5695032450x y x y +=⎧⎨+=⎩, 解得:10075x y =⎧⎨=⎩. 答:A 品牌的护膝每套进价为100元,B 品牌的护膝每套进价为75元.(2)设购进A 品牌的护膝m 套,则购进B 品牌的护膝(24)m +套,依题意,得:24443020(24)1200m m m +⎧⎨++⎩, 解得:1620m ,m 为正整数,16m ∴=,17,18,19,20.答:共有5种进货方案.25.(11分)如图,已知点(0,0)O ,(5,0)A -,(2,1)B ,抛物线2:()1(l y x h h=--+为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为c y ,求c y 的最大值,此时l 上有两点1(x ,1)y ,2(x ,2)y ,其中120x x >,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.【解答】解:(1)把点B 的坐标(2,1)B 代入2()1y x h =--+,得21(2)1h =--+.解得2h =.则该函数解析式为2(2)1y x =--+(或243)y x x =-+-.故抛物线l 的对称轴为2x =,顶点坐标是(2,1);(2)点C 的横坐标为0,则21C y h =-+.当0h =时,C y =有最大值1,此时,抛物线l 为:21y x =-+,对称轴为y 轴,开口方向向下,所以,当0x 时,y 随x 的增大而减小,所以,120x x >,12y y <;(3)线段OA 被l 只分为两部分,且这两部分的比是1:4,且(0,0)O ,(5,0)A -,∴把线段OA 被l 只分为两部分的点的坐标分别是(1,0)-,(4,0)-.把1x =-,0y =代入2()1y x h =--+,得20(1)1h =---+,解得10h =,22h =-.但是当2h =-时,线段OA 被抛物线l 分为三部分,不合题意,舍去.同样,把4x =-,0y =代入2()1y x h =--+,得5h =-或3h =-(舍去). 综上所述,h 的值是0或5-.26.(11分)如图,在ABC ∆中,5AB =,9AC =,272ABC S ∆=,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时,P 、Q 两点同时停止运动,以PQ 为边作正方形(PQEF P 、Q 、E 、F 按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【解答】解:(1)如图1,过点B 作BM AC ⊥于点M ,9AC =,272ABC S ∆=, ∴12722AC BM =,即127922BM ⨯=, 解得3BM =.由勾股定理,得2222534AM AB BM =-=-=, 则3tan 4BM A AM ==;(2)存在.如图2,过点P 作PN AC ⊥于点N . 依题意得5AP CQ t ==.3tan 4A =, 4AN t ∴=,3PN t =. 99QN AC AN CQ t ∴=--=-.根据勾股定理得到:222PN NQ PQ +=,22229(3)(99)9016281(0)5PQEF S PQ t t t t t ==+-=-+<<正方形. 1629229010b a --==⨯在t 的取值范围之内, 2244908116281449010ac b S a -⨯⨯-∴===⨯最小值;(3)①如图3,当点E在边HG上时,19 14t=;②如图4,当点F在边HG上时,29 11t=;③如图5,当点P边QH(或点E在QC上)时,31t=④如图6,当点F边CG上时,49 7t=.。
2020年河北省中考数学模拟试卷(七)(含答案解析)
2020年河北省中考数学模拟试卷(七)一.选择题(本题共42分,第1-10题,每小题3分,第11-16题,每小题3分) 1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2月5日中午12点,武汉市慈善总会接收捐赠款约3230000000元.14亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战,将3230000000用科学记数法表示应为( ) A .323×107B .32.3×108C .3.23×109D .3.23×10103.如图,点A 、O 、B 在一条直线上,∠1是锐角,则∠1的余角是( )A .12∠2﹣∠1B .12∠2−32∠1C .12(∠2﹣∠1)D .13(∠1+∠2)4.“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .x •(1+30%)×80%=2080 B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%5.关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣16.把方程x 2+8x ﹣3=0化成(x +m )2=n 的形式,则m ,n 的值分别是( ) A .4,13B .﹣4,19C .﹣4,13D .4,197.如图,小明在以∠A 为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若△ABC 的面积为4,则△BED 的面积为( )A .1B .2C .3D .48.已知点A (2,3)在反比例函数y ═k x(k ≠0)的图象上,当x >﹣2时,则y 的取值范围是( ) A .y >﹣3B .y <﹣3或y >0C .y <﹣3D .y >﹣3或y >09.如图,AB 为⊙O 直径,弦CD ⊥AB 于E ,则下面结论中错误的是( )A .CE =DEB .BĈ=BD ̂ C .∠BAC =∠BAD D .OE =BE10.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是37,袋中白球共有( )A .1个B .2个C .3个D .4个11.若关于x 的方程2x+m x+2=−1的解是负数,则m 的取值范围是( )A .m <﹣2B .m >﹣2C .m <﹣2且m ≠4D .m >﹣2且m ≠412.如图,正六边形的中心为原点O ,点A 的坐标为(0,4),顶点E (﹣1,√3),顶点B (1,√3),设直线AE 与y 轴的夹角∠EAO 为α,现将这个六边形绕中心O 旋转,则当α取最大角时,它的正切值为( )A .12B .1C .√33D .4+√31313.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°14.如果ab >0,bc <0,则一次函数y =−ab x +cb 的图象的大致形状是( )A .B .C .D .15.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①abc <0②b <c ③3a +c =0④当y >0时,﹣1<x <3 其中正确的结论有( )A .1个B .2个C .3个D .4个16.已知抛物线y =−316(x ﹣1)(x ﹣9)与x 轴交于A ,B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .72B .2√3C .√412D .5二.填空题(17小题3分;18小题4分;19小题2空,每空2分,共11分) 17.方程x 2=﹣4x 的解是 .18.买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要元.19.定义新运算:a&b=a(1﹣b),其中等号右边是常规的乘法和减法运算,例如:(﹣1)&1=(﹣1)×(1﹣1)=0.(1)计算:(1+2)&2=.(2)若a&a+b&b=2ab.则a与b的关系:.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x2+5x+6,翻开纸片③是3x2﹣x﹣2.解答下列问题(1)求纸片①上的代数式;(2)若x是方程2x=﹣x﹣9的解,求纸片①上代数式的值.21.(9分)观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25②×396=693×;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.22.(9分)某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.(9分)如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC 于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.24.(10分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=mx(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).(1)分别求m、n的值;(2)连接OD,求△ADO的面积.25.(10分)如图,△ABC中,AB=AC,∠BAC<60°,将线段AB绕点A逆时针旋转60°得到点D,点E与点D关于直线BC对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE的形状,并证明;(3)请问在直线CE上是否存在点P,使得P A﹣PB=CD成立?若存在,请用文字描述出点P的准确位置,并画图证明;若不存在,请说明理由.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共16小题)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2月5日中午12点,武汉市慈善总会接收捐赠款约3230000000元.14亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战,将3230000000用科学记数法表示应为()A.323×107B.32.3×108C.3.23×109D.3.23×1010解:3 230 000 000=3.23×109,故选:C.3.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A .12∠2﹣∠1B .12∠2−32∠1C .12(∠2﹣∠1)D .13(∠1+∠2)解:由图知:∠1+∠2=180°;∴12(∠1+∠2)=90°;∴90°﹣∠1=12(∠1+∠2)﹣∠1=12(∠2﹣∠1). 故选:C .4.“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .x •(1+30%)×80%=2080 B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%解:设该电器的成本价为x 元, 由题意得,x (1+30%)×80%=2080. 故选:A .5.关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣1解:{x −m <03x −1>2(x −1),解不等式x ﹣m <0,得:x <m ,解不等式3x ﹣1>2(x ﹣1),得:x >﹣1,∵不等式组有解,∴m>﹣1.故选:D.6.把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,19解:∵x2+8x﹣3=0,∴x2+8x=3,∴x2+8x+16=3+16,即(x+4)2=19,∴m=4,n=19,故选:D.7.如图,小明在以∠A为顶角的等腰三角形ABC中用圆规和直尺作图,作出过点A的射线交BC于点D,然后又作出一条直线与AB交于点E,连接DE,若△ABC的面积为4,则△BED的面积为()A.1B.2C.3D.4解:∵△ABC是等腰三角形,根据作图可知:AD是顶角A的平分线,∴点D是BC的中点,∴S △ABD =12S △ABC =2 ∵点E 是AB 的中点,∴S △BED =12S ABD =1. 故选:A .8.已知点A (2,3)在反比例函数y ═k x(k ≠0)的图象上,当x >﹣2时,则y 的取值范围是( ) A .y >﹣3B .y <﹣3或y >0C .y <﹣3D .y >﹣3或y >0解:根据题意得k =2×3=6,∴y =6x ,∴图象在一三象限,在每个象限内y 随x 增大而减小,当x =﹣2时,y =6−2=−3, ∴当x >﹣2时,y <﹣3或y >0. 故选:B .9.如图,AB 为⊙O 直径,弦CD ⊥AB 于E ,则下面结论中错误的是( )A .CE =DEB .BĈ=BD ̂ C .∠BAC =∠BAD D .OE =BE解:根据垂径定理和等弧对等弦,得A 、B 、C 正确,只有D 错误. 故选:D .10.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是37,袋中白球共有( )A .1个B .2个C .3个D .4个解:设白球有x 个,根据题意,得:33+2+x=37,解得:x =2,即袋中白球有2个, 故选:B .11.若关于x 的方程2x+m x+2=−1的解是负数,则m 的取值范围是( )A .m <﹣2B .m >﹣2C .m <﹣2且m ≠4D .m >﹣2且m ≠4解:由方程2x+m x+2=−1,解得:x =−2−m3∵解是负数,且x ≠﹣2∴−2−m 3<0且−2−m 3≠−2∴m >﹣2且≠4 故选:D .12.如图,正六边形的中心为原点O ,点A 的坐标为(0,4),顶点E (﹣1,√3),顶点B (1,√3),设直线AE 与y 轴的夹角∠EAO 为α,现将这个六边形绕中心O 旋转,则当α取最大角时,它的正切值为( )A .12B .1C .√33D .4+√313解:如图所示,连接AM ,∵正六边形是中心对称图形,绕中心O 旋转时,点E 与B 重合时,α的角度不变; 点E 与F 、M 重合时,α的角度不变;点E 与G 、H 重合时,α的角度不变,此时角度最小; ∵AN =4−√3,EN =1,OM =OE =√12+(√3)2=2,∴tan ∠EAN =EN AN =14−√3=4+√313,tan ∠MAO =OM OA =24=12; 当OE ⊥AE 时,α角是最大的, ∵OE =2,OA =4, ∴α=30°,∴tan α=√33∴当α取最大角时,它的正切值为√33; 故选:C .13.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°解:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B ′AC ,∴∠BAC =∠ACD =∠B ′AC =12∠1=22°,∴∠B =180°﹣∠2﹣∠BAC =180°﹣44°﹣22°=114°; 故选:C .14.如果ab >0,bc <0,则一次函数y =−ab x +cb 的图象的大致形状是( )A .B .C .D .解:根据题意,ab >0,bc <0,则a b>0,cb<0,∴在一次函数y =−a bx +c b中,有−a b<0,cb<0,故其图象过二三四象限, 分析可得D 符合, 故选:D .15.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①abc <0②b <c ③3a +c =0④当y >0时,﹣1<x <3 其中正确的结论有( )A.1个B.2个C.3个D.4个解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=−b2a=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c =﹣3a , ∴3a +c =0. 故③正确;④由抛物线的对称性质得到:抛物线与x 轴的另一交点坐标是(3,0). ∴当y >0时,﹣1<x <3 故④正确.综上所述,正确的结论有4个. 故选:D .16.已知抛物线y =−316(x ﹣1)(x ﹣9)与x 轴交于A ,B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .72B .2√3C .√412D .5解:如图,连接BG .P 为AG 中点,D 为AB 中点,所以PD 是△ABG 的中位线,则DP =12BG ,当BG 最大时,则DP 最大.由圆的性质可知,当G 、C 、B 三点共线时,BG 最大. ∵C (5,3),B (9,0), ∴BC =√32+42=5, ∴BG 的最大值为2+5=7,∴DP 的最大值为72. 故选:A .二.填空题(共3小题)17.方程x 2=﹣4x 的解是 x 1=0,x 2=﹣4 . 解:x 2=﹣4x , x 2+4x =0, x (x +4)=0, x 1=0,x 2=﹣4故答案为x 1=0,x 2=﹣4.18.买一个篮球需要m 元,买一个排球需要n 元,则买3个篮球和5个排球共需要 (3m +5n ) 元.解:买3个篮球和5个排球共需要(3m+5n)元.故答案为:3m+5n19.定义新运算:a&b=a(1﹣b),其中等号右边是常规的乘法和减法运算,例如:(﹣1)&1=(﹣1)×(1﹣1)=0.(1)计算:(1+2)&2=﹣3.(2)若a&a+b&b=2ab.则a与b的关系:a=﹣b或a=1﹣b.解:(1)∵a&b=a(1﹣b),∴(1+2)&2=3&2=3×(1﹣2)=3×(﹣1)=﹣3,故答案为:﹣3;(2)∵a&a+b&b=2ab,∴a(1﹣a)+b(1﹣b)=2ab,∴a﹣a2+b﹣b2=2ab,∴a+b=a2+2ab+b2∴a+b=(a+b)2,∴(a+b)2﹣(a+b)=0,∴(a+b)(a+b﹣1)=0,∴a+b=0或a+b﹣1=0,∴a=﹣b或a=1﹣b,故答案为:a=﹣b或a=1﹣b.三.解答题(共7小题)20.数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x2+5x+6,翻开纸片③是3x2﹣x﹣2.解答下列问题(1)求纸片①上的代数式;(2)若x是方程2x=﹣x﹣9的解,求纸片①上代数式的值.解:(1)纸片①上的代数式为:(4x2+5x+6)+(3x2﹣x﹣2)=4x2+5x+6+3x2﹣x﹣2=7x2+4x+4(2)解方程:2x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x2+4x+4=7×(﹣3)2+4×(﹣3)+4=55即纸片①上代数式的值为5521.观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×275=572×25②63×396=693×36;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.解:(1)观察可知:若两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数字、个位上的数字、十位上的数字,这样的两位数与三位数的积,则等于这个三位数与两位数各自交换个位数字与十位数字所得的三位数与两位数的积,∴①52×275=572×25②63×396=693×36.故答案为275、572,63、36;(2)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a ) 验证:等式左边=(10a +b )•(110b +11a ) =11(10a +b )(10b +a )等式右边=(110a +11b )(10b +a ) =11(10a +b )(10b +a ) 左边=右边.答:表示“数字对称等式”一般规律的式子为)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a );(3)规律:若a =11m ,b =11n ,(m 、n 均为1至8的自然数),且22≤a +b ≤99,则 (100a +b )[10000b +100(a +b )+a ]=[10000a +100(a +b )+b ](100b +a ). a +b 的取值范围为:22≤a +b ≤99.22.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.解:(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元, 依题意,得:{3x +5y =502x +3y =31,解得:{x =5y =7.答:1个甲种乒乓球的售价是5元,1个乙种乒乓球的售价是7元.(2)设购买甲种乒乓球a 个,费用为w 元,则购买乙种乒乓球(200﹣a )个, 依题意,得:w =5a +7(200﹣a )=﹣2a +1400. ∵a ≤3(200﹣a ), ∴a ≤150. ∵﹣2<0,∴w 值随a 值的增大而减小,∴当a =150时,w 取得最小值,此时w =1100,200﹣a =50. 答:当购买甲种乒乓球150个,乙种乒乓球50个时最省钱.23.如图,△ABC 内接于⊙O ,AB 是直径,过点A 作直线MN ,且∠MAC =∠ABC . (1)求证:MN 是⊙O 的切线.(2)设D 是弧AC 的中点,连结BD 交AC 于点G ,过点D 作DE ⊥AB 于点E ,交AC 于点F .①求证:FD =FG .②若BC =3,AB =5,试求AE 的长.(1)证明:∵AB 是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,{DH=DEBD=BD,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,{DE=DHAD=CD,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.24.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=mx(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D 的坐标为(4,n ). (1)分别求m 、n 的值;(2)连接OD ,求△ADO 的面积.解:(1)∵反比例函数y =mx (m >0)在第一象限的图象交于点C (1,8), ∴8=m1, ∴m =8,∴函数解析式为y =8x , 将D (4,n )代入y =8x得,n =84=2. (2)设直线AB 的解析式为y =kx +b ,由题意得 {k +b =84k +b =2,解得 {k =−2b =10,∴直线AB 的函数解析式为y =﹣2x +10, 令x =0,则y =10, ∴A (0,10),∴△ADO 的面积=12×10×4=20=20.25.如图,△ABC 中,AB =AC ,∠BAC <60°,将线段AB 绕点A 逆时针旋转60°得到点D,点E与点D关于直线BC对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE的形状,并证明;(3)请问在直线CE上是否存在点P,使得P A﹣PB=CD成立?若存在,请用文字描述出点P的准确位置,并画图证明;若不存在,请说明理由.解:(1)补全图形如图1.(2)△CDE为等边三角形,证明如下:延长BC与DE交于F,∵AB=AC,∴∠ABC=∠ACB,①∵线段AB绕点A逆时针旋转60°得到点D,∴AD=AB=AC,∠BAD=60°,∴∠ACD=∠ADC,②∵四边形ABCD中,∠BAD+∠ABC+∠BCD+∠CDA=360°.∴∠ABC+∠ACB+∠ACD+∠ADC=300°,③∴由①②③,得∠ACB+∠ACD=150°,即∠BCD=150°,∴∠DCF=180°﹣∠BCD=30°,∵点E与点D关于直线BC对称,∴∠ECF=∠DCF=30°,DC=CE,∴∠DCE=60°.∴△DCE是等边三角形;(3)存在,作AG⊥BC于G,直线EC与AG的交点即为点P,证明:延长AG与DC交于点Q,连接QB,BD,由(2)可知,∠PCD=180°﹣∠DCE=120°,∠PCQ=∠DCE=60°,∠PCG=∠FCE =30°,∴∠CPG=90°﹣∠PCG=60°,∴∠PQC=∠CPQ=∠PCQ=60°,∴△PCQ为等边三角形,∴PC=CQ,∠APC=120°﹣∠PCD,①∵AG⊥BC,AC=BC,∴AG垂直平分BC,∴PB=PC=QB=QC,∴四边形PBQC是菱形,∴PB=QC,∠PBQ=∠PCQ=60°,②∵QB=QC,∴∠QBC=∠QCB,∴∠ABQ=∠ACQ,∵AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°=∠PCQ,∴∠ABQ﹣∠ABD=∠ACQ﹣∠PCQ,∴∠DBQ=∠ACP,③∴由①②③得△ACP≌△DBQ(AAS),∴AP=DQ.∵CQ=PB,∴AP=DQ=DC+CQ=DC+PB.即P A﹣PB=CD成立.26.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.解:(1)将点B (3,0),C (0,3)代入y =﹣x 2+bx +c , 得 {0=−9+3b +3c =3,解得,{b =2c =3,∴二次函数的解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得 {3k +b =0k +b =4,解得 {k =−2b =6,∴直线BM 的解析式为y =﹣2x +6,∵PD ⊥x 轴且OD =m ,∴P (m ,﹣2m +6),∴S =S △PCD =12PD •OD =12m (﹣2m +6)=﹣m 2+3m , 即S =﹣m 2+3m ,∵点P 在线段BM 上,且B (3,0),M (1,4), ∴1≤m ≤3;②∵S =﹣m 2+3m =﹣(m −32)2+94,∵﹣1>0,∴当m =32时,S 取最大值94,∴P (32,3);(3)存在,理由如下:如图2﹣1,当∠CPD =90°时,∵∠COD =∠ODP =∠CPD =90°,∴四边形CODP 为矩形,∴PD =CO =3,将y =3代入直线y =﹣2x +6,得,x =32,∴P (32,3);如图2﹣2,当∠PCD =90°时,∵OC =3,OD =m ,∴CD 2=OC 2+OD 2=9+m 2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴DCPD =OCDC,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3√2(舍去),m2=﹣3+3√2,∴P(﹣3+3√2,12﹣6√2),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(32,3)或(﹣3+3√2,12﹣6√2).。
2020年河北省中考数学模拟试卷(一)(含答案解析)
2020年河北省中考数学模拟试卷(一)一、选择题(本大题共16小题,共42.0分)1.截止2020年3月31日,中国红十字会总会机关和中国红十字基金会共接受用于新型冠状病毒肺炎疫情防控社会捐赠款物约211000万元,用科学记数法应表示为()A. 2.11×104万元B. 2.11×105万元C. 21.1×104万元D. 211×106万元2.如图,点C,O,B在同一条直线上,∠AOB=90∘,∠AOE=∠DOB,则以下结论:①∠EOD=90∘;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90∘,其中正确的有()A. 1个B. 2个C. 3个D. 4个3.关于√8的叙述不正确的是()A. √8=2√2B. 面积是8的正方形的边长是√8C. √8是有理数D. 在数轴上可以找到表示√8的点4.某学校要开展游园互动,计划买一批铅笔和橡皮擦,铅笔每支0.6元,橡皮擦每块0.8元,用300元钱买了铅笔和橡皮擦共365份,其中买了铅笔多少支?若设买了铅笔x支,则下列方程正确的是()A. 0.6x+0.8x=300B. 35x+45(365−x)=300C. 0.6x+0.8(300−x)=365D. 45x+35(365−x)=3005.不等式组{x+2>0x−3>0的解集是()A. x>3B. x>2C. x>−2D. x<36.用配方法解一元二次方程2x2−4x−2=1的过程中,变形正确的是()A. 2(x−1)2=1B. 2(x−2)2=5C. (x−1)2=52D. (x−2)2=527.如图,在四边形ABCD中,AD//BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为( )A. 6B. 8C. 10D. 无法确定8.若反比例函数y=1−2mx的图象经过点A(x1,y1)和点B(x2,y2),且当0<x1<x2时,y1>y2>0,则m的取值范围是()A. m<0B. m>0C. m<12D. m>129.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A. 1个B. 2个C. 3个D. 4个10.有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A. 13B. 23C. 16D. 1211.若分式方程xx−2=2+ax−2的解为正数,则a的取值范围是()A. a>4B. a<4C. a<4且a≠2D. a<2且a≠012.如图,正方形ABCD.AB=4,点E为BC边上点,连接AE延长至点F连接BF,若tan∠FAB=tan∠EBF=13,则AF的长度是()A. 5√5−2√102B. 8√10−3√55C. 5√106D. 3√10213.如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为()A. 155°B. 130°C. 125°D. 110°14.若ab<0,则y=ax+b的图象可能是()A. B. C. D.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中−1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b<0,③b2+8a>4ac,其中结论正确的有()A. 0个B. 1个C. 2个D. 3个16.如图,抛物线y=−x2+4x+k与x轴交于点A和B,线段AB的长为2,则k的值是()A. 3B. −3C. −4D. −5二、填空题(本大题共3小题,共11.0分)17.方程3x2=x的解是__________________.18.孔明同学买铅笔m支,每支0.4元,买练习本n本,每本2元.那么他买铅笔和练习本一共花了______ 元.19.定义运算“△”:对于两个有理数a,b,有a△b=ab−(a+b),例如:3△2=3×2−(3+2)=6−5=1,则(−1)△(m+1)=________.三、计算题(本大题共1小题,共8.0分)20.当x=2时,代数式mx2−(m−2)x+2m的值是20,求当x=−2时,这个代数式的值.四、解答题(本大题共6小题,共59.0分)21.如果一个自然数能表示成两个自然数的平方差,那么称这个数为“智慧数”.例如:0=02−02,所以0 就是一个“智慧数”;又如:1=12−02,3=22−12,4=22−02,5=32−22,7= 42−32;所以1,3,4,5,7 都是“智慧数”(1)请判断15和16是不是“智慧数”,并说明理由;(2)请说明自然数中所有奇数都是“智慧数”;(3)自然数中4的倍数是“智慧数”吗⋅为什么⋅22.某服装专卖店计划购进A,B两种型号的精品服装.已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元.(1)求A,B型服装的单价;(2)专卖店要购进A,B两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?23.如图:△ABC绕点A逆时针方向旋转得到△ADE,其中∠B=50°,∠C=60°.(1)若AD平分∠BAC时,求∠BAD的度数.(2)若AC⊥DE时,AC与DE交于点F,求旋转角的度数.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反的图象交于A(2,3)、B(−3,n)两点.比例函数y=mx(1)求一次函数和反比例函数的解析式;<0的x的取值范围.(2)根据图象直接写出kx+b−mx25.在△ABC中,AC=BC,∠ACB=90°.点D为AC的中点.将线段DE绕点D逆时针旋转90°得到线段DF,连接EF,CF.过点F作FH⊥FC,交直线AB于点H.(1)若点E在线段DC上,如图1,①依题意补全图1;②判断FH与FC的数量关系并加以证明.(2)若E为线段DC的延长线上一点,如图2,且CE=√2,∠CFE=15°,请求出△FCH的面积∠CFE=12°,请写出求△FCH的面积的思路.(可以不写出计算结果)26.已知直线y=kx+m(k<0)与y轴交于点M,且过抛物线y=x2+bx+c的顶点P和抛物线上的另一点Q.(1)若点P(2,−2)①求抛物线解析式;②若QM=QO,求直线解析式.(2)若−4<b≤0,c=b2−4,过点Q作x轴的平行线与抛物线的对称轴交于点E,当PE=2EQ4时,求△OMQ的面积S的最大值.【答案与解析】1.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:211000万元=2.11×105万元.故选B.2.答案:C解析:此题考查了余角,平角的定义,角的和差,解题时注意运用余角的性质:同角的余角相等.结合图形,根据平角的定义、余角的性质和等量代换可以进行判断,注意运用角的和差的运算.解:∵∠AOB=90°,∴∠AOD+∠BOD=90°,∵∠AOE=∠DOB,∴∠AOE+∠AOD=90°,即∠EOD=90°,∴∠COE=∠AOD,∠COE+∠BOD=90°,∴①②④正确.故选C.3.答案:C解析:本题考查了实数的定义、算术平方根、实数与数轴一一对应的关系,熟练掌握实数的有关定义是关键.√8=2√2,√8是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.解:A 、√8=2√2,所以此选项叙述正确;B 、面积是8的正方形的边长是√8,所以此选项叙述正确;C 、√8,它是无理数,所以此选项叙述不正确;D 、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示√8的点;所以此选项叙述正确;故选:C .4.答案:B解析:解:设买了铅笔x 支,则买了橡皮擦(365−x)块,由题意得,0.6x +0.8(365−x)=300,即35x +45(365−x)=300.故选B .设买了铅笔x 支,则买了橡皮擦(365−x)块,根据共花去300元,列方程即可.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 5.答案:A解析:本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.解: {x +2>0①x −3>0②, 解不等式①得x >−2,解不等式②得x >3,则该不等式组的解集为x >3.故选A .6.答案:C解析:本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.将常数项移到方程的右边后,把二次项系数化为1后两边配上一次项系数一半的平方即可得.解:∵2x2−4x=3,∴x2−2x=32,则x2−2x+1=1+32,即(x−1)2=52,故选:C.7.答案:C解析:解:作BF⊥AD与F,∴∠AFB=∠BFD=90°,∵AD//BC,∴∠FBC=∠AFB=90°,∵∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°=∠FBC,∴∠ABE−∠FBE=∠FBC−∠FBE,∴∠CBE=∠FBA.在△BCE和△BFA中{∠C=∠AFB BC=BF∠CBE=∠FBA,∴△BCE≌△BFA(ASA),∴CE=FA.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴FA=2,∴AD=8+2=10.故选C.作BF⊥AD与F,就可以得出BF//CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BFA就可以得出AF=CE,进而得出结论.本题考查了平行线的性质的运用,矩形的判定及性质的运用,正方形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.8.答案:C解析:解:∵当0<x1<x2时,y1>y2>0,∴反比例函数图象在第一、三象限,∴1−2m>0,∴m<12.故选C.根据反比例函数的性质由0<x1<x2时,y1>y2>0得到1−2m>0,然后解不等式即可.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.9.答案:C解析:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.根据垂径定理计算.解:根据题意,得在弦AB上方有2个点、下方有1个点到弦AB所在直线的距离为2.故选C.10.答案:A解析:解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率=26=13.故选:A.直接利用概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.答案:C解析:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.分式方程去分母转化为整式方程,由分式方程的解为正数确定出a的范围即可.解:去分母得:x=2x−4+a,解得:x=−a+4,由方程的解为正数,得到−a+4>0,且−a+4≠2,解得:a<4且a≠2,则a的取值范围是a<4且a≠2,故选C.12.答案:D解析:解:∵四边形ABCD是正方形,∴∠ABC=90°,∵tan∠FAB=BEAB =tan∠EBF=13,AB=4,∴BE=43,∠FAB=∠EBF,∴AE=√AB2+BE2=4√103,又∵∠F=∠F,∴△BEF∽△FBA,∴BFAF =EFBF=BEAB=13,设EF=x,则BF=3x,AF=9x,∵AF=AE+EF,∴9x=4√103+x,解得:x=√106,∴AF=AE+EF=4√103+√106=3√102;故选:D.由三角函数得出BE=43,由勾股定理求出AE=√AB2+BE2=4√103,证出△BEF∽△FBA,得出BFAF=EF BF =BEAB=13,设EF=x,则BF=3x,AF=9x,由AF=AE+EF得出方程,解方程得出EF的长,即可得出AF的长.本题考查了正方形的性质、勾股定理、三角函数、相似三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.13.答案:B解析:解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°−∠BED=25°,∴∠A=180°−∠ABE−∠AEB=130°.故选:B.由平行四边形的性质得出∠AEB=∠CBE,由角平分线的定义和邻补角关系得出∠ABE=∠CBE=∠AEB=180°−∠BED=25°,再由三角形内角和定理即可得出∠A的度数.本题考查了平行四边形的性质、三角形内角和定理;熟练掌握平行四边形的性质,求出∠ABE=∠CBE=∠AEB是解决问题的关键.14.答案:A解析:利用ab<0,得到a<0,b>0或b<0,a>0,然后根据一次函数图象与系数的关系进行判断.本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小.解:∵ab<0,∴a<0,b>0或b<0,a>0,当a<0,b>0,图象经过一、二、四象限;当b<0,a>0,图象经过一、三、四象限,故选A.15.答案:D解析:考查二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数等.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,<1,对称轴为x=−b2a∵a<0,∴2a+b<0,故②正确;∵当x=2时,y=4a+2b+c<0,故①正确;∵4ac−b2>2,a<0,4a∴4ac−b2<8a,∴b2+8a>4ac,故③正确;故选:D.16.答案:B解析:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.根据二次函数的性质得到抛物线的对称轴为直线x=2,再根据点A、B关于直线x=2对称得到A(1,0),B(3,0),然后把A点坐标代入y=−x2+4x+k得−1+4+k=0,最后解关于k的方程即可.=2,而AB=2,解:∵抛物线的对称轴为直线x=−42×(−1)∴A(1,0),B(3,0),把A(1,0)代入y=−x2+4x+k得−1+4+k=0,解得k=−3.故选B.17.答案:x1=0,x2=13解析:本题考查了用因式分解法求一元二次方程的解,能正确分解因式是解题的关键.先移项,然后可提取x,根据分解因式求解.解:3x2=x,移项得:3x2−x=0,分解因式得:x(3x−1)=0,解得:x1=0,x2=1.3.故答案为x1=0,x2=1318.答案:(0.4m+2n)解析:此题要注意的问题是用多项式表示一个量的后面有单位时,这个多项式要带上小括号.此题要根据题意直接列出代数式.铅笔m支,每支0.4元即0.4m元,练习本n本,每本2元即2n元.解:买铅笔m支,每支0.4元,则花了0.4m元,买练习本n本,每本2元,则花了2n元,他买铅笔和练习本一共花了(0.4m+2n)元.故答案为(0.4m+2n).19.答案:−2m−1解析:本题考查的是整式的加减,熟知整式加减的过程就是合并同类项的过程是解答此题的关键.根据a△b=ab−(a+b)把(−1)△(m+1)化为关于m的式子,再合并同类项即可.解:∵a△b=ab−(a+b),∴(−1)△(m+1)=(−1)×(m+1)−(−1+m+1)=−2m−1故答案为−2m−1.20.答案:解:当x=2时,mx2−(m−2)x+2m=20,所以4m−2(m−2)+2m=20,解得m=4,所以代数式为4x2−2x+8,当x=−2时,4x2−2x+8=4×(−2)2−2×(−2)+8=28.解析:先把x=2代入mx2−(m−2)x+2m=20可求出m的值,从而得到代数式为4x2−2x+8,然后求x=−2时的代数式的值.本题考查了代数式求值及解一元一次方程.21.答案:解:(1)15和16 是“智慧数”,理由如下:∵15=82−72,16=52−32,∴15 和16 是“智慧数”.(2)设自然数中所有奇数为2k+1(k是自然数),∵(k+1)2−k2=k2+2k+1−k2=2k+1 ,∴2k+1是“智慧数”,因此,自然数中所有奇数都是“智慧数”.(3)自然数中4 的倍数是“智慧数”,理由:设自然数中4 的倍数为4k(k是自然数),∵(k+1)2−(k−1)2=k2+2k+1−k2+2k−1=4k ,∴4k是“智慧数”,因此,自然数中的倍数都是“智慧数”.解析:本题考查平方差公式的应用,考查了推理能力与计算能力,属于较难题.(1)利用15=82−72,16=52−32,即可得出结论;(2)设自然数中所有奇数为2k+1(k是自然数),则(k+1)2−k2=k2+2k+1−k2=2k+1 ,即可得出结论;(3)利用(k+1)2−(k−1)2=2k×2=4k即可解答.22.答案:解:(1)设A型服装的单价为x元,B型服装的单价为y元,依题意,得:{2x +3y =4600x +2y =2800, 解得:{x =800y =1000. 答:A 型服装的单价为800元,B 型服装的单价为1000元.(2)设购进B 型服装m 件,则购进A 型服装(60−m)件,依题意,得:60−m ≥2m ,解得:m ≤20.设该专卖店需要准备w 元的货款,则w =800(60−m)+1000×0.75m =−50m +48000, ∵k =−50,∴w 随m 的增大而减小,∴当m =20时,w 取得最小值,最小值=−50×20+48000=47000.答:该专卖店至少需要准备47000元货款.解析:(1)设A 型服装的单价为x 元,B 型服装的单价为y 元,根据“2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进B 型服装m 件,则购进A 型服装(60−m)件,根据购进A 型件数不少于B 型件数的2倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设该专卖店需要准备w 元的货款,根据总价=单价×数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. 23.答案:解:(1)∵∠B =50°,∠C =60°,∴∠BAC =180°−50°−60°=70°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =35°;(2)∵△ABC 旋转得到△ADE ,∠C =60°,∴∠E =∠C =60°,∵AC ⊥DE ,∴∠AFE =90°,∴∠CAE =90°−∠E =90°−60°=30°,∵∠CAE 是旋转角,∴旋转角的度数为30°.解析:本题主要考查三角形的内角和定理,角平分线的定义及旋转的性质.(1)可利用三角求出形的内角和定理求出∠BAC 的度数,再利用角平分线的定义即可求解;(2)根据旋转的性质可求∠E 得度数,再利用直角三角形的性质可求解∠CAE ,即为所求的旋转角的度数.24.答案:解:(1)∵反比例函数y =m x 经过A(2,3),∴可求得m =6,∴反比例函数的解析式为 y =6x ,将B(−3,n)代入y =6x ,得n =−2,∴B(−3,−2).∵一次函数y =kx +b 也经过A 、B 两点,∴{3=2k +b −2=−3k +b , 解得{k =1b =1, ∴一次函数的解析式为 y =x +1,(2)由图象可知,不等式kx+b<m的解集为:0<x<2,或x<−3.x解析:(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b 的值,即可确定出一次函数解析式;(2)根据图象即可得出不等式kx+b<m的解集.x此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及不等式和函数的关系,熟练掌握待定系数法是解本题的关键.25.答案:解:(1)①如图1,②FH与FC的数量关系是:FH=FC.证明如下:如图2,延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG//CB,∵点D为AC的中点,AC,∴点G为AB的中点,且DC=12∴DG为△ABC的中位线,∴DG =12BC .∵AC =BC ,∴DC =DG ,∴DC −DE =DG −DF , 即EC =FG .∵∠EDF =90°,FH ⊥FC , ∴∠1+∠CFD =90°,∠2+∠CFD =90°, ∴∠1=∠2.∵△DEF 与△ADG 都是等腰直角三角形, ∴∠DEF =∠DGA =45°, ∴∠CEF =∠FGH =135°, 在△CEF 和△FGH 中,{∠1=∠2∠CEF =∠FGH FC =FH∴△CEF≌△FGH ,∴CF =FH .(2)如图3,∴∠DFE =∠DEF =45°, ∵AC =BC ,∴∠A =∠CBA =45°, ∵DF//BC ,∴∠CBA =∠FGB =45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF//BC,∴DG=12BC,DC=12AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中{∠CEF=∠FGH EC=GF∠ECF=∠GFH,∴△FCE≌△HFG(ASA),∴HF=FC,∵∠EDF=90°,DE=DF,∴∠DEF=∠DFE=45°,∵∠CFE=15°,∴∠DFC=45°−15°=30°,∴CF=2CD,DF=√3CD,∵DE=DF,CE=√2.∴√2+CD=√3CD,∴CD=√6+√22,∴CF=2CD=√6+√2.∵∠CFH=90°,∴△FCH的面积为:CF⋅CH⋅12=(√6+√2)×(√6+√2)×12=4+2√3.解析:(1)①依题意补全图1②延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°−∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.所以CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出FC=FH,再求出FC的长,即可解答.本题考查了全等三角形的判定和性质、三角形中位线定理等知识,综合性强,解决本题的关键是证明FC=FH.26.答案:解:(1)①∵P(2,−2),∴y=(x−2)2−2,∴抛物线的解析式为y=x2−4x+2.②令x=0,y=m,∴M(0,m),∵直线经过点P(2,−2),∴2k+m=−2,∴k=−1−m2,令kx+m=x2−4x+2,解得x1=2,x2=1−m2,∴Q(1−m2,14m2+m−1),∵QM=QO,∴√(1−m2)2+(14m2−1)2=√(1−m2)2+(14m2+m−1)2解得m1=−1+√5,m2=−1−√5,∵k<0,∴m=−1+√5,∴k=−12−√52,∴直线的解析式为y=−1+√52x+√5−1.(2)设直线PQ的解析式为y=−2x+b′,顶点P(−b2,−1),代入上式得到:−1=b+b′,∴b′=−1−b,∴直线PQ为y=−2x−1−b,∴点M的坐标为(0,−1−b),由{y =−2x −1−b y =x 2+bx +b 2−44解得{x =−2−b 2y =3或{x =−b 2y =−1∴Q(−2−b 2,3),∵−4<b ≤0,①−1≤b ≤0时,∴S △OQM =12(2+b 2)⋅(1+b)=14(b +52)2−916,∴当x =0时,△QOM 的面积最大,最大值为1.②−4<b <−1时,S △QOM =12(2+b 2)⋅(−1−b)=−14(b +52)+916,∵−14<0,∴当b =−52时,△QOM 的面积最大,最大值为916,综上所述,△QOM 的面积最大值为1.解析:(1)①已知抛物线的顶点坐标和a 的值,直接可以写出抛物线的顶点式,解析式可求. ②令x =0,可得到点M 的坐标,直线经过点P ,代入可以用含m 的式子表示k ,联立抛物线和直线的解析式,求出点Q 的坐标,用两点间距离公式表示QM 和OQ ,求出m 的值,直线解析式可解.(2)由题意可以假设直线PQ 的解析式,利用方程组求出点Q 的坐标,分两种情况讨论,构建二次函数,根据二次函数的性质即可解决问题.此题考查了二次函数的性质,两点间距离公式,利用二次函数的性质求最值为解题关键.。
河北省2020年中考模拟数学试卷含有答案
1
河北省2020年中考模拟试卷
数学试卷
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
题号 一 二 20 21 22 23 24 25 26 得分
注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷I (选择题,共42分)
一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的) 1.在-3,0,1,-2四个数中,最小的数为( ) A .-3
B .0
C .1
D .-2 2.695.2亿用科学记数法表示为( ) A .6.952×106
B .6.952×108
C .6.952×1010
D .695.2×108
3.下列手机屏幕解锁图案中,不是轴对称图形的是( )
4.下面运算结果为a 6的是( ) A .a 3+a 3 B .a 8÷a 2 C .a 2·a 3 D .(-a 2)3
5.如图是五个棱长为“1”的立方块组成的一个几何体,不是三视图之一的是( )
6.在△ABC 中,AB <BC ,用尺规作图在BC 上取一点P ,使PA+PC=BC ,则下列作法 正确的是( )
7.设○□△分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示, 总 分
核分人
P P A P
B C A
B C B C A A . B . C . D .
B C A
P A . B . C . D .
A .
B .
C .
D .。
3 2020年 河北 中考 数学 模考(三)答案
2020年河北中考数学押题模考(三)参考答案一.选择题(共16小题)1.【答案】A【解析】解:103(103)7-+=--=-,故选:A .2.【答案】B【解析】解:530060是6位数,10∴的指数应是5,故选:B .3.【答案】B【解析】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误; 第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:.4.【答案】D【解析】解:A 22221()1a a b b a b -+-=--中不是把多项式转化成几个整式积的形式,故A 错误;B 221222(1)x x x x +=+中1x不是整式,故B 错误; C 2(2)(2)4x x x +-=-是整式乘法,故C 错误;D 42221(1)(1)(1)(1)(1)x x x x x x -=+-=++-,故D 正确.故选:D .5.【答案】C【解析】解:||a a =,a ∴为绝对值等于本身的数,0a ∴…,故选:C .6.【答案】D【解析】解:A 、负整数指数幂与正整数指数幂互为倒数,故A 错误;B 、算术平方根是非负数,故B 错误;C 、非零的零次幂等于1,故C 错误;D 、负数的立方根是负数,故D 正确;故选:D .7.【答案】A【解析】解:设甲车的速度为x 千米/时,则乙车的速度为(15)x +千米/时, 由题意得,304015x x =+. 故选:A .8.【答案】B【解析】解:AB AC =,ABC C ∴∠=∠.//DE AB ,DEC ABC C ∴∠=∠=∠,ABD BDE ∠=∠,DE DC ∴=, BD 是ABC ∠的平分线,ABD DBE ∴∠=∠.DBE BDE ∴∠=∠,5BE DE DC cm ∴===,CDE ∴∆的周长为55313()DE DC EC cm ++=++=,故选:B .9.【答案】A【解析】解:设小美所写数字为x ,根据题意得:(36)322x x x x +÷-=+-=.故选:A .10.【答案】D【解析】解:A 、图象必经过点(3,2)-,故A 正确;B、图象位于第二、四象限,故B正确;C、若2x<-,则3y<,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.11.【答案】A【解析】解:菱形ABCD周长为20,5AB BC CD AD∴====,对角线AC、BD交于点O,6BD=,AC BD∴⊥,3BO DO==,4AO CO∴==,:2:3DE EC=,5CD=,2DE∴=,3EC=,//AB CD,ABF CEF∴∆∆∽,∴CE CF AB AF=,∴358CFCF=-,解得:3CF=.故选:A.12.【答案】C【解析】解:点P在AC上,PA PC AC∴+=,而PB PC AC+=,PA PB∴=,∴点P在线段AB的垂直平分线上,所以作线段AB的垂直平分线交AC于点P.故选:C.13.【答案】B【解析】解:1123A B C ∠=∠=∠,2B A ∴∠=∠,3C A ∠=∠,180A B C ∠+∠+∠=︒,即6180A ∠=︒,30A ∴∠=︒,60B ∴∠=︒,90C ∠=︒,ABC ∴∆为直角三角形.故选:B .14.【答案】D【解析】解:AB 是O 的直径,90ACB ∴∠=︒,2AC =,60AOC ∠=︒,AOC ∴∆是等边三角形, 则2AO AC ==,4AB =,弦CD AB ⊥,1sin 6022CE DE CD OC ∴===⨯︒== 114322ABC S AB CE ∆==⨯⨯21222ABC S S S ππ∆∴=-=⋅--阴影半圆. 故选:D .15.【答案】C【解析】解:1028-=,10212+=,812x ∴<<,若x 为正整数,x ∴的可能取值是9,10,11,故这样的三角形共有3个.故选:C .16.【答案】C【解析】解:由题意知,点P 从点B 出发,沿B C D →→向终点D 匀速运动,则 当02x <…,12s x =, 当23x <…,1s =,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .二.填空题(共4小题)17.【答案】45 【解析】解:在10个外观相同的产品中,有2个不合格产品, ∴现从中任意抽取1个进行检测,抽到合格产品的概率是:1024105-=. 故答案为:45. 18.【答案】6 【解析】解:21122227112272()7a ab b a ab b ab ab ab b a a b ab a b ab ab ab ab b a------==-+-+-+,114a b-=, ∴原式42662(4)71---===⨯-+-. 故答案为 6 .19.【答案】25BCD ∠=︒ 【解析】解:在Rt ABC ∆中,65BAC ∠=︒,90906525ABC BAC ∴∠=︒-∠=︒-︒=︒.//AB CD ,25BCD ABC ∠=∠=︒.20.【答案】22(1)3y x =++【解析】解:原抛物线的顶点为(0,1)-,向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(1,3)-;可设新抛物线的解析式为22()y x h k =-+,代入得:22(1)3y x =++.三.解答题(共6小题)21.【答案】见解析【解析】解:(1)根据题意得:594*54544=-+=;(2)根据题意得:22(2)42xx+-++…,解得:2x…,在数轴上表示为:.22.【答案】见解析【解析】解:(1)本次抽查的学生有:1428%50÷=(人),则捐款10元的有509147416----=(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:591016151420725413.150⨯+⨯+⨯+⨯+⨯=;(3)捐款20元及以上(含20元)的学生有:7460013250+⨯=(人);故答案为:(1)50,(2)10,13.1.23.【答案】见解析【解析】解:探究:点A和A'关于直线l对称,M∴为线段AA'的中点,设A '坐标为(,0)t ,且(,0)M m ,(1,0)A -,AM A M ∴=',即(1)m t m --=-,21t m ∴=+,(1)当0m =时,1t =,则A '的坐标为 (1,0), 故答案为:(1,0);(2)当1m =时,2113t =⨯+=,则A '的坐标为(3,0), 故答案为:(3,0);(3)当2m =时,2215t =⨯+=,则A '的坐标为(5,0), 故答案为:(5,0);发现:由探究可知,对于任意的m ,21t m =+,则A '的坐标为(21,0)m +, 故答案为:(21,0)m +;解决问题:(1A -,0)(5B -,0),(21,0)A m ∴'+,(25,0)B m '+,当B '在点C 、D 之间时,则重合部分为线段CB ',且(6,0)C , 2562m ∴+-=,解得32m =; 当A '在点C 、D 之间时,则重合部分为线段A D ',且(15,0)D , 15(21)2m ∴-+=,解得6m =;综上可知m 的值为32或6. 24.【答案】见解析【解析】(1)证明:BD 平分CBA ∠,CBD DBA ∴∠=∠,DAC ∠与CBD ∠都是弧CD 所对的圆周角,DAC CBD ∴∠=∠,DAC DBA ∴∠=∠;(2)证明:AB 为直径,90ADB ∴∠=︒,DE AB ⊥于E ,90DEB ∴∠=︒,135390∴∠+∠=∠+∠=︒,152∴∠=∠=∠,PD PA∴=,421390∠+∠=∠+∠=︒,且90ADB∠=︒,34∴∠=∠,PD PF∴=,PA PF∴=,即P是线段AF的中点;(3)解:连接CD,CBD DBA∠=∠,CD AD∴=,3CD=,3AD∴=,90ADB∠=︒,5AB∴=,故O的半径为2.5,DE AB AD BD⨯=⨯,534DE∴=⨯,2.4DE∴=.即DE的长为2.4.25.【答案】见解析【解析】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y kx b=+得:20015 30010k bk b=+⎧⎨=+⎩,解得:20500kb=-⎧⎨=⎩,即:函数的表达式为:20500y x=-+,(6)x…;(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大, 则:(6)20(25)(6)w y x x x =-=---,200-<,故w 有最大值, 当3115.522b x a =-==时,w 的最大值为1805元; (3)当15.5x =时,190y =,5019012000⨯<,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w , 由题意得:50(50020)12000x -…,解得:13x …, 20(25)(6)w x x =---,当13x =时,1680w =,此时,既能销售完又能获得最大利润.26.【答案】见解析【解析】解:(1)四边形BCDE 是正方形90ACB BCD CDE E ∴∠=∠=∠=∠=︒,BC CD DE BE ===(2b A -,0),(,2)B m m b +, 2b OA ∴=-,OC m =,2CD DE BE BC m b ====+ 23OD OC CD m m b m b ∴=+=++=+(3,0)D m b ∴+,(3,2)E m b m b ++ (2)()22b b AC OC OA m m =-=--=+ ∴222BC m b bAC m +==+(3)①连接AC ',正方形BC D E '''和正方形BCDE 关于直线AB 对称 AC AC '∴=,90AC B ACB '∠=∠=︒正方形BC D E '''中,90BC D ''∠=︒9090180AC D ''∴∠=︒+︒=︒,即点A 、C '、D '在同一直线上 点N 和点A 关于y 轴对称,M 在y 轴上 MN MA ∴=MNA MAN ∴∠=∠D N x '⊥轴90D NA D NM MNA ''∴∠=∠+∠=︒90ND M MAN '∴∠+∠=︒ND M D NM ''∴∠=∠MN MD ∴='②1114AD AO AD AO AO-=-+ ∴1()()()()4AD AO AD AO AD AO AD AO AD AO AD AO AO +--=-++- ∴22()14AD AO AD AO AD AO AO +--=- ∴22214AO AD AO AO=- 2228AD AO AO ∴-=229AD AO ∴=3AD AO ∴=33()322b b AD OD OA m b m =-=+--=+ 333()22b b m ∴+=- 解得:b m =-∴221BC m b m mOC m m+-===11 / 11。
河北省2020年中考数学模拟试卷(六)及解析
2020年河北省中考数学模拟试卷(六)一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a与5互为相反数,则|a﹣5|等于()A.0B.5C.10D.﹣102.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.113.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3根B.4根C.5根D.6根4.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.75.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 6.与√37最接近的整数是()A.5B.6C.7D.87.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码 35 36 37 38 39 平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是( ) A .平均数B .方差C .众数D .中位数8.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .√53B .35C .√22D .239.如果a ﹣3b =0,那么代数式(a −2ab−b 2a )÷a 2−b2a的值是( ) A .12B .−12C .14D .110.如图,△ABC 中,DE ∥BC ,EF ∥AB ,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .AB =ACB .AD =BDC .BE ⊥ACD .BE 平分∠ABC11.已知√2x +y −3+|x ﹣3y ﹣5|=0,则y x 的值为( ) A .1B .﹣1C .2D .﹣212.如图、点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后.仍无法判定△ABC ≌△DEF 的是( )A .AB =DEB .AC =DFC .∠A =∠DD .BF =EC13.已知x 是实数,则代数式3x 2﹣2x +1的最小值等于( )A .﹣2B .1C .23D .4314.已知二次函数y =﹣x 2﹣4x ﹣5,左、右平移该抛物线,顶点恰好落在正比例函数y =﹣x 的图象上,则平移后的抛物线解析式为( ) A .y =﹣x 2﹣4x ﹣1 B .y =﹣x 2﹣4x ﹣2C .y =﹣x 2+2x ﹣1D .y =﹣x 2+2x ﹣215.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M16.如图,在△ABC 中,AB =AC =10,∠BAC =120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长是( )A .2B .4C .5D .52二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.若a 与b 互为相反数,则|﹣2a ﹣2b +2020|= .18.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是 .19.阅读下文,寻找规律,并填空: 已知x ≠1,计算:(1﹣x )(1+x )=1﹣x 2 (1﹣x )(1+x +x 2)=1﹣x 3 (1﹣x )(1+x +x 2+x 3)=1﹣x 4 (1﹣x )(1+x +x 2+x 3+x 4)=1﹣x 5观察上式,并猜想:(1﹣x )(1+x +x 2+…+x n )= .三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)利用平方差公式可以进行简便计算:例1:99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999;例2:39×410=39×41×10=(40﹣1)(40+1)×10=(402﹣12)×10=(1600﹣1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)192×212;(2)(2019√3+2019√2)(√3−√2).21.(9分)如图,四边形ABCD 中,AD ∥BC ,点E 、F 分别在AD 、BC 上,AE =CF ,过点A 、C 分别作EF 的垂线,垂足为G 、H . (1)求证:△AGE ≌△CHF ;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.22.(9分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表 测试序号 1 2 3 4 5 6 7 8 9 10 成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)23.(9分)如图,一艘船由A港沿北偏东65°方向航行90√2km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.24.(10分)2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)写出y与x之间的函数关系式及自变量的取值范围.(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?25.(10分)如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.26.(12分)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B 处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转n360周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC =60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=12c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.答案解析一.选择题(共16小题)1.若a与5互为相反数,则|a﹣5|等于()A.0B.5C.10D.﹣10解:∵a与5互为相反数,∴a=﹣5,∴|a﹣5|=|﹣5﹣5|=10故选:C.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.3.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3根B.4根C.5根D.6根解:过八边形的一个顶点作对角线,可以做5条,把八边形分成6个三角形,因为三角形具有稳定性.故选:C.4.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选:B.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105解:47.24亿=4724 000 000=4.724×109.故选:B.6.与√37最接近的整数是()A.5B.6C.7D.8解:∵36<37<49,∴√36<√37<√49,即6<√37<7,∵37与36最接近,∴与√37最接近的是6. 故选:B .7.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码 35 36 37 38 39 平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是( ) A .平均数B .方差C .众数D .中位数解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C .8.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .√53B .35C .√22D .23解:∵△DEF 是△AEF 翻折而成, ∴△DEF ≌△AEF ,∠A =∠EDF , ∵△ABC 是等腰直角三角形,∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°, ∴∠BED =∠CDF ,设CD =1,CF =x ,则CA =CB =2, ∴DF =F A =2﹣x ,∴在Rt △CDF 中,由勾股定理得, CF 2+CD 2=DF 2, 即x 2+1=(2﹣x )2,解得:x =34,∴sin ∠BED =sin ∠CDF =CFDF =35. 故选:B .9.如果a ﹣3b =0,那么代数式(a −2ab−b 2a )÷a 2−b2a的值是( )A .12B .−12C .14D .1解:当a ﹣3b =0时, 即a =3b∴原式=a 2−2ab+b2a •a a 2−b 2=(a−b)2a •a (a+b)(a−b)=a−ba+b =3b−b3b+b=12故选:A.10.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC 解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.11.已知√2x +y −3+|x ﹣3y ﹣5|=0,则y x 的值为( ) A .1B .﹣1C .2D .﹣2解:∵√2x +y −3≥0,|x −3y −5|≥0, √2x +y −3+|x ﹣3y ﹣5|=0, ∴√2x +y −3=0,|x ﹣3y ﹣5|=0, ∴2x +y ﹣3=0,x ﹣3y ﹣5=0,∴两二元一次方程组中所含的未知数及次数相同,∴构建一个关于x 、y 的二元一次方程组为{2x +y −3=0x −3y −5=0,解二元一次方程组的解为{x =2y =−1,∴y x =(﹣1)2=1, 故选:A .12.如图、点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后.仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC解: ∵AB ∥ED ,AC ∥FD , ∴∠B =∠E ,∠ACB =∠DFE ,∴当AB =DE 时,可利用AAS 判定△ABC ≌△DEF ,故A 能判断,故A 不符合题意;当AC =DF 时,可利用AAS 判定△ABC ≌△DEF ,故B 能判断,故B 不符合题意; 当∠A =∠D 时,两三角形没有对应边相等,故C 不能判断,故C 符合题意;当BF =EC 时,可得BC =EF ,利用ASA 可判定△ABC ≌△DEF ,故D 能判断,故D 不符合题意; 故选:C .13.已知x 是实数,则代数式3x 2﹣2x +1的最小值等于( )A .﹣2B .1C .23D .43解:原式=3(x 2−23x +19)+23=3(x −13)2+23≥23(当且仅当x =13时取等号),则原式的最小值等于23, 故选:C .14.已知二次函数y =﹣x 2﹣4x ﹣5,左、右平移该抛物线,顶点恰好落在正比例函数y =﹣x 的图象上,则平移后的抛物线解析式为( ) A .y =﹣x 2﹣4x ﹣1 B .y =﹣x 2﹣4x ﹣2 C .y =﹣x 2+2x ﹣1 D .y =﹣x 2+2x ﹣2解:∵y =﹣x 2﹣4x ﹣5=﹣(x +2)2﹣1, ∴顶点坐标是(﹣2,﹣1).由题知:把这个二次函数的图象左右平移,顶点恰好落在正比例函数y =﹣x 的图象上, 即顶点的纵坐标不变,∵平移时,顶点的纵坐标不变,即为(1,﹣1),∴函数解析式是:y =﹣(x ﹣1)2﹣1=﹣x 2+2x ﹣2,即:y =﹣x 2+2x ﹣2; 故选:D .15.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M解:连结BC ,作AB 和BC 的垂直平分线,它们相交于Q 点. 故选:B .16.如图,在△ABC 中,AB =AC =10,∠BAC =120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长是( )A .2B .4C .5D .52解:∵AB =AC ,AD 是△ABC 的中线,∴AD ⊥BC ,∠BAD =∠CAD =12∠BAC =12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×10=5,∴DF=5,故选:C.二.填空题(共3小题)17.若a与b互为相反数,则|﹣2a﹣2b+2020|=2020.解:∵a与b互为相反数,∴a+b=0,|﹣2a﹣2b+2020|,=|﹣2(a+b)+2020|,=|﹣2×0+2020|,=|2020|,=2020,故答案为:2020.18.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是3号或5号.解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.19.阅读下文,寻找规律,并填空:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1.解:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;故答案为:1﹣x n+1.三.解答题(共7小题)20.利用平方差公式可以进行简便计算:例1:99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999;例2:39×410=39×41×10=(40﹣1)(40+1)×10=(402﹣12)×10=(1600﹣1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)192×212;(2)(2019√3+2019√2)(√3−√2).解:(1)原式=14(20﹣1)(20+1) =14×(202﹣12) =14×(400﹣1) =3994; (2)原式=2019×(√3+√2)(√3−√2) =2019×(3﹣2) =2019.21.如图,四边形ABCD 中,AD ∥BC ,点E 、F 分别在AD 、BC 上,AE =CF ,过点A 、C 分别作EF 的垂线,垂足为G 、H . (1)求证:△AGE ≌△CHF ;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.(1)证明:∵AG ⊥EF ,CH ⊥EF ,∴∠G =∠H =90°,AG ∥CH , ∵AD ∥BC , ∴∠DEF =∠BFE ,∵∠AEG =∠DEF ,∠CFH =∠BFE , ∴∠AEG =∠CFH ,在△AGE 和△CHF 中,{∠G =∠H∠AEG =∠CFHAE =CF ,∴△AGE ≌△CHF (AAS );(2)解:线段GH 与AC 互相平分,理由如下: 连接AH 、CG ,如图所示: 由(1)得:△AGE ≌△CHF , ∴AG =CH , ∵AG ∥CH ,∴四边形AHCG 是平行四边形, ∴线段GH 与AC 互相平分.22.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)∵x甲=7(分),x乙=7(分),x丙=6.3(分),∴x甲=x乙>x丙,S甲2>S乙2∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是p=28=14.23.如图,一艘船由A港沿北偏东65°方向航行90√2km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90√2,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=90√2,∴AE=BE=√22AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=√33BE=30√3km,∴AC=AE+CE=90+30√3,∴A,C两港之间的距离为(90+30√3)km.24.2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中10<x ≤30). (1)写出y 与x 之间的函数关系式及自变量的取值范围.(2)当销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?解:(1)由图象知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得{14k +b =64030k +b =320,解得{k =−20b =920,∴y 与x 之间的函数关系式为y =﹣20x +920; 综上所述,y ={640(10<x ≤14)−20x +920(14<x ≤30);(2)当10<x≤14时W=640×(x﹣10)=640x﹣6400,∵k=640>0,∴W随着x的增大而增大,∴当x=14时,W=4×640=2560元;当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,∵﹣20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元.25.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是AE=BD,位置关系是AE⊥BD.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=12DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH=√132−52=12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.26.如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB 或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B 处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转n360周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转2周;若AB=l,则⊙O自转l c 周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转16周;若∠ABC=60°,则⊙O在点B处自转13周;(2)如图3,∠ABC=90°,AB=BC=12c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转54周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.解:实践应用(1)2;lc .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O 自转了360360=1(周).∴⊙O 共自转了(lc+1)周.(2)∵多边形外角和等于360°∴所做运动和三角形的一样:(lc+1)周.。
2020年河北省石家庄市中考数学模拟试卷 (解析版)
2020年中考数学模拟试卷一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106 3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 5.下列图形中,是中心对称图形的是()A.B.C.D.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.17.计算的结果为()A.B.C.D.8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为16.若关于x、y的方程组的解是,则mn的值为.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.参考答案一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将163000用科学记数法表示为:1.63×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④【分析】利用反比例函数的图象及正比例函数的图象分别判断后即可确定正确的选项.解:当k>0时,反比例函数的图象位于一、三象限,正比例函数的图象位于一三象限,②正确;当k<0时,反比例函数的图象位于二、四象限,正比例函数的图象位于二四象限,④正确;故选:C.【点评】本题考查了反比例函数及正比例函数的图象,属于函数的基础知识,难度不较大.4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念即可求解.解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点评】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.1【分析】直接利用特殊角的三角函数值分别代入求出答案.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.7.计算的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案.【解答】原式==,故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°【分析】先撸垂径定理的推论得到CD⊥EF,再根据垂径定理得到=,然后利用圆周角定理确定∠EOD的度数.解:∵直径CD经过弦EF的中点G,∴CD⊥EF,∴=,∴∠EOD=2∠DCF=2×20°=40°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为15x5.【分析】直接利用单项式乘以单项式运算法则求出即可.解:3x2•5x3=15x5.故答案是:15x5.【点评】此题主要考查了整式的乘法运算,熟练掌握相关运算法则是解题关键.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=7.【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.解:∵点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,∴a=5,3b=6,解得:b=2,故a+b=7.故答案为:7.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为m【分析】根据余弦的定义计算,得到答案.解:在Rt△ABC中,cos A=,∴AB==,故答案为:m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.若关于x、y的方程组的解是,则mn的值为﹣2.【分析】将代入方程组即可求出m与n的值.解:将代入,∴,∴,∴mn=﹣2,故答案为:﹣2.【点评】本题考查二元一次方程组,解题的关键是正确理解二元一次方程组的解的定义,本题属于基础题型.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是①②③.【分析】由抛物线对称轴的位置确定ab的符号,由抛物线与y轴的交点在x轴上方得c >0,则可对A进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),则可对B选项进行判断;由对称轴公式可结C进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解:①∵抛物线与y轴的交点在x轴上方,∴c>0,∵对称轴为直线x=1,∴ab<0,∴abc<0,所以此选项正确;②∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;所以此选项正确;③∵对称轴为直线x=1,∴﹣=1,b=﹣2a,∴2a+b=0,所以此选项正确;④∵当x=2时,y>0,∴4a+2b+c>0,所以此选项错误;其中正确结论的序号是①②③;故答案为:①②③.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c),熟练掌握二次函数的性质是关键.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.【分析】先求出不等式组中的每一个不等式的解集,然后取其交集即为不等式组的解集;最后根据在数轴上表示不等式的解集的方法将其表示在数轴上.解:(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.故答案为:x≤2;x>﹣1;﹣1<x≤2.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)【分析】作CM⊥BD,在Rt△CDM中DM=CM tan∠DCM,在Rt△BCM中BM=CM tan ∠BCM,根据DM+BM=BD可得CM tan18°+CM tan20°=21,解之即可得.解:过点C作CM⊥BD于点M,在Rt△CDM中,∵tan∠DCM=,∴DM=CM tan∠DCM=CM tan18°;在Rt△BCM中,∵tan∠BCM=,∴BM=CM tan∠BCM=CM tan20°,∵DM+BM=BD,∴CM tan18°+CM tan20°=21,解得:CM=≈31(m),则AB=31m,答:AB的长约为31m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.【分析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.(2)连接OD,再证明OD⊥DE即可.【解答】证明:(1)如图1,连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)如图2,连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DE是⊙O的切线.【点评】本题主要考查了切线的判定,等腰三角形的性质等知识点.要注意的是要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣50)[120+10(80﹣x)]=﹣10x2+1420x﹣46000;(2)∵y=﹣10x2+1420x﹣46000=﹣10(x﹣71)2+96410,∴当销售价定为71元时,所得月利润最大,最大月利润为96410元.【点评】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).【分析】(Ⅰ)把A、B两点坐标代入抛物线y=﹣x2+bx+c得关于b、c方程组,则解方程组即可得到抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(Ⅱ)先利用待定系数法求出直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),则MN=﹣t2+t+2﹣(﹣t+2),然后利用二次函数的性质解决问题;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,利用平行四边形的性质进行讨论:当MN为平行四边形的边时,利用MN∥AD,MN=AD=4和确定定义D点坐标,当MN为平行四边形的对角线时,利用AN∥MN,AN=MD和点平移的坐标规律写出对应D点坐标.解:(Ⅰ)把A(0,2)、B(4,0)代入抛物线y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的顶点坐标为(,);(Ⅱ)设直线AB的解析式为y=mx+n,把A(0,2)、B(4,0)代入得,解得,∴直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),∴MN=﹣t2+t+2﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,MN有最大值,最大值为4;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,当MN为平行四边形的边时,MN∥AD,MN=AD=4,则D1(0,6),D2(0,﹣2),当MN为平行四边形的对角线时,AN∥MN,AN=MD,由于点A向右平移2个单位,再向上平移3个单位得到N点,则点M向右平移2个单位,再向上平移3个单位得到D 点,则D3的坐标为(4,4),综上所述,D点坐标为(0,6)或(0,﹣2)或(4,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求函数解析式;会利用点平移的坐标规律求平行四边形第四个顶点的坐标;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.【分析】(1)过点B1作B1E⊥y轴于点E,根据△AOB绕点O逆时针旋转30°得到△A1OB1,即可求出点B1坐标;(2)根据题意可得OA1=OC=2,由旋转可得∠AOA1=30°,进而得∠A1OC=120°,所以可得∠A1CO=30°.从而可求出OD的长,即可得点D的坐标.解:(1)如图,过点B1作B1E⊥y轴于点E,∵△AOB绕点O逆时针旋转30°得到△A1OB1,∴∠BOB1=30°,∴∠B1OE=60°,∵B(﹣3,0),∴OB=OB1=3,∴OE=,B1E=,∴点B1的坐标为:(﹣,﹣);(2)∵点C(2,0),∴OC=2,∵A(0,2),∴OA=OA1=2,∴OA1=OC=2,∵∠AOA1=30°,∠DOC=90°,∴∠A1OC=120°,∴∠A1CO=30°.∴OD=OC•tan30°=2×=.∴点D的坐标为:(0,).【点评】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.。
2020年河北省数学中考模拟试题(1)有答案
2020年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2009)1(-的相反数是( ) A .1 B .1- C .2009 D .2009-2.函数y=+中自变量x 的取值范围是( )A.x ≤2B.x=3C.x 〈2且x ≠3D.x ≤2且x ≠33. 某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数 B .众数 C .平均数 D .极差4.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④. 其中单独能够判定 ABC ACD △∽△的个数为( )A .1B .2C .3D .45. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x 满足的方程是( )A. 50+50(1+x 2)=196B. 50+50(1+x)+50(1+x)²=196C. 50(1+x 2)=196D.50+50(1+x)+50(1+2x)=1966.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小7. 2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km 之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )A.0.38×106B.0.38×105 C .3.8×104 D .3.8×1058.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:69. 已知二次函数y=ax 2+bx+c 的图像如图所示,下列五个结论中:1 2 AC AD ·AB =x-3 - 2 x x yO AB6题 y 第8题图错误的有()A.1个B.2个C.3个D.4个10. 如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).A .(2010,2)B .(2012,-2 )C .(0,2)D .(2010,-2 ) 11.正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,则AD 与P 的位置关系是( B ) A .相离 B .相切 C .相交 D .不确定 12.已知ABC △的面积为36,将ABC △沿BC 平移到A B C '''△,使B '和C 重合,连结AC '交 A C '于D ,则C DC '△的面积为( D ) A .6 B .9 C .12 D .1813.给出三个命题:①点()P b a ,在抛物线21y x =+上;②点(13)A ,能在抛物线21y ax bx =++上;③点(21)B -,能在抛物线21y ax bx =-+上. 若①为真命题,则A .②③都是真命题B .②③都是假命题C .②是真命题,③是假命题D .②是假命题,③是真命题14.已知⊙O 1的半径是2cm ,⊙O 2的半径是3cm ,若这两圆相交,则圆心距d (cm )的取值范围是 ( ) A . d <1 B . 1≤d ≤5 C . d >5 D . 1<d <5 15.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),将△ABC 绕点A 逆时针旋转90°,则在△ABC 扫过的区域中(不含边界上的点),到点O 的距离为无理数的格点的个数是( )A. 3B. 4C. 5D. 616. 已知两直线11-+=k kx y 、k k x k y ()1(2++=为正整数),设这两条直线与x 轴所围成的三角形的面积为k S ,则1232013S S S S ++++的值是( )A .20122013 B .40242013 C .20142013 D .402820132020年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)总 分 核分人A BC (B ')D A ' C '(第9题)2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.当x ≤0时,化简1x--的结果是 .18. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .19.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ; 20.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,为 cm 2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
2020年河北省中考数学模拟试卷(四)(附解析)
2020年河北省中考数学模拟试卷(四)一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元3.如图,带有弧线的角是用一副三角板拼成的,这个角的度数为()A.60°B.15°C.45°D.105°4.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种5.正十边形的外角和的度数为()A.1440°B.720°C.360°D.180°6.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的所有可能值有()A.8种B.7种C.6种D.5种7.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9B.(﹣3)5÷(﹣3)6=1 3C.(﹣a2)3=a6D.(m2+1)0=18.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元9.已知a,b为两个连续整数,且a<√13<b,则a+b的值为()A.9B.8C.7D.610.反比例函数y=6x(x<0)图象在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,是两个圆形转盘,同时旋转两个转盘,两个转盘的指针都落在“1“区域的概率是()A .12B .14C .16D .18 12.如图在一块长为12m ,宽为6m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m )则空白部分表示的草地面积是( )A .70B .60C .48D .1813.用尺规在一个平行四边形内作菱形ABCD ,下列作法中不能得到菱形的是( )A .(A )B .(B )C .(C )D .(D )14.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( )A .14B .15C .16D .1715.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 2、l 3上,则tan α的值是( )A .13B .617C .√55D .√101016.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为4,则a 的值为( )A .﹣2B .4C .4或3D .﹣2或3二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题每题4分,把答案写在题中横线上)17.若a +7的算术平方根是3,2b +2的立方根是﹣2,则b a = .18.若a ,b 互为相反数,则a 2b +ab 2= .19.如图,⊙O 的直径为16,AB 、CD 是互相垂直的两条直径,点P 是弧AD 上任意一点,经过P 作PM ⊥AB 于M ,PN ⊥CD 于N ,点Q 是MN 的中点,当点P 沿着弧AD 从点A 移动到终点D 时,点Q 走过的路径长为 .三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知关于x 、y 的多项式3x 2+my ﹣8与多项式﹣nx 2+2y +7的差与x 、y 的值无关,求4m +5n 的值.21.(9分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是天,中位数是天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)22.(9分)将正整数按图1方式排列,再按如图方式任意框选的3个数字,仔细观察,回答以下问题:(1)填空:在第6,7,8三行按图1方式框选3个数,如果第6行框选的数是18,则第7行,第8行的框选的数分别是,;(2)填空:在第m,m+1,m+2三行按图1方式框选3个数,如果第m行框选的数是k,则第m+1行,第m+2行的框选的数分别是,(用含k,m的代数式表示);(3)如图2,在第n,n+1,n+2三行按图1方式框选3个数,如果第n行,第n+1行,第n+2行的框选的数分别是a,b,c,试猜想a,b,c之间的数量关系,并说明理由.23.(9分)如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.(1)求证:AB=BF.(2)当F为BC的中点,且AC=3时,求⊙O的直径长.24.(10分)通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为y =ax(a>0),并且结合y=ax给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y=ax组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)25.(10分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=√5,直接写出A、M两点之间的距离.26.(12分)如图,直线y=−12x−3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择题(共16小题)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2解:(﹣3)×5=﹣15;故选:A.2.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元解:39500000000=3.95×1010故选:B.3.如图,带有弧线的角是用一副三角板拼成的,这个角的度数为()A.60°B.15°C.45°D.105°解:这个角的度数=60°﹣45°=15°,故选:B.4.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种解:如图所示:所标数字之处都可以构成轴对称图形.故选:C.5.正十边形的外角和的度数为()A.1440°B.720°C.360°D.180°解:正十边形的外角和的度数为360°.故选:C.6.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的所有可能值有()A.8种B.7种C.6种D.5种解:由题意,解:由主视图和左视图可确定所需正方体个数最少和最多时俯视图为:则组成这个几何体的小正方体最少有9个最多有13个,∴该几何体所用小立方块的个数为n,则n的所有可能值有5种,故选:D.7.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9B.(﹣3)5÷(﹣3)6=1 3C.(﹣a2)3=a6D.(m2+1)0=1解:A、﹣3﹣2=−19,故原题计算错误;B、(﹣3)5÷(﹣3)6=−13,故原题计算错误;C、(﹣a2)3=﹣a6,故原题计算错误;D、(m2+1)0=1,故原题计算正确;故选:D.8.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元解:设该店第一次购进计算器的单价为x元,则第二次购进计算器的单价为(x﹣1)元,根据题意得:3×880x=2580x−1,去分母得:2640(x﹣1)=2580x,解得:x=44,经检验x=44是分式方程的解,且符合题意,则此店第一次购进计算器的单价为44元,故选:C.9.已知a,b为两个连续整数,且a<√13<b,则a+b的值为()A.9B.8C.7D.6解:∵9<13<16,∴3<√13<4,即a=3,b=4,则a+b=7,故选:C.10.反比例函数y=6x(x<0)图象在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵x<0,xy=6,∴y<0,∴反比例函数y=6x(x<0)图象在第三象限.故选:C.11.如图,是两个圆形转盘,同时旋转两个转盘,两个转盘的指针都落在“1“区域的概率是()A .12B .14C .16D .18解:两个转盘指针都落在1的概率分别为12和14,所以两个转盘的指针都落在“1“区域的概率是12×14=18,故选:D .12.如图在一块长为12m ,宽为6m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m )则空白部分表示的草地面积是( )A .70B .60C .48D .18解:草地面积=矩形面积﹣小路面积 =12×6﹣2×6 =60(m 2). 故选:B .13.用尺规在一个平行四边形内作菱形ABCD ,下列作法中不能得到菱形的是( )A .(A )B .(B )C .(C )D .(D )解:(A )根据线段的垂直平分线的性质可知AB =AD , 一组邻边相等的平行四边形是菱形;符合题意; (B )根据四条边相等的四边形是菱形,符合题意;(C )根据两组对角分别相等的四边形是平行四边形,不符合题意; (D )根据一组邻边相等的平行四边形是菱形,符合题意. 故选:C .14.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( ) A .14B .15C .16D .17解:设这批游客x 人.由题意:20×50×0.6≤(50﹣10)x , ∴x ≥15, ∴x 最小=15, 故选:B .15.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 2、l 3上,则tan α的值是( )A .13B .617C .√55D .√1010解:如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,设l 1,l 2,l 3间的距离为1, ∵∠CAD +∠ACD =90°, ∠BCE +∠ACD =90°, ∴∠CAD =∠BCE ,在等腰直角△ABC 中,AC =BC , 在△ACD 和△CBE 中, {∠CAD =∠BCE∠ADC =∠BEC =90°AC =BC, ∴△ACD ≌△CBE (AAS ), ∴CD =BE =1, ∴DE =3,∴tan ∠α=13. 故选:A .16.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为4,则a 的值为( ) A .﹣2B .4C .4或3D .﹣2或3解:当y =4时,有x 2﹣2x +1=4, 解得:x 1=﹣1,x 2=3.∵当a ≤x ≤a +1时,函数有最小值4,∴a=3或a+1=﹣1,∴a=3或a=﹣2,故选:D.二.填空题(共3小题)17.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a=25.解:由题意知a+7=9,2b+2=﹣8,解得:a=2,b=﹣5,∴b a=(﹣5)2=25,故答案为:25.18.若a,b互为相反数,则a2b+ab2=0.解:根据题意,得:a+b=0,∴原式=ab(a+b)=ab×0=0,故答案为:0.19.如图,⊙O的直径为16,AB、CD是互相垂直的两条直径,点P是弧AD上任意一点,经过P作PM⊥AB于M,PN⊥CD于N,点Q是MN的中点,当点P沿着弧AD从点A 移动到终点D时,点Q走过的路径长为2π.解:如图所示:∵PM⊥AB于M,PN⊥CD于N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,则OQ=4,点Q走过的路径长=90π×4180=2π.故答案为:2π.三.解答题(共7小题)20.已知关于x、y的多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求4m+5n 的值.解:(3x2+my﹣8)﹣(﹣nx2+2y+7)=3x2+my﹣8+nx2﹣2y﹣7=(3+n)x2+(m﹣2)y﹣15,由题意得:m=2,n=﹣3,则4m+5n=4×2+5×(﹣3)=﹣7.21.某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为20%;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是4天,中位数是4天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)解:(1)a%=100%﹣(15%+20%+30%+10%+5%)=20%,故答案为:20%;(2)∵被调查的总人数为30÷15%=200人,∴3天的人数为200×20%=40人、5天的人数为200×20%=40人、7天的人数为200×5%=10人,补全图形如下:(3)众数是4天、中位数为4+42=4天,故答案为:4、4;(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).22.将正整数按图1方式排列,再按如图方式任意框选的3个数字,仔细观察,回答以下问题:(1)填空:在第6,7,8三行按图1方式框选3个数,如果第6行框选的数是18,则第7行,第8行的框选的数分别是25,33;(2)填空:在第m,m+1,m+2三行按图1方式框选3个数,如果第m行框选的数是k,则第m+1行,第m+2行的框选的数分别是k+m+1,k+m+2(用含k,m的代数式表示);(3)如图2,在第n,n+1,n+2三行按图1方式框选3个数,如果第n行,第n+1行,第n+2行的框选的数分别是a,b,c,试猜想a,b,c之间的数量关系,并说明理由.解:(1)通过观察可得,第一个数+行号+1就是第二个数,即第7行的数就是18+7=25,第8行的数是25+8=33.故答案是:25,33(2)同(1),∵第m行选的数是k,∴第m+1行的数就是k+m+1,第m+2行的数就是k+m+1+(m+2)=k+2m+3.故答案是:k+m+1,k+2m+3.(3)a+c﹣2b=1(a+c=2b+1等等)理由:∵b=a+n+1c=b+n+2=a+2n+3由上两式可得a+c﹣2b=1.23.如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.(1)求证:AB=BF.(2)当F为BC的中点,且AC=3时,求⊙O的直径长.解:(1)连接AF,∵AE是⊙O的直径,∴AF⊥EG,∵四边形BDGE是平行四边形,∴BD∥EG,∴BD⊥AF,∵∠BAC=90°,∴BD是⊙O的直径,∴BD垂直平分AF,∴AB=BF;(2)∵当F为BC的中点,∴BF=12BC,∵AB=BF,∴AB=12BC,∵∠BAC=90°,∴∠C=30°,∴∠ABC=60°,AB=√33AC=√3,∵AB=BF,∴∠ABD=30°,∴BD=2,∴⊙O的直径长为2.24.通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为y=ax(a>0),并且结合y=ax给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y=ax组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)解:(1)下面是两种移动电话计费方式表,设每月的通话时间x分钟,电话计费y元,方式一:月租费:50元/月本地通话费:0.2元/分则y=0.2x+50,方式二:月租费:0本地通话费:0.6元/分则y=0.6x(2)根据(1)的收费情况,你认为如何选择会更加合算些?当0.2x+50=0.6x时,x=125分钟,当0.2x+50>0.6x时,x<125分钟,当0.2x+50<0.6x时,x>125分钟,故每月的通话时间等于125分钟时,两种收费都行;每月的通话时间小于125分钟时,第二种收费合算;每月的通话时间大于125分钟时,第一种收费合算.25.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=√5,直接写出A、M两点之间的距离.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵{BD=AD∠EDB=∠CDA DE=DC,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵{BF=CF∠BFE=∠CFM EF=MF,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=√2AC=√10.26.如图,直线y=−12x−3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.解:(1)在y=−12x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:{36a −6b −3=04a +2b −3=0, 解得:{a =14b =1, ∴抛物线的解析式为:y =14x 2+x ﹣3;(2)设点D 的坐标为:(m ,14m 2+m ﹣3),设DE 交AC 于F ,则点F 的坐标为:(m ,−12m ﹣3),∴DF =−12m ﹣3﹣(14m 2+m ﹣3)=−14m 2−32m , ∴S △ADC =S △ADF +S △DFC=12DF •AE +12•DF •OE=12DF •OA =12×(−14m 2−32m )×6=−34m 2−92m=−34(m +3)2+274,∵a =−34<0,∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=−154, ∴存在点D (﹣3,−154),使得△ADC 的面积最大,最大值为274;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=32x+9,由{y=32x+9y=14x2+x−3,解得{x=−6y=0或{x=8y=21,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
2020年河北省石家庄市中考数学模拟试题及参考答案
2020年河北省石家庄市中考数学模拟试题及参考答案(考试时间120分钟,总分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种零件的直径尺寸在图纸上是(单位:mm),它表示这种零件的标准尺寸是20mm,则加工要求尺寸最大不超过()A.0.03mm B.0.02nn C.20.03mm D.19.98mm2.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>84.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为()A.20°B.70°C.110°D.160°5.在下列图形中是轴对称图形的是()A.B.C.D.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.任意一个五边形的外角和等于540°C.某个数的相反数等于它本身D.长分别为3,4,6的三条线段能围成一个三角形7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9 B.12 C.24 D.3210.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC12.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x个月,则根据题意可列方程中错误的是()A.+=1 B.++=1 C.+=1 D.+2(+)=1 13.如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.2414.下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A.B.C.D.15.有编号为Ⅰ,Ⅱ,Ⅲ的3个信封,现将编号为Ⅰ,Ⅱ的两封信,随机地放入其中两个信封里,则信封与信编号都相同的概率为()A. B.C.D.16.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF 上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤120二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17如图,边长为1的正方形网格中,AB3.(填“>”,“=”或“<”)18.若,则x2+2x+1=.19.已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x 轴于点C,以AC为对角线作正方形ABCD。
2020年河北省中考数学模拟试卷(1)
根据上面的规定,请解决下面问题:
( 1)计算: log 31=
,log1025+log 104=
(请直接写出结果) ;
( 2)已知 x=log 32,请你用含 x 的代数式来表示 y,其中 y= log 372(请写出必要的过程) .
22.( 8 分)“推进全科阅读,培育时代新人” .某学校为了更好地开展学生读书活动,随机
被抽到学生的读书时间不少于 9 小时的概率是多少?
23.( 10 分)如图,△ ABC 是 ⊙O 的内接三角形, AC= BC, D 为 ????上? 一点,延长 DA 至点 E,使 CE= CD. ( 1)求证: AE= BD; ( 2)若 AC⊥ BC,求证: AD+BD= √2CD .
1 24.( 10 分)如图, 已知 A(﹣ 4, ),B(﹣ 1,m)是一次函数
3.( 3 分)直角三角形两直角边长为 5 和 12,则此直角三角形斜边上的中线的长是(
)
A .5
B.6
??2
4.( 3 分)计算
- a+1 的正确结果是(
??-1
2??-1 A.
??-1
2??-1 B .- ??-1
5.( 3 分)如图所示几何体的左视图正确的是(
C. 6.5
)
1 C.
??-1 )
( 1)[ √2] =
;
( 2)若 [3 + √??]= 6 ,则 x 的取值范围是
.
三.解答题(共 7 小题,满分 66 分)
20.( 8 分)计算:
(
1)(3a﹣
b)
2
+(
a﹣
2b)(
a+2b)
( 2)6x2y(﹣ 2xy+y3)÷ xy2
2020年河北省中考数学模拟试题(含答案)
2020年河北省中考数学模拟试卷一.选择题(1-10题,每题3分,11-15题,每题2分,共40分)1.下列各数中,比﹣2.8小的数是()A.0 B.1 C.﹣2.7 D.﹣32.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG =∠BDC.A.1个B.2个C.3个D.4个3.下列计算正确的是()A.3a•4b=7ab B.(ab3)3=ab6C.(x+1)(x﹣1)=x2﹣1 D.x12÷x6=x24.如图,正方形ABCD的边长为定值,E是边CD上的动点(不与点C,D重合),AE交对角线BD于点F,FG⊥AE交BC于点G,GH⊥BD于点H.现给出下列命题:①AF=FG;②FH 的长度为定值.则()A.①是真命题,②是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①是假命题,②是假命题5.下列变形正确的是()A.=B.C.D.6.将图中的几何体沿竖直方向切掉一半后得到的新几何体与原几何体相比,不变的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>08.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差9.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)10.如果关于x的方程﹣=0无解,则m的值是()A.2 B.0 C.1 D.﹣211.下列尺规作图分别表示:①作一个角的平分线,②作一个角等于已知角.③作一条线段的垂直平分线.其中作法正确的是()A.①②B.①③C.②③D.①②③12.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.3013.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A.6m B.5.6m C.5.4m D.4.4m14.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C..0 D.615.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二.填空题(满分12分,每小题3分)16.|3﹣|﹣=.17.若正n边形的内角和与其中一个外角的和为1125°,则n=;18.有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,其中某相邻三个数的和是﹣832,那么这三个数中最大的数是.19.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB的长为.三.解答题(共7小题,满分68分)20.(8分)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,以此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1、a2、a3,…,a n,…,一般的,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,期中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题: (1)等差数列5,10,15,…的公差d 为 ,第5项是 .(2)如果一个数列a 1,a 2,a 3,…,a n ,…,是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,…,a n ﹣a n ﹣1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2d a 4=a 3+d =(a 1+2d )+d =a 1+3d……由此,请你填空完成等差数列的通项公式:a n =a 1+( )d (3)求﹣4039是等差数列﹣5,﹣7,﹣9,…的第几项?并说明理由.21.(9分)某校开展阳光体育活动,每位同学从篮球、足球、乒乓球和羽毛球四项体育运动项目中选择自己最喜欢的一项训练.学校体育组对八年级(1)班、(2)班同学参加体育活动的情况进行了调查,结果如图所示:(1)求八年级(2)班参加体育运动的人数,并把扇形统计图和折线统计图补充完整. (2)今年重庆5月开展中学生“阳光体育”技能大赛.学校打算从八年级(1)、(2)选派两个优秀体育运动项目去参赛.产生的办法是这样的:先组织八年级(1)班和(2)班的相同项目的兴趣小组对决产生一个优胜队,然后学校从产生出的四个优胜队中随机抽取两个队代表学校参赛.请你用列表法或画树形图求选派两队恰好是乒乓球队和篮球队的概率.22.(9分)已知甲种物品毎个重4kg ,乙种物品毎个重7kg ,现有甲种物品x 个,乙种物品y 个,共重76kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y = .(3)若乙种物品有8个,则甲种物品有 个.23.(10分)如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,∠EAD =45°,将△ADC 绕点A 顺时针旋转90°,得到△AFB ,连接EF .(1)求证:EF =ED ; (2)若AB =2,CD =1,求FE 的长.24.(10分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙. (2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.25.(10分)已知:△ABC 内接于⊙O ,连接CO 并延长交AB 于点E ,交⊙O 于点D ,满足∠BEC =3∠ACD .(1)如图1,求证:AB =AC ;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C 作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.26.(12分)如图,二次函数y=﹣x2+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是.(2)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.(3)设点M在二次函数图象上,以M为圆心,半径为的圆与直线AC相切,求M点的坐标.参考答案一.选择题1.解:∵0>﹣2.8,1>﹣2.8,﹣2.7>﹣2.8,﹣3<﹣2.8,∴所给的各数中,比﹣2.8小的数是﹣3.故选:D.2.解:∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,(2)正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,(1)正确;∴∠BFG=∠BDC,(5)正确;正确的个数有3个,故选:C.3.解:A.3a•4b=12ab,此选项计算错误;B.(ab3)3=a3b9,此选项计算错误;C.(x+1)(x﹣1)=x2﹣1,此选项计算正确;D.x12÷x6=x6,此选项计算错误;故选:C.4.(1)证明:连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF∴CF=FG,∴AF=FG;(2)连接AC交BD于O.∵四边形ABCD是正方形,HG⊥BD,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH,∵FA=FG,∴△AOF≌△FHG,∴FH=OA=定值,故①②正确,故选:A.5.解:(A)≠,故A错误;(B)=,故B错误;(C)﹣1=,故C错误;故选:D.6.解:将图中的几何体沿竖直方向切掉一半后得到的新几何体的左视图为梯形,原几何体的左视图为梯形,故左视图不变,故选:B.7.解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.8.解:∵6吨和7吨的频数之和为4﹣x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,故选:B.9.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(﹣5,4).故选:C.10.解:去分母得:﹣m﹣1+x=0,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:﹣m﹣1+3=0,解得:m=2,故选:A.11.解:①作一个角的平分线的作法正确;②作一个角等于已知角的方法正确;③作一条线段的垂直平分线,缺少另一个交点,故作法错误;故选:A.12.解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,故选:B.13.解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△AB D中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴=,即=,解得BD=6m.故选:A.14.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.15.解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.二.填空题16.解:|3﹣|﹣=3﹣﹣(﹣3)=6﹣17.解:设这个外角度数为x,根据题意,得(n﹣2)×180°+x=1125°,解得:x=1000°﹣180°n+360°=1485°﹣180°n,由于0<x<180°,即0<1485°﹣180°n<180°,解得7<n<8,所以n=8.故这是八边形.故答案为:8.18.解:∵有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,∴这列数中每个数都是前面相邻数的﹣4倍,设这三个相邻的数中的中间数为x,则第一个数为﹣,第三个数为﹣4x,﹣+x+(﹣4x)=﹣832,解得:x=256,∴﹣4x=﹣4×256=﹣1024,﹣=﹣64,∴这三个数﹣64,256,﹣1024,∴这三个数中最大的数是256,故答案为:256.19.解:如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°.∵BC 是直径,BC =4, ∴∠BAC =90°. ∴AB =BC •cos30°=4×=2.∴PB =2;故答案为:2.三.解答题20.解:(1)由题意可得,d =15﹣10=5,第5项是:15+5+5=25, 故答案为:5,25;(2)如果一个数列a 1,a 2,a 3,…,a n ,…,是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,…,a n ﹣a n ﹣1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2d a 4=a 3+d =(a 1+2d )+d =a 1+3d……由此,请你填空完成等差数列的通项公式:a n =a 1+(n ﹣1)d , 故答案为:n ﹣1;(3)﹣4039是等差数列﹣5,﹣7,﹣9,…的第2018项, 理由:等差数列﹣5,﹣7,﹣9,…, ∴d =﹣7﹣(﹣5)=﹣7+5=﹣2, ∴a n =﹣5+(n ﹣1)×(﹣2)=﹣2n ﹣3, 令﹣2n ﹣3=﹣4039, 解得,n =2018,即﹣4039是等差数列﹣5,﹣7,﹣9,…的第2018项. 21.解:(1)八年级(2)班人数为10+18+13+19=50(人), 两班的人数和为(15+10)÷25%=100(人) 八年级(1)班人数为50人,八年级(1)班喜欢足球的人数=100×20%﹣13=7(人),八年级(1)班喜欢乒乓球的人数=50﹣15﹣20﹣7=8(人),所以(1)班、(2)班喜欢乒乓球的人数所占的百分比=×100%=17%;(1)班、(2)班喜欢羽毛球的人数所占的百分比=×100%=38%,扇形统计图和折线统计图补充如下:(2)画树状图如下:由树形图知,共有12种等可能结果,其中抽到乒乓球队和篮球队有2种结果,=.∴P(抽到乒乓球队和篮球队)22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.证明:(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=24.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.25.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.26.解:(1)∵二次函数y=﹣x2+bx+2的图象经过点A(﹣4,0)∴y =﹣×16﹣4b +2=0 解得:b =﹣ ∴二次函数解析式为y =﹣x 2﹣x +2 当﹣x 2﹣x +2=0时,解得:x 1=﹣4,x 2= ∴B (,0)故答案为:﹣;(,0).(2)∠CBA =2∠CAB ,理由如下:如图1,作点B 关于y 轴的对称点B ',连接CB ' ∴CB =CB ' ∴∠CBA =∠CB 'O∵x =0时,y =﹣x 2﹣x +2=2 ∴C (0,2),OC =2 ∵A (﹣4,0),B (,0) ∴B '(﹣,0)∴AB '=﹣﹣(﹣4)=,CB '=∴AB '=CB ' ∴∠CAB =∠ACB '∵∠CB 'O =∠CAB +∠ACB '=2∠CAB ∴∠CBA =2∠CAB(3)连接MA 、MC ,过点M 作ME ∥y 轴交AC 于点E ,设圆M 与直线AC 相切于点D ∴MD ⊥AC ,MD =∵A (﹣4,0),C (0,2) ∴直线AC 解析式为y =x +2,AC =∴S △ACM =AC •MD =×2×=8设点M(m,﹣m2﹣m+2),则E(m, m+2)①如图2,当点M在直线AC上方时,﹣4<m<0∴ME=﹣m2﹣m+2﹣(m+2)=﹣m2﹣m∴S△ACM=OA•ME=2(﹣m2﹣m)=8方程无解②如图3,图4,当点M在直线AC下方时,m<﹣4或m>0 ∴ME=m+2﹣(﹣m2﹣m+2)=m2+m∴S△ACM=OA•ME=2(m2+m)=8解得:m1=﹣6,m2=2∴﹣×36﹣×(﹣6)+2=﹣5,﹣×4﹣×2+2=﹣1 ∴点M坐标为(﹣6,﹣5)和(2,﹣1)。
2020年河北省中考基础摸底检测试卷数学试题(解析版)
河北省2020年中考基础摸底检测试卷数学试卷一.选择题(共16小题)1.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. 、2B. 0C. 1D. 4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3、又∵BC=2,点C在点B的左边,∴点C对应的数是1、故选C、【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A. 0.7×10﹣3B. 7×10﹣3C. 7×10﹣4D. 7×10﹣5【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】A【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=b﹣aD. 3a3b2÷a2b2=3a【答案】A【解析】【详解】解:A、a2•a5=a7,不合题意,故A正确;B、a2﹣2ab+b2=(a﹣b)2,符合题意,故B错误;C、﹣(a﹣b)=b﹣a,符合题意,故C错误;D、3a3b2÷a2b2=3a,符合题意,故D错误;故选A.5.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A. 45°B. 55°C. 135°D. 145°【答案】C【解析】【详解】解:由生活知识可知这个角大于90度,排除A、B,又OB边在130与140之间,所以度数应为135°.故选C.【点睛】本题考查用量角器度量角.6.计算22()()4x y x yxy+--的结果为()A. 1B. 12C.14D. 0【答案】A【解析】【分析】把分子根据完全平方公式化简后与分母约分即可.【详解】原式=2222224144x xy y x xy y xyxy xy++-++==.故选A.【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了完全平方公式.7.边长为5的菱形ABCD按如图所示放置在数轴上,其中A点表示数﹣2,C点表示数6,则BD=()A. 4B. 6C. 8D. 10【答案】B【解析】分析】 易求AC 的长为8,根据菱形的性质和勾股定理即可求出BD 的长,问题得解.【详解】解:如图,连接BD 交AC 于点E ,∵四边形ABCD 是菱形11,,22AE AC DE BD BD AC ∴==⊥ ∵A 点表示数﹣2,C 点表示数6,∴AC =8,4AE ∴=∵AD =5,在Rt ADE V 中,由勾股定理得DE =3,26BD DE ∴==故选:B .【点睛】本题主要考查了菱形的性质,同时涉及到了勾股定理,灵活利用菱形的性质是求线段长度的关键. 8.下列说法正确的是( )A. “367人中有2人同月同日生”为必然事件B. 检测某批次灯泡的使用寿命,适宜用全面调查C. 可能性是1%的事件在一次试验中一定不会发生【D. 数据3,5,4,1,﹣2的中位数是4【答案】A【解析】【分析】直接利用概率的意义以及中位数的定义、随机事件,分别分析得出答案.【详解】解:A、“367人中有2人同月同日生”为必然事件,正确;B、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;C、可能性是1%事件在一次试验中也有可能发生,故此选项错误;D、数据3,5,4,1,﹣2的中位数是3,故此选项错误;故选:A.【点睛】本题考查了对命题的判断,熟练掌握概率、中位数及随机事件等知识点是解题的关键.9.如图,在、ABC与、ADE中,、BAC=、D,要使、ABC与、ADE相似,还需满足下列条件中的()A. AC ABAD AE= B.AC BCAD DE= C.AC ABAD DE= D.AC BCAD AE=【答案】C 【解析】试题解析:∵∠BAC=∠D、AC AB AD DE=、∴△ABC∽△ADE、故选C、10.一次函数y=kx、1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. 、、5、3、B. 、1、、3、C. 、2、2、D. 、5、、1、【答案】C【解析】的【分析】根据函数图象的性质判断系数k、0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx、1的图象的y的值随x值的增大而增大,∴k、0、A、把点(﹣5、3)代入y=kx、1得到:k=、45、0,不符合题意;B、把点(1、、3)代入y=kx、1得到:k=、2、0,不符合题意;C、把点(2、2)代入y=kx、1得到:k=32、0,符合题意;D、把点(5、、1)代入y=kx、1得到:k=0,不符合题意,故选C、【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k、0是解题的关键.11.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为A. 1801801(150%)x x-=+B.1801801(150%)x x-=+C. 1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为x km/h,则根据题意可列方程为:180 x ﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.以点D为圆心,适当长为半径画弧,交DA于点G,交DC于点H.再分别以点G、H为圆心,大于12GH的长为半径画弧,两弧在∠ADC内部交于点Q,连接DQ并延长与AM交于点F,则△ADF的形状是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】D【解析】【分析】根据画图过程可得:DF平分∠ADC,∠ADF=∠CDF,根据AB=AC,得∠B=∠ACB,由AM是△ABC外角∠CAE的平分线,证得∠EAF=∠B,得AF∥BC,进而证明△ADF的形状.【详解】解:根据画图过程可知:DF平分∠ADC,∴∠ADF=∠CDF,∵AB=AC,∴∠B=∠ACB,∵AM是△ABC外角∠CAE的平分线,∴∠EAM=∠CAM,∵∠EAC=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,∵AD是高,∴∠ADB=90°,∴∠F AD=∠ADB=90°,∴△ADF的形状是等腰直角三角形.故选:D.【点睛】本题综合考查了角平分线的作图及性质、平行线的判定与性质、等腰三角形的性质,灵活的利用这些性质进行等角间的相互转化是解题的关键.13.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:、ab<0,、b2﹣4ac>0,、a﹣b+c<0,、c=1,、当x>﹣1时,y>0.其中正确结论的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】根据函数图象和二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,图像开口朝下,对称轴在y轴右侧,所以a<0,b>0,则ab<0,故①正确;图象与x轴两个交点,则b2﹣4ac>0,故②正确;图象过点(﹣1,0),则a﹣b+c=0,故③错误;图象过点(0,1),则c=1,故④正确;由图象可知,当x>﹣1时,一部分函数值大于0,有一个函数值等于0,还有一分部小于0,故⑤错误;综上可得,正确的结论是①②④,有3个;故选:B.【点睛】本题考查了二次函数的图像与性质,灵活的将函数的图像与性质相结合是解题的关键.14.如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为( )A. 4cmB. 3cmC. 2cmD. 1.5cm【答案】B【解析】 连接OC ,过点O 作OF 、CE 于点F .Q AC=4、三角形ABC 为等边三角形,∴高和直径为OC ∴=、、ACB =60°∴ 、OCF =30°、cos、OCF =FC OC,2∴=,FC =32, 3CE ∴=.15.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a 件,则每件3元,超过a 件,超过部分每件b 元,如图是一名工人一天获得薪金y (元)与其生产的件数x (件)之间的函数关系式,则下列结论错误的是( )A. a =20B. b =4C. 若工人甲一天获得薪金180元,则他共生产50件D. 若工人乙一天生产m (件),则他获得薪金4m 元【答案】D【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140﹣60)÷(40﹣20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180604=20+30=50,故选项C正确,若工人乙一天生产m(件),当m≤20时,他获得的薪金为:3m元;当m>20时,他获得的薪金为:60+(m﹣20)×4=(4m﹣20)元,故选项D错误,故选:D.【点睛】本题主要考查了从函数图像获取信息,正确理解题意及函数图像,灵活利用图中所给数据是解题的关键.16.如图,一次函数与x轴,y轴的交点分别是A(﹣4,0),B(0,2).与反比例函数的图象交于点Q,反比例函数图象上有一点P满足:、P A⊥x轴;、PO O为坐标原点),则四边形P AQO的面积为()A. 7B. 10C.D. 4﹣【答案】C【解析】【分析】利用待定系数法求解函数解析式,求出P点的坐标,然后用待定系数法即可求出函数解析式;解方程组得到点Q的坐标,然后根据三角形的面积公式即可得到结论.【详解】解:∵一次函数y=ax+b与x轴,y轴的交点分别是A(﹣4,0),B(0,2),∴﹣4a+b=0,b=2,∴a=12,∴一次函数的关系式为y=12x+2,设P(﹣4,n),=解得:n=±1,由题意知n=﹣1,n=1(舍去),∴把P(﹣4,﹣1)代入反比例函数y=mx,∴m=4,反比例函数的关系式为:y=4x,解1224y xyx⎧=+⎪⎪⎨⎪=⎪⎩得,21xy⎧=-+⎪⎨=⎪⎩21xy⎧=--⎪⎨=-⎪⎩(舍去),∴Q(﹣+1),∴四边形P AQO的面积=12×4×1+12⨯4×2+12⨯2×(﹣故选:C.【点睛】本题考查了一次函数与反比例函数的综合,涉及了一次函数与反比例函数图像围成的图形的面积问题,灵活利用待定系数法求一次函数与反比例函数的解析式,将不规则图形的面积转化为几个三角形的面积和是解题的关键.二.填空题(共3小题)17.已知a、b满足|a﹣120,则a2b=_____.【答案】1 2【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【详解】解:根据题意得,a﹣12=0,b﹣2=0,解得a=12,b=2,∴a2b=(12)2×2=12.故答案为:12.【点睛】本题考查了绝对值与算术平方根的非负性,灵活利用两者的非负性是解题的关键.18.如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1︰2.则小明从点A走到点D的过程中,他上升的高度为____米;大树BC的高度为____米(结果保留根号).【答案】(1). 2(2). .【解析】【分析】根据矩形性质得出DG=CH,CG=DH,再利用坡比及锐角三角函数的定义解直角三角形即可得答案.【详解】过点D作DG⊥BC于G,DH⊥CE于H,设上升的高度DH=x,∴四边形DHCG是矩形,∴DH=CG,DG=CH,∵斜坡AF的坡比为1︰2,、AH=2DH=2x,∴AH2+DH2=AD2,即(2x)2+x22,解得:x1=2,x2=-2(舍去),∴他上升的高度为2米.∴AH=4,∵、BAC=45°,、ACB=90°,∴AC=BC , 在Rt △BDG 中,tan30°=BG DG =BC CG AC AH -+=3,即:24BC BC -+=3,解得:∴树BC 高为.故答案为2;【点睛】本题考查了仰角、坡比的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.19.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数_____,2008应排在A 、B 、C 、D 、E 中_____的位置.【答案】 (1). -29 (2). B 【解析】 【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C 位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用(2008﹣1)除以5,根据商和余数的情况确定所在峰中的位置即可.【详解】解:∵每个峰需要5个数, ∴5×5=25, 25+1+3=29,∴“峰6”中C位置的数的是﹣29,∵(2008﹣1)÷5=401…2,∴2008为“峰402”的第二个数,排在B的位置.故答案为:﹣29,B.【点睛】本题考查了图形的变化规律,确定已有图形的变化规律是解题的关键.三.解答题(共7小题)20.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:(1)x☆4=20,求x;(2)若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.【答案】(1)x1=2,x2=﹣2;(2)方程2x2﹣bx+a=0有两个不相等的实数根.【解析】【分析】(1)根据已知公式得出4x2+4=20,解之可得答案;(2)由2☆a的值小于0知22a+a=5a<0,解之求得a<0.再在方程2x2﹣bx+a=0中由△=(﹣b)2﹣8a≥﹣8a>0可得答案.【详解】解:(1)∵x☆4=20,∴4x2+4=20,即4x2=16,解得:x1=2,x2=﹣2;(2)∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.在方程2x2﹣bx+a=0中,△=(﹣b)2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根.【点睛】本题是和一元二次方程有关新定义题型,涉及了解一元二次方程及一元二次方程根的判别式,正确理解题中新定义是解题的关键.21.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.(2)求证:四边形AECF 是菱形.(3)若ED =6,AE =10,则菱形AECF 的面积是多少?【答案】(1)详见解析;(2)详见解析;(3)96 【解析】 【分析】(1)由PQ 为线段AC 的垂直平分线得到AE =CE ,AD =CD ,然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用ASA 证得两三角形全等即可;(2)根据全等得到AE =CF ,然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A ,从而得到EC =EA =FC =F A ,利用四边相等的四边形是菱形判定四边形AECF 为菱形;(3)由菱形的性质和勾股定理求出AD ,得出AC 的长,由菱形的面积公式即可得出结果. 【详解】(1)证明:∵PQ 为线段AC 的垂直平分线, ∴AE =CE ,AD =CD , ∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED , 在△AED 与△CFD 中,EAC FCA CFD AED AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△CFD (AAS );∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=F A,∴EC=EA=FC=F A,∴四边形AECF为菱形;(3)解:∵四边形AECF是菱形,∴AC⊥EF,∵ED=6,AE=10,∴EF=2ED=12,AD8.∴AC=2AD=16,∴菱形AECF的面积=12AC•EF=12×16×12=96.【点睛】本题是菱形的综合题,涉及了菱形的判定与性质及其面积公式、全等三角形的判定与性质、线段垂直平分线的性质、平行线的性质及勾股定理,灵活利用线段垂直平分线的性质判定三角形全等是解题的关键.22.如图,一次函数y=kx+b与反比例函数y=mx.(其中mk≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x的取值范围.【答案】(1)y=﹣x﹣2,y=﹣8x;(2)6;(3)x<﹣4或0<x<2.【解析】【分析】(1)把A点坐标分别代入一次函数和反比例函数的解析式中,即可解得k、b、m、n的值;(2)求出一次函数y =kx +b 与x 轴的交点坐标,然后根据三角形的面积公式即可求出△ABO 的面积;(3)根据图象观察,当x <﹣4或0<x <2时,一次函数值大于反比例函数值. 【详解】解:(1)∵一次函数y =kx +b 与反比例函数y =mx(mk ≠0)图象交于A (﹣4,2),B (2,n )两点.根据反比例函数图象的对称性可知,n =﹣4,∴2442k bk b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩,故一次函数的解析式为y =﹣x ﹣2,又知A 点在反比例函数的图象上,故m =﹣8, 故反比例函数的解析式为y =﹣8x; (2)如图,设一次函数的图像与y 轴交于点C ,在y =﹣x ﹣2中,令x =0,则y =﹣2, ∴OC =2,∴S △AOB =BOC AOC S S +=V V 12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <﹣4或0<x <2时,一次函数值大于反比例函数值.【点睛】本题主要考查了一次函数与反比例函数,涉及了一次函数与反比例函数的解析式、围成的三角形的面积及由图像法比较一次函数值与反比例函数值的大小,利用待定系数法求函数解析式是解题的关键. 23.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.运动员丙测试成绩统计表(1)若运动员丙测试成绩的平均数和众数都是7,则成绩表中的a=,b=;(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请用你所学过的统计量加以分析说明(参考数据:三人成绩的方差分别为S甲2=0.81、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从乙手中传出,第二轮结束时球又回到乙手中的概率是多少?(用树状图或列表法解答)【答案】(1)a=7,b=7;(2)选乙更合适;(3)12.【解析】【分析】(1)根据众数、得到a、b中至少有一个为7,再根据平均数进而确定a=b=7;(2)求出甲、乙、丙的平均数、众数,通过平均数、众数比较得出乙、丙较好,再根据方差,得出乙的成绩较好,较稳定.(3)用树状图表示所有可能的情况,从中得出第二轮又回到乙手中的概率.【详解】解:(1)由众数的意义可知,a、b中至少有一个为7,又平均数是7,即(56+a+b)÷10=7,因此,a=7,b=7,故答案为:7,7;(2)甲的平均数为:x甲=526473810⨯+⨯+⨯+=6.3分,众数是6分,乙的平均数为:x乙=62768210⨯+⨯+⨯=7分,众数为7分,丙的平均数为:x丙=7分,众数为7分,从平均数上看,乙、丙的较高,从众数上看乙、丙较高,但S乙2=0.4<S丙2=0.8,因此,综合考虑,选乙更合适.(3)树状图如图所示:∴第二轮结束时球又回到乙手中的概率P=21 42 =.【点睛】本题主要考查了数据的收集与整理及概率,涉及了平均数、众数、方差的计算方法及其意义以及树状图或列表法求概率,灵活的从条形统计图、折线统计图以及表格中获取相关数据是解题的关键. 24.如图,在△ABC中,AB=AC,O是边AC上的点,以OC为半径的圆分别交边BC、AC于点D、E,过点D作DF⊥AB于点F.(1)求证:直线DF是、O的切线;(2)若OC=1,∠A=45°,求劣弧DE的长.【答案】(1)详见解析;(2)34π.【解析】【分析】(1)连结OD,根据等腰三角形的性质得到OD∥AB,根据平行线的性质得到∠ODF=90°,根据切线的判定定理证明;(2)根据平行线的性质得到∠AOD=180°﹣45°=135°,根据弧长公式计算即可.【详解】证明:如图,连结OD,∵AB=AC,∴∠B=∠ACB,∵OC=OD,∴∠ODC=∠ACB,∴∠B=∠ODC,∴OD∥AB,∵DF⊥AB,∴∠ODF=∠BFD=90°,∵OD为半径,∴直线DF是、O的切线;(2)解:∵∠A=45°,OD∥AB,∴∠AOD=180°﹣45°=135°,∴劣弧DE的长为1353 1804ππ⨯=.【点睛】本题主要考查了切线的判定及弧长的计算,熟练掌握切线的判定定理及弧长的计算公式是解题的关键.25.图1是某浴室花洒实景图,图2是该花洒的侧面示意图.已知活动调节点B可以上下调整高度,离地面CD的距离BC=160cm.设花洒臂与墙面的夹角为α,可以扭动花洒臂调整角度,且花洒臂长AB=30cm.假设水柱AE垂直AB直线喷射,小华在离墙面距离CD=120cm处淋浴.(1)当α=30°时,水柱正好落在小华的头顶上,求小华的身高DE.(2)如果小华要洗脚,需要调整水柱AE,使点E与点D重合,调整的方式有两种:、其他条件不变,只要把活动调节点B向下移动即可,移动的距离BF与小华的身高DE有什么数量关系?直接写出你的结论;、活动调节点B不动,只要调整α的大小,在图3中,试求α的度数.1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)【答案】(1)125.4cm;(2)、BF=DE;、61.7°.【解析】【分析】(1)过点A作AG⊥CB的延长线于点G,交DE的延长线于点H,利用含30度角的直角三角形的性质即可求出答案.(2)①由平行四边形的判定与性质即可知道BF=DE;②由勾股定理可求出BD的长度,然后根据锐角三角函数的定义可求出∠1与∠2的度数,从而可求出α的度数.【详解】解:(1)如图,过点A作AG⊥CB的延长线于点G,交DE的延长线于点H,∵∠C=∠D=90°,∴四边形GCDH为矩形,∴GH=CD=120,DH=CG,∠H=90°,在Rt△ABG中,∠ABG=α=30°,AB=30,∴AG=15,∴AH=120﹣15=105,∵AE⊥AB,∴∠EAH=30°,又∵∠H=90°,∴EH=AH⋅tan30°=∴ED=HD﹣HE=﹣125.4(cm)(2)、BF=DE;、如图,连接BD在Rt△BCD中,BD200,∴sin∠1=120200=0.6,∴∠1≈36.9°,在Rt△BAD中,AB=30.∴sin∠2=ABBD=30200=0.15,∴∠2≈8.6°,∴∠3≈90°﹣8.6°=81.4°,∴α=180°﹣∠1﹣∠3≈180°﹣36.9°﹣81.4°=61.7°.【点睛】本题主要考查了解直角三角形,灵活利用锐角三角函数的定义是解题的关键.26.如图,直线OA与反比例函数的图象交于点A(3,3),向下平移直线OA,与反比例函数的图象交于点B(6,m)与y轴交于点C,(1)求直线BC的解析式;(2)求经过A、B、C三点的二次函数的解析式;(3)设经过A、B、C三点二次函数图象的顶点为D,对称轴与x轴的交点为E.问:在二次函数的对称轴上是否存在一点P,使以O、E、P为顶点的三角形与△BCD相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)92y x=-;(2)219422y x x=-+-;(3)存在,点P的坐标为(4,43),(4,43-),(4,12),(4,﹣12).【解析】【分析】(1)根据点A的坐标,即可确定直线OA以及反比例函数的解析式,根据所得反比例函数解析式即可确定点B的坐标,而OA、BC平行,那么它们的斜率相同,由此可确定直线BC的解析式;(2)根据直线BC的解析式可求得C点坐标,然后可利用待定系数法求得该抛物线的解析式;(3)根据(2)所得抛物线的解析式,可求得顶点D的坐标,即可得到BD、BC、CD的长,利用勾股定理逆定理即可判定△BCD是直角三角形,且∠BDC=90°,根据抛物线对称轴方程可得到E点坐标,进而可求得OE的长,若以O、E、P为顶点的三角形与△BCD相似,已知∠BDC=∠PEO=90°,那么有两种情况需要考虑:、△PEO∽△BDC,、△OEP∽△BDC.根据上面两组不同的相似三角形所得不同的比例线段,即可得到PE的长,进而求出P点的坐标.(需要注意的是P点可能在E点上方也可能在E点下方)【详解】解:(1)由直线OA与反比例函数的图象交于点A(3,3),得直线OA为:y=x,双曲线为:9yx =,的点B (6,m )代入9y x=得32m =,点B (6,32), 设直线BC 的解析式为y =x +b ,由直线BC 经过点B ,将x =6,32y =,代入y =x +b 得:92b =-, 所以,直线BC 的解析式为92y x =-; (2)由直线92y x =-得点C (0,92-), 设经过A 、B 、C 三点的二次函数的解析式为292y ax bx =+-将A 、B 两点的坐标代入292y ax bx =+-,得: 993329336622a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩, 解得124a b ⎧=-⎪⎨⎪=⎩ 所以,抛物线的解析式为219422y x x =-+-; (3)存在. 把219422y x x =-+-配方得217(4)22y x =--+, 所以得点D (4,72),对称轴为直线x =4 得对称轴与x 轴交点坐标为E (4,0).由BDBC ,CD CD 2=BC 2+BD 2,所以,∠DBC =90°又∠PEO =90°,若以O 、E 、P 为顶点的三角形与△BCD 相似,则有: ①OE PE BC DB ==43PE =,有P1(4,43),P2(4,43-) ②OE PE DB BC==PE =12,有P 3(4,12),P 4(4,﹣12) 所以,点P 的坐标为(4,43),(4,43-),(4,12),(4,﹣12). 【点睛】本题考查了几何图形与函数的综合,涉及了待定系数法求一次函数与二次函数解析式、直角三角的形的判定、相似三角形的判定与性质以及分类讨论的数学思想,灵活的利用待定系数法求函数解析式是解题的关键.。
河北省2020年中考数学模拟训练试卷 解析版
心对称图形的个数有( )
A.0
B.1
C.2
D.3
13.如图,△ABC 中,BC>AB>AC.甲、乙两人想在 BC 上取一点 P,使得∠APC=2∠
ABC,其作法如下:
(甲)作 AB 的中垂线,交 BC 于 P 点,则 P 即为所求
(乙)以 B 为圆心,AB 长为半径画弧,交 BC 于 P 点,则 P 即为所求
【解答】解:A.(﹣x﹣1)2=(x+1)2,故本选项不合题意;
B.(﹣x﹣1)2=(x+1)2,正确;
C.(﹣x+1)2=(1﹣x)2,故本选项不合题意;
D.(x+1)2=(1+x)2,故本选项不合题意.
故选:B.
5.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结
果用科学记数法可表示为( )
A.1.1111111×1016
B.1.1111111×1027
C.1.111111×1056
D.1.1111111×1017
6.函数 y=
中自变量 x 的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
7.下列说法正确的是( )
A.调查舞水河的水质情况,采用抽样调查的方式
果用科学记数法可表示为( )
A.1.1111111×1016
B.1.1111111×1027
C.1.111111×1056
D.1.1111111×1017
【分析】根据题意得出一般性规律,写出第 8 个等式,利用平方差公式计算,将结果用
科学记数法表示即可.
【 解 答 】 解 : 根 据 题 意 得 : 第 ⑧ 个 式 子 为 5555555552 ﹣ 4444444452 =
2020年中考数学全真模拟试卷6套附答案(适用于河北省各地市)
中考数学二模试卷题号得分一二三四总分一、选择题(本大题共16小题,共42.0分)1. 下列各数中,比−2小的数是(B. −3)32A. 0 C. − D. −12. 如图,将木条a,b与c钉在一起,∠1= 70°,∠2= 50°,要使木条a与b平行,木条a旋转的度数至少是( )A. 10°B. 20°C. 50°D. 70°3. 把实数6.12 × 10−3用小数表示为()A. 0.0612B. 6120C. 0.00612D. 61200010 +1的值是( )4. 估计A. 在2 和3 之间B. 在3 和4 之间C. 在4 和5 之间D. 在5 和6 之间5. 如图1,该几何体是由5 个棱长为1 个单位长度的正方体摆放而成,将正方体A向右平移2 个单位长度后(如图2),所得几何体的视图( )A. 主视图改变,俯视图改变C. 主视图改变,俯视图不变B. 主视图不变,俯视图不变D. 主视图不变,俯视图改变1 푥2 + 2푥+ 16. 计算(1 + ) ÷的结果是( )푥푥1 푥푥+ 1A. 푥+ 1B.C.D.푥+ 1 푥+ 1 푥7. 如图是一个中心对称图形,则此图形的对称中心为( )A. A点B. B点C. C点D. D点8. 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3푎,푏+ 1),则a与b的数量关系为( )A. 3푎= −푏−1B. 3푎= 푏+ 1C. 3푎+ 푏−1= 0D. 3푎= 2푏9. 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9 枚(每枚黄金重量相同),乙袋中装有白银11 枚(每枚白银重量相同),称重两袋相等.两袋互相交换1 枚后,甲袋比乙袋轻了13 两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得(11푥= 9푦)10푦+ 푥= 8푥+ 푦{9푥+ 13 = 11푦{A. B.D.(10푦+ 푥)−(8푥+ 푦)= 139푥= 11푦(8푥+ 푦)−(10푦+ 푥)= 139푥= 11푦{ {(10푦+ 푥)−(8푥+ 푦)= 13C.10. 如图为张小亮的答卷,他的得分应是( )A. 80 分B. 60 分C. 40 分D. 20 分11. 点P在正方形ABCD所在平面内,且△푃퐴퐵、△푃퐶퐷、△푃퐴퐷、△푃퐵퐶都是等腰三角形,这样的点P有( )A. 1 个B. 9 个C. 10 个D. 12 个12. 如图,两张完全相同的正六边形纸片(边长为2푎)重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是( )A. 5:2B. 3:2C. 3:1D. 2:113. m,b,n为常数,且(푚−푛)2 > 푚2 + 푛2,关于x的方程푚푥2 +푏푥+ 푛= 0根的情况是( )A. 有两个相等的实数根C. 无实数根B. 有一根为0D. 有两个不相等的实数根14. 如图,在平面直角坐标系中,点O为坐标原点,将含30°角的三角形△퐴퐵퐶放在第一象限,其中30°角的对边BC长为1,斜边AB的端点A,B分别在y轴的正半轴,x轴的正半轴上滑动,连接OC,则线段OC的长的最大值是( )A. 5B. 3C. 2D. 7615. 如图,正比例函数푦= 푘푥与反比例函数푦= 的图象有푥一个交点퐴(2,푚),퐴퐵⊥푥轴于点퐵.平移直线푦= 푘푥,使其经过点B,得到直线l,则直线l对应的函数表达式是( )A. 푦= 3푥−33B. 푦= 푥−323C. 푦= 푥−22D. 푦= 6푥−316. 如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点퐸.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠퐴퐶퐷= ∠퐵퐴퐸;③퐴퐹:퐵퐸= 2:3;④四边形퐴퐹푂퐸:푆푆= 2:3;以上四△퐶푂퐷个结论中所有正确的结论是( )A. B. C. D.①②①②③②④①②④二、填空题(本大题共3小题,共10.0分)17. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5 天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为______万人.18. 如图,数轴上点A表示的数为a,化简:푎+푎2−4푎+ 4 = ______.219. 如图,正△퐴퐵퐶的边长为2,顶点B、C在半径为的圆上,顶点A在圆内,将正△퐴퐵퐶绕点B逆时针旋转,当点A第一次落在圆上时,则点C运动的路线长为______,(结果保留휋)若A点落在圆上记做第1 次旋转,将△퐴퐵퐶绕点A逆时针旋转,当点C第一次落在圆上记做第2 次旋转,再绕C将△퐴퐵퐶逆时针旋转,当点B第一次落在圆上,记做第3 次旋转……,若此旋转下去,当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置______次.三、计算题(本大题共1小题,共8.0分)20. 在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1 的和的平方,减去这个数与1 的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9 + 1)2−(9−1)2] × 25 ÷ 9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是푎(푎≠0).请你帮小明完成这个验证过程.四、解答题(本大题共6小题,共60.0分)21. 如图:已知퐴퐵//퐶퐷,퐵퐶⊥퐶퐷,퐶퐷= 7,퐴퐵= 퐵퐶= 4,E是AD的中点,连接BE并延长交CD于点F.(1)请找出图中与BE相等的线段,并写出证明过程;(2)求BE的长.22. 今年5 月13 日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:做家务时间(小时)A组:0.5B组:1人数1530x所占百分比30%60%4% C组:1.5D组:2 3 6%合计y100%(1)统计表中的푥= ______,푦= ______;(2)小君计算被抽查同学做家务时间的平均数是这样的:−푥푥1 + 푥2 + 푥3+ … + 푥푛,第一步:计算平均数的公式是=푛第二步:该问题中푛= 4,푥= 0.5 푥= 1 푥= 1.5 푥= 2,,,4,1 2 3−0.5 + 1 + 1.5 + 24第三步:= = 1.25(小时)푥小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;(3)现从C,D两组中任选2 人,求这2 人都在D组中的概率(用树形图法或列表法).23. 人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分心跳的最高次数,那么푏= 0.8(220−푎)(1)一个45 岁的人运动时10 秒心跳的次数为22 次,他______(填“有”或“无”)危险;(2)即将参加中考的两名同学的对话:甲同学:“我正常情况下在运动时所能承受的每分心跳的最高次数是164 次”,乙同学:“我正常情况下在运动时所能承受的每分心跳的最高次数才156 次”.请你判断甲乙两名同学谁的说法是错误的?并说明理由;(3)若一个人的年龄由a变为(푎+ 푥)(푥为正整数),发现正常情况下这个人在运动时所能承受的每分心跳的最高次数减少了12,用列方程的方法确定x.24. A、B两城相距900 千米,一辆客车从A城开往B城,车速为每小时80 千米,半小时后一辆出租车从B城开往A城,车速为每小时120 千米.设客车出发时间为푡(小时)(1)若客车、出租车距A城的距离分别为푦、푦,写出푦、푦均关于t的函数关系式;1 2 1 2(2)若两车相距100 千米时,求时间t;(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D60 千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?25. 如图,在矩形ABCD中,퐴퐵= 6,퐵퐶= 8,点P在线段AD上,由点D向点A运动,当点P与点A重合时,停止运动.以点P为圆心,PD为半径作⊙푃,⊙푃与AD交于点M点Q在⊙푃上且在矩形ABCD外,∠푄푃퐷= 120°(1)当푃퐷= 2 3时푃퐶= ______,扇形QPD的面积= ______,点C到⊙푃的最短距离= ______;(2) ⊙푃与AC相切时求PC的长?(3)如图⊙푃与AC交于点E、F当퐸퐹= 6.4时,求PD的长?(4)请从下面两问中,任选一道进行作答.①当⊙푃与△퐴퐵퐶有两个公共点时,直接写出PD的取值范围;②直接写出点Q的运动路径长以及BQ的最短距离.26. 已知:如图,点푂(0,0),퐴(−4,−1),线段AB与x轴平行,且퐴퐵= 2,抛物线l:푦= 푘푥2−2푘푥−3푘(푘≠0)(1)当푘= 1时,求该抛物线与x轴的交点坐标;(2)当0 ≤푥≤3时,求y的最大值(用含k的代数式表示);(3)当抛物线l经过点퐶(0,3)时,l的解析式为______,顶点坐标为______,点B______(填“是”或“否”)在l上;若线段AB以每秒2 个单位长的速度向下平移,设平移的时间为푡(秒)①若l与线段AB总有公共点,求t的取值范围:②若1 同时以每秒3 个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.答案和解析1.【答案】B【解析】解:|−3|> |−2|,∴−3< −2,故选:B.根据负数的绝对值越大负数反而小,可得答案.本题考查了有理数大小比较,利用负数的绝对值越大负数反而小是解题关键.2.【答案】B【解析】解:如图.∵∠퐴푂퐶= ∠2= 50°时,푂퐴//푏,∴要使木条a与b平行,木条a旋转的度数至少是70°−50°= 20°.故选:B.根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.3.【答案】C【解析】解:6.12 × 10−3= 0.00612,故选:C.绝对值小于1 的正数也可以利用科学记数法表示,一般形式为푎× 10−푛,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.本题考查用科学记数法表示较小的数,一般形式为푎× 10−푛,其中1 ≤|푎|< 10,n为由原数左边起第一个不为零的数字前面的0 的个数所决定.4.【答案】C【解析】解:∵32 = 9,42 = 16,∴3 < 10 < 4,∴10 +1在4 到5 之间.故选:C.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.此题主要考查了估算无理数的能力,要求学生正确理解无理数的性质,进行估算,“夹逼法”是估算的一般方法,也是常用方法.5.【答案】D【解析】解:将正方体A向右平移2 个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变,故选:D.主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.6.【答案】B【解析】【分析】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】푥 1 (푥+ 1)2解:原式= ( + ) ÷푥푥푥푥+ 1 푥= ⋅푥(푥+ 1)21= ,푥+ 1故选B.7.【答案】B【解析】解:如图是一个中心对称图形,则此图形的对称中心为:点B.故选:B.直接利用中心对称图形的性质得出对称中心.此题主要考查了中心对称图形,正确把握定义是解题关键.8.【答案】A【解析】解:由作图可知:点P在第二象限的角平分线上,∴3푎+ 푏+ 1 = 0,∴3푎= −푏−1,故选:A.由作图可知:点P在第二象限的角平分线上,点P的横坐标与纵坐标互为相反数,由此构建关系式即可解决问题.本题考查作图−基本作图,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【解析】解:设每枚黄金重x两,每枚白银重y两,由题意得:9푥= 11푦{ ,(10푦+ 푥)−(8푥+ 푦)= 13故选:D.根据题意可得等量关系:①9枚黄金的重量= 11枚白银的重量;②(10枚白银的重量+1 枚黄金的重量)−(1枚白银的重量+8枚黄金的重量) = 13两,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10.【答案】C【解析】解:①2的相反数是−2,正确;②−3的绝对值是3,正确;1③−的倒数是−2,错误;2④1的平方根是± 1,错误;所以得分是40 分,故选:C.根据平方根、相反数、倒数和绝对值解答即可.此题考查平方根,关键是根据平方根、相反数、倒数和绝对值解答.11.【答案】B【解析】解:如图所示,符合性质的点P共有9 个.故选:B.根据等腰三角形的判定和正方形的性质,分别以AB、BC、CD、DA为边作等边三角形,即可得到点P的位置,另外,正方形的中心也是符合条件的点.本题考查了等腰三角形的判定,正方形的性质,考虑利用等边三角形的性质求解是解题的关键,要注意正方形的中心也是符合条件的点.3【解析】解:正六边形的面积= 6 ×× (2푎)2 = 6 3푎2,4阴影部分的面积= 푎⋅2 3푎= 2 3푎2,∴空白部分与阴影部分面积之比是= 6 3푎2:2 3푎2 = 3:1,故选:C.求出正六边形和阴影部分的面积即可解决问题;本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13.【答案】D【解析】解:∵(푚−푛)2 >푚2+ 푛2∴−2푚푛> 0,即푚푛< 0,∴푚≠0,,∴△= 푏2−4푚푛> 0,∴方程有两个不相等的实数根,.故选:D.利用(푚−푛)2 >푚2+ 푛2得到,푚≠0 푚푛< 0,则可判断△=푏2−4푚푛> 0,然后根据判别式的意义对各选项进行判断.本题考查了根的判别式:一元二次方程푎푥2 +푏푥+ 푐= 0(푎≠0)的根与△=푏2−4푎푐有如下关系:当△> 0时,方程有两个不相等的实数根;当△= 0时,方程有两个相等的实数根;当△< 0时,方程无实数根.14.【答案】C【解析】解:取AB的中点F,连接CF、OF.在푅푡△퐴퐵퐶中,∵∠퐴퐶퐵= 90°,∠퐵퐴퐶= 30°,퐵퐶=1,∴퐴퐵= 2퐵퐶= 2,∵∠퐴푂퐵= 90°,퐴퐹=퐹퐵,1∴푂퐹= 푂퐶= 퐴퐵=1,2∵푂퐶≤푂퐹+푂퐶,∴当O、F、C共线时,OC的值最大,最大值为2.故选:C.取AB的中点F,连接CF、푂퐹.首先求出푂퐹= 푂퐶= 1,根据三角形的三边关系可知:푂퐶≤푂퐹+ 푂퐶,推出当O、F、C共线时,OC的值最大,最大值为2.本题考查直角三角形斜边中线定理、坐标与图形的性质、三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考选择题中的压轴题.15.【答案】B6【解析】解:∵正比例函数푦= 푘푥与反比例函数푦= 的图象有一个交点퐴(2,푚),푥∴2푚= 6,解得:푚= 3,故A(2,3),则3 = 2푘,3解得:푘= ,23故正比例函数解析式为:푦= 푥,2∵퐴퐵⊥푥轴于点B,平移直线푦= 푘푥,使其经过点B,∴퐵(2,0),3∴设平移后的解析式为:푦= 푥+ 푏,2则0 = 3 + 푏,解得:푏= −3,3故直线l对应的函数表达式是:푦= 푥−3.2故选:B.首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.此题主要考查了反比例函数与一次函数的交点问题,求得A,B点坐标是解题关键.16.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴퐴퐵//퐶퐷,퐴퐵= 퐶퐷,∵퐸퐶垂直平分AB,1 1∴푂퐴= 푂퐵= 퐴퐵= 퐷퐶,퐶퐷⊥퐶퐸,2 2∵푂퐴//퐷퐶,퐸퐴퐸퐷퐸푂퐸퐶푂퐴퐶퐷1∴= = = ,2∴퐴퐸= 퐴퐷,푂퐸= 푂퐶,∵푂퐴= 푂퐵,푂퐸= 푂퐶,∴四边形ACBE是平行四边形,∵퐴퐵⊥퐸퐶,∴四边形ACBE是菱形,故正确,①∵∠퐷퐶퐸= 90°,퐷퐴=퐴퐸,∴퐴퐶= 퐴퐷= 퐴퐸,∴∠퐴퐶퐷= ∠퐴퐷퐶= ∠퐵퐴퐸,故正确,②∵푂퐴//퐶퐷,퐴퐸퐶퐹푂퐴퐶퐹1∴∴=== ,2퐴퐹퐴퐶퐴퐹퐵퐸1= ,故错误,③3设△퐴푂퐹的面积为a,则△푂퐹퐶的面积为2a,△퐶퐷퐹的面积为4a,△퐴푂퐶的面积=△퐴푂퐸的面积= 3푎,∴四边形AFOE的面积为4a,△푂퐷퐶的面积为6a∴푆四边形퐴퐹푂퐸:푆故选:D.= 2:3.故正确,④△퐶푂퐷根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.17.【答案】23.4【解析】解:将这5 天的人数排列如下:21.9、22.4、23.4、24.9、25.4,∴这五天游客数量的中位数为23.4万人,故答案为:23.4.根据中位数的定义求解可得.本题主要考查折线统计图,解题的关键是根据折线统计图得出具体数据及中位数的概念.18.【答案】2【解析】解:由数轴可得:0 < 푎< 2,则푎+ 푎2−4푎+ 4= 푎+ (2−푎)2= 푎+ (2−푎)= 2.故答案为:2.直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.휋19.【答案】3 168【解析】解:如图,连接푂퐴′、OB、OC.∵푂퐵= 푂퐶= 2,퐵퐶= 2,∴△푂퐵퐶是等腰直角三角形,∴∠푂퐵퐶= 45°;同理可证:∠푂퐵퐴′= 45°,∴∠퐴′퐵퐶= 90°;∵∠퐴퐵퐶= 60°,∴∠퐴′퐵퐴= 90°−60°= 30°,∴∠퐶′퐵퐶= ∠퐴′퐵퐴= 30°,30휋× 2 휋∴当点A第一次落在圆上时,则点C运动的路线长为:= .180 3∵△퐴퐵퐶是三边在正方形퐶퐵퐴′퐶″上,BC边每12 次回到原来位置,2018 ÷ 12 = 168.166……,∴当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置168 次,휋故答案为:,168.3首先连接푂퐴′、OB、OC,再求出∠퐶′퐵퐶的大小,进而利用弧长公式问题即可解决.因为△퐴퐵퐶是三边在正方形퐶퐵퐴′퐶″上,BC边每12 次回到原来位置,2018 ÷ 12 = 168.166……,推出当△퐴퐵퐶完成第2018 次旋转时,BC边共回到原来位置168 次.本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.20.【答案】解:(1)[(9 + 1)2−(9−1)2] × 25 ÷ 9= 18 × 2 × 25 ÷ 9= 100;(2)[(푎+ 1)2−(푎−1)2] × 25 ÷푎= 4푎× 25 ÷푎= 100.【解析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)퐵퐸相等的线段为EF,理由如下:∵퐴퐵//퐶퐷∴∠퐴= ∠퐷,∵퐸是AD的中点,∴퐴퐸= 퐷퐸,且∠퐴= ∠퐷,∠퐴퐸퐵= ∠퐷퐸퐹∴△퐴퐵퐸≌△퐷퐹퐸(퐴푆퐴)∴퐵퐸= 퐸퐹(2) ∵△퐴퐵퐸≌△퐷퐹퐸∴퐴퐵= 퐷퐹= 4∵퐶퐷= 7,∴퐹퐶= 3,∵퐵퐶⊥퐶퐷,∴ 퐵퐹 = 퐵퐶2 +퐶퐹2 = 55∴ 퐵퐸 =2【解析】(1)由“ASA ”可证 △ 퐴퐵퐸≌ △ 퐷퐹퐸,可得퐵퐸 = 퐸퐹;(2)由全等三角形的性质퐴퐵 = 퐷퐹 = 4,可得퐶퐹 = 3,由勾股定理可求퐵퐹 = 5,即可求BE 的长.本题考查了全等三角形的判定和性质,勾股定理,熟练运用全等三角形的性质是本题的 关键.22.【答案】(1)2,50;(2)小君的计算过程不正确. 15 × 0.5 + 30 × 1 + 2 × 1.5 + 3 × 2被抽查同学做家务时间的平均数为: 50= 0.93(小时)被抽查同学做家务时间的平均数为0.93小时.(3)퐶组有两人,不妨设为甲、乙,D 组有三人,不妨设为:A 、B 、C ,列出树形图如下:共有 20 种情况,其中 2 人都在 D 组的按情况有:AB ,퐴퐶.퐵퐴,BC ,CA ,CB 共 6 种, 63∴ 2人都在 D 组中的概率为:푃 = = . 20 10【解析】解:(1)抽查的总人数为:15 ÷ 30% = 50(人), 푥 = 50 × 4% = 2(人) 푦 = 50 × 100% = 50(人) 故答案为:2,50; (2)见答案; (3)见答案. 【分析】该组人数(1)利用:某组的百分比 =× 100%,先计算出总人数,再求 x 、y ; 总人数(2)利用加权平均数公式计算做家务时间的平均数;(3)列出表格或树形图,把所有情况和在 D 组的情况都写出来,利用求概率的公式计算 出概率.本题考查了频数、频率的关系,概率的计算及列树形图或表格,难度不大.概率 = 所 求情况数与总情况数之比.23.【答案】无【解析】解:(1)将푎 = 45代入푏 = 0.8(220−푎), 得:푏 = 140(次),70140 ÷ 60 × 10 = > 22, 3 所以,此人没有危险. 故答案为:无; (2)乙的说法错误;甲的说法:当푏 = 164时,164 = 0.8(220−푎), 解得:푎 = 15,符合实际情况;乙的说法:当푏 = 156时,156 = 0.8(220−푎),解得:푎 = 25,不符合实际情况,所以,乙的说法错误; (3)由题意得:0.8(220−푎) + 12 = 0.8[220−(푎 + 푥)], 解得:푥 = 15, 所以:x 的值为 15.(1)将 45 代入代数式,求出一分钟能承受的最高次数,进而求出 10 秒钟能承受的最高 次数,比较即可解答.(2)根据题意,将 b 的值代入푏 = 0.8(220−푎),计算出 a 的值即可;(3)根据题意可得方程0.8(220−푎) + 12 = 0.8[220−(푎 + 푥)],再解出 x 的值即可. 此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系, 再设出未知数,列出方程.24.【答案】解:(1)由题意得,푦1 = 80푡,푦2 = 900−120(푡−0.5) = −120푡 + 960 ; (2)两车相距 100 千米,分两种情况:푦 −푦 = 100−120푡 + 960−80푡 = 100 ,① ,即 ,即 2 1 解得푡 = 4.3;푦 −푦 = 100 80푡−(−120푡 + 960) = 100 , ② 1 2 解得푡 = 5.3.综上所述,两车相距 100 千米时,时间为4.3或5.3小时;(3)两车相遇,即푦 = 푦 ,80푡 = −120푡 + 960,解得푡 = 4.8, 1 2 此时퐴퐷 = 80 × 4.8 = 384(千米),퐵퐷 = 900−384 = 516(千米). 푡 = (2 × 60 + 516) ÷ 120 = 5.3(小时 ; )方案一: 1 푡 = 516 ÷ 80 = 6.45(小时 . )方案二: 2 ∵ 푡 > 푡 , 2 1 ∴ 方案一更快.【解析】(1)根据路程 = 速度 × 时间,即可得出 1、 2关于 t 的函数关系式; 푦 푦 (2)分两种情况讨论: 푦 −푦 = 100; 푦 −푦 = 100,据此列方程解答即可; ① ② 12 1 2 (3)根据题意列方程解答即可.本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方 程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.25.【答案】4 3 4휋 2 3【解析】解:(1)如图 1,连接 PC ,QP ,PC 交 ⊙ 푃于 T , ∵ 矩 形 ABCD∴ ∠퐴퐷퐶 = 90°,퐶퐷 = 퐴퐵 = 6,퐴퐷 = 퐵퐶 = 8,在푅푡 △ 퐶퐷푃中,由勾股定理得:푃퐶 = 퐶퐷2 + 푃퐷2 = 62 + (2 3)2 = 4 3,∵ ∠푄푃퐷 = 120°,푃퐷 = 2 3120휋 ⋅ (2 3)2∴ 푆扇形푄푃퐷 = = 4휋360 퐶푇 = 퐶푃−푃푇 = 4 3−2 3 = 2 3故答案为:4 3, , ; 4휋 2 3(2)如图 2, ⊙ 푃与 AC 相切时,设切点为点 H , 连接 PH ,则푃퐻 ⊥ 퐴퐶, ∵ 四边形 ABCD 是矩形, ∴ ∠퐴퐷퐶 = 90°,在푅푡 △ 퐴퐷퐶中,퐴퐵 = 6,퐵퐶 = 8,∴ 퐴퐶 = 10, 3 在푅푡 △ 퐴퐷퐶中,sin ∠퐷퐴퐶 = ,5 设 ⊙ 푃半径为 x ,则푃퐻 = 푃퐷 = 푥,퐴푃 = 8−푥, 푃퐻퐴푃 푥在푅푡 △ 퐴퐻푃中,sin ∠푃퐴퐻 == , 8−푥푥3∴ = , 8−푥 5 ∴ 푥 = 3,在푅푡 △ 푃퐷퐶中,퐶퐷 = 6,푃퐷 = 3,∴ 푃퐶 = 3 5;(3)如图 3,过点 P 作푃퐻 ⊥ 퐴퐶,连接 PF ; 则∠푃퐻퐴 = ∠퐴퐷퐶 = 90°, ∵ ∠푃퐴퐻 = ∠퐷퐴퐶, ∴△ 퐴퐻푃∽ △ 퐴퐷퐶, 퐴푃 퐴퐶 푃퐻퐶퐷∴ = , 设 ⊙ 푃半径为 x ,则푃퐹 = 푃퐷 = 푥,퐴푃 = 8−푥, 3∴ 푃퐻 = (8−푥), 5在 ⊙ 푃中,퐹퐻 ⊥ 퐴퐶,퐸퐹 = 6.4, ∴ 퐻퐹 = 3.2,3在푅푡 △ 푃퐻퐹中,( (8−푥))2 + 3.22 = 푥2,5∴ 푥 = 4或푥 = −13(舍),∴ 푃퐷 = 4;(4)①如图 4,作푃′푀 ⊥ 퐴퐶于 M ,作푃″푁 ⊥ 퐵퐶于 N ,当푃′푀 = 푃′퐷时, ⊙ 푃′与 AC 相切,只有 1 个公共点,由(2)知,此时푃퐷 = 3, 当푃″푁 = 6时, ⊙ 푃″与 △ 퐴퐵퐶有 3 个公共点;当6 < 푃푁 ≤ 푃퐵时, ⊙ 푃与 △ 퐴퐵퐶有 3 个公共点;푃퐵2 = 퐴퐵2 +퐴푃2,퐴푃2 = (퐴퐷−푃퐷)225∴ 62 +(8−푃퐷)2 = 푃퐷2,解得:푃퐷 =4 25 综上所述,PD 的范围为:3 < 푃퐷 < 6或 < 푃퐷 ≤ 8; 4②如图 5, ∵ ∠푄푃퐷 = 120°,当点 P 与点 A 重合时,퐴푄 = 퐴퐷∴ 点 Q 的运动路径是线段 DQ ,∠퐷퐴푄 = 120°,∠퐴퐷푄 = ∠퐴푄퐷 = 30°,BQ 的最短距 离是点 B 到直线 CQ 的距离;过点 B 作퐵퐾 ⊥ 퐶푄于 K ,BK 交 AD 于 S ,过 A 作퐴퐿 ⊥ 퐶푄 于 L ,连接 BD ,AQ , ∵ 퐴퐿 ⊥ 퐶푄, ∴ ∠퐴퐿퐷 = ∠퐴퐿푄 = 90°,∵ 퐴푄 = 퐴퐷,퐴퐿 = 퐴퐿 ∴ 푅푡 △ 퐴퐷퐿≌푅푡 △ 퐴푄퐿∴ 퐷퐿 = 푄퐿,∠퐷퐴퐿 = ∠푄퐴퐿 = 60°, 퐷퐿 ∴ = sin ∠퐷퐴퐿,即:퐷퐿 = 퐴퐷 ⋅ sin ∠퐷퐴퐿 = 8푠푖푛60° = 4퐴퐷3 ∴ 퐷푄 = 2퐷퐿 = 8 3在푅푡 △ 퐵퐶퐷中,퐵퐷 = 퐵퐶2 + 퐶퐷2 =82 + 62 = 10 1设푆퐷 = 푚,则푆퐾 = 푚,퐴푆 = 8−푚 2∵ ∠퐴푆퐵 = ∠퐷푆퐾 = 90°−∠퐴퐷푄 = 90°−30° = 60°,∴ ∠퐴퐵푆 = 30°퐴푆∴ = tan ∠퐴퐵푆,即8−푚 = 6푡푎푛30°,解得:푚 = 8−2 3 퐴퐵1∴ 퐾푆 = (8−2 3) = 4− 3,퐵푆 = 2퐴푆 = 4 3 2∴ 퐵퐾 = 퐾푆 + 퐵푆 = 4− 3 + 4 3 = 3 3 + 4故点 Q 的运动路径长是8 (1)根据已知直接可求;3 , B Q 的最短距离是3 3 +4. (2) ⊙ 푃与AC 相切时,设切点为点H ,连接PH ,则푃퐻 ⊥ 퐴퐶,在푅푡 △ 퐴퐷퐶中,퐴퐵 = 6, 3퐵퐶 = 8,得퐴퐶 = 10;在푅푡 △ 퐴퐷퐶中,sin ∠퐷퐴퐶 = ,设 ⊙ 푃半径为 x ,则 5 푃퐻 퐴푃 푥푃퐻 = 푃퐷 = 푥,퐴푃 = 8−푥,在푅푡 △ 퐴퐻푃中,sin ∠푃퐴퐻 =푅푡 △ 푃퐷퐶中,퐶퐷 = 6,푃퐷 = 3,求得푃퐶 = 3 5;= ,可求푥 = 3,在 8−푥(3)过点 P 作푃퐻 ⊥ 퐴퐶,连接 PF ;则∠푃퐻퐴 = ∠퐴퐷퐶 = 90°,可证 △ 퐴퐻푃∽ △ 퐴퐷퐶,设 ⊙ 푃 3半径为 x ,则푃퐹 = 푃퐷 = 푥,퐴푃 = 8−푥,则푃퐻 = (8−푥),在 ⊙ 푃中,퐹퐻 ⊥ 퐴퐶, 53퐸퐹 = 6.4,퐻퐹 = 3.2,在푅푡 △ 푃퐻퐹中,( (8−푥))2 + 3.22 = 푥2,求得푃퐷 = 4; 5(4)①作푃푀 ⊥ 퐴퐶于 M ,作푃푁 ⊥ 퐵퐶于 N ,易知푃푀 = 푃퐷时, ⊙ 푃与 AC 相切,与 △ 퐴퐵퐶 只有一个公共点,푃푀 < 푃퐷时 ⊙ 푃与 △ 퐴퐵퐶没有公共点;当푃푁 = 푃퐷时, ⊙ 푃与 BC 相切, ⊙ 푃与 △ 퐴퐵퐶有三个公共点,当푃퐵 = 푃퐷时, ⊙ 푃与 △ 퐴퐵퐶有三个公共点;当 25푃퐵 < 푃퐷 ≤ 퐴퐷时, ⊙ 푃与 △ 퐴퐵퐶有且只有两个公共点;故3 < 푃퐷 < 6或 < 푃퐷 ≤ 8; 4 ②由 ∠푄푃퐷 = 120°,푃푄 = 푃퐷可得:∠퐴퐷푄 = 30°,即 Q 的路径是一条线段,且线段 DQ 位于 AD 上方,易求得퐷푄 = 8DQ 的最小值 = 3 3 +4;3 BQ ,的最短距离即点 B 到 DQ 的垂线段长度,可求得 本题考查圆的有关概念;熟练掌握圆中的相关概念,灵活运用直角三角形的知识解题是 关键.26.【答案】푦 = −푥2 +2푥 + 3 (1,4) 否【解析】解:(1)当푘 = 1时,该抛物线解析式푦 = 푥2−2푥−3 푦 = 0时,푥2−2푥−3 = 0,解得푥 = −1,푥 = 3, ,1 2 ∴ 该抛物线与 x 轴的交点坐标(−1,0),(3,0);−2푘2푘 (2)抛物线푦 = 푘푥2−2푘푥−3푘的对称轴直线푥 = − ∵ 푘 < 0,= 1, ∴ 푥 = 1时,y 有最大值,푦最大值 = 푘−2푘−3푘 = −4푘; (3)当抛物线经过点퐶(0,3)时, −3푘 = 3,푘 = −1,∴ 抛物线的解析式为푦 = −푥2 +2푥 + 3,顶点坐标(1,4), ∵ 퐴(−4,−1),线段 AB 与 x 轴平行,且퐴퐵 = 2, ∴ 퐵(−2,−1),将푥 = −2代入푦 = −푥2 +2푥+ 3 ∴ 点 B 不在 l 上, , 푦 = −5 ≠ −1,故答案为푦 = −푥2 +2푥+ 3 ,(1,4),否; ①设平移后퐵(−2,−1−2푡),퐴(−4,−1−2푡),当抛物线经过点 B 时,有푦 = −(−2)2 +2 × (−2)+ 3 = −5 当抛物线经过点 A 时,有푦 = −(−4)2 +2 × (−4)+ 3 = −21 ∵ 푙与线段 AB 总有公共点, ,, ∴ −21 ≤ −1−2푡 ≤ −5, 解得2 ≤ 푡 ≤ 10;②平移过程中,设퐶(0,3−3푡),则抛物线的顶点(1,4−3푡), ∵ 抛物线在 y 轴及其右侧的图象与直线 AB 总有两个公共点, −1−2푡 ≥ 3−3푡−1−2푡 < 4−3푡 { , 解得4 ≤ 푡 < 5.(1)当푘 = 1时,该抛物线解析式푦 = 푥2−2푥−3,푦 = 0时,푥2−2푥−3 = 0,解得푥1= −1,푥2 = 3,该抛物线与 x 轴的交点坐标(−1,0),(3,0);−2푘(2)抛物线푦 = 푘푥2−2푘푥−3푘的对称轴直线푥 = − = 1,当푘 > 0时,푥 = 3时,y 有最 2푘 푦 ,当 = 9푘−6푘−3푘 = 0 푘 < 0 时, 푥 = 1 푦时,y 有最大值,最大值大值, 最大值= 푘−2푘−3푘 = −4푘; (3)当抛物线经过点퐶(0,3)时,抛物线的解析式为푦 = −푥2 +2푥 + 3,顶点坐标(1,4), 퐴(−4,−1),将푥 = −2代入푦 = −푥2 +2푥 + 3,푦 = −5 ≠ −1,点 B 不在 l 上; ①设平移后퐵(−2,−1−2푡),퐴(−4,−1−2푡),当抛物线经过点 B 时,有푦 = −5,当抛物 线经过点 A 时,有푦 = −21,l 与线段 AB 总有公共点,则−21 ≤ −1−2푡 ≤ −5,解得 2 ≤ 푡 ≤ 10;−1−2푡 ≥ 3−3푡 −1−2푡 < 4−3푡 퐶(0,3−3푡),则抛物线的顶点(1,4−3푡),于是{②平移过程中,设 ,解得 4 ≤ 푡 < 5.本题考查了二次函数,熟练掌握二次函数图象的性质与平移规律是解题的关键.第 21 页,共 21 页中考数学二模试卷题号得分一二三四总分一、选择题(本大题共16 小题,共42.0 分)1.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道.其中海底隧道是由33 个巨型沉管连接而成,沉管排水总量约76000 吨.将数76000 用科学记数法表示为()A. 7.6×1042.使二次根式A. x>2B. 76×103有意义的x的取值范围是()B. x≥2C. x=2C. 0.76×105D. 7.6×105D. x≠23.下列图案中,是中心对称图形的为()A. B. C. D.4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. a+c>05.正多边形内角和为540°,则该正多边形的每个外角的度数为()A. 36°B. 72°C. 108°D. 360°B. |a|<|b|C. bc>1D. ac>06.如图,在⊙O中,AB是⊙O直径,∠BAC=40°,则∠ADC的度数是()A. 40°B. 50°C. 60°D. 90°7.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2 的度数是()A. 60°B. 55°C. 50°D. 45°8.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5 尺,将绳子对折再量木条,木条剩余1 尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A. B. C. D.9.如果m2+m-3=0,那么的值是()A. 2B. 3C. 4D. 510.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A. 6B. 9C. 21D. 2511.在平面直角坐标系中,直线y=-x+2 与反比例函数y= 的图象有唯一公共点,若直线y=-x+b与反比例函数y= 的图象有2 个公共点,则b的取值范围是()A. b>2B. -2<b<2C. b>2 或b<-2D. b<-212.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 513.将二次函数y=x2﹣6x+5 用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A. y=(x﹣6)2+5 C. y=(x﹣3)2﹣4B. y=(x﹣3)2+5 D. y=(x+3)2﹣914.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理的是()A. 与2017 年相比,2018 年年末全国农村贫困人口减少了1386 万人B. 2015~2018 年年末,与上一年相比,全国农村贫困发生率逐年下降C. 2015~2018 年年末,与上一年相比,全国农村贫困人口的减少量均超过1000 万D. 2015~2018 年年末,与上一年相比,全国农村贫困发生率均下降1.4 个百分点15.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:x y ……-131 2 33……-1 m有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=-1;③方程ax2+bx+c=0 的根为0 和2;④当y>0 时,x的取值范围是x<0 或x>2;其中正确的是()A. ①④B. ②④C. ②③D. ③④16.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B.C. D.二、填空题(本大题共3 小题,共12.0 分)17.请写出两个大于2 而小于3 的无理数:______ .18.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为______.19.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,当点D第一次落在x轴上时,点D的坐标为:______;在运动过程中,点A的纵坐标的最大值是______;保持上述运动过程,经过(2014 ,)的正六边形的顶点是______.三、计算题(本大题共1 小题,共10.0 分)y= (x<0)与y=ax+b的图象交于点A(-1,n)和点B(-2,1).20.如图,函数(1)求k,a,b的值;(2)直线y=mx与y= (x<0)的图象交于点P,与y=-x+1 的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.四、解答题(本大题共5 小题,共45.0 分)21.已知关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.22.如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF.(1)求证:四边形DBCF是平行四边形;(2)若∠A=30°,BC=4,CF=6,求CD的长.23.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000 名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200 名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100频数(人)频率0.050.15n103040m0.350.25 50根据所给信息,解答下列问题:(1)m=______,n=______;(2)补全频数分布直方图;(3)这200 名学生成绩的中位数会落在______分数段;(4)若成绩在90 分以上(包括90 分)为“优”等,请你估计该校参加本次比赛的3000 名学生中成绩是“优”等的约有多少人?。
2020届河北省中考数学模拟试卷(有答案)(word版)(已纠错)
河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA 的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2020年河北省中考数学模拟试卷(七)(附解析)
2020年河北省中考数学模拟试卷(七)一.选择题(本题共42分,第1-10题,每小题3分,第11-16题,每小题3分) 1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2月5日中午12点,武汉市慈善总会接收捐赠款约3230000000元.14亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战,将3230000000用科学记数法表示应为( ) A .323×107B .32.3×108C .3.23×109D .3.23×10103.如图,点A 、O 、B 在一条直线上,∠1是锐角,则∠1的余角是( )A .12∠2﹣∠1B .12∠2−32∠1C .12(∠2﹣∠1)D .13(∠1+∠2)4.“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .x •(1+30%)×80%=2080 B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%5.关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣16.把方程x 2+8x ﹣3=0化成(x +m )2=n 的形式,则m ,n 的值分别是( ) A .4,13B .﹣4,19C .﹣4,13D .4,197.如图,小明在以∠A 为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若△ABC 的面积为4,则△BED 的面积为( )A .1B .2C .3D .48.已知点A (2,3)在反比例函数y ═k x(k ≠0)的图象上,当x >﹣2时,则y 的取值范围是( ) A .y >﹣3B .y <﹣3或y >0C .y <﹣3D .y >﹣3或y >09.如图,AB 为⊙O 直径,弦CD ⊥AB 于E ,则下面结论中错误的是( )A .CE =DEB .BĈ=BD ̂ C .∠BAC =∠BAD D .OE =BE10.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是37,袋中白球共有( )A .1个B .2个C .3个D .4个11.若关于x 的方程2x+m x+2=−1的解是负数,则m 的取值范围是( )A .m <﹣2B .m >﹣2C .m <﹣2且m ≠4D .m >﹣2且m ≠412.如图,正六边形的中心为原点O ,点A 的坐标为(0,4),顶点E (﹣1,√3),顶点B (1,√3),设直线AE 与y 轴的夹角∠EAO 为α,现将这个六边形绕中心O 旋转,则当α取最大角时,它的正切值为( )A .12B .1C .√33D .4+√31313.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°14.如果ab >0,bc <0,则一次函数y =−ab x +cb 的图象的大致形状是( )A .B .C .D .15.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①abc <0②b <c ③3a +c =0④当y >0时,﹣1<x <3 其中正确的结论有( )A .1个B .2个C .3个D .4个16.已知抛物线y =−316(x ﹣1)(x ﹣9)与x 轴交于A ,B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .72B .2√3C .√412D .5二.填空题(17小题3分;18小题4分;19小题2空,每空2分,共11分) 17.方程x 2=﹣4x 的解是 .18.买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要元.19.定义新运算:a&b=a(1﹣b),其中等号右边是常规的乘法和减法运算,例如:(﹣1)&1=(﹣1)×(1﹣1)=0.(1)计算:(1+2)&2=.(2)若a&a+b&b=2ab.则a与b的关系:.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x2+5x+6,翻开纸片③是3x2﹣x﹣2.解答下列问题(1)求纸片①上的代数式;(2)若x是方程2x=﹣x﹣9的解,求纸片①上代数式的值.21.(9分)观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25②×396=693×;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.22.(9分)某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.(9分)如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC 于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.24.(10分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=mx(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).(1)分别求m、n的值;(2)连接OD,求△ADO的面积.25.(10分)如图,△ABC中,AB=AC,∠BAC<60°,将线段AB绕点A逆时针旋转60°得到点D,点E与点D关于直线BC对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE的形状,并证明;(3)请问在直线CE上是否存在点P,使得P A﹣PB=CD成立?若存在,请用文字描述出点P的准确位置,并画图证明;若不存在,请说明理由.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共16小题)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2月5日中午12点,武汉市慈善总会接收捐赠款约3230000000元.14亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战,将3230000000用科学记数法表示应为()A.323×107B.32.3×108C.3.23×109D.3.23×1010解:3 230 000 000=3.23×109,故选:C.3.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A .12∠2﹣∠1B .12∠2−32∠1C .12(∠2﹣∠1)D .13(∠1+∠2)解:由图知:∠1+∠2=180°;∴12(∠1+∠2)=90°;∴90°﹣∠1=12(∠1+∠2)﹣∠1=12(∠2﹣∠1). 故选:C .4.“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .x •(1+30%)×80%=2080 B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%解:设该电器的成本价为x 元, 由题意得,x (1+30%)×80%=2080. 故选:A .5.关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( )A .m ≤﹣1B .m <﹣1C .m ≥﹣1D .m >﹣1解:{x −m <03x −1>2(x −1),解不等式x ﹣m <0,得:x <m ,解不等式3x ﹣1>2(x ﹣1),得:x >﹣1,∵不等式组有解,∴m>﹣1.故选:D.6.把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,19解:∵x2+8x﹣3=0,∴x2+8x=3,∴x2+8x+16=3+16,即(x+4)2=19,∴m=4,n=19,故选:D.7.如图,小明在以∠A为顶角的等腰三角形ABC中用圆规和直尺作图,作出过点A的射线交BC于点D,然后又作出一条直线与AB交于点E,连接DE,若△ABC的面积为4,则△BED的面积为()A.1B.2C.3D.4解:∵△ABC是等腰三角形,根据作图可知:AD是顶角A的平分线,∴点D是BC的中点,∴S △ABD =12S △ABC =2∵点E 是AB 的中点,∴S △BED =12S ABD =1.故选:A .8.已知点A (2,3)在反比例函数y ═k x (k ≠0)的图象上,当x >﹣2时,则y 的取值范围是( )A .y >﹣3B .y <﹣3或y >0C .y <﹣3D .y >﹣3或y >0 解:根据题意得k =2×3=6,∴y =6x ,∴图象在一三象限,在每个象限内y 随x 增大而减小,当x =﹣2时,y =6−2=−3,∴当x >﹣2时,y <﹣3或y >0.故选:B .9.如图,AB 为⊙O 直径,弦CD ⊥AB 于E ,则下面结论中错误的是( )A .CE =DEB .BC ̂=BD ̂ C .∠BAC =∠BAD D .OE =BE解:根据垂径定理和等弧对等弦,得A 、B 、C 正确,只有D 错误.故选:D .10.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是37,袋中白球共有( ) A .1个B .2个C .3个D .4个 解:设白球有x 个,根据题意,得:33+2+x =37, 解得:x =2, 即袋中白球有2个,故选:B .11.若关于x 的方程2x+m x+2=−1的解是负数,则m 的取值范围是( ) A .m <﹣2 B .m >﹣2 C .m <﹣2且m ≠4 D .m >﹣2且m ≠4解:由方程2x+m x+2=−1,解得:x =−2−m 3 ∵解是负数,且x ≠﹣2∴−2−m 3<0且−2−m 3≠−2∴m >﹣2且≠4故选:D .12.如图,正六边形的中心为原点O ,点A 的坐标为(0,4),顶点E (﹣1,√3),顶点B (1,√3),设直线AE 与y 轴的夹角∠EAO 为α,现将这个六边形绕中心O 旋转,则当α取最大角时,它的正切值为( )A .12B .1C .√33D .4+√313解:如图所示,连接AM ,∵正六边形是中心对称图形,绕中心O 旋转时,点E 与B 重合时,α的角度不变; 点E 与F 、M 重合时,α的角度不变;点E 与G 、H 重合时,α的角度不变,此时角度最小;∵AN =4−√3,EN =1,OM =OE =√12+(√3)2=2,∴tan ∠EAN =EN AN =14−√3=4+√313,tan ∠MAO =OM OA =24=12; 当OE ⊥AE 时,α角是最大的,∵OE =2,OA =4,∴α=30°, ∴tan α=√33∴当α取最大角时,它的正切值为√33; 故选:C .13.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B ′AC ,∴∠BAC =∠ACD =∠B ′AC =12∠1=22°,∴∠B =180°﹣∠2﹣∠BAC =180°﹣44°﹣22°=114°;故选:C .14.如果ab >0,bc <0,则一次函数y =−a b x +c b 的图象的大致形状是( )A .B .C .D .解:根据题意,ab >0,bc <0,则a b >0,c b<0, ∴在一次函数y =−a b x +c b 中,有−a b <0,c b<0, 故其图象过二三四象限,分析可得D 符合,故选:D .15.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①abc <0②b <c ③3a +c =0④当y >0时,﹣1<x <3其中正确的结论有( )A.1个B.2个C.3个D.4个解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=−b2a=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c =﹣3a ,∴3a +c =0.故③正确;④由抛物线的对称性质得到:抛物线与x 轴的另一交点坐标是(3,0).∴当y >0时,﹣1<x <3故④正确.综上所述,正确的结论有4个.故选:D .16.已知抛物线y =−316(x ﹣1)(x ﹣9)与x 轴交于A ,B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .72B .2√3C .√412D .5解:如图,连接BG .P 为AG 中点,D 为AB 中点,所以PD 是△ABG 的中位线,则DP =12BG ,当BG 最大时,则DP 最大.由圆的性质可知,当G 、C 、B 三点共线时,BG 最大.∵C (5,3),B (9,0),∴BC =√32+42=5,∴BG 的最大值为2+5=7,∴DP 的最大值为72.故选:A .二.填空题(共3小题)17.方程x 2=﹣4x 的解是 x 1=0,x 2=﹣4 .解:x 2=﹣4x ,x 2+4x =0,x (x +4)=0,x 1=0,x 2=﹣4故答案为x 1=0,x 2=﹣4.18.买一个篮球需要m 元,买一个排球需要n 元,则买3个篮球和5个排球共需要 (3m +5n ) 元.解:买3个篮球和5个排球共需要(3m+5n)元.故答案为:3m+5n19.定义新运算:a&b=a(1﹣b),其中等号右边是常规的乘法和减法运算,例如:(﹣1)&1=(﹣1)×(1﹣1)=0.(1)计算:(1+2)&2=﹣3.(2)若a&a+b&b=2ab.则a与b的关系:a=﹣b或a=1﹣b.解:(1)∵a&b=a(1﹣b),∴(1+2)&2=3&2=3×(1﹣2)=3×(﹣1)=﹣3,故答案为:﹣3;(2)∵a&a+b&b=2ab,∴a(1﹣a)+b(1﹣b)=2ab,∴a﹣a2+b﹣b2=2ab,∴a+b=a2+2ab+b2∴a+b=(a+b)2,∴(a+b)2﹣(a+b)=0,∴(a+b)(a+b﹣1)=0,∴a+b=0或a+b﹣1=0,∴a=﹣b或a=1﹣b,故答案为:a=﹣b或a=1﹣b.三.解答题(共7小题)20.数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x2+5x+6,翻开纸片③是3x2﹣x﹣2.解答下列问题(1)求纸片①上的代数式;(2)若x是方程2x=﹣x﹣9的解,求纸片①上代数式的值.解:(1)纸片①上的代数式为:(4x2+5x+6)+(3x2﹣x﹣2)=4x2+5x+6+3x2﹣x﹣2=7x2+4x+4(2)解方程:2x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x2+4x+4=7×(﹣3)2+4×(﹣3)+4=55即纸片①上代数式的值为5521.观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×275=572×25②63×396=693×36;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.解:(1)观察可知:若两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数字、个位上的数字、十位上的数字,这样的两位数与三位数的积,则等于这个三位数与两位数各自交换个位数字与十位数字所得的三位数与两位数的积,∴①52×275=572×25②63×396=693×36.故答案为275、572,63、36;(2)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a )验证:等式左边=(10a +b )•(110b +11a )=11(10a +b )(10b +a )等式右边=(110a +11b )(10b +a )=11(10a +b )(10b +a )左边=右边.答:表示“数字对称等式”一般规律的式子为)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a );(3)规律:若a =11m ,b =11n ,(m 、n 均为1至8的自然数),且22≤a +b ≤99,则 (100a +b )[10000b +100(a +b )+a ]=[10000a +100(a +b )+b ](100b +a ).a +b 的取值范围为:22≤a +b ≤99.22.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.解:(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,依题意,得:{3x +5y =502x +3y =31,解得:{x =5y =7. 答:1个甲种乒乓球的售价是5元,1个乙种乒乓球的售价是7元.(2)设购买甲种乒乓球a 个,费用为w 元,则购买乙种乒乓球(200﹣a )个, 依题意,得:w =5a +7(200﹣a )=﹣2a +1400.∵a ≤3(200﹣a ),∴a ≤150.∵﹣2<0,∴w 值随a 值的增大而减小,∴当a =150时,w 取得最小值,此时w =1100,200﹣a =50.答:当购买甲种乒乓球150个,乙种乒乓球50个时最省钱.23.如图,△ABC 内接于⊙O ,AB 是直径,过点A 作直线MN ,且∠MAC =∠ABC .(1)求证:MN 是⊙O 的切线.(2)设D 是弧AC 的中点,连结BD 交AC 于点G ,过点D 作DE ⊥AB 于点E ,交AC 于点F .①求证:FD =FG .②若BC =3,AB =5,试求AE 的长.(1)证明:∵AB 是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,{DH=DEBD=BD,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,{DE=DHAD=CD,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.24.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=mx(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D 的坐标为(4,n ).(1)分别求m 、n 的值;(2)连接OD ,求△ADO 的面积.解:(1)∵反比例函数y =m x (m >0)在第一象限的图象交于点C (1,8), ∴8=m 1,∴m =8,∴函数解析式为y =8x ,将D (4,n )代入y =8x 得,n =84=2. (2)设直线AB 的解析式为y =kx +b ,由题意得 {k +b =84k +b =2, 解得 {k =−2b =10, ∴直线AB 的函数解析式为y =﹣2x +10,令x =0,则y =10,∴A (0,10),∴△ADO 的面积=12×10×4=20=20.25.如图,△ABC 中,AB =AC ,∠BAC <60°,将线段AB 绕点A 逆时针旋转60°得到点D,点E与点D关于直线BC对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE的形状,并证明;(3)请问在直线CE上是否存在点P,使得P A﹣PB=CD成立?若存在,请用文字描述出点P的准确位置,并画图证明;若不存在,请说明理由.解:(1)补全图形如图1.(2)△CDE为等边三角形,证明如下:延长BC与DE交于F,∵AB=AC,∴∠ABC=∠ACB,①∵线段AB绕点A逆时针旋转60°得到点D,∴AD=AB=AC,∠BAD=60°,∴∠ACD=∠ADC,②∵四边形ABCD中,∠BAD+∠ABC+∠BCD+∠CDA=360°.∴∠ABC+∠ACB+∠ACD+∠ADC=300°,③∴由①②③,得∠ACB+∠ACD=150°,即∠BCD=150°,∴∠DCF=180°﹣∠BCD=30°,∵点E与点D关于直线BC对称,∴∠ECF=∠DCF=30°,DC=CE,∴∠DCE=60°.∴△DCE是等边三角形;(3)存在,作AG⊥BC于G,直线EC与AG的交点即为点P,证明:延长AG与DC交于点Q,连接QB,BD,由(2)可知,∠PCD=180°﹣∠DCE=120°,∠PCQ=∠DCE=60°,∠PCG=∠FCE =30°,∴∠CPG=90°﹣∠PCG=60°,∴∠PQC=∠CPQ=∠PCQ=60°,∴△PCQ为等边三角形,∴PC=CQ,∠APC=120°﹣∠PCD,①∵AG⊥BC,AC=BC,∴AG垂直平分BC,∴PB=PC=QB=QC,∴四边形PBQC是菱形,∴PB=QC,∠PBQ=∠PCQ=60°,②∵QB=QC,∴∠QBC=∠QCB,∴∠ABQ=∠ACQ,∵AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°=∠PCQ,∴∠ABQ﹣∠ABD=∠ACQ﹣∠PCQ,∴∠DBQ=∠ACP,③∴由①②③得△ACP≌△DBQ(AAS),∴AP=DQ.∵CQ=PB,∴AP=DQ=DC+CQ=DC+PB.即P A﹣PB=CD成立.26.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.解:(1)将点B (3,0),C (0,3)代入y =﹣x 2+bx +c ,得 {0=−9+3b +3c =3, 解得,{b =2c =3, ∴二次函数的解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得 {3k +b =0k +b =4, 解得 {k =−2b =6, ∴直线BM 的解析式为y =﹣2x +6,∵PD ⊥x 轴且OD =m ,∴P (m ,﹣2m +6),∴S =S △PCD =12PD •OD =12m (﹣2m +6)=﹣m 2+3m , 即S =﹣m 2+3m ,∵点P 在线段BM 上,且B (3,0),M (1,4), ∴1≤m ≤3;②∵S =﹣m 2+3m =﹣(m −32)2+94,∵﹣1>0,∴当m =32时,S 取最大值94, ∴P (32,3);(3)存在,理由如下:如图2﹣1,当∠CPD =90°时,∵∠COD =∠ODP =∠CPD =90°,∴四边形CODP 为矩形,∴PD =CO =3,将y =3代入直线y =﹣2x +6,得,x =32,∴P (32,3);如图2﹣2,当∠PCD =90°时,∵OC =3,OD =m ,∴CD 2=OC 2+OD 2=9+m 2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴DCPD =OCDC,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3√2(舍去),m2=﹣3+3√2,∴P(﹣3+3√2,12﹣6√2),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(32,3)或(﹣3+3√2,12﹣6√2).。
2020年河北省中考数学模拟试卷(二)(附解析)
2020年河北省中考数学模拟试卷(二)一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算结果为正数的是( )A .(﹣3)2B .﹣3÷2C .0×(﹣2017)D .2﹣32.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( )A .7.6×108克B .7.6×10﹣7克C .7.6×10﹣8克D .7.6×10﹣9克3.如图,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( )A .B .C .D . 4.计算:95÷15×(−115)得( )A .−95B .−1125C .−15D .11255.下列图形中,不是中心对称图形的是( )A .B .C .D .6.对于√5−2,下列说法中正确的是( )A .它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为√5+27.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个8.如图所示的几何体,它的左视图是()A.B.C.D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.610.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A.69°B.111°C.159°D.141°11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4√2和10√2,则这个正方形的对角线长为()A.12B.√6C.2√6D.6√212.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个13.化简2ba2−b2+1a+b,其结果为()A.1a−b B.1a+bC.1a−bD.aa−b14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()甲组12户家庭用水量统计表用水量(吨)4569户数4521A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.已知抛物线y=x2+2x﹣m﹣2与x轴没有交点,则函数y=mx的大致图象是()A.B.C.D.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.8二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题每题4分,把答案写在题中横线上)17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.18.如图,已知线段AB=2,作BD⊥AB,使BD=12AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为.19.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.21.(9分)某班50名学生参加“迎国庆,手工编织‘中国结’”活动,要求每人编织4~7枚,活动结束后随机抽查了20名学生每人的编织量,并将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),注:A代表4枚;B代表5枚;C代表6枚;D代表7枚.经确认扇形图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误:;(2)写出这20名学生每人编织‘中国结’数量的众数、中位数、平均数;(3)求这50名学生中编织‘中国结’个数不少于6的人数;(4)若从这50名学生中随机选取一名,求其编织‘中国结’个数为C的概率.22.(9分)阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第步(该步的序号)开始出现错误,错的原因为;(2)请你将正确的解答过程写下来.23.(9分)如图,AB=16,点O为AB的中点,点C在线段OB上(不与点O,B重合),将OC绕点O顺时针旋转270°后得到大扇形COD,AP、BQ分别与优弧CD̂相切于点P、Q,且点P、Q在AB的异侧.(1)求证:AP=BQ;(2)当BQ=4√3时,求弧CQ̂的长.(结果保留π)24.(10分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=−12x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.25.(10分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.26.(12分)春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机经销一种安全、无污染的电子鞭炮已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?答案解析一.选择题(共16小题)1.下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣3解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选:A.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克解:0.00 000 0076克=7.6×10﹣8克,故选:C.3.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C 、以O 为顶点的角不止一个,不能用∠O 表示,故C 选项错误;D 、能用∠1,∠AOB ,∠O 三种方法表示同一个角,故D 选项正确.故选:D .4.计算:95÷15×(−115)得( )A .−95B .−1125C .−15D .1125 解:原式=−95×115×115,=−1125.故选:B .5.下列图形中,不是中心对称图形的是( )A .B .C .D .解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误;故选:B .6.对于√5−2,下列说法中正确的是( )A .它是一个无理数B .它比0小C .它不能用数轴上的点表示出来D.它的相反数为√5+2解:A、√5−2是一个无理数,故符合题意;B、√5−2比0大,故不符合题意;C、√5−2能用数轴上的点表示出来,故不符合题意;D、√5−2它的相反数为−√5+2,故不符合题意.故选:A.7.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个解:①:菱形的两组对角不一定分别对应相等,故所有的菱形不一定都相似;即:选项①错误.②:放大镜下的图形与原图形只是大小不相等,但形状相同,所以它们一定相似;即:选项②错误.③:等边三角形的三个内角相等,三条边都相等,故所有的等边三角形都相似;即:选项③正确④:有一个角为110度的两个等腰三角形一定相似.因为它们的顶角均为110°,两锐角均为35°,根据“两内角对应相等的两个三角形相似”即可判定.故:选项④正确.⑤:只有长与宽对应成比例的两个矩形相似,故选项⑤正确8.如图所示的几何体,它的左视图是()A.B.C.D.解:如图所示的几何体的左视图为:.故选:D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.6解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD=AC×BD2=24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=12AC=3.10.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A.69°B.111°C.159°D.141°解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4√2和10√2,则这个正方形的对角线长为()A.12B.√6C.2√6D.6√2解:①当4√2是腰和10√2时,两边的和小于第三边,不能构成三角形,应舍去.②当4√2是底边和10√2是腰时,等腰三角形的周长是24√2,因而可得正方形的边长是6√2,故这个正方形的对角线长是6√2•cos45°=12;故选:A.12.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个解:①(6﹣2×3)0,无意义,故此选项符合题意;②10﹣3=0.001,故原题错误,符合题意;③|π﹣3.14|=π﹣3.14,错误,符合题意;④0.000001=10﹣6,错误,符合题意;故不正确的有4个.故选:D.13.化简2ba2−b2+1a+b,其结果为()A.1a−b B.1a+bC.1a−bD.aa−b解:原式=2b(a+b)(a−b)+a−b(a+b)(a−b)=2b+a−b (a+b)(a−b)=1a−b.故选:A.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )甲组12户家庭用水量统计表用水量(吨) 4 5 6 9户数 4 5 2 1A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断解:由统计表知甲组的中位数为5+52=5(吨),乙组的4吨和6吨的有12×90360=3(户),7吨的有12×60360=2户,则5吨的有12﹣(3+3+2)=4户,∴乙组的中位数为5+52=5(吨),则甲组和乙组的中位数相等,故选:B .15.已知抛物线y =x 2+2x ﹣m ﹣2与x 轴没有交点,则函数y =m x 的大致图象是()A.B.C.D.解:∵抛物线y=x2+2x﹣m﹣2与x轴没有交点,∴方程x2+2x﹣m﹣2=0没有实数根,∴△=4﹣4×1×(﹣m﹣2)=4m+12<0,∴m<﹣3,∴函数y=mx的图象在二、四象限.故选:C.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK 边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.8解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2−√2小于等于1,故选:A.二.填空题(共3小题)17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是14.解:∵F,G分别为BC,CD的中点,∴FG=12BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=12BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=12AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1418.如图,已知线段AB=2,作BD⊥AB,使BD=12AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为√5−1.解::∵AB=2,则BD=DE=12×2=1,由勾股定理得,AD=√AB2+BD2=√5,则AC=AE=√5−1,∴AC=√5−12AB=√5−1,故答案为:√5−1.19.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组{y =ax 2y =bx +c的解为{x 1=−2y 1=4,{x 2=1y 2=1, 即关于x 的方程ax 2﹣bx ﹣c =0的解为x 1=﹣2,x 2=1.故答案为x 1=﹣2,x 2=1.三.解答题(共7小题)20.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 4 ,数轴上表示﹣2和3的两点之间的距离是 5 ;(2)数轴上表示x 和﹣1的两点之间的距离表示为 |x +1| ;(3)若x 表示一个有理数,则|x ﹣2|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.解:(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;故答案为:4;5;(2)|x ﹣(﹣1)|=|x +1|或|(﹣1)﹣x |=|x +1|,故答案为:|x +1|;(3)有最小值,当x <﹣3时,|x ﹣2|+|x +3|=2﹣x ﹣x ﹣3=﹣2x ﹣1,当﹣3≤x ≤2时,|x ﹣2|+|x +3|=2﹣x +x +3=5,当x >2时,|x ﹣2|+|x +3|=x ﹣2+x +3=2x +1,在数轴上|x ﹣2|+|x +3|的几何意义是:表示有理数x 的点到﹣3及到2的距离之和,所以当﹣3≤x ≤2时,它的最小值为5.21.某班50名学生参加“迎国庆,手工编织‘中国结’”活动,要求每人编织4~7枚,活动结束后随机抽查了20名学生每人的编织量,并将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),注:A 代表4枚;B 代表5枚;C 代表6枚;D 代表7枚.经确认扇形图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误: D 类型人数错误 ;(2)写出这20名学生每人编织‘中国结’数量的众数 5 、中位数 5 、平均数 5.3 ;(3)求这50名学生中编织‘中国结’个数不少于6的人数;(4)若从这50名学生中随机选取一名,求其编织‘中国结’个数为C 的概率.解:(1)类型D 的人数为20×10%=2(人),故答案为:D 类型人数错误;(2)这20名学生每人编织‘中国结’数量的众数是5枚,中位数是第10和第11个数据的平均数,为5+52=5枚,平均数为4×4+5×8+6×6+7×220=5.3,故答案为:5,5,5.3;(3)(10%+30%)×50=20(人),答:这50名学生中编织‘中国结’个数不少于6的人数为20人;(4)由扇形统计图可知,50人中编织‘中国结’个数为C的占30%,∴编织‘中国结’个数为C的概率为0.3.22.阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第③步(该步的序号)开始出现错误,错的原因为忽略了a2﹣b2=0的可能;(2)请你将正确的解答过程写下来.解:(1)上述解题过程,从第③步开始出现错误,错的原因为:忽略了a2﹣b2=0的可能;(2)正确的写法为:c2(a2﹣b2)=(a2+b2)(a2﹣b2),移项得:c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,因式分解得:(a2﹣b2)[c2﹣(a2+b2)]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.故答案为:③,忽略了a2﹣b2=0的可能.23.如图,AB=16,点O为AB的中点,点C在线段OB上(不与点O,B重合),将OC 绕点O顺时针旋转270°后得到大扇形COD,AP、BQ分别与优弧CD̂相切于点P、Q,且点P、Q在AB的异侧.(1)求证:AP=BQ;(2)当BQ=4√3时,求弧CQ̂的长.(结果保留π)(1)证明:连接OQ,OP.∵BQ与AP分别与CD相切,∴OP⊥AP,OQ⊥BQ,即∠BQO=∠OP A=90°,∵OA=OB,OP=OQ,∴Rt△BQO≌Rt△APO,∴AP=BQ.(2)∵BQ=4√3时,OB=12AB=8,∠Q=90°,∴sin∠BOQ=√32,∠BOQ=60°,∴OQ =4∴弧CQ 的长为60π⋅4180=43π.24.如图,在平面直角坐标系中,直线l 1的解析式为y =x ,直线l 2的解析式为y =−12x +3,与x 轴、y 轴分别交于点A 、点B ,直线l 1与l 2交于点C .(1)求点A 、点B 、点C 的坐标,并求出△COB 的面积;(2)若直线l 2上存在点P (不与B 重合),满足S △COP =S △COB ,请求出点P 的坐标;(3)在y 轴右侧有一动直线平行于y 轴,分别与l 1,l 2交于点M 、N ,且点M 在点N 的下方,y 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.解:(1)直线l 2的解析式为y =−12x +3,与x 轴、y 轴分别交于点A 、点B ,则点A 、B的坐标分别为(6,0)、(0,3),联立式y =x ,y =−12x +3并解得:x =2,故点C (2,2);△COB 的面积=12×OB ×x C =12×3×2=3;(2)设点P (m ,−12m +3),S △COP =S △COB ,则BC =PC ,则(m﹣2)2+(−12m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3−12m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3−12m﹣n,n﹣m=m,解得:m=67,n=127;②当∠QNM=90°时,则MN=QN,即:3−12m﹣m=m,解得:m=65,n=y N=3−12×65=125;③当∠NMQ=90°时,同理可得:n=6 5;综上,点Q的坐标为(0,127)或(0,125)或(0,65).25.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=3﹣x,FC=x;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=(x+4−x)×32−12×x×(4−x)−12×x×(3﹣x)=x2−72x+6=(x−74)2+4716∴当x=74时,△PEF面积的最小值为4716(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.26.春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机经销一种安全、无污染的电子鞭炮已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?解:(1)由题意得:w=(x﹣80)•y=(x﹣80)(﹣2x+320)=﹣2x2+480x﹣25600∴w与x的函数关系式为:w=﹣2x2+480x﹣25600;(2)w=﹣2x2+480x﹣25600=﹣2(x﹣120)2+3200∵﹣2<0,80≤x≤160∴当x=120时,w有最大值,w的最大值为3200元.(3)当w=2400时,﹣2(x﹣120)2+3200=2400解得:x1=100,x2=140∴要想每天获得销售利润2400元,应定价为100元或140元每盒.。
2 2020年 河北 中考 数学 模考(二)答案
2020年河北中考数学押题模考(二)参考答案一.选择题(共16小题,满分42分)1.【答案】D【解析】解:根据题意知1a =-、0b =、1c =,则原式20172018(1)201601=-+⨯+101=-++0=,故选:D .2.【答案】C【解析】解:50.000035 3.510-=⨯,故选:C .3.【答案】C【解析】解:由题意知23120∠=∠-︒,12180∠+∠=︒,13120180∴∠+∠-︒=︒,解得:150∠=︒,故选:C .4.【答案】C【解析】解:2(2)4-⨯-=.故选:C .5.【答案】D【解析】解:A 、B 、C 都不是中心对称图形,D 是中心对称图形,故选:D .6.【答案】A【解析】解:A 、67是有理数,故此选项正确;BC、π是无理数,故此选项错误;D、3.1313313331⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.7.【答案】C【解析】解:A、菱形对应边成比例,对应角不一定相等,所以不一定是相似图形,故本选项错误.B、各边对应成比例的多边形对应角不一定相等(如菱形),所以不一定是相似多边形,故本选项错误;C、等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D、矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;故选:C.8.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.9.【答案】C【解析】解:由于菱形的两条对角线的长为6和8,∴5,⨯=,∴菱形的周长为:4520故选:C.10.【答案】C【解析】解:903060∠=︒-︒=︒,ABD则609015165ABC∠=︒+︒+︒=︒.故选:C.11.【答案】A【解析】解:选项A 不正确.理由正方形的边长为10,所以对角线14=, 因为1514>,所以这个图形不可能存在.故选:A .12.【答案】D【解析】解:A 、原式8=,错误;B 、原式2=+C 、原式1=,错误;D 、原式6633x x y y -==,正确. 故选:D .13.【答案】A 【解析】解:原式11(1)(1)(1)(1)x x x x x -=++-+- (1)(1)x x x =+- 21x x =-, 故选:A .14.【答案】C 【解析】解:抽查的学生数816%50=÷=,∴第二组的学生数5020%10=⨯=,第四组的学生数5026%13=⨯=,∴第25个数和第26个数都在第四组,∴样本的中位数落在第四组.故选:C .15.【答案】D【解析】解:抛物线23y x =-+,当0y =时,x =;当0x =时,3y =,则抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(1,1)-,(0,1),(0,2),(1,1);共有4个,4k ∴=;故选:D .16.【答案】C【解析】解:如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的红线,观察图象可知点B ,M 间的距离大于等于2小于等于1,故选C .二.填空题(共3小题,满分10分)17.【答案】24cm【解析】解:D 、E 分别是ABC ∆的边AB 、BC 的中点, 12DE AC ∴=, 同理,12EF AB =,12DF BC =, 11111()482422222DEF C DE EF DF AC BC AB AC BC AC cm ∆∴=++=++=++=⨯=. 故答案为:24cm18.【答案】见解析【解析】解:AP AM =,BP BM =,AB AB =,ABP ABM ∴∆≅∆,BAP BAM ∴∠=∠,AP AM =,AQ PM ∴⊥.故答案为:到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一19.【答案】1x =【解析】解:222412(1)1y x x x =-+=--,∴对称轴为直线1x =,故答案为:1x =.三.解答题(共7小题,满分68分)20.【答案】见解析【解析】解:(1)点B 表示的数是31815-+=;点C 表示的数是131833-+⨯=. 故答案为:15,3;(2)点P 与点Q 相遇前,42186t t +=-,解得2t =;点P 与点Q 相遇后,42186t t +=+,解得4t =;(3)假设存在,当点P 在点C 左侧时,64PC t =-,2QB t =,4PC QB +=,6424t t ∴-+=,解得1t =.此时点P 表示的数是1;当点P 在点C 右侧时,46PC t =-,2QB t =,4PC QB +=,4624t t ∴-+=,解得53t =. 此时点P 表示的数是113. 综上所述,在运动过程中存在4PC QB +=,此时点P 表示的数为1或113. 21.【答案】见解析【解析】解:(1)在甲超市摇奖的顾客获得奖金金额的中位数是1010102+=元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为205151010155201050⨯+⨯+⨯+⨯=(元),在乙超市平均获奖为20215310205258.250⨯+⨯+⨯+⨯=(元);(4)获得奖金10元的概率是3601447236336010---=.22.【答案】见解析【解析】解:ABC ∆是等边三角形,理由:22222()0a b c b a c ++-+=2222220a b c ba bc b ∴++--+=,22()()0a b b c ∴-+-=,则a b =,b c =,故a b c==,则ABC∆是等边三角形.23.【答案】见解析【解析】(1)解:射线BM从与线段AB重合的位置起,以每秒6︒的旋转速度绕B点按顺时针方向旋转至BP的位置,B∴一秒P转动的圆心角为12︒,∴每秒走过的弧长为:1262/ 1805cm s ππ⨯=;(2)①证明:如图所示:点C始终为AE的中点,过C作CD AB⊥于D,AE交CD、CB分别于G、F,过F作//FN CD,过C作圆的切线交FN于N.ACD CAG CGF∴∠+∠=∠,ABC GAC ACG∠=∠=∠,MCA ABC∠=∠,MCA ACG ACD CAG∴∠+∠=∠+∠,//CN AE∴;②证明://FN CD,//CN AE;∴四边形CGFN是平行四边形,90GCF ACG∠=︒-∠,90CFG EFB EBC∠=∠=︒-∠,EBC ACD∠=∠,GCF GFC∴∠=∠,CG GF∴=,∴平行四边形CGFN为菱形;③解:连接EO,CO.存在,理由如下:ACF ACB∠=∠,CAF CBA∠=∠,ACF BCA∴∆∆∽,∴AC CF BC AC=, 2AC BC CF ∴=,当10t s =时,1602AOC AOE ∠=∠=︒, 60BOE ∴∠=︒,AOC ∴∆,BOE ∆都是等边三角形,且此时全等, AC BE ∴=,2BE BC CF ∴=.24.【答案】见解析【解析】解:(1)把(2,0)A -,(0,4)B 代入y kx b =+中得:204k b b -+=⎧⎨=⎩, 解得:24k b =⎧⎨=⎩, 则直线AB 解析式为24y x =+;(2)如图1所示:作PC y ⊥轴于C ,直线l 经过点B ,并且与直线AB 垂直. 90ABO PBC ∴∠+∠=︒,90ABO BAO ∠+∠=︒,BAO PBC ∴∠=∠,ABP ∆是等腰直角三角形,AB PB ∴=,在ABO ∆和BPC ∆中,BAO PBC AOB BCP AB PB ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABO BPC AAS ∴∆≅∆,2AO BC ∴==,4BO PC ==,∴点P 的坐标(4,6)-或(4,2);(3)①点(,)Q a b 在第二象限,且QAB PAB S S ∆∆=. Q ∴点在经过1P 点且垂直于直线l 的直线上,∴点Q 所在的直线平行于直线AB , 直线AB 解析式为24y x =+,∴设点Q 所在的直线为2y x n =+,1(4,6)P -,62(4)n ∴=⨯-+,解得14n =,∴点Q 所在的直线为214y x =+,点(,)Q a b ,214b a ∴=+;(2,0)A -,(0,4)B②QA QB =,2222(2)(4)a b a b ∴++=+-,214b a =+,2222(2)(214)(2144)a a a a ∴+++=++-, 整理得,1050a =-,解得5a =-,4b =,Q ∴的坐标(5,4)-.25.【答案】见解析【解析】(1)证明:在正方形ABCD 中,AB BC =, 45ABP CBP ∠=∠=︒,在ABP ∆和CBP ∆中,AB BC ABP CBP PB PB =⎧⎪∠=∠⎨⎪=⎩,()ABP CBP SAS ∴∆≅∆,PA PC ∴=,PA PE =,PC PE ∴=;(2)由(1)知,ABP CBP ∆≅∆,BAP BCP ∴∠=∠,DAP DCP ∴∠=∠,PA PE =,DAP E ∴∠=∠,DCP E ∴∠=∠,CFP EFD ∠=∠(对顶角相等), 180180PFC PCF DFE E ∴︒-∠-∠=︒-∠-∠, 即90CPF EDF ∠=∠=︒;(3)在菱形ABCD 中,AB BC =,ABP CBP ∠=∠, 在ABP ∆和CBP ∆中,AB BC ABP CBP PB PB =⎧⎪∠=∠⎨⎪=⎩,()ABP CBP SAS ∴∆≅∆,PA PC ∴=,BAP BCP ∠=∠,DAP DCP ∴∠=∠, PA PE =,PC PE ∴=,11 / 11PA PE =,DAP E ∴∠=∠,DCP E ∴∠=∠,CFP EFD ∠=∠,CPF EDF ∴∠=∠120ABC ADC ∠=∠=︒,18060CPF EDF ADC ∴∠=∠=︒-∠=︒,EPC ∴∆是等边三角形,PC CE ∴=,AP CE ∴=;26.【答案】见解析【解析】解:(1)设y kx b =+,把(40,600),(75,250)代入可得4060075250k b k b +=⎧⎨+=⎩, 交点101000k b =-⎧⎨=⎩, 101000y x ∴=-+,当50x =时,10501000500y =-⨯+=件.(2)2(40)(101000)10140040000w x x x x =--+=-+-.(3)由题意275101400400008000x x x ⎧⎨-+-⎩……, 解得6075x 剟,设成本为S ,40(101000)40040000S x x ∴=-+=-+,4000-<,S ∴随x 增大而减小,75x ∴=时,S 有最小值10000=元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省2020年中考模拟试卷
数学试卷参考答案
1-5 ACDBB 6-10 DACDB 11-16 CACDDB 17.3 18.2 19
20.(1)-3;(2)x=32
. 21.解:(1)总人数为17÷0.17=100人,则a=
30100
=0.3,b=100×0.45=45人; (2)扇形统计图中B 组对应扇形的圆心角为360°×0.3=108°;
(3)将同一班级的甲、乙学生记为A ,B ,另外两学生记为C ,D ,列树形图略, ∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,
∴甲、乙两名同学都被选中的概率为212=16
. 22.解:(1)错误之处:当2为腰,5为底时,等腰三角形的三条边为2,2,5. 错误原因:此时不能构成三角形;
(2)①当m=2时,x 2-2x+1-14=0,解得x 1=12,x 2=23,当12为腰时,12+12<32
, ∴不能构成三角形;当32为腰时,等腰三角形的三边为32,32,12
, 此时周长为32+32+21=72.当m=2时,△ABC 的周长为72
. ②当△ABC 为等边三角形时,则方程有两个相等的实数根,
即(-m )2-4(m 2-14
)=0,m 2-2m+1=0,解得m 1=m 2=1, 即当△ABC 为等边三角形时,m 的值为1.
23.证明:(1)∵AD=2AB ,点E 为AD 中点,∠ABD=90°,∴AE=ED=BE=AB , ∵BC 是由AB 绕点B 旋转得到的,∴BC=AB=ED ,
∵BC ∥AD ,∴四边形BCDE 是平行四边形,
∵BE=ED ,∴四边形BCDE 是菱形;
解:(2)∵AD=2AB ,∠ABD=90°,∴cos ∠BAD=AB:AD=12
,∴∠BAD=60°, ∵BC ∥AD ,∴∠ABC=120°,∴点A 的运动路径长为1801π120⨯⨯=3
2π. (3)∵BA=BC=1,∠ABC=120°,∴∠BAC=30°,∠CAD=60°-30°=30°, ∵四边形BCDE 是菱形,∴CD=CB=AB=1,DB 平分∠ADC ,
∴∠ACD=90°,在Rt △ACD 中,∵CD=1,∠ADC=60°,∴
.
24.解:(1)∵P (x ,0)与原点的距离为y 1, ∴当x ≥0时,y 1=OP=x , 当x <0时,y 2=OP=-x , ∴y 1关于x 的函数解析式为y=x (x ≥0)或y=-x (x <0),
图1 图3 图4 图5
M
M 即为y=|x |,函数图象如图所示:
(2)∵A 的横坐标为2,∴把x=2代入y=x ,可得y=2,此时A 为(2,2), k=2×2=4,当k=4时,如图可得,y 1>y 2时,x <0或x >2.
25.解:(1)连接BE ,如图1所示:∵四边形ABCD 是正方形,∴∠BCA=∠BAC=45°, ∵AB 是⊙O 的直径,∴∠AEB=90°,∴△ABE 是等腰直角三角形,
∴
;(3分)
(2)①连接OA 、OF ,如图3所示:则OA=OF=2,∵α=30°,∴∠OAF=90°−30°=60°, ∴△OAF 是等边三角形,∴AF=OA=2;
②∵α=60°,∠DAM=30°,∴∠NAM=90°,即AM ⊥AN ,∴AM 过点O , 设AM 交⊙O 于G ,连接FG ,过点O 作OH ⊥DM 于H ,如图4所示:
∴∠AFG=90°,∠OHM=90°,∵AG=4,∴AF=AG·cos ∠
DM 与⊙O 相离,理由如下:在Rt △ADM 中,AM=AD÷cos30°=4
=338
,∴-2, 在Rt △OHM 中,OH=OM·sin ∠
OMH=(3
-2)×sin60°
=4
∵OH−OA=4
2=2,∴OH >OA ,∴DM 与⊙O 相离;
③当α=90°时,DM 与⊙O 相切。
理由如下:当α=90°时,AD ⊥AN ,AD 过 圆心O ,∵AD ⊥DM ,∴DM 与⊙O 相切,故α=90°.
26.解:(1)设y=kx+b (1≤x ≤7),由题意得,k+b=623,3k+b=27,解得k=-16
,b=4, ∴y=-16x+4(1≤x ≤7),∴x=6时,y=-16
×6+4=3,∴300÷20=15,15(1+20%) =18,又x=12时,y=-18×12+154=94,∴94
×100÷18=12.5万人; (2)由于每平方米的年租金和时间都是变量,且对于每一个确定的时间x 的值, 每平方米的年租金m 都有唯一的值与它对应,所以它们能构成函数. 由题意知m=2x+36(1≤x ≤12);
(3)W=(2x+36)(-16x+4)=-13x 2+2x+144=-13
(x -3)2+147(1<x ≤7)或 W=(2x+36)(-18x+415)=-14x 2+3x+135=-14
(x -6)2+144(7<x ≤12), ∵当x=3时Wmax=147,x=8时Wmax=143,147>143,∴当x=3时,年租 金最大,Wmax=1.47亿元,当x=3时,m=2×3+36=42元,58×42=2436元, 即老张这一年应交租金为2436元.。