高考重难点突破圆锥曲线50道题(3)含详细解析

合集下载

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。

高二圆锥曲线常考题型汇总-含答案

高二圆锥曲线常考题型汇总-含答案

面角 P—AD—B 所成平面角为 120 ,那么四棱锥 P—ABCD 的外接球的体积为
.
35.已知抛物线
C:y2
=
2
px
的焦点
F
与双曲线
4 3
x2

4 y2
=
1
的右焦点相同,过点
F
分别做两条直线
l1 ,
l2

直线 l1 与抛物线 C 交于 A,B 两点,直线 l2 抛物线 C 交于 D,E 两点,若 l1 与 l2 斜率的平方和为 1,则 AB + DE
=(

A. 4 a 5
B. 5 a 4
C. 3 a 5
D. 5 a 3
24. 已知 O 为坐标原点,椭圆的方程为 x2 + y2 = 1,若 P 、 Q 为椭圆的两个动点且 OQ ⊥ OP ,则 43
OP 2 + OQ 2 的最小值是( )
A. 2
B. 46
C. 48
D. 7
7
7
25.设双曲线 C 的中心为点 O ,若直线 l1 和 l2 相交于点 O ,直线 l1 交双曲线于 A1 、 B1 ,直线 l2 交双曲线于 A2 、
的最小值为( A、16
) B、20
C、24
D、32
第5/19页
教师答案与解析参考版 一、选择+填空(选择题中每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆的焦点 F1(−2 2, 0), F2 (2 2, 0) ,长轴为 2a ,在椭圆上存在点 P ,是 F1PF2 = 90 ,对于直线 y = a ,在 圆 x2 + ( y −1)2 = 2 上始终存在两点 M , N 使得直线上有点 Q ,满 MQN = 90 ,则椭圆的离心率范围是( )

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

高考数学圆锥曲线专题练习及答案解析

高考数学圆锥曲线专题练习及答案解析
2
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I

高考重难点突破圆锥曲线50道题(4)含详细解析

高考重难点突破圆锥曲线50道题(4)含详细解析

高考重难点突破圆锥曲线50道题(4)含详细解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值.4.已知抛物线22(0)y px p =>上一点0(M x ,到焦点F 的距离03||2x MF =,倾斜角为α的直线经过焦点F ,且与抛物线交于两点A 、B . (1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB 的中垂线m 交x 轴于点P .证明:2||sin 2FP α=5.已知F 是椭圆22184x y +=的右焦点,过F 的直线!与椭圆相交于1(A x ,22)(x B x ,2)y 两点. (1)若1285x x =,求弦AB 的长;(2)O 为坐标原点,AOB θ∠=,满足tan OA OB θ=l 的方程. 6.已知椭圆222:22(0)C x y b b +=>. (1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且||3AB =,求A O B ∆的面积.7.已知中心在原点,一焦点为0)的双曲线被点线47y x =-被得弦中点的横坐标为2,求此双曲线的方程8.已知抛物线2:8C y x =,焦点为F ,准线为l ,线段OF 的中点为G .点P 是C 上在x 轴上方的一点,且点P 到l 的距离等于它到原点O 的距离 (1)求P 点的坐标;(2)过点(1,0)Q -作一条斜率为正数的直线L 与抛物线C 从左向右依次交于A ,B 两点,求证:2AGB AGP ∠=∠.9.已知椭圆2222:1(0)x y C a b a b+=>>,1(,0)F c -,2(,0)F c 分别为椭圆的左、右焦点,点4(,)3c 在椭圆上.(1)求C 的方程;(2)若直线(1)y k x =-与椭圆C 相交于A ,B 两点,试问:在x 轴上是否在点D ,当k 变化时,总有ODA ODB ∠=∠?若存在求出点D 的坐标,若不存在,请说明理由.10.已知以椭圆2222:(0)x y E l a b a b+=>>的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E 的方程;(2)若(,)x y 是椭圆E 上的动点,求2x y +的取值范围;(3)直线:(0)l y kx m km =+≠与椭圆E 交于异于椭圆顶点的A ,B 两点,O 为坐标原点,直线AO 与椭圆E 的另一个交点为C 点,直线l 和直线AO 的斜率之积为1,直线BC 与x 轴交于点M ,若直线BC ,AM 的斜率分别为1k ,2k ,试判断122k k +是否为定值,若是,求出该定值;若不是,说明理由.11.已知椭圆C 的对称中心为原点O ,焦点在x 轴上,焦距为(2,1)在该椭圆上. (1)求椭C 的方程;(2)直线2x =与椭圆交于P ,Q 两点,P 点位于第一象限,A ,B 是椭圆上位于直线2x =两侧的动点.当点A ,B 运动时,满足APQ BPQ ∠=∠,问直线AB 的斜率是否为定值,请说明理由.12.已知抛物线2:2(0)C y px p =>与圆222:()2pM x y R -+=的一个公共点为(2,2)A .(1)求圆M 的方程;(2)已知过点A 的直线l 与抛物线C 交于另一点B ,若抛物线C 在点A 处的切线与直线OB 垂直,求直线l 的方程.13.已知椭圆2222:1(0)x y C a b a b +=>>,且过点1)2-.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线:(0,0)l y kx m k m =+≠≠与椭圆C 相交于A 、B 两点,且直线OA ,AB ,OB 的斜率依次成等比数列,求直线l 的斜率.14.已知椭圆2222:1(0)x y a b a bΓ+=>>,Γ的四个顶点围成的四边形面积为(1)求Γ的方程;(2)过Γ的右焦点F ,且斜率不为0的直线l 与P 交于A ,B 两点线段AB 的垂直平分线经过点(0,M ,求MAB ∆的面积.15.已知椭圆2222:1(0)x y E a b a b+=>>(0,1)P 作斜率为k 的直线l 交椭圆E 于A ,B 两点,当直线垂直于y 轴时,||AB =. (Ⅰ)求椭圆E 的方程(Ⅱ)当k 变化时,在x 轴上是否存在点(,0)M m ,使得AMB ∆是以AB 为底的等腰三角形?若存在,求出m 的取值范围;若不存在,说明理由.16.已知抛物线22(0)y px p =>上点(2,)P t 到焦点的距离是3. (Ⅰ)求抛物线的标准方程及P 点坐标;(Ⅱ)设抛物线准线与x 轴交于点Q ,过抛物线焦点F 的直线l 与抛物线交于A ,B 两点,证明:直线QA ,QB 关于x 轴对称.17.椭圆:22221(0)x y a b a b +=>>离心率为12,P是椭圆上一点.(1)求椭圆方程;(2)1F ,2F 是椭圆左右焦点,过焦点1F 的弦AB 中点为1(2E -,)t ,求线段2EF 长.18.设椭圆2222:1x y C a b+=的左、右顶点分别为(,0)A a -,(,0)B a ,焦点为(,0)F c .(Ⅰ)若有一正方形的四个顶点都在椭圆C 上,且焦点在正方形内部,求椭圆离心率e 的取值范围;(Ⅱ)若1c =,过F 作直线l 与椭圆C 交于P ,Q 两点,记直线AP ,BQ 的斜率分别为1k ,2k .①若l 与x 轴重合,且||||3FP FQ =,求椭圆C 的方程; ②若直线l 不平行于x 轴,证明:12k k 为定值,并求此定值(用a 表示). 19.已知1F ,2F 分别为椭圆2222:1(0x y C a b a b +=>>的左焦点、右焦点,椭圆上的点与1F 的最大距离等于4,离心率等于13,过左焦点F 的直线l 交椭圆于M ,N 两点,圆E 内切于三角形2F MN ;(1)求椭圆的标准方程 (2)求圆E 半径的最大值20.已知椭圆22:1(1)x E y m m+=>,过点(1,0)P 的直线与椭圆E 交于A ,B不同的两点,直线0AA 垂直于直线4x =,垂足为0A . (Ⅰ)求m 的值;(Ⅱ)求证:直线0A B 恒过定点.21.椭圆22221(0)x y a b a b+=>>,左、右焦点分别为1F 、2F ,B 是椭圆上的一点,且三角形12BF F的面积最大值为(1)求椭圆的方程及其长轴长;(2)过右焦点2F 且不与x 轴重合的直线交椭圆于P 、Q 两点,记PQ 的中点为N ,直线ON 交直线3x =于M ,求证:以QM 为直径的圆一定经过右焦点2F .22.已知椭圆2212:1(0)8x y C a a +=>与抛物线22:2(0)C y px p =>有公共的焦点F ,且公共弦长为 (1)求a ,p 的值(2)过F 的直线交1C 于A ,B 两点,交2C 于M ,N 两点,且AM BN =,求||AB 23.已知抛物线2:2(0)E y px p =>上任意一点P 到直线2x =-的距离比到焦点F 距离大1. (1)求抛物线E 方程;(2)若A ,B ,C 是抛物线上不同的三点,点(M m ,11)()4m >是AB 中点,且焦点F 是ABC ∆重心,求证:||||2||FA FB FC +=.24.已知椭圆2222:1(0)x y E a b a b +=>>上的点到椭圆一个焦点的距离的最大值是最小值的3倍,且点3(1,)2P 在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(1,1)M 任作一条直线l ,l 与椭圆E 交于不同于P 点的A 、B 两点,l 与直线:34120m x y +-=交于C 点,记直线PA 、PB 、PC 的斜率分别为1k 、2k 、3k .试探究12k k +与3k 的关系,并证明你的结论.25.已知抛物线24x y =,过点(0,2)M 的动直线1l 交抛物线予A ,B 两点,点A 关于y 轴的对称点为C ,连接CB ,直线CB 与y 轴交于点N . (1)求证:N 为定点;(2)过点N 作y 轴的垂线2l ,是否存在直线1l ,使得在直线3l 上在在点P 满足PAB ∆为等边三角形,若存在,求出直线方程1l ;若不存在,说明理由.26.已知椭圆2222:1(0)x y C a b a b+=>>的实轴长为4,焦距为(1)求椭圆C 的标准方程;(2)设直线经过点(2,1)P -且与椭圆C 交于不同的两点M ,N (异于椭圆的左顶点)设点Q 是x 轴上的一个动点,直线QM ,QN 的斜率分别为1k ,2k ,试问:是否存在点Q ,使得1211k k +为定值?若存在,求出点Q 的坐标及定值;若不存在,请说明理由, 27.已知椭圆2222:1(0)x y E a b a b +=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点2(5M ,4)5.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设椭圆E 的左、右焦点分别为1F 、2F ,过1F 且斜率存在的直线L 与椭E 相交于A 点,且22||||2||AF BF AB +=,求直线L 的方程28.如图,已知椭圆2222:1(0)x y C a b a b+=>>,一条准线方程为2x =.过点(0,2)T 且不与x 轴垂直的直线l 与椭圆C 相交于A ,B 两点线段AB 的垂直平分线分别交AB 和y 轴于点M ,N 两点.(1)求椭圆C 的方程;(2)求证:线段MN 的中点在定直线上;(3)若ABN ∆为等腰直角三角形,求直线l 的方程.29.已如椭圆2222:1(0)x y C a b a b+=>>,点在椭圆C 上.(1)求椭圆C 的方程;(2)动直线:(0)l y t t =+≠交椭圆C 于A 、B 两点,交y 轴于点T ,点T 关于坐标原点O 的对称点为D ,以D 为圆心,||DO 为半径的圆记作D ,过线段AB 的中点M 作D 的两条切线,切点分别为P 、Q ,证明:cos PMQ ∠为定值.30.已知圆C 经过椭圆221164x y +=的右顶点2A 、下顶点1B 、上顶点2B 三点.(Ⅰ)求圆C 的标准方程;(Ⅱ)直线l 经过点(1,1)与10x y ++=垂直,求圆C 被直线l 截得的弦长.31.已知抛物线2:4C x y =,焦点为F ,设A 为C 上的一动点,以A 为切点作C 的切线,与y 轴交于点B ,以FA ,FB 为邻边作平行四边形FANB .(1)证明:点N 在一条定直线上;(2)设直线NF 与C 交于P ,Q 两点.若直线NF的斜率k ∈,求OPN OQN S S ∆∆的最小值.32.如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>过点,A ,B 分别为椭圆C 的右、下顶点,且2OA OB =.(1)求椭圆C 的方程; (2)设点P 在椭圆C 内,满足直线PA ,PB 的斜率乘积为14-,且直线PA ,PB 分别交椭圆C 于点M ,N .①若M ,N 关于y 轴对称,求直线PA 的斜率; ②若PMN ∆和PAB ∆的面积分别为1S ,2S ,求12S S .33.已知A 、B 是双曲线22122:1(0,0)x y C a b a b-=>>的两个顶点,点P 是双曲线上异于A 、B 的一点,O 为坐标原点,射线OP 交椭圆22222:1x y C a b+=于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点1)2,求1C 的方程;(2)在(1)的条件下,如果12158k k +=,求ABQ ∆的面积; (3)试问:1234k k k k +++是否为定值?如果是,请求出此定值;如果不是,请说明理由. 34.已知抛物线2:(0)y ax a Γ=>的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点满足||4MN =. (1)求抛物线Γ的方程;(2)若P 为Γ上动点,BC 在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.35.双曲线22221(,0)x y a b a b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A .B两点.(1)若l 的倾斜角为2π,a =1F AB 是等腰直角三角形,求双曲线的标准方程. (2)a b l =.若l 的斜率存在,且12()0F A F B AB +=,求l 的斜率.(3)证明:点P 到已知双曲线的两条渐近线的距离的乘积为定值2222a b a b +是该点在已知双曲线上的必要非充分条件.36.已知曲线22:143x y C +=的左右顶点是A 、B ,点M 是曲线C 上异于A 、B 两点的动点且M 关于x 轴的对称点是N .(1)若直线AM 、BN 的斜率分别为1k 、2k ,求证:1234k k =. (2)若曲线2:2C y px '=的焦点F 是曲线C 的右焦点,过点F 的直线l 分别交曲线C 和曲线C '于P 、Q 和R 、H ,APQ ∆与ARH ∆面积分别为1S ,2S ,求12S S 的最大值.37.已知椭圆2222:1(0)x y C a b a b+=>>的焦距与短轴长相等,椭圆上一点Q 到两焦点距离之差的最大值为4. (1)求椭圆的标准方程;(2)若点P 为椭圆上异于左右顶点A ,B 的任意一点,过原点O 作AP 的垂线交BP 的延长线于点M ,求M 的轨迹方程.38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为点A 若△12AF F是面积为 (1)求椭圆C 的标准方程;(2)已知M ,N 是椭圆C 上的两点,且|MN =,求使OMN ∆的面积最大时直线MN 的方程(O 为坐标原点)39.已知椭圆C 的中心在坐标原点,左焦点为1(1,0)F -,点(1,B 在椭圆C 上, (Ⅰ)求椭圆C 的方程;(Ⅱ)设过点2(1,0)F 的斜率为(0)k k ≠的直线l 与椭圆C 交于不同的两点M ,N ,点P 在y 轴上,且||||PM PN =,求点P 纵坐标的取值范围.40.在平面直角坐标系中,椭圆2222:(0x y C l a b a b+=>>,右焦点2F 为(,0)c .(1)若其长半轴长为2,焦距为2,求其标准方程.(2)证明该椭圆上一动点P 到点2F 的距离d 的最大值是a c +.41.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点.(1)求椭圆C 的方程(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M 、N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由.42.已知椭圆2222:1(0)x y E a b a b+=>>,焦距为2.(1)求椭圆E 的方程;(2)设O 为坐标原点,过左焦点F 的直线l 与椭圆E 交于A ,B 两点,若OAB ∆的面积为23,求直线l 的方程.43.已知斜率为1的直线l 与椭圆2222:1(0)x y C a b a b+=>>交于P ,Q 两点,且线段PQ 的中点为3(1,)4A -,椭圆C 的上顶点为B .(1)求椭圆C 的离心率;(2)设直线:(l y kx m m '=+≠与椭圆C 交于M ,N 两点,若直线BM 与BN 的斜率之和为2,证明:l '过定点.44.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为,且过点1)2. (1)求椭圆C 的方程;(2)斜率大于0且过椭圆右焦点2F 的直线l 与椭圆C 交于M 、N 两点,若223MF F N =,求直线l 的方程.45.已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(Ⅰ)求C 的方程,并说明C 是什么曲线;(Ⅱ)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G ,P 点关于x 轴的对称点为P '. ①证明:PQG ∆是直角三角形;②求直线PQ 与直线P G '的斜率的积的最小值,并写出此时直线PG 的方程.46.已知椭圆2222:1(0)x y C a b a b+=>>过点,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN =-恒成立?若存在求出点Q 的坐标:若不存在,说明理由.47.已知椭圆2222:1(0)x y E a b a b +=>>经过点P ,1)2,且离心率e =.(1)求椭圆E 的标准方程;(2)过椭圆E 的右焦点F 的直线l 与椭圆E 交于A ,B 两点,当(AOB O ∆为坐标原点)的时,求直线l 的方程.48.已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =且圆222x y +=过椭圆C 的上、下顶点(1)求椭圆C 的方程; (2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点(2,1)A -是椭圆C 上一点,若直线AE 与AQ 的斜率分别为AE k ,AQ k ,证明:0AE AQ k k +=.49.如图,过抛物线2:2(0)C y px p =>的焦点F 的直线与抛物线C 交于A 、B 两点,过AB 中点M 且与AB 垂直的直线与x 轴交于点N . (1)求||||FN AB 的值; (2)若2p =,求NA NB 的取值范围.50.已知抛物线2:2(0)M y px p =>.(1)设R 为抛物线M 上横坐标为1的定点,S 为圆221:()24p N x y -+=的一个动点,若M ,N 无公共点,且||RS 的最小值为65128,求p 的值; (2)已知AC ,BD 分别是抛物线的一条弦,且都不与x 轴垂直,AC 与BD 相交于点(,0)2p,2OA OB p =-,若四边形ABCD 的四条边都存在斜率且0CD k ≠,求证:12AB CD k k =.高考重难点突破圆锥曲线50道题(4)含详细解析参考答案与试题解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.【解答】(1)解:当直线l 过点(2,0)M ,且垂直于x 轴时, 由4AB =,知抛物线22(0)y px p =>过点(2,2), 代入抛物线方程,得422p =⨯,解得1p =;(2)证明:由题意设直线l 的方程为:(2)y k x =-,且0k ≠, 点1(A x ,1)y ,2(B x ,2)y ,联立22(2)y x y k x ⎧=⎨=-⎩,消去x ,化简得2240ky y k --=,由根与系数的关系得122y y k+=,124y y =-; 又点C 在直线AB 上,则1212C y y y k+==,所以直线1l 的方程为1y k =;又直线2l 过点M 且与直线l 垂直,则直线2l 的方程为1(2)y x k =--;联立11(2)y k y x k ⎧=⎪⎪⎨⎪=--⎪⎩,解得11x y k =⎧⎪⎨=⎪⎩,所以点1(1,)P k ,所以点P 在定直线1x =上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 【解答】解:(1)双曲线2213x y -=的右焦点为(2,0),可得22p=,即4p =,可得抛物线的方程为28y x =,焦点到准线的距离为4; (2)直线112y x =+与抛物线28y x =联立,消去x 可得 216160y y -+=,则1216y y =.3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值. 【解答】解:(1)设准线与y 轴的交点为点H ,连结AF ,AB ,BF , 因为ABF ∆是正三角形,且4BA AF BF ===, 在BHF ∆中,90BHF ∠=︒,30FBH ∠=︒,4BF =, 所以2HF p ==.(2)设1(P x ,1)y ,2(Q x ,2)y ,由(0,1)F ,。

圆锥曲线压轴难题及解答

圆锥曲线压轴难题及解答

圆锥曲线提高题1.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B 到抛物线准线的距离为324,本题主要考察抛物线的定义及几何性质,属容易题2.已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为___________.解析:设BF=m,由抛物线的定义知m BB m AA ==11,3ABC ∆∴中,AC=2m,AB=4m,3=AB k直线AB 方程为)1(3-=x y与抛物线方程联立消y 得031032=+-x x 所以AB 中点到准线距离为381351221=+=++x x 3 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。

(Ⅰ)解:因为直线:l 202m x my --=经过22(1,0)F m -,2212m m -=,得22m =,又因为1m >,所以2m =故直线l 的方程为2202x -=。

(Ⅱ)解:设1122(,),(,)A x y B x y 。

由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得222104m y my ++-=则由2228(1)804m m m ∆=--=-+>,知28m <,且有212121,282m m y y y y +=-=-。

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。

高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)

高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)

高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。

圆锥曲线的高考题总汇编(带详细解析汇报)

圆锥曲线的高考题总汇编(带详细解析汇报)

第八章 圆锥曲线方程●考点阐释圆锥曲线是解析几何的重点内容,这部分内容的特点是:(1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用.(2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等内容,体现了对各种能力的综合要求.(3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )2.(2003京春理,7)椭圆⎩⎨⎧=+=ϕϕsin 3cos 54y x (ϕ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( )A.-1B.1C.5D. -55.(2002全国文,11)设θ∈(0,4π),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为( )A.(0,21) B.(22,21) C.(2,22) D.(2,+∞)6.(2002北京文,10)已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A.x =±y 215B.y =±x 215 C.x =±y 43D.y =±x 43 7.(2002天津理,1)曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( )A.21B.22 C.1 D.28.(2002全国理,6)点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为( )A.0B.1C.2 D.29.(2001全国,7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为( ) A.43B.32 C.21 D.41 10.(2001广东、河南,10)对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( )A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)11.(2000京皖春,9)椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到其准线距离是( ) A.43B.554C.358D.334 12.(2000全国,11)过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A.2aB.a21C.4aD.a4 13.(2000京皖春,3)双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A.2B.3C.2D.2314.(2000上海春,13)抛物线y =-x 2的焦点坐标为( )A.(0,41) B.(0,-41) C.(41,0)D.(-41,0) 15.(2000上海春,14)x =231y -表示的曲线是( )A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分 16.(1999上海理,14)下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )A.⎪⎩⎪⎨⎧==-2121t y t xB.⎪⎩⎪⎨⎧==||1||t y t xC.⎩⎨⎧==ty tx sec cosD.⎩⎨⎧==ty tx cot tan17.(1998全国理,2)椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A.7倍B.5倍C.4倍D.3倍18.(1998全国文,12)椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )A.±43 B.±23 C.±22D.±43 19.(1997全国,11)椭圆C 与椭圆4)2(9)3(22-+-y x ,关于直线x +y =0对称,椭圆C 的方程是( ) A.19)3(4)2(22=+++y xB.19)3(4)2(22=++-y xC.14)3(9)2(22=+++y xD.19)3(4)2(22=-+-y x20.(1997全国理,9)曲线的参数方程是⎪⎩⎪⎨⎧-=-=2111t y t x (t 是参数,t ≠0),它的普通方程是( )A.(x -1)2(y -1)=1B.y =2)1()2(x x x --C.y =1)1(12--x D.y =21xx-+1 21.(1997上海)设θ∈(43π,π),则关于x 、y 的方程x 2csc θ-y 2sec θ=1所表示的曲线是( ) A.实轴在y 轴上的双曲线 B.实轴在x 轴上的双曲线 C.长轴在y 轴上的椭圆 D.长轴在x 轴上的椭圆22.(1997上海)设k >1,则关于x 、y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A.长轴在y 轴上的椭圆 B.长轴在x 轴上的椭圆 C.实轴在y 轴上的双曲线 D.实轴在x 轴上的双曲线 23.(1996全国文,9)中心在原点,准线方程为x =±4,离心率为21的椭圆方程是( ) A.3422y x +=1B.4322y x +=1 C.42x +y 2=1D.x 2+42y =124.(1996上海,5)将椭圆92522y x +=1绕其左焦点按逆时针方向旋转90°,所得椭圆方程是( ) A.19)4(25)4(22=-++y xB.19)4(25)4(22=+++y xC.125)4(9)4(22=-++y xD.125)4(9)4(22=+++y x25.(1996上海理,6)若函数f (x )、g (x )的定义域和值域都为R ,则f (x )>g (x )(x ∈R )成立的充要条件是( )A.有一个x ∈R ,使f (x )>g (x )B.有无穷多个x ∈R ,使得f (x )>g (x )C.对R 中任意的x ,都有f (x )>g (x )+1D.R 中不存在x ,使得f (x )≤g (x )26.(1996全国理,7)椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)27.(1996全国文,11)椭圆25x 2-150x +9y 2+18y +9=0的两个焦点坐标是( ) A.(-3,5),(-3,3) B.(3,3),(3,-5) C.(1,1),(-7,1) D.(7,-1),(-1,-1)28.(1996全国)设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A.2B.3C.2D.332 29.(1996上海理,7)若θ∈[0,2π],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是( )30.(1995全国文6,理8)双曲线3x 2-y 2=3的渐近线方程是( ) A.y =±3xB.y =±31x C.y =±3xD.y =±x 33 31.(1994全国,2)如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)32.(1994全国,8)设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( )A.1B.25 C.2 D.533.(1994上海,17)设a 、b 是平面α外任意两条线段,则“a 、b 的长相等”是a 、b 在平面α内的射影长相等的( ) A.非充分也非必要条件 B.充要条件 C.必要非充分条件 D.充分非必要条件34.(1994上海,19)在直角坐标系xOy 中,曲线C 的方程是y =cos x ,现在平移坐标系,把原点移到O ′(2π,-2π),则在坐标系x ′O ′y ′中,曲线C 的方程是( )A.y ′=sin x ′+2πB.y ′=-sin x ′+2πC.y ′=sin x ′-2π D.y ′=-sin x ′-2π二、填空题35.(2003京春,16)如图8—1,F 1、F 2分别为椭圆2222by a x +=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是_____.36.(2003上海春,4)直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是_____.37.(2002上海春,2)若椭圆的两个焦点坐标为F 1(-1,0),F 2(5,0),长轴的长为10,则椭圆的方程为 .38.(2002京皖春,13)若双曲线m y x 224-=1的渐近线方程为y =±23x ,则双曲线的焦点坐标是 . 39.(2002全国文,16)对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是 .(要求填写合适条件的序号) 40.(2002上海文,8)抛物线(y -1)2=4(x -1)的焦点坐标是 . 41.(2002天津理,14)椭圆5x 2-ky 2=5的一个焦点是(0,2),那么k = .42.(2002上海理,8)曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.43.(2001京皖春,14)椭圆x 2+4y 2=4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是 .44.(2001上海,3)设P 为双曲线-42x y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 .45.(2001上海,5)抛物线x 2-4y -3=0的焦点坐标为 .46.(2001全国,14)双曲线16922y x -=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 .47.(2001上海春,5)若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为_____.48.(2001上海理,10)直线y =2x -21与曲线⎩⎨⎧==ϕϕ2cos sin y x (ϕ为参数)的交点坐标是_____.49.(2000全国,14)椭圆4922y x +=1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是_____.图8—150.(2000上海文,3)圆锥曲线916)1(22y x --=1的焦点坐标是_____.51.(2000上海理,3)圆锥曲线⎩⎨⎧=+=θθtan 31sec 4y x 的焦点坐标是_____.52.(1999全国,15)设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 .53.(1999上海5)若平移坐标系,将曲线方程y 2+4x -4y -4=0化为标准方程,则坐标原点应移到点O ′ ( ) .54.(1998全国,16)设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 .55.(1997全国文,17)已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是_____.56.(1997上海)二次曲线⎩⎨⎧==θθsin 3cos 5y x (θ为参数)的左焦点坐标是_____.57.(1996上海,16)平移坐标轴将抛物线4x 2-8x +y +5=0化为标准方程x ′2=ay ′(a ≠0),则新坐标系的原点在原坐标系中的坐标是 .58.(1996全国文,16)已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =_____. 59.(1996全国理,16)已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____. 60.(1995全国理,19)直线L 过抛物线y 2=a (x +1)(a >0)的焦点,并且与x 轴垂直,若L 被抛物线截得的线段长为4,则a = .61.(1995全国文,19)若直线L 过抛物线y 2=4(x +1)的焦点,并且与x 轴垂直,则L 被抛物线截得的线段长为 .62.(1995上海,15)把参数方程⎩⎨⎧+==1cos sin ααy x (α是参数)化为普通方程,结果是 .63.(1995上海,10)双曲线98222y x -=8的渐近线方程是 . 64.(1995上海,14)到点A (-1,0)和直线x =3距离相等的点的轨迹方程是 .65.(1994全国,17)抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是 .66.(1994上海,7)双曲线22y -x 2=1的两个焦点的坐标是 .三、解答题67.(2003上海春,21)设F 1、F 2分别为椭圆C :22228by a x + =1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线12222=-by a x 写出具有类似特性的性质,并加以证明. 68.(2002上海春,18)如图8—2,已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.69.(2002京皖文,理,22)已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(Ⅰ)求该椭圆的方程;(Ⅱ)求弦AC 中点的横坐标;(Ⅲ)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围. 70.(2002全国理,19)设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2.求m 的取值范围.71.(2002北京,21)已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3.(Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线; (Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.72.(2002江苏,20)设A 、B 是双曲线x 222y -=1上的两点,点N (1,2)是线段AB的中点.(Ⅰ)求直线AB 的方程;(Ⅱ)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?73.(2002上海,18)已知点A (3-,0)和B (3,0),动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y =x -2交于D 、E 两点,求线段DE 的长.74.(2001京皖春,22)已知抛物线y 2=2px (p >0).过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,|AB |≤2p .(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.75.(2001上海文,理,18)设F 1、F 2为椭圆4922y x +=1的两个焦点,P 为椭圆上的一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求||||21PF PF 的值.76.(2001全国文20,理19)设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O.图8— 2图8—377.(2001上海春,21)已知椭圆C 的方程为x 2+22y =1,点P (a ,b )的坐标满足a 2+22b ≤1,过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求:(1)点Q 的轨迹方程;(2)点Q 的轨迹与坐标轴的交点的个数.78.(2001广东河南21)已知椭圆22x +y 2=1的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ∥x 轴.求证:直线AC 经过线段EF 的中点.79.(2000上海春,22)如图8—4所示,A 、F 分别是椭圆12)1(16)1(22-++x y =1的一个顶点与一个焦点,位于x 轴的正半轴上的动点T (t ,0)与F 的连线交射影OA 于Q .求:(1)点A 、F 的坐标及直线TQ 的方程;(2)△OTQ 的面积S 与t 的函数关系式S =f (t )及其函数的最小值;(3)写出S =f (t )的单调递增区间,并证明之.80.(2000京皖春,23)如图8—5,设点A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.81.(2000全国理,22)如图8—6,已知梯形ABCD 中,|AB |=2|C D|,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当32≤λ≤43时,求双曲线离心率e 的取值范围.图8—5 图8—6 图8—782.(2000全国文,22)如图8—7,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线离心率.83.(2000上海,17)已知椭圆C 的焦点分别为F 1(22-,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.84.(1999全国,24)如图8—8,给出定点A (a ,0)(a >0)和直线l :x =-1.B 是直线l上的动点,∠BOA 的角平分线交AB 于点C.求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.注:文科题设还有条件a ≠185.(1999上海,22)设椭圆C 1的方程为2222by a x +=1(a >b >0),曲线C 2的方程为图8— 4图8—8y =x1,且C 1与C 2在第一象限内只有一个公共点P . (Ⅰ)试用a 表示点P 的坐标.(Ⅱ)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;(Ⅲ)设min {y 1,y 2,…,y n }为y 1,y 2,…,y n 中最小的一个.设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,求函数f (a )=min {g (a ),S (a )}的表达式.86.(1998全国理,24)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.(Ⅰ)写出曲线C 1的方程;(Ⅱ)证明曲线C 与C 1关于点A (2,2st )对称; (Ⅲ)如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.87.(1998全国文22,理21)如图8—9,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程.88.(1998上海理,20)(1)动直线y =a 与抛物线y 2=21(x -2)相交于A 点,动点B的坐标是(0,3a ),求线段AB 中点M 的轨迹C 的方程;(2)过点D (2,0)的直线l 交上述轨迹C 于P 、Q 两点,E 点坐标是(1,0),若△EPQ 的面积为4,求直线l 的倾斜角α的值.89.(1997上海)抛物线方程为y 2=p (x +1)(p >0),直线x +y =m 与x 轴的交点在抛物线的准线的右边. (1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q 、R ,OQ ⊥OR ,求p 关于m 的函数f (m )的表达式;(3)(文)在(2)的条件下,若抛物线焦点F 到直线x +y =m 的距离为22,求此直线的方程; (理)在(2)的条件下,若m 变化,使得原点O 到直线QR 的距离不大于22,求p 的值的范围. 90.(1996全国理,24)已知l 1、l 2是过点P (-2,0)的两条互相垂直的直线,且l 1、l 2与双曲线y 2-x 2=1各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)(理)若|A 1B 1|=5|A 2B 2|,求l 1、l 2的方程.(文)若A 1恰是双曲线的一个顶点,求|A 2B 2|的值.91.(1996上海,23)已知双曲线S 的两条渐近线过坐标原点,且与以点A (2,0)为圆心,1为半径的圆相切,双曲线S 的一个顶点A ′与点A 关于直线y =x 对称.设直线l 过点A ,斜率为k .图8—9(1)求双曲线S 的方程;(2)当k =1时,在双曲线S 的上支上求点B ,使其与直线l 的距离为2;(3)当0≤k <1时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及相应的点B 的坐标,如图8—10.92.(1995全国理,26)已知椭圆如图8—11,162422y x +=1,直线L :812y x +=1,P是L 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在L上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.93.(1995上海,24)设椭圆的方程为2222ny m x +=1(m ,n >0),过原点且倾角为θ和π-θ(0<θ<2π=的两条直线分别交椭圆于A 、C 和B 、D 两点,(Ⅰ)用θ、m 、n 表示四边形ABCD 的面积S ; (Ⅱ)若m 、n 为定值,当θ在(0,4π]上变化时,求S 的最小值u ;(Ⅲ)如果μ>mn ,求nm的取值范围.94.(1995全国文,26)已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.95.(1994全国理,24)已知直线L 过坐标原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上,若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程.96.(1994上海,24)设椭圆的中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t . (1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q 、点P 在该直线上,且1||||2-=t t OQ OP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.答案解析1.答案:D解析一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b >0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项. 图8—11解析二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明:ax +by 2=0的图形关于x 轴对称,排除B 、C ,又椭圆的焦点在y 轴.故选D.评述:本题考查椭圆与抛物线的基础知识,即标准方程与图形的基本关系.同时,考查了代数式的恒等变形及简单的逻辑推理能力.2.答案:D解析:利用三角函数中的平方和关系消参,得925)4(22y x +-=1,∴c 2=16,x -4=±4,而焦点在x 轴上,所以焦点坐标为:(8,0),(0,0),选D.如果画出925)4(22y x +-=1的图形,则可以直接“找”出正确选项. 评述:本题考查将参数方程化为普通方程的思想和方法,以及利用平移变换公式进行逻辑推理,同时也考查了数形结合的思想方法.3.答案:A解析:由第一定义得,|PF 1|+|PF 2|为定值 ∵|PQ |=|PF 2|,∴|PF 1|+|PQ |为定值,即|F 1Q |为定值. 4.答案:B解析:椭圆方程可化为:x 2+ky 52=1∵焦点(0,2)在y 轴上,∴a 2=k5,b 2=1, 又∵c 2=a 2-b 2=4,∴k =1 5.答案:D 解析:∵θ∈(0,4π),∴sin θ∈(0,22), ∴a 2=tan θ,b 2=c ot θ ∴c 2=a 2+b 2=tan θ+c ot θ,∴e 2=θθθθ222sin 1tan cot tan =+=a c ,∴e =θsin 1, ∴e ∈(2,+∞)6.答案:D解析:由双曲线方程判断出公共焦点在x 轴上 ∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅·x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 7.答案:D解析:设曲线上的点到两坐标轴的距离之和为d ∴d =|x |+|y |=|co s θ|+|sin θ| 设θ∈[0,2π]∴d =sin θ+cos θ=2sin (θ+4π) ∴d max =2.8.答案:B解法一:将曲线方程化为一般式:y 2=4x ∴点P (1,0)为该抛物线的焦点由定义,得:曲线上到P 点,距离最小的点为抛物线的顶点. 解法二:设点P 到曲线上的点的距离为d ∴由两点间距离公式,得d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2 ∵t ∈R ∴d min 2=1 ∴d min =1 9.答案:C解析:由F 1、F 2的坐标得2c =3-1,c =1, 又∵椭圆过原点a -c =1,a =1+c =2, 又∵e =21=a c ,∴选C. 10.答案:B解析:设点Q 的坐标为(420y,y 0),由 |PQ |≥|a |,得y 02+(420y-a )2≥a 2.整理,得:y 02(y 02+16-8a )≥0, ∵y 02≥0,∴y 02+16-8a ≥0.即a ≤2+820y 恒成立.而2+820y的最小值为2.∴a ≤2.选B.11.答案:D解析:由题意知a =2,b =1,c =3,准线方程为x =±ca 2,图8—12∴椭圆中心到准线距离为334. 12.答案:C解析:抛物线y =ax 2的标准式为x 2=a1y , ∴焦点F (0,a41). 取特殊情况,即直线PQ 平行x 轴,则p =q .如图8—13,∵PF =PM ,∴p =a21,故a pp p q p 421111==+=+. 13.答案:C解析:渐近线方程为y =±b a x ,由b a ·(-ba )=-1,得a 2=b 2, ∴c =2a ,e =2.14.答案:B解析:y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-41). 15.答案:D 解析:x =231y -化为x 2+3y 2=1(x >0).16.答案:D解析:由已知xy =1可知x 、y 同号且不为零,而A 、B 、C 选项中尽管都满足xy =1,但x 、y 的取值范围与已知不同.17.答案:A解析:不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|,故选A.评述:本题主要考查椭圆的定义及数形结合思想,具有较强的思辨性,是高考命题的方向. 18.答案:A解析:由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 坐标(3,y 0),又P 在31222y x +=1的椭圆上得y 0=±23,图8—13∴M 的坐标(0,±43),故选A. 评述:本题考查了椭圆的标准方程及几何性质,中点坐标公式以及运算能力. 19.答案:A解析:将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9)3(4)2(22+++y x =1,所以选A. 评述:本题考查了椭圆的方程及点关于直线的对称问题.20.答案:B 解法一:由已知得t =x -11,代入y =1-t 2中消去t ,得y =122)1()2()1(1x x x x --=--,故选B. 解法二:令t =1,得曲线过(0,0),分别代入验证,只有B 适合,故选B.评述:本题重点考查参数方程与普通方程的互化,考查等价转化的能力. 21.答案:C解析:由已知得方程为θθcos sin 22y x -=1 由于θ∈(43π,π),因此sin θ>0,cos θ<0,且|sin θ|<|cos θ| ∴原方程表示长轴在y 轴上的椭圆. 22.答案:C解析:原方程化为11222+--k x k y =1 由于k >1,因此它表示实轴在y 轴上的双曲线. 23.答案:A解析:由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1,故选A. 评述:本题考查了椭圆的方程及其几何性质,以及待定系数法和运算能力.24.答案:C解析:如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋转后椭圆的中心,故旋转后所得椭圆方程为25)4(9)4(22-++y x =1.所以选C. 25.答案:D 解析:R 中不存在x ,使得f (x )≤g (x ),即是R 中的任意x 都有f (x )>g (x ), 故选D.26.答案:B解析:可得a =3,b =5,c =4,椭圆在新坐标系中的焦点坐标为(0,±4),在原坐标系中的焦点坐标为(3,3),(3,-5),故选B.图8—14评述:本题重点考查椭圆的参数方程、坐标轴的平移等基本知识点,考查数形结合的能力. 27.答案:B解析:把已知方程化为25)1(9)3(22++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),∴焦点坐标是(3,3)和(3,-5). 28.答案:A解析:由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为43c ,则有c ba ab 4322=+, 又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-16e 2+16=0∴e 2=4或e 2=34. 而0<a <b ,得e 2=222221aba b a +=+>2,∴e 2=4.故e =2. 评述:本题考查点到直线的距离,双曲线的性质以及计算、推理能力.难度较大,特别是求出e 后还须根据b >a 进行检验.29.答案:D解析:把已知方程化为标准方程,得2)cos 2(2θ-x +(y +sin θ)2=1.∴椭圆中心的坐标是(2cos θ,-sin θ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π].即22x +y 2=1(0≤x ≤2,-1≤y ≤0).30.答案:C解法一:将双曲线方程化为标准形式为x 2-32y =1,其焦点在x 轴上,且a =1,b =3,故其渐近线方程为y=±abx =±3x ,所以应选C. 解法二:由3x 2-y 2=0分解因式得y =±3x ,此方程即为3x 2-y 2=3的渐近线方程,故应选C.评述:本题考查了双曲线的标准方程及其性质. 31.答案:D解析:原方程可变为ky x 2222+=1,因为是焦点在y 轴的椭圆,所以⎪⎩⎪⎨⎧>>220k k ,解此不等式组得0<k <1,因而选D.评述:本题考查了椭圆的方程及其几何意义以及解不等式的方法,从而考查了逻辑思维能力和运算能力.32.答案:A解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A. 解法二:S △=b 2cot221PF F =1×cot45°=1. 评述:本题考查了双曲线的标准方程及其性质、两条直线垂直的条件、三角形面积公式以及运算能力. 33.答案:A 解析:a 、b 长相等a 、b 在平面α内的射影长相等,因此选A. 34.答案:B解析:由已知得平移公式⎪⎪⎩⎪⎪⎨⎧-'=+'=22ππy y x x 代入曲线C 的方程,得y ′-2π=cos (x ′+2π).即y ′=-sin x ′+2π. 35.答案:23解析:因为F 1、F 2为椭圆的焦点,点P 在椭圆上,且正△POF 2的面积为3,所以S =21|OF 2|·|PO |sin60°=43c 2,所以c 2=4.∴点P 的横、纵坐标分别为23,2c c ,即P (1,3)在椭圆上,所以有2231b a +=1,又b 2+c 2=a 2,⎩⎨⎧+==+22222243ba b a a b 解得b 2=23.评述:本题主要考查椭圆的基本知识以及基本计算技能,体现出方程的思想方法. 36.答案:(3,2)解法一:设直线y =x -1与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2),其中点为P (x 0,y 0).由题意得⎩⎨⎧=-=x y x y 412,(x -1)2=4x ,x 2-6x +1=0.∴x 0=221x x +=3.y 0=x 0-1=2.∴P (3,2).解法二:y 22=4x 2,y 12=4x 1,y 22-y 12=4x 2-4x 1121212))((x x y y y y -+-=4.∴y 1+y 2=4,即y 0=2,x 0=y 0+1=3.故中点为P (3,2).评述:本题考查曲线的交点与方程的根的关系.同时应注意解法一中的纵坐标与解法二中的横坐标的求法.37.答案:1625)2(22y x +- =1 解析:由两焦点坐标得出椭圆中心为点(2,0),焦半径c =3∵长轴长为10,∴2a =10, ∴a =5,∴b =22c a -=4∴椭圆方程为1625)2(22y x +-=1 38.答案:(±7,0)解析:由双曲线方程得出其渐近线方程为y =±2mx ∴m =3,求得双曲线方程为3422y x -=1,从而得到焦点坐标. 39.答案:②,⑤解析:从抛物线方程易得②,分别按条件③、④、⑤计算求抛物线方程,从而确定⑤. 40.答案:(2,1)解析:抛物线(y -1)2=4(x -1)的图象为抛物线y 2=4x 的图象沿坐标轴分别向右、向上平移1个单位得来的. ∵抛物线y 2=4x 的焦点为(1,0)∴抛物线(y -1)2=4(x -1)的焦点为(2,1) 41.答案:-1解析:椭圆方程化为x 2+ky52-=1∵焦点(0,2)在y 轴上, ∴a 2=k-5,b 2=1 又∵c 2=a 2-b 2=4,∴k =-142.答案:(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x +1) 该曲线为抛物线y 2=4x 分别向左,向上平移一个单位得来. 43.答案:2516 解析:原方程可化为42x +y 2=1,a 2=4,b 2=1∴a =2,b =1,c =3 当等腰直角三角形,设交点(x ,y )(y >0)可得2-x =y , 代入曲线方程得:y =54 ∴S =21×2y 2=2516 44.答案:x 2-4y 2=1解析:设P (x 0,y 0) ∴M (x ,y ) ∴2,200yy x x ==∴2x =x 0,2y =y 0 ∴442x -4y 2=1⇒x 2-4y 2=145.答案:(0,41) 解析:x 2=4y +3⇒x 2=4(y +43) ∴y +43=1,y =41,∴坐标(0,41) 46.答案:516解析:设|PF 1|=M ,|PF 2|=n (m >n ) a =3 b =4 c =5∴m -n =6 m 2+n 2=4c 2m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4×25-36=64 mn =32.又利用等面积法可得:2c ·y =mn ,∴y =516 47.答案:16922y x -=1解析:由已知a =3,c =5,∴b 2=c 2-a 2=16又顶点在x 轴,所以标准方程为16922y x -=1. 48.答案:(21,21) 解析:⎩⎨⎧-=-==⇒⎩⎨⎧==ϕϕϕϕϕ22sin 211cos 2sin 2cos sin y x y x ①代入②得y =1-2x 2⇒2x 2+y =1 ⎪⎩⎪⎨⎧=+-=122122y x x y解方程得:⎪⎪⎩⎪⎪⎨⎧==2121y x∴交点坐标为(21,21) 49.答案:5353<<-x 解析:已知a 2=9,b 2=4,∴c =5,∵x PF x ex a PF 353||,353||21+=-=-= 由余弦定理,)959(195||||2||||||cos 2221221222121x x PF PF F F PF PF PF F --=⋅⋅-+=,∵∠F 1PF 2是钝角,∴-1<cos F 1PF 2<0,即0)959(195122<--<-x x ,解得5353<<-x . 评述:本题也可以通过PF 1⊥PF 2时,找到P 点的横坐标的值.类似问题,在高考命题中反复出现,本题只是改变了叙述方式.50.答案:(6,0),(-4,0)①②解析:令⎩⎨⎧'='=-y y x x 1原方程化为标准形式191622='-'y x .∵a 2=16,b 2=9,∴c 2=25,c =5,在新坐标系下焦点坐标为(±5,0).又由⎩⎨⎧='=±='=-051y y x x 解得⎩⎨⎧==06y x 和⎩⎨⎧=-=04y x所以焦点坐标为(6,0),(-4,0).51.答案:(-4,0),(6,0)解析:由⎩⎨⎧=+=θθtan 31sec 4y x得⎪⎪⎩⎪⎪⎨⎧==-θθtan 3sec 41y x由③2-④2,得916)1(22yx --=1.令⎩⎨⎧'='=-y y x x 1把上式化为标准方程为91622y x '-'=1. 在新坐标系下易知焦点坐标为(±5,0),又由⎩⎨⎧='=±='=-051y y x x解得⎩⎨⎧==06y x 和⎩⎨⎧=-=04y x ,所以焦点坐标为(6,0),(-4,0). 52.答案:21解析:由题意知过F 1且垂直于x 轴的弦长为a b 22∴c ca ab -=222 ∴c a 12=∴21=a c ,即e =21① ② ③ ④评述:本题重点考查了椭圆的基本性质. 53.答案:(2,2)解析:将曲线方程化为(y -2)2=-4(x -2).令x ′=x -2,y ′=y -2,则y ′2=-4x ′,∴h =2,k =2 ∴坐标原点应移到(2,2). 54.答案:316 解析:如图8—15所示,设圆心P (x 0,y 0)则|x 0|=2352+=+a c =4,代入16922y x -=1,得y 02=9716⨯ ∴|OP |=3162020=+y x . 评述:本题重点考查双曲线的对称性、两点间距离公式以及数形结合的思想. 55.答案:(4,2)解析:将x -y =2代入y 2=4x 得y 2-4y -8=0,由韦达定理y 1+y 2=4,AB 中点纵坐标 y =221y y +=2,横坐标x =y +2=4.故AB 中点坐标为(4,2). 评述:本题考查了直线与曲线相交不解方程而利用韦达定理、中点坐标公式以及代入法等数学方法. 56.答案:(-4,0)解析:原方程消去参数θ,得92522y x +=1 ∴左焦点为(-4,0). 57.答案:(1,-1)解析:将4x 2-8x +y +5=0配方,得(x -1)2=41-(y +1), 令⎩⎨⎧'=+'=-y y x x 11则⎩⎨⎧-'=+'=.1,1y y x x 即新坐标系的原点在原坐标系中的坐标为(1,-1).58.答案:4解析:∵抛物线y 2=2px (p >0)的焦点坐标是(2p ,0),由两点间距离公式,得223)22(++p =5. 解得p =4.59.答案:2解析:已知圆的方程为(x -3)2+y 2=42,∴圆心为(3,0),半径r =4. ∴与圆相切且垂直于x 轴的两条切线是x =-1,x =7(舍)而y 2=2px (p >0)的准线方程是x =-2p.图8—15∴由-2p=-1,得p =2,∴p =2. 60.答案:4解析:如图8—16,抛物线的焦点坐标为F (4a-1,0),若l 被抛物线截得的线段长为4,则抛物线过点A (4a -1,2),将其代入方程y 2=a (x +1)中得 4=a (4a -1+1),a =±4,因a >0,故a =4.评述:本题考查了抛物线方程及几何性质,由对称性设焦点坐标以及数形结合法、待定系数法、代入法等基本方法.61.答案:4解析:如图8—17,抛物线y 2=4(x +1)中,p =2,2p=1,故可求抛物线的焦点坐标为(0,0),于是直线L 与y 轴重合,将x =0代入y 2=4(x +1)中得y =±2,故直线L 被抛物线截得的弦长为4.62.答案:x 2+(y -1)2=163.答案:y =±43x 解析:把原方程化为标准方程,得91622y x=1 由此可得a =4,b =3,焦点在x 轴上, 所以渐近线方程为y =±ab x ,即y =±43x .64.答案:y 2=-8x +8解析:由抛物线定义可知点的轨迹为抛物线,焦点为A (-1,0),准线为x =3.所以顶点在(1,0),焦点到准线的距离p =4,开口向左.∴y 2=-8(x -1),即y 2=-8x +8. 65.答案:x =3 (x -2)2+y 2=1解析:原方程可化为y 2=-4(x -2),p =2,顶点(2,0),准线x =2p+3, 即x =3,顶点到准线的距离为1,即为半径,则所求圆的方程是(x -2)2+y 2=1.66.答案:(0,-3),(0,3) 67.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a=2.图8—16图8—17又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111yy x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程. (3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222bn a m -=1.又设点P 的坐标为(x ,y ),由mx ny k m x n y k PN PM ++=--=,, 得k PM ·k PN =2222m x n y m x n y m x n y --=++⋅--,将22222222,ab n b x a b y =-=m 2-b 2代入得k PM ·k PN =22a b . 评述:本题考查椭圆的基本知识,求动点轨迹的常用方法.第(3)问对考生的逻辑思维能力、分析和解决问题的能力及运算能力都有较高的要求,根据提供的信息,让考生通过类比自己找到所证问题,这是高考数学命题的方向,应引起注意.68.解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222b y a c -=1.解得y 0=±a b 2∴|PF 2|=ab 2在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=a b故所求双曲线的渐近线方程为y =±2x .69.(Ⅰ)解:由椭圆定义及条件知2a =|F 1B |+|F 2B |=10,得a =5,又c =4 所以b =22c a -=3.故椭圆方程为92522y x +=1. (Ⅱ)由点B (4,y B )在椭圆上,得 |F 2B |=|y B |=59.(如图8—18) 因为椭圆右准线方程为x =425,离心率为54 根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2)由|F 2A |,|F 2B |,|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0) 则x 0=28221=+x x =4. (Ⅲ)由A (x 1,y 1),C (x 2,y 2)在椭圆上,得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x 由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0. 即)))(2(25)2(921212121x x y y y y x x --+++=0(x 1≠x 2) 将kx x y y y y y x x x 1,2,422121021021-=--=+==+(k ≠0)代入上式,得 9×4+25y 0(-k1)=0(k ≠0). 图8—18④⑤由上式得k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m . 所以m =y 0-4k =y 0-925y 0=-916y 0. 由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称,如图8—18)的内部,得-59<y 0<59. 所以-516<m <516. 注:在推导过程中,未写明“x 1≠x 2”“k ≠0”“k =0时也成立”及把结论写为“-516≤m ≤516”的均不扣分. 70.解:设点P 的坐标为(x ,y ),依题设得||||x y =2,即 y =±2x ,x ≠0 ① 因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,得 ||PM |-|PN ||<|MN |=2 ∵||PM |-|PN ||=2|m |>0 ∴0<|m |<1因此,点P 在以M 、N 为焦点,实轴长为2|m |的双曲线上,故112222=--m y m x ②将①式代入②,并解得x 2=mm m 51)1(22--∵1-m 2>0 ∴1-5m 2>0 解得0<|m |<55. 即m 的取值范围为(-55,0)∪(0,55). 71.(Ⅰ)解:由△OBC 三顶点坐标O (0,0),B (1,0),C (b ,c )(c ≠0),可求得重心G (3,31cb +),外心F (cb c b 2,2122-+),垂心H (b ,c b b 2-).。

圆锥曲线经典题目(含答案解析)

圆锥曲线经典题目(含答案解析)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE||PF|=2.。

圆锥曲线中的最值与范围问题-专题突破

圆锥曲线中的最值与范围问题-专题突破

以F→M·F→N=|F→M||F→N|cos∠NFM=|F→M||F→N|
→ |FN| →
=|F→N|2=
|FM|
|F→M|2-|M→N|2=|F→M|2-1.由抛物线的定义,得|F→M|=|MQ|,则由图可得|MQ|
的最小值即抛物线顶点 O 到准线 x=2 的距离,即|MQ|min=2,所以 (F→M·F→N)min=(|F→M|2-1)min=(|MQ|2-1)min=3.故,y2),F34,0,联立 xy=2=m3yx+,t,得 y2-3my-3t=0,所以由根与系数的关 系得 y1y2=-3t,从而 x1x2=y321×y322=y13y22=-33t2= t2,又由 OA⊥OB,可知O→A·O→B=x1x2+y1y2=t2-3t=0,
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14
解析
10.(2024·江西红色十校高三联考)已知椭圆 C:ax22+by22=1(a>b>0)
的焦距为 2 3,离心率为 23,过 C 上一点 P 分别作与 l1:y=2x 和 l2:y
=-2x 平行的直线,交直线 l2,l1 于 M,N 两点,则线段 MN 长度的最 大值为( )
圆锥曲线中的最值与范围问题
高考 概览
圆锥曲线中的最值与范围问题是解析几何中的重要题型,也是高 考的重点,综合性强,题目难度较大,常考题型为选择题、填空 题、解答题,分值为5分、12分
1.会利用圆锥曲线的定义、几何性质将最值转化,结合平面几何
中的定理、性质及图形的直观性求解
考点 2.能利用圆锥曲线的几何性质或利用已知条件或隐含的不等关
答案 解析
5.已如 P(3,3),M 是抛物线 y2=4x 上的动点(异于顶点),过 M 作圆 C: (x-2)2+y2=4 的切线,切点为 A,则|MA|+|MP|的最小值为____3____.

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)

高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

90题突破高中数学圆锥曲线答案及解析(三)

90题突破高中数学圆锥曲线答案及解析(三)

90题突破高中数学圆锥曲线答案及解析(三)61.解:(I )设椭圆方程为22221(0)x y a b a b+=>> 则根据题意,双曲线的方程为22221x y a b -=且满足4,5=⎨⎪=⎩ 解方程组得22259a b ⎧=⎪⎨=⎪⎩ ∴椭圆的方程为221259x y +=,双曲线的方程221259x y -=(Ⅱ)由(I )得(5,0),(5,0),||10,A B AB -=设(,),o o M x y 则由BM MP =得M 为BP 的中点,所以P 点坐标为(25,2)o o x y -,将M P 、坐标代入椭圆和双曲线方程,得222201,259(25)41259o oox y x y ⎧+=⎪⎪⎨-⎪-=⎪⎩消去o y ,得225250o o x x --= 解之得52o x =-或5o x =(舍)所以o y =,由此可得5(2M -所以(P - 当P为(-时,直线PA的方程是5)y x =-即:5)y x =+,代入221259x y +=,得2215250x x ++= 所以52x =-或-5(舍) 所以5,,2N N M x x x =-=MN x ⊥轴。

所以122102AMBN AMB S S ∆==⨯= 62.(Ⅰ)解:设A (x 1, y 1),因为A 为MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以132y =,又因为点A (x 1, y 1)在椭圆C 上 所以221114y x +=,即219116x +=,解得1x = 则点A的坐标为3)2或3()2, 所以直线l的方程为7210y -+=或7210y +-=.(Ⅱ)解:设直线AB 的方程为3y kx =+或0x =,A (x 1, y 1),B (x 2, y 2),33(,)P x y ,当AB 的方程为0x =时,||4AB =>. 当AB 的方程为3y kx =+时:由题设可得A 、B 的坐标是方程组22314y kx y x =+⎧⎪⎨+=⎪⎩的解, 消去y 得22(4)650k x kx +++=,所以22(6)20(4)0,k k ∆=-+>即25k >,则121212122226524,,(3)(3)444k x x x x y y kx kx k k k-+=⋅=+=+++=+++ 因为||AB =<216813k -<<, 所以258k <<. 因为OA OB OP λ+=,即112233(,)(,)(,)x y x y x y λ+=,所以当0λ=时,由0OA OB += ,得1212226240,044k x x y y k k -+==+==++, 上述方程无解,所以此时符合条件的直线l 不存在;当0λ≠时,12326(4)x x k x k λλ+-==+,123224(4)y y y k λλ+==+因为点33(,)P x y 在椭圆上,所以226[](4)k k λ-++22124[]14(4)k λ=+, 化简得22364k λ=+, 因为258k <<,所以234λ<<,则(2,λ∈- . 综上,实数λ的取值范围为(2,- . 63. (Ⅰ)解:设A (x 1, y 1),因为P 为AM 的中点,且P 的纵坐标为0,M 的纵坐标为1,所以1102y +=,解得11y =-,又因为点A (x 1, y 1)在椭圆C 上,所以221114y x +=,即21114x +=,解得12x =±, 则点A的坐标为(1)2-或(1)2--,所以直线l的方程为330y -+=,或330y +-=.(Ⅱ)设A (x 1, y 1),B (x 2, y 2),则112211(,),(,),22NA x y NB x y =-=-所以1212(,1)NA NB x x y y +=++-,则||NA NB += 当直线AB 的斜率不存在时,其方程为0x =,(0,2),(0,2)A B -,此时||1NA NB +=;当直线AB 的斜率存在时,设其方程为1y kx =+,由题设可得A 、B 的坐标是方程组22114y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)230k x kx ++-=所以221222(2)12(4)0,4kk k x x k-∆=++>+=+, 则121228(1)(1)4y y kx kx k +=+++=+, 所以222222222812||()(1)1144(4)k k NA NB k k k --+=+-=+≤+++ ,当0k =时,等号成立, 即此时||NA NB +取得最大值1.综上,当直线AB 的方程为0x =或1y =时,||NA NB +有最大值1.64.解:(Ⅰ)设M ),(y x ,则),1(y D -,由中垂线的性质知2MF MD =∴|1+x |=22)1(y x +- 化简得C 的方程为x y 42=(另:由2MF MD =知曲线C 是以x 轴为对称轴,以2F 为焦点,以1l 为准线的抛物线所以12=p, 则动点M 的轨迹C 的方程为x y 42=) (Ⅱ)设),(),,(2211y x Q y x P ,由F 1P → =λF 1Q → 知 ⎩⎨⎧=+=+2121)1(1y y x x λλ ① 又由),(),,(2211y x Q y x P 在曲线C 上知 ⎪⎩⎪⎨⎧==22212144x y x y ②由 ① ② 解得⎪⎩⎪⎨⎧==λλ121x x 所以 有 4,12121==y y x xF 2P → ∙F 2Q →=2121)1)(1(y y x x +--=2121211y y x x x x ++--=)1(6λλ+-设λλ1+=u 有λλλλλ1011)1(2''+=⇒>-=+=u u 在区间]3,2[上是增函数,得310125≤+≤λλ,进而有 27)1(638≤+-≤λλ,所以F 2P → ∙F 2Q → 的取值范围是]27,38[65.解:(1)设椭圆方程为22221(0)x y a b a b+=>>,点M 在直线32y x =上,且点M 在x 轴上的射影恰好是椭圆C 的右焦点2(,0)F c , 则点M 为3(,)2c c 。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

高考数学压轴题突破训练——圆锥曲线(含详解)

高考数学压轴题突破训练——圆锥曲线(含详解)
14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

高中数学圆锥曲线难题汇总(75道题)

高中数学圆锥曲线难题汇总(75道题)

高中数学圆锥曲线难题汇总1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为,求的离心率;(2)若直线在轴上的截距为,且,求,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点 为椭圆 : 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆 有且仅有一个交点.(1)求椭圆 的方程; (2)设直线与 轴交于 ,过点 的直线 与椭圆 交于不同的两点 ,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方x程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且(32,2)P 在直线l 的左上方. (1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过yAB#PNx=m O AxyOPB坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥; ¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O为中心,F 为右焦点的双曲线C的离心率2e =. (1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. (43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H. 是否存在m,使得对任意的⊥若存在,求m的值;若不存在,请说明理由.k>,都有PQ PH…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆6其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得6ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考重难点突破圆锥曲线50道题(3)含详细解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.4.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,A,B为椭圆C上位于x轴同侧的两点,△AF1F2的周长为6,∠F1AF2,的最大值为.(Ⅰ)求椭圆C的方程;(Ⅱ)若∠AF1F2+∠BF2F1=π,求四边形AF1F2B面积的取值范围.5.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(1)求椭圆C的方程;(2)设O为坐标原点,过右焦点F的直线与椭圆C交于A、B两点(A、B不在x轴上),若,求四边形AOBE面积S的最大值.6.设椭圆E:>的右焦点为F,上顶点为M;CD是过点F且垂直于x 轴的椭圆E的弦,|CD|=3.(1)求椭圆E的方程;(2)圆F的半径为1,直线1过点M与圆F交于A、B两点,O为坐标原点,若|OA|•|OB|=1,求直线l的方程.7.已知抛物线C:y2=4x上有一点P位于x轴的上方,且|PF|=2.(Ⅰ)求P点的坐标;(Ⅱ)若直线P A,PB的倾斜角互补,分别交曲线C于A,B两点(点A,B,P不重合),试判断直线AB的倾斜角是否为定值,若是,求出此值,若不是请说明理由.8.已知椭圆C:1(a>b>0)的离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,△AF2B的周长为8,(1)求该椭圆C的方程.(2)设P为椭圆C的右顶点,Q为椭圆C与y轴正半轴的交点,若直线l:y x+m,(﹣1<m<1)与圆C交于M,N两点,求P、M、Q、N四点组成的四边形面积S的取值范围.9.已知椭圆C:1(a>b>0)过点A(2,0),双曲线1的离心率为.(1)求椭圆C的方程;(2)过原点O作两条射线OM,ON分别交椭圆C于M,N两点,当OM,ON斜率分别为k1,k2且△OMN的面积为1时,试问k1•k2是否为定值?若为定值,求出该定值;若不为定值,请说明理由.10.已知抛物线C:x2=2py(p>0)的焦点F到准线距离为2.(1)若点E(1,1),且点P在抛物线C上,求|PE|+|PF|的最小值;(2)若过点N(0,b)的直线与圆M:x2+(y﹣2)2=4相切,且与抛物线C有两个不同交点AB,求△AOB的面积.11.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2过点F2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3,)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.12.已知椭圆C:y2=1,斜率为l的直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1>x2.(Ⅰ)若A,B两点不关于原点对称,点D为线段AB的中点,求直线OD的斜率;(Ⅱ)若存在点E(3,y0),使得∠EBA=∠AEB=45°,求直线AB的方程.13.已知O为坐标原点,点F1,F2为椭圆M:1(a>b>0)左右焦点,G为椭圆M上的一个动点,△GF1F2的最大面积为,椭圆M的离心率为.(1)求椭圆M的标准方程;(2)过抛物线N:y一点P与抛物线N相切的直线l与椭圆M相交于A、B两点,设AB的中点为C,直线OP与直线OC的斜率分别是k1,k2,证明:k1k2为定值.14.已知抛物线C:y2=2px(p>0)过点M(1,﹣2),且焦点为F,直线l与抛物线相交于A,B两点.(1)求抛物线C的方程,并求其准线方程;(2)O为坐标原点.若,证明直线l必过一定点,并求出该定点.15.已知圆D:(x﹣2)2+(y﹣1)2=1,点A在抛物线C:y2=4x上,O为坐标原点,直线OA与圆D有公共点.(1)求点A横坐标的取值范围;(2)如图,当直线OA过圆心D时,过点A作抛物线的切线交y轴于点B,过点B引直线l交抛物线C于P、Q两点,过点P作x轴的垂线分别与直线OA、OQ交于M、N,求证:M为PN中点.16.已知抛物线C:y2=2px(p>0)的焦点为F,点B(m,2)在抛物线C上,A(0,),且|BF|=2|AF|.(1)求抛物线C的标准方程;(2)过点P(1,2)作直线PM,PN分别交抛物线C于M,N两点,若直线PM,PN 的倾斜角互补,求直线MN的斜率.17.已知点P(1,2)到抛物线C:y2=2px(p>0)准线的距离为2.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,求直线P A与PB的斜率之积.18.在平面直角坐标系xOy中,已知椭圆C:1(a>b>0)的离心率为,且过点(,).(1)求椭圆C的方程;(2)设点P(4,2),点M在x轴上,过点M的直线交椭圆C交于A,B两点.①若直线AB的斜率为,且AB,求点M的坐标;②设直线P A,PB,PM的斜率分别为k1,k2,k3,是否存在定点M,使得k1+k2=2k3恒成立?若存在,求出M点坐标;若不存在,请说明理由.19.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.20.已知椭圆C:1(a>0,b>0)的左、右焦点分别为F1、F2,离心率为,过焦点F2的直线l交椭圆C于A、B两点,当直线l垂直于x轴时,|AB|.(1)求椭圆C的标准方程:(2)已知椭圆上顶点为P,若直线l斜率为k,求证:以AB为直径的圆过点P.21.已知抛物线C:x2=2py(p>0的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.22.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(Ⅰ)求椭圆C的标准方程(Ⅱ)若过点(﹣3,0)的直线l与椭圆C交于不同的两点M,N,O为坐标原点,求•的取值范围.23.已知椭圆C:(a>b>0)的离心率,且椭圆过点(,1)(1)求椭圆C的标准方程(2)设直线l与C交于M,N两点,点D在C上,O是坐标原点,若,判定四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.24.已知椭圆C:,(a>b>0)过点(1,)且离心率为.(Ⅰ)求椭圈C的方程;(Ⅱ)设椭圆C的右顶点为P,A,B是椭圆上异于点P的两点,直线P A,PB的斜率分别为k1k2,若k1+k2=1,试判断直线AB是否经过一个定点?若是,则求出该定点的坐标;若不是,则说明理由.25.已知椭圆:>>的离心率为,,为焦点是,的抛物线上一点,H为直线y=﹣a上任一点,A,B分别为椭圆C的上,下顶点,且A,B,H三点的连线可以构成三角形.(1)求椭圆C的方程;(2)直线HA,HB与椭圆C的另一交点分别交于D,E,求证:直线DE过定点.26.在平面直角坐标系xOy中,已知曲线C的方程是1(a,b>0).(1)当a=1,b=2时,求曲线C围成的区域的面积;(2)若直线l:x+y=1与曲线C交于x轴上方的两点M,N,且OM⊥ON,求点(,)到直线l距离的最小值.27.在直角坐标系中,已知椭圆E经过点M(2,),且其左右焦点的坐标分别是(﹣3,0),(3,0).(1)求椭圆E的离心率及标准方程;(2)设P(﹣3,t)为动点,其中t∈(,),直线l经过点P且与椭圆E相交于A,B两点,若P为AB的中点,是否存在定点N,使|NA|=|NB|恒成立?若存在,求点N的坐标;若不存在,说明理由28.已知椭圆C:y2=1的左、右焦点分别为F1,F2,P是椭圆C上在第二象限内的一点,且直线PF2的斜率为.(1)求P点的坐标;(2)过点Q(﹣2,0)作一条斜率为正数的直线l与椭圆C从左向右依次交于A,B两点,是否存在实数λ使得∠AF1B=λ∠AF1P?若存在,求出λ的值;若不存在,请说明理由.29.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)30.已知椭圆:>>经过点,,左焦点,,直线l:y =2x+m与椭圆C交于A,B两点,O是坐标原点.(1)求椭圆C的标准方程;(2)若△OAB面积为1,求直线l的方程.31.已知F1、F2为椭圆C:1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M(,1).(1)求椭圆C的方程;(2)若过点(,0)的直线l与椭圆C交于A、B两点,若0,求直线l的方程.32.设椭圆:>>的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆Γ截得的线段长为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)如图,A、B分别为椭圆Γ的左、右顶点,过点F的直线l与椭圆Γ交于C、D两点.若,求直线l的方程.33.已知椭圆C:>>经过点(,1),离心率为.(1)求椭圆C的方程;(2)过点M(2,0)的直线l交椭圆于A,B两点,F为椭圆C的左焦点,若,求直线l的方程.34.已知F1,F2分别为椭圆:>>的左右焦点,上顶点为M,且△F1MF2的周长为,且长轴长为4.(1)求椭圆C的方程;(2)已知P(0,3),若直线y=2x﹣2与椭圆C交于A,B两点,求.35.已知椭圆C的中心为坐标原点O,焦点F1,F2在x轴上,椭圆C短轴端点和焦点所组成的四边形为正方形,且椭圆C短轴长为2.(1)求椭圆C的标准方程.(2)P为椭圆C上一点,且∠F1PF2,求△PF1F2的面积.36.已知抛物线C:y2=2px(p>0)的焦点与椭圆的右焦点重合.(1)求抛物线C的方程及焦点到准线的距离;(2)若直线y x+1与C交于A(x1,y1),B(x2,y2)两点,求y1y2的值.37.已知离心率为的椭圆C:1(a>b>0)的左焦点为F1,过F1作长轴的垂线交椭圆于M,N两点,且|MN|=2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB 长度的最小值.38.已知抛物线y2=2px(p>0)上一点M(x0,2)到焦点F的距离|MF|,倾斜角为α的直线经过焦点F,且与抛物线交于两点A、B.(1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB的中垂线m交x轴于点P.证明:|FP|﹣|FP|•cos2α为定值,并求出该定值.39.已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F 的距离为.(Ⅰ)求抛物线E的方程;(Ⅱ)不过圆点的动直线l交抛物线于A、B两点,且满足OA⊥OB.(i)求证直线l过定点:(ii)设点M为圆C上任意一动点,求当动点M到直线l的距离最大时直线l的方程.40.设抛物线C:y2=2px(P>0)的焦点为F,直线l与抛物线C交于不同的两点A,B,线段AB中点M的横坐标为2,且|AF|+|BF|=6.(Ⅰ)求抛物线C的标准方程;(Ⅱ)若直线l(斜率存在)经过焦点F,求直线l的方程.41.己知点M为抛物线C:y2=4x上异于原点O的任意一点,F为抛物线的焦点,连接MF 并延长交抛物线C于点N,点N关于x轴的对称点为A.(Ⅰ)证明:直线MA恒过定点:(Ⅱ)如果|FM|=λ|OM|,求实数λ的取值范围.42.在直角坐标系xOy中,抛物线y2=4x与圆C:(x﹣a)2+y2=a2交于O,A,B三点,且O、A、B将圆C三等分(1)求a的值;(2)设直线l与抛物线交于M,N两点,点A位于第一象限,若直线AM,AN的斜率之和为,证明当线MN过定点,并求出定点坐标.43.设抛物线C:y2=4x的焦点为F,过F的直线l与C交于A,B两点.(1)若|AF|=2|BF|,求直线l的斜率;(2)设线段AB的垂直平分线交x轴于点D,求证:|AB|=2|DF|.44.在平面直角坐标系xOy中,曲线Γ:y=x2﹣mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.45.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)设过点(2,0)的直线l1,l2分别与抛物线C交于点D,E和点G,H,且l1⊥l2,求四边形DGEH面积的最小值.46.在平面直角坐标系中,已知抛物线y2=2px(p>0)的焦点F到双曲线x21的渐近线的距离为.(1)求该抛物线的方程;(2)设抛物线准线与x轴交于点M,过M作斜率为k的直线l与抛物线交于A,B两点,弦AB的中点为P,AB的中垂线交x轴于N,求点N横坐标的取值范围.47.已知点P(6,﹣2)是抛物线C:y2=mx上一点,直线y=k(x﹣2)(k≠0)与抛物线C交于A,B两点.(1)求P到抛物线C焦点的距离;(2)若M的坐标为(0,1),且MA⊥MB,求k的值.48.已知点O为坐标原点椭圆C:1(a>b>0)的右焦点为F,离心率为,点P,Q分别是椭圆C的左顶点、上顶点,△POQ的边PQ上的中线长为.(1)求椭圆C的标准方程;(2)过点F的直线l交椭圆于A、B两点直线P A、PB分别交直线x=2a于M、N两点,求.49.已知椭圆1(a>b>0),若在(2,0),(,),(,)(,)四个点中有3个在M上.(1)求椭圆M的方程;(2)若点A与点B是椭圆M上关于原点对称的两个点,且C(﹣4,0),求•的取值范围.50.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)若直线:与抛物线C交于R,S两点,点N为曲线E:上的动点,求△NRS面积的最小值.高考重难点突破圆锥曲线50道题(3)含详细解析参考答案与试题解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..【解答】解:(1)设A(x1,y1),B(x2,y2).则x1+x2=4,y1+y2=2又,两式相减可得:(y1﹣y2)(y1+y2)=4(x1﹣x2).∴2(y1﹣y2)=4(x1﹣x2).,即直线l的斜率为2,∴直线l的方程为y=2(x﹣2)+1.即y=2x﹣3.(2)直线l的方程为x=m(y﹣1)+2由⇒y2﹣4my+4m﹣8=0.y1+y2=4m,∵|AF|+|BF|=x1+1+x2+1=x1+x2+2=m(y1﹣1)+2+m(y2﹣1)+2+2=m(y1+y2)﹣2m+6=4m2﹣2m+6当m时,|AF|+|BF|取最小值.最小值为.2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.【解答】解:(Ⅰ)依题意可设直线OP的方程为:y=x﹣2.联立,可得x2﹣6x+4=0,所以AB2.(Ⅱ)设直线l的方程为x=my+2.由得y2﹣2my﹣4=0.设A(x1,y1),B(x2,y2),则.∴AB.又PQ:y=﹣mx,故P(,)∴点P到直线l的距离d=|PQ|.∴3令m2+4=t,f(t).函数f(t)在[4,+∞)单调递增,∴f(t)min=f(4),此时m=0∴3,∴的最小值为,此时直线l的方程为x=2.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.【解答】解:(1)如图,∵A为FB的中点,∴A到y轴的距离为,∴|AF|,解得p=2.∴抛物线C的方程为y2=4x;(2)由已知直线l1的斜率存在且不为0,设其方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.∵△>0,设M(x1,y1)、N(x2,y2)。

相关文档
最新文档