MT7968规格书-中文_Rev1.40
MT7965规格书-中文_Rev1.00
功率环路的面积
减小功率环路的面积,如变压器原边,功率管及缓 冲网络(snubber)的环路面积;以及次级二极管、
MT7965 Rev. 1.00
版权 © 2014 美芯晟科技有限公司
第6页
MT7965
高精度双绕组原边反馈 LED 恒流驱动
封装外形尺寸
重要声明:
·美芯晟科技有限公司保留不发布通知而对该产品和服务随时进行更改,补充,改进和其它变动的权利。 用户敬请在购买产品之前获取最新的相关信息并核实该信息是最佳的和完整的。 所有产品在订单确认后 将遵从美芯晟科技有限公司的销售条例进行销售。 ·本资料内容未经美芯晟科技有限公司许可,严禁以其它目的加以转载或复制等。 ·对于未经销售部门咨询使用本产品而发生的损失,美芯晟科技有限公司不承担其责任。
I P _ PK
500 (mA) RCS
式中 RCS 为峰值检测电阻(见典型应用电路) 。CS 外部电压与 500mV 阈值电平比较时还包括一个 500nS 的前沿消隐时间以滤除 CS 端在导通瞬间 的噪声。 LED 输出电流的计算公式为:
VCC EN
DRAIN
I LED
图 1、启动过程
I P _ PK 4
MT7965 Rev. 1.00 版权 © 2014 美芯晟科技有限公司
第7页
MT7965
高精度双绕组原边反馈 LED 恒流驱动
索取产品详细信息及样片申请,请联系:
美芯晟科技有限公司 (北京办公室) 北京市海淀区知春路 106 号,皇冠假日酒店写字楼 1006。邮政编码 100086 电话: 传真: 86-10-62662828 86-10-62662951
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
八重洲FT-7800R中文完整版操作手册(装订版)
○7 [BAND(SET)]键
在 VFO 模式,按此键可以按以下顺序改变工作波段: 144MHz→250MHz→350MHz→430MHz→850MHz→144MHz… 在频道模式,按此键,进入存储调谐功能。 按住此键 0.5 秒进入菜单设置。
○8 [V/M(MW)]键
按此键,在 VFO、频道及常用频道间选择频率控制方式 按住此键 0.5 秒,将 VFO 数据存入频道。
○12 电源开关(PWR)
按住此键 0.5 秒,开关电台。
○13 ※键
按此键进入互联网功能。 按住此键 0.5 秒显示进入的互联网功能号。
3
FT-7800R 操作手册
选项:50 个 CTCSS 哑音频率 默认值:100Hz 注意:此菜单可在每个波段和每个频道分别设置
45 号菜单 [TOT] 功能:设置定时关机 选项:1~30 分钟或 OFF 默认值:6 分钟
61
FT-7800R 操作手册
○5 [TONE(HM/RV)]键
正面板控制旋钮和开关
按此键,在 ENC(CTCSS 编码)、ENC DEC(CTCSS 哑音)或 DCS(DCS 哑音)间改变哑音模式。 按住此键 0.5 秒在差频操作时互换发射接收频率(如中转台)。
○6 [LOW(ACC)]键
按此键可选择发射功率(LOW、MID2、MID1,HIGH)。 按住此键 0.5 秒,可调出天气预报频道。可以将按住功能编辑为 其他功能,详见有关章节。
43 号菜单 [STEP] 功能:设置频合器步进 选项:AUTO/5.0k/10.0k/12.5k/20.0k/25.0k/50.0k/100k 默认值:根据工作波段 注意:5kHz 和 15kHz 步进在 700MHz 以上不可用
MEMORY存储芯片MT29F64G08CBABAWPB中文规格书
PRECHARGE OperationInput A10 determines whether one bank or all banks are to be precharged and, in thecase where only one bank is to be precharged, inputs BA[2:0] select the bank.When all banks are to be precharged, inputs BA[2:0] are treated as “Don’t Care.” After abank is precharged, it is in the idle state and must be activated prior to any READ orWRITE commands being issued.SELF REFRESH OperationThe SELF REFRESH operation is initiated like a REFRESH command except CKE is LOW.The DLL is automatically disabled upon entering SELF REFRESH and is automaticallyenabled and reset upon exiting SELF REFRESH.All power supply inputs (including V REFCA and V REFDQ) must be maintained at valid lev-els upon entry/exit and during self refresh mode operation. V REFDQ may float or notdrive V DDQ/2 while in self refresh mode under certain conditions:•V SS < V REFDQ < V DD is maintained.•V REFDQ is valid and stable prior to CKE going back HIGH.•The first WRITE operation may not occur earlier than 512 clocks after V REFDQ is valid.•All other self refresh mode exit timing requirements are met.The DRAM must be idle with all banks in the precharge state (t RP is satisfied and nobursts are in progress) before a self refresh entry command can be issued. ODT mustalso be turned off before self refresh entry by registering the ODT ball LOW prior to theself refresh entry command (see On-Die Termination (ODT) ( for timing requirements).If R TT,nom and R TT(WR) are disabled in the mode registers, ODT can be a “Don’t Care.”After the self refresh entry command is registered, CKE must be held LOW to keep theDRAM in self refresh mode.After the DRAM has entered self refresh mode, all external control signals, except CKEand RESET#, are “Don’t Care.” The DRAM initiates a minimum of one REFRESH com-mand internally within the t CKE period when it enters self refresh mode.The requirements for entering and exiting self refresh mode depend on the state of theclock during self refresh mode. First and foremost, the clock must be stable (meetingt CK specifications) when self refresh mode is entered. If the clock remains stable andthe frequency is not altered while in self refresh mode, then the DRAM is allowed to exitself refresh mode after t CKESR is satisfied (CKE is allowed to transition HIGH t CKESRlater than when CKE was registered LOW). Since the clock remains stable in self refreshmode (no frequency change), t CKSRE and t CKSRX are not required. However, if theclock is altered during self refresh mode (if it is turned-off or its frequency changes),then t CKSRE and t CKSRX must be satisfied. When entering self refresh mode, t CKSREmust be satisfied prior to altering the clock's frequency. Prior to exiting self refreshmode, t CKSRX must be satisfied prior to registering CKE HIGH.When CKE is HIGH during self refresh exit, NOP or DES must be issued for t XS time. t XSis required for the completion of any internal refresh already in progress and must besatisfied before a valid command not requiring a locked DLL can be issued to the de-vice. t XS is also the earliest time self refresh re-entry may occur. Before a command re-quiring a locked DLL can be applied, a ZQCL command must be issued, t ZQOPER tim-ing must be met, and t XSDLL must be satisfied. ODT must be off during t XSDLL.Figure 93: Self Refresh Entry/Exit TimingCKCK#CommandAddressCKEODT 2RESET#2Exit self refresh mode (asynchronous)Don’t CareIndicates breakin time scale Notes: 1.The clock must be valid and stable, meeting t CK specifications at least t CKSRE after en-tering self refresh mode, and at least t CKSRX prior to exiting self refresh mode, if the clock is stopped or altered between states Ta0 and Tb0. If the clock remains valid and unchanged from entry and during self refresh mode, then t CKSRE and t CKSRX do not apply; however, t CKESR must be satisfied prior to exiting at SRX.2.ODT must be disabled and R TT off prior to entering self refresh at state T1. If both R TT,nom and R TT(WR) are disabled in the mode registers, ODT can be a “Don’t Care.”3.Self refresh entry (SRE) is synchronous via a REFRESH command with CKE LOW.4. A NOP or DES command is required at T2 after the SRE command is issued prior to the inputs becoming “Don’t Care.”5.NOP or DES commands are required prior to exiting self refresh mode until state Te0.6.t XS is required before any commands not requiring a locked DLL.7.t XSDLL is required before any commands requiring a locked DLL.8.The device must be in the all banks idle state prior to entering self refresh mode. For example, all banks must be precharged, t RP must be met, and no data bursts can be in progress.9.Self refresh exit is asynchronous; however, t XS and t XSDLL timings start at the first rising clock edge where CKE HIGH satisfies t ISXR at Tc1. t CKSRX timing is also measured so that t ISXR is satisfied at Tc1.Extended Temperature UsageMicron’s DDR3 SDRAM support the optional extended case temperature (T C) range of0°C to 95°C. Thus, the SRT and ASR options must be used at a minimum.The extended temperature range DRAM must be refreshed externally at 2x (double re-fresh) anytime the case temperature is above 85°C (and does not exceed 95°C). The ex-ternal refresh requirement is accomplished by reducing the refresh period from 64ms to32ms. However, self refresh mode requires either ASR or SRT to support the extendedtemperature. Thus, either ASR or SRT must be enabled when T C is above 85°C or selfrefresh cannot be used until T C is at or below 85°C. Table 75 summarizes the two exten-ded temperature options and Table 76 summarizes how the two extended temperatureoptions relate to one another.Table 75: Self Refresh Temperature and Auto Self Refresh DescriptionTable 76: Self Refresh Mode SummaryPower-Down ModePower-down is synchronously entered when CKE is registered LOW coincident with aNOP or DES command. CKE is not allowed to go LOW while an MRS, MPR, ZQCAL,READ, or WRITE operation is in progress. CKE is allowed to go LOW while any of theother legal operations (such as ROW ACTIVATION, PRECHARGE, auto precharge, or RE-FRESH) are in progress. However, the power-down I DD specifications are not applicableuntil such operations have completed. Depending on the previous DRAM state and thecommand issued prior to CKE going LOW, certain timing constraints must be satisfied(as noted in Table 77). Timing diagrams detailing the different power-down mode entryand exits are shown in Figure 94 (page 176) through Figure 103 (page 180).Table 77: Command to Power-Down Entry ParametersNote: 1.If slow-exit mode precharge power-down is enabled and entered, ODT becomes asyn-chronous t ANPD prior to CKE going LOW and remains asynchronous until t ANPD +t XPDLL after CKE goes HIGH.Entering power-down disables the input and output buffers, excluding CK, CK#, ODT,CKE, and RESET#. NOP or DES commands are required until t CPDED has been satis-fied, at which time all specified input/output buffers are disabled. The DLL should be ina locked state when power-down is entered for the fastest power-down exit timing. Ifthe DLL is not locked during power-down entry, the DLL must be reset after exitingpower-down mode for proper READ operation as well as synchronous ODT operation.During power-down entry, if any bank remains open after all in-progress commands arecomplete, the DRAM will be in active power-down mode. If all banks are closed after allin-progress commands are complete, the DRAM will be in precharge power-downmode. Precharge power-down mode must be programmed to exit with either a slow exitmode or a fast exit mode. When entering precharge power-down mode, the DLL isturned off in slow exit mode or kept on in fast exit mode.The DLL also remains on when entering active power-down. ODT has special timingconstraints when slow exit mode precharge power-down is enabled and entered. Referto Asynchronous ODT Mode (page 197) for detailed ODT usage requirements in slowexit mode precharge power-down. A summary of the two power-down modes is listed inTable 78 (page 175).While in either power-down state, CKE is held LOW, RESET# is held HIGH, and a stableclock signal must be maintained. ODT must be in a valid state but all other input signalsare “Don’t Care.” If RESET# goes LOW during power-down, the DRAM will switch out ofpower-down mode and go into the reset state. After CKE is registered LOW, CKE mustremain LOW until t PD (MIN) has been satisfied. The maximum time allowed for power-down duration is t PD (MAX) (9 × t REFI).The power-down states are synchronously exited when CKE is registered HIGH (with arequired NOP or DES command). CKE must be maintained HIGH until t CKE has beensatisfied. A valid, executable command may be applied after power-down exit latency,t XP, and t XPDLL have been satisfied. A summary of the power-down modes is listed be-low.For specific CKE-intensive operations, such as repeating a power-down-exit-to-refresh-to-power-down-entry sequence, the number of clock cycles between power-down exitand power-down entry may not be sufficient to keep the DLL properly updated. In addi-tion to meeting t PD when the REFRESH command is used between power-down exitand power-down entry, two other conditions must be met. First, t XP must be satisfiedbefore issuing the REFRESH command. Second, t XPDLL must be satisfied before thenext power-down may be entered. An example is shown in Figure 104 (page 181).Table 78: Power-Down Modes。
MEMORY存储芯片MT48LC8M16A2B4-75中文规格书
Dynamic ODTIn certain application cases and to further enhance signal integrity on the data bus, it isdesirable that the termination strength of the device can be changed without issuing anMRS command. This requirement is supported by the dynamic ODT feature.Functional DescriptionDynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to 1.•Three R TT values are available: R TT(NOM), R TT(WR), and R TT(Park).–The value for R TT(NOM) is preselected via bits MR1[10:8].–The value for R TT(WR) is preselected via bits MR2[11:9].–The value for R TT(Park) is preselected via bits MR5[8:6].•During operation without WRITE commands, the termination is controlled as fol-lows:–Nominal termination strength R TT(NOM) or R TT(Park) is selected.–R TT(NOM) on/off timing is controlled via ODT pin and latencies DODTLon andDODTLoff, and R TT(Park) is on when ODT is LOW.•When a WRITE command (WR, WRA, WRS4, WRS8, WRAS4, and WRAS8) is regis-tered, and if dynamic ODT is enabled, the termination is controlled as follows:–Latency ODTLcnw after the WRITE command, termination strength R TT(WR) is se-lected.–Latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (forBC4, fixed by MRS or selected OTF) after the WRITE command, terminationstrength R TT(WR) is de-selected.One or two clocks will be added into or subtracted from ODTLcwn8 and ODTLcwn4,depending on write CRC mode and/or 2t CK preamble enablement.The following table shows latencies and timing parameters relevant to the on-die termi-nation control in dynamic ODT mode. The dynamic ODT feature is not supported inDLL-off mode. An MRS command must be used to set R TT(WR) to disable dynamic ODTexternally (MR2[11:9] = 000).Table 74: Dynamic ODT Latencies and Timing (1t CK Preamble Mode and CRC Disabled)4Gb: x4, x8, x16 DDR4 SDRAM Dynamic ODTFigure 161: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1t CK Preamble and Write CRC in Same or Different Bank GroupCommand DQ x4,BC = 4 (Fixed)CK_t CK_cDQS_t,DQS_cBank GroupAddress AddressDQ x8/X16,BC = 4 (Fixed)Notes: 1.BC = 4 (Fixed), RL = 11 (CL = 11, AL = 0), READ preamble = 1t CK, WL = 9 (CWL = 9, AL =0), WRITE preamble = 1t CK.2.DO n = data-out from column n , DI b = data-in from column b .3.DES commands are shown for ease of illustration; other commands may be valid atthese times.4.BC4 setting activated by MR0[1:0] = 10.5.CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,Write CRC = Enable.READ Operation with Command/Address Latency (CAL) EnabledFigure 162: Consecutive READ (BL8) with CAL (3t CK) and 1t CK Preamble in Different Bank GroupCommandw/o CS_nDQCK_tCK_cDQS_t,DQS_cBank GroupAddress Address CS_n Notes: 1.BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1t CK.4Gb: x4, x8, x16 DDR4 SDRAM READ Operation。
MT7968AL规格书-中文_Rev1.00
版权 © 2015 美芯晟科技有限公司
Rev. 1.00 第1页
MT7968AL
高精度双绕组原边反馈 LED 恒流驱动
极限参数
DRAIN VCC VCC 最大吸收电流 OVP CS PDMAX(最大功耗) 存储温度 结温(Tj) -0.3V ~ 600V -0.3V ~ 40V 5mA -0.3V ~ 6V -0.3V ~ 6V 1.2W -55° C ~ 150° C 150° C
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
热阻
PN 结到环境 (RθJA) 70° C/W
管脚排列图
芯片标记:
MT7968AL YY WW xxxx 生产内部代码 生产周代码 生产年代码
管脚描述
管脚名称 OVP GND VCC SW DRAIN CS 管脚号 1 2 3 4 5 6 7 8 接地脚 芯片电源脚 内部功率管源极 内部功率管漏极 电流采样端,采样电阻接在CS和GND之间 描述 LED 开路电压设定管脚。参见功能描述中,LED 开路保护设置。
I P _ PK
Tdemag_ov
过流保护 一旦 CS(D)脚电压超过 500mV,MT7968AL 将立 即关断功率 MOS 管。这种每周期过流检测的方式 保护了相关的元器件免于损坏,如功率 MOS 管, 变压器等。 PCB 设计 设计 MT7968AL 的 PCB 时,需要遵循下列原则:
图 2、变压器原级和次级电流波形
Email: sales@ Tel: 010-62662828 版权 © 2015 美芯晟科技有限公司 Rev. 1.00 第7页
Email: sales@ Tel: 010-62662828
MT7966规格书-中文_Rev1.00
如果 VCC 低于 8V, 则 MT7966 将自动关闭 (UVLO 阈值电压) 。 恒流控制与输出电流设置 芯片逐周期检测变压器原边的峰值电流,CS 端连 接到内部的峰值电流比较器的输入端,与内部 500mV 的阈值电平进行比较,当 CS 外部电压达 到该阈值时,功率管关断。 原边峰值电流的表达式为:
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
热阻
封装表面到环境 (RθCA) 128° C/W
管脚排列图
管脚描述
管脚名称 GND OVP VCC SW DRAIN NC CS 管脚号 1 2 3 4 5 6 7 8 接地脚 LED开路电压设定管脚。参见功能描述中,LED开路保护设置。 芯片电源脚 内部功率管源极 内部功率管漏极 悬空脚,该引脚必须悬空 电流采样端,采样电阻接在CS和GND之间 描述
应用
LED球泡灯、射灯 LED照明驱动 通用恒流源
典型应用电路
LED+ NP:NS
AC
LEDVCC CS OVP GND
3 8
4
SW NC DRAIN DRAIN
MT7966 7 2 (SOP8) 6
1 5
RCS
RSET
MT7966 Rev. 1.00
版权 © 2014 美芯晟科技有限公司
版权 © 2014 美芯晟科技有限公司
第5页
MT7966
高精度双绕组原边反馈 LED 恒流驱动
片的地线及其它小信号的地线分头接到 Bulk 电容 的地端。 OVP 引脚 OVP 引脚走线尽可能短,且 RSET 电阻需要尽量靠 近 OVP 引脚。OVP 引脚走线不能靠近 DRAIN 引 脚走线以及 SW 引脚走线, 如果有条件, 可用地线 将 OVP 引脚包围。 变压器次级、输出电容的环路面积,以减小 EMI 辐射。 DRAIN 引脚 增加 DRAIN 引脚的铺铜面积以提供芯片的散热能 力。 NC 引脚 NC 脚必须悬空以保证芯片引脚间距满足爬电距 离。
GEMTECH ITX-8978 主板 说明书
主板后面板提供以下接口:
6
VGA接口
主板提供一个DB 15-pin母头接口以连接到一个VGA监视器。
DVI接口
主板提供一个DVI-D接口以连接到一个DVI监视器。
HDMI接口
主板提供一个HDMI 1.3接口以连接到一个HDMI监视器。
SPDIF接口
主板提供两个 S/PDIF 接口,一个是同轴输出(Coaxial Out),一个是光线输出(Optical Out)。
主板使用12V 5A 的适配器电源供应器给主板供电。在连接电源供应器之前,请务必确认所有的 组件都已正确安装,并且不会造成损坏。
另外,也可用ATX 12V电源接口PW1 为主板供电。在与ATX 电源供应器相连时,请务
必确认,电源供应器的接头安装方向正确,针脚对应顺序也准确无误。将电源接头插入,并使其 与主板电源接口稳固连接。 以上两种供电方式选择一种即可。
使用手册
版本 1.1 发行日期 2009年九月
安全指导
1. 务必请仔细通读本安全指导。 2. 务必请妥善保管本手册,以备将来参考。 3. 请保持本设备的干燥。 4. 在使用前,宜将本设备置于稳固的平面上。 5. 机箱的开口缝槽是用于通风,避免机箱内的部件过热。请勿将此类开口掩盖 或堵塞。 6. 在将本设备与电源连接前,请确认电源电压值,将电压调整为110/220V。 7. 请将电源线置于不会被践踏到的地方,并且不要在电源线上堆置任何物件。 8. 插拔任何扩展卡或模块前,请都将电源线拔下。 9. 请留意手册上提到的所有注意和警告事项。 10. 不得将任何液体倒入机箱开口的缝槽中,否则会产生严重损坏或电路瘫痪。 11. 如果发生以下情况,请找专业人员处理:
Expansion Slot
MT7688用户手册
淘宝店铺销售
1.1.2 模块基本参数
分类 无线参数
硬件参数
参数
FL-EM7688 模块技术参数 数值
无线标准 频率范围
天线选项
IEEE 802.11 b/g/n 2.4GHz — 2.4835GHz 内置:板载陶瓷天线
I-PEX 连接器
武汉飞龙电子科技有限公司
___________________________________________
FL – EM7688 嵌 入 式 wifi 模组用户手册
尊敬的用户,感谢您使用飞龙科技 EM7688 WIFI 模块。为了 便于您正确使用本模块,使用产品前请仔细阅读本用户手册,并 请妥善保管。
I/O
USB2.0 D-
68
GND
Power
电源地
69
GND
Power
电源地
注: 1、红色带“#”前缀信号用于启动系统配置,外部不可驱动,不要上下拉。
1.2.2 电气特性
参数 存放温度范围 最大焊接温度
工作电压 任意 I/O 电压 静电释放量(人体模型) 静电释放量(充电设备模型)
条件 IPC/JEDEC J-STD-020
1.1.1 模块特点
超小体积,长宽仅 42mm × 30mm。 邮票孔接口,方便安装。 内置陶瓷天线和 I-PEX 接口。 3.3V 单电源供电。 有线+无线路由器方案 支持 802.11 b/g/n 协议,最高 150Mbps。 有线支持 1WAN 或 1LAN,10M/100M 自适应。 适中的 RF 功率消耗。 板载 64MB DDR2 内存,8MB FLash。 480Mbps 高速 USB 接口。 3 路 UART(推荐 UART0 专用于系统 Debug)。 SD-XC、eMMC、PCM、IIS 数字音频接口(192K/24bits)、IIC 通讯接口、
MT7688模块规格书_Rev0
HK NATER TECH LIMITEDMT7688核心模块Specification Customer:Description:LH7688EVB-MCustomer P/N:______________________________________ Date:Customer: Provider:HK NATER TECH LIMITEDAdd: Add: 2F,NO.27,2 Baomin Rd.,Baoan Dist.SZ City,China Tel: Tel:0086-755-61522172/135****0050Fax: Fax:0086-755-61522171Attn: Attn:LingoE-mail: E-mail:***************基于MT7688A的Wi-Fi路由模块文档版本:Rev 0.4版本历史:版本日期说明作者备注0.1 2014-Sep-18 初次紧急发布。
T om0.2 2014-Sep-19 增加电气特性部分。
T om0.3 2014-Sep-25 增加SD卡典型电路T om0.4 2014-Oct-09 增加RF典型特性T om1. 模块简介LH-7688-M是一款通用2.4G Wi-Fi路由模块,配合一个Ethernet接口,一个USB口,若干GPIO,它可以适用于很多场合。
比如有线转无线,3G/4G转WiFi,,硬AP,便携式路由器,无线音箱,无线存储等等。
模块大小为56mm*39mm,采用邮票接口(半孔工艺)与母板连接。
WiFi可以使用板载的片状天线,简化客户的整机装配;或者使用I-PEX引出。
模块基于台湾MTK的MT7688A方案,主要特点如下:◆ 无线+有线路由器方案◆ 无线支持802.11b/g/n,最高速率150Mbps◆ 有线支持1WAN或1LAN,10M/100M自适应◆ 适中的RF功率消耗◆ 支持64MB/128MB/256MB DDR2 memory◆ 480Mbps的高速USB接口◆ 3路UART(推荐UART0专用于系统Debug)◆ I2S数字音频接口◆ I2C通信接口◆ 4位/8位SD卡存储接口◆ 丰富的GPIO2. 信 号Pin说明3 @I2S_DO 输出 I2S 数据输出 内部下拉4 I2S_WS 输出 I2S 左右声道对齐5 I2S_CLK输出 I2S 位时钟 6 I2C_SCLK 双向 I2C 时钟线 7 I2C_SD 双向 I2C 数据线 8 SPI_MISO 输入 SPI 主入从出9 *SPI_CS0 输出 SPI 片选0,应悬空 仅供调试10 @SPI_CS1 输出 SPI 片选1 内部下拉,与Flash 型号/容量有关 11 GND地12 @SPI_CLK 输出 SPI 时钟 内部上拉 13 @SPI_MOSI 输出 SPI 主出从入 内部下拉 14 GPIO_0 双向 GPIO_015 @UART_TXD0 输出 UART0发送线 Debug,内部下拉 16 UART_RXD0 输入 UART0接收线 Debug 17 RXIP0 模拟 Ethernet 接收线正 18 RXIN0 模拟 Ethernet 接收线负 19 TXOP0 模拟 Ethernet 发送线正 20 TXON0模拟 Ethernet 发送线负 21 PWM_CH0/SPIS_CS 双向 PWM 通道0/从SPI 片选 22 PWM_CH1/SPIS_CLK 双向 PWM 通道1/从SPI 时钟 23 UART_TXD2/SPIS_MISO 双向 UART2发送线/从SPI 主入从出 24 UART_RXD2/SPIS_MOSI 双向 UART2接收线/从SPI 主出从入 25 GND地26 SD_D7/GPIO18 双向 SD Data7/GPIO18 27 SD_D6/GPIO19 双向 SD Data6/GPIO19 28 SD_D5/GPIO20 双向 SD Data5/GPIO20 29 SD_D4/GPIO21 双向 SD Data4/GPIO21 30 SD_WP_N 输入 SD 写保护检测 31 SD_CD_N 输入 SD 插入检测 引脚 名称 方向 描述备注1 GND地2 I2S_DI 输入 I2S 数据输入33 SD_D0 双向 SD Data034 SD_CLK 输出 SD时钟线35 SD_CMD 双向 SD命令线36 SD_D1 双向 SD Data137 SD_D0 双向 SD Data038 GND 地39 USB_DP 双向 USB 2.0 D+40 USB_DM 双向 USB 2.0 D-41 GND 地42 VIN 电源 3.3V-5.3V直流输入43 VIN 电源 同上44 GND 地45 GND 地46 VOUT 电源 3.3V电源输出47 VOUT 电源 3.3V电源输出48 @PERST_N 输出 GPO 内部上拉49 REF_CLKO 输出 系统时钟输出/GPIO50 WDT_RST_N 双向 WatchDog复位/GPIO 默认恢复出厂设置51 CPURST_N 双向 MT7688A Reset信号 内部RC52 JTRST_N/LINK4 双向 GPIO53 JTCLK/LINK3 双向 GPIO54 JTMS/LINK2 双向 GPIO55 JTDI/LINK1 双向 GPIO56 JTDO/LINK0 输出 GPIO 推荐Ethernet指示57 WLED_N 输出 Wi-Fi状态指示58 @UART_TXD1 输出 UART1发送线 内部上拉59 UART_RXD1 输入 UART1接收线60 GND 地61 GND 地注意:1. 带有“@”前缀的信号,MT7688A启动时用于系统配置,外部切不可驱动,也不可增加上/下拉电阻(防碍内部上/下拉电阻)。
MEMORY存储芯片MT29F64G08CBAAAWP-IT中文规格书
DQ12 VDDQ
VSS
UDQS# DQ14 VSSQ
UDQS DQ10 VDDQ
DQ8 VSSQ
VDD
LDM VSSQ VDDQ
DQ1 DQ3 VSSQ
VDD
VSS
VSSQ
DQ7 DQ5 VDDQ
CK
ห้องสมุดไป่ตู้VSS
NC
CK# VDD CKE
A10/AP ZQ
NC
NC VREFCA VSS
A12/BC# BA1 VDD
Symbol A[15:13], A12/BC#, A11, A10/AP, A[9:0]
BA[2:0] CK, CK#
CKE
CS# DM ODT RAS#, CAS#, WE# RESET#
Type Input
Input Input Input
Input Input Input Input Input
09005aef85af8fa8 4Gb_DDR3L.pdf - Rev. R 09/18 EN
4Gb: x4, x8, x16 DDR3L SDRAM Ball Assignments and Descriptions
Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions
Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/ disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to VREFCA.
MEMORY存储芯片MT29F64G08CBABAWP-B中文规格书
Table 42: DDR3L 34 Ohm Driver I OH/I OL Characteristics: V DD = V DDQ = DDR3L@1.283DDR3L 34 Ohm Output Driver SensitivityIf either the temperature or the voltage changes after ZQ calibration, then the tolerancelimits listed in Table 38 (page 67) can be expected to widen according to Table 43 andTable 44.Table 43: DDR3L 34 Ohm Output Driver Sensitivity DefinitionNote: 1.˂T = T - T(@CALIBRATION); ˂V = V DDQ - V DDQ(@CALIBRATION); and V DD = V DDQ.Table 44: DDR3L 34 Ohm Output Driver Voltage and Temperature SensitivityDDR3L Alternative 40 Ohm DriverTable 45: DDR3L 40 Ohm Driver Impedance CharacteristicsNotes: 1.Tolerance limits assume RZQ of 240˖ ±1% and are applicable after proper ZQ calibra-tion has been performed at a stable temperature and voltage (V DDQ = V DD ; V SSQ = V SS ).Refer to DDR3L 40 Ohm Output Driver Sensitivity (page 70) if either the temperature or the voltage changes after calibration.2.Measurement definition for mismatch between pull-up and pull-down (MM PUPD ). Meas-ure both R ON(PU) and R ON(PD) at 0.5 × V DDQ :MM PUPD = ×100R ON(PU) - R ON(PD)R ON,nom3.For IT and AT devices, the minimum values are derated by 6% when the device operates between –40°C and 0°C (T C ).A larger maximum limit will result in slightly lower minimum currents.DDR3L 40 Ohm Output Driver SensitivityIf either the temperature or the voltage changes after I/O calibration, then the tolerance limits listed in Table 45 can be expected to widen according to Table 46 and Table 47(page 71).Table 46: DDR3L 40 Ohm Output Driver Sensitivity DefinitionNote: 1.˂T = T - T (@CALIBRATION), ˂V = V DDQ - V DDQ(@CALIBRATION); and V DD = V DDQ .Output Characteristics and Operating Conditions Table 48: DDR3L Single-Ended Output Driver CharacteristicsNotes: 1.RZQ of 240˖ ±1% with RZQ/7 enabled (default 34˖ driver) and is applicable after prop-er ZQ calibration has been performed at a stable temperature and voltage (V DDQ = V DD ;V SSQ = V SS ).2.V TT = V DDQ /2.3.See Figure 31 (page 75) for the test load configuration.4.The 6 V/ns maximum is applicable for a single DQ signal when it is switching either from HIGH to LOW or LOW to HIGH while the remaining DQ signals in the same byte lane are either all static or all switching in the opposite direction. For all other DQ signal switch-ing combinations, the maximum limit of 6 V/ns is reduced to 5 V/ns.5.See Figure 28 (page 66) for IV curve linearity. Do not use AC test load.6.See Slew Rate Definitions for Single-Ended Output Signals (page 75) for output slew rate.7.See Figure 28 (page 66) for additional information.8.See Figure 29 (page 73) for an example of a single-ended output signal.4Gb: x4, x8, x16 DDR3L SDRAM Output Characteristics and Operating Conditions。
MEMORY存储芯片MT29F64G08CBAAAWP-ZA中文规格书
DQ Input Timing
Data setup time to DQS, DQS#
VOH(AC)
VOL(AC)
Calculation
VOH(AC) - VOL(AC) ΔTRse
VOH(AC) - VOL(AC) ΔTFse
PDF: 09005aef8591dc1f 8Gb_DDR3L.pdf - Rev. C 10/15 EN
Speed Bin Tables
8Gb: x4, x8, x16 DDR3L SDRAM Speed Bin Tables
ACTIVATE-to-PRECHARGE command period
ACTIVATE-to-ACTIVATE command period
ACTIVATE-to-AC- x4/x8/x16 (2KB TIVATE minimum page size) command period
Four ACTIVATE x4/x8/x16 (2KB
27
27
27
27
512 – 512 – 512 – 512 – 215 – 140 – 80 – 60 –
375 – 300 – 240 – 220 – 365 – 290 – 205 – 185 –
500 – 425 – 340 – 320 – 285 – 210 – 150 – 130 –
375 – 300 – 240 – 220 – 900 – 780 – 620 – 560 –
Figure 27: Reference Output Load for AC Timing and Output Slew Rate
DUT
VDDQ/2 VREF
DQ DQS DQS#
MT-GSM168无线转发器产品说明书
MT-GSM168无线转发器产品说明书一、无线转发器介绍1.1产品简介令MT-GSMl68无线转发器是一款在工业环境下使用的GSM无线通讯产品,内置高性能GSM模块。
可以广泛应用于电力监控,水利、气象监测,勘探测控等行业和工业领域;本产品采用成熟的GSM无线通讯技术,可使防盗报警主机与接警中心通过GSM无线通讯方式联网。
令由于无线转发器采用工业集成设计,在温度范围、震动、电磁兼容性和接口多样性等方面均采用特殊设计,保证了恶劣环境下的工作稳定性,为您的设备提供高质量保证。
1.2功能特点:令基于德国原装进口模块,工业级设计,EMC设计,具有极高的接收灵敏度和强抗干扰能力,适合长期连续工作。
令可直接匹配任何品牌的报警主机、接警中心、电话机、程控交换机等用户终端设备。
◊安装、设置简单,无需调试,十分适用于野外电塔、水泵站、通信机房、微波发射塔等户外设备的数据通讯,具有高稳定的通讯效果,确保通信畅通无阻。
令实时监控PSTN电话线状态,当电话线发生故障或被剪断时,转发器立即自动切换到GSM工作模式取代电话线,负责通讯、发送报警讯息。
令优美外形配合多功能指示灯,实时反映转发器工作状态,使产品直观易用。
1.3组网应用二、无线转发器使用指南2.1外观结构如右图168(长)Xl12(宽)×28(∣⅛)mm2.2接口说明令电源接口:采用直插式电源座,中芯为中2.5mm AG/X电源功率:29W令天线接口:采用SMA(FEMALE)接口馈入线,外接棒状或吸盘天线。
◊SIM卡插槽:采用抽屉式SIM卡卡座,用户只需用小螺丝刀挤压SIM卡抽屉旁边黄色按纽,SIM卡抽屉即可弹出.将SIM卡对上缺口嵌入抽屉中装回卡座上。
令电话线输入:外接PSTN电话线。
令电话线输出:连接到用户报警主机的电话线输入端,而报警主机的电话线输出端接上用户电话机。
2.3指示灯说明注:3S灭2.4使用说明令正确安装后通上电源,待LED灯自检结束后,GSM状态灯慢闪,转发器已取得网络信号,可以正常工作。
MT7600规格书-中文 _Rev1.00
典型应用电路
MT7600 Rev. 1.00
版权 © 2012 美芯晟科技有限公司
第1页
MT7600
Maximizing IC Performance
极限参数
VCC SUM,CAP,CS 1,CS2, CS3,G1,G2,G3 存储温度 结温( Tj) -0.3V ~ 20V -0.3V ~ 6V -55° C ~ 150° C 150° C
MT7600 内置美芯晟专利的平均电流控制和补偿 电路,使得流过 LE D 灯串的平均电流在市电电压 变化时,仍能保持不变,达到良好的恒流效果。 平均电流模式主要通过在 CAP 脚外接 0.1uF – 1uF 对地电容来实现, 该电容同时在上电启动过程 中,起到软启动的作用。
MT7600 Rev. 1.00
版权 © 2012 美芯晟科技有限公司
第4页
MT7600
Maximizing IC Performance
过温保护 芯片内部温度高于 OTP 阈值后,会自动关闭。再 等温度降低到比 OTP 阈值低 20℃, 才会重新启动。 提高功率校准因子(PFC) MT7600 的系统,在三串 LE D 灯珠相同的导通电 流情况下,只要导通比 D 大于 0.66 ,功率因子 PF 就可以很容易达到 0.95。若需要进一步提高 PFC 值,那么分段 LE D 灯珠的导通电流波形就应该尽 量逼近市电的正弦电压波形,参见图 2,即 ILED3 > ILED2 > ILED1,也就是 R3 < R2 < R1 。 恒定功率输出模式 MT7600 内置平均电流模式控制电路, 根据外部电 路的接法不同,可以有两种不同的输出方式。 1) 恒定电流输出方式 ,SUM 脚浮空。该方式下, 在指定的市电电压变化范围内, LE D 灯串的平 均电流恒定不变。该方式电路简单,成本低; 2) 恒定功率输出方式 ,SUM 脚分别接不同阻值 的电阻( RS1,RS2 ,RS 3)到 CS 1 端,CS2
MEMORY存储芯片MT48LC64M8A2TG-75 C中文规格书
x4 and x8 configurations. The DDR4 SDRAM uses an 8n -prefetch architecture to ach-ieve high-speed operation. The 8n -prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins.A single READ or WRITE operation for the DDR4 SDRAM consists of a single 8n -bit wide, four-clock data transfer at the internal DRAM core and two corresponding n -bit wide, one-half-clock-cycle data transfers at the I/O pins.Industrial TemperatureAn industrial temperature (IT) device option requires that the case temperature not ex-ceed below –40°C or above 95°C. JEDEC specifications require the refresh rate to double when T C exceeds 85°C; this also requires use of the high-temperature self refresh option.Additionally, ODT resistance and the input/output impedance must be derated when operating outside of the commercial temperature range, when T C is between –40°C and 0°C.General Notes•The functionality and the timing specifications discussed in this data sheet are for the DLL enable mode of operation (normal operation), unless specifically stated other-wise.•Throughout the data sheet, the various figures and text refer to DQs as "DQ." The DQ term is to be interpreted as any and all DQ collectively, unless specifically stated oth-erwise.•The terms "_t" and "_c" are used to represent the true and complement of a differen-tial signal pair. These terms replace the previously used notation of "#" and/or over-bar characters. For example, differential data strobe pair DQS, DQS# is now referred to as DQS_t, DQS_c.•The term "_n" is used to represent a signal that is active LOW and replaces the previ-ously used "#" and/or overbar characters. For example: CS# is now referred to as CS_n.•The terms "DQS" and "CK" found throughout the data sheet are to be interpreted as DQS_t, DQS_c and CK_t, CK_c respectively, unless specifically stated otherwise.•Complete functionality may be described throughout the entire document; any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.•Any specific requirement takes precedence over a general statement.•Any functionality not specifically stated here within is considered undefined, illegal,and not supported, and can result in unknown operation.•Addressing is denoted as BG[n ] for bank group, BA[n ] for bank address, and A[n ] for row/col address.•The NOP command is not allowed, except when exiting maximum power savings mode or when entering gear-down mode, and only a DES command should be used.•Not all features described within this document may be available on the Rev. A (first)version.•Not all specifications listed are finalized industry standards; best conservative esti-mates have been provided when an industry standard has not been finalized.•Although it is implied throughout the specification, the DRAM must be used after V DD has reached the stable power-on level, which is achieved by toggling CKE at least once every 8192 × t REFI. However, in the event CKE is fixed HIGH, toggling CS_n at least4Gb: x4, x8, x16 DDR4 SDRAM General Notes and DescriptionFigure 108: CRC Error ReportingCK_t CK_cDQ IN ALERT_n Don’t CareTransition Data Notes: 1.D[71:1] CRC computed by DRAM did not match CRC[7:0] at T5 and started error generat-ing process at T6.2.CRC ALERT_PW is specified from the point where the DRAM starts to drive the signal LOW to the point where the DRAM driver releases and the controller starts to pull the signal up.3.Timing diagram applies to x4, x8, and x16 devices.4Gb: x4, x8, x16 DDR4 SDRAM CRC Write Data Feature。
MEMORY存储芯片MT49H8M36FM-33 B中文规格书
MRW ZQ Calibration CommandsThe MRW command is used to initiate a ZQ calibration command that calibrates output driver impedance across process, temperature, and voltage. LPDDR2-S4 devices sup-port ZQ calibration. To achieve tighter tolerances, proper ZQ calibration must be per-formed.There are four ZQ calibration commands and related timings: t ZQINIT, t ZQRESET,t ZQCL, and t ZQCS. t ZQINIT is used for initialization calibration; t ZQRESET is used for resetting ZQ to the default output impedance; t ZQCL is used for long calibration(s); and t ZQCS is used for short calibration(s). See the MR10 Calibration (MA[7:0] = 0Ah) table for ZQ calibration command code definitions.ZQINIT must be performed for LPDDR2 devices. ZQINIT provides an output impe-dance accuracy of ±15%. After initialization, the ZQ calibration long (ZQCL) can be used to recalibrate the system to an output impedance accuracy of ±15%. A ZQ calibration short (ZQCS) can be used periodically to compensate for temperature and voltage drift in the system.ZQRESET resets the output impedance calibration to a default accuracy of ±30% across process, voltage, and temperature. This command is used to ensure output impedance accuracy to ±30% when ZQCS and ZQCL commands are not used.One ZQCS command can effectively correct at least 1.5% (ZQ correction) of output im-pedance errors within t ZQCS for all speed bins, assuming the maximum sensitivities specified in Table 79 and Table 80 (page 114) are met. The appropriate interval between ZQCS commands can be determined using these tables and system-specific parame-ters.Mobile LPDDR2 devices are subject to temperature drift rate (T driftrate ) and voltage drift rate (V driftrate ) in various applications. To accommodate drift rates and calculate the necessary interval between ZQCS commands, apply the following formula:ZQ correction(T sens × T driftrate ) + (V sens × V driftrate )Where T sens = MAX (dR ON dT) and V sens = MAX (dR ON dV) define temperature and volt-age sensitivities.For example, if T sens = 0.75%/˚C, V sens = 0.20%/mV , T driftrate = 1˚C/sec, and V driftrate =15 mV/sec, then the interval between ZQCS commands is calculated as:1.5(0.75 × 1) + (0.20 × 15) = 0.4s A ZQ calibration command can only be issued when the device is in the idle state with all banks precharged.No other activities can be performed on the data bus during calibration periods(t ZQINIT, t ZQCL, or t ZQCS). The quiet time on the data bus helps to accurately calibrate output impedance. There is no required quiet time after the ZQRESET command. Ifmultiple devices share a single ZQ resistor, only one device can be calibrating at any giv-en time. After calibration is complete, the ZQ ball circuitry is disabled to reduce power consumption.1Gb: x16, x32 Automotive Mobile LPDDR2 SDRAM MODE REGISTER WRITE Commanderation to the entire bank is blocked and bank data retention is not guaranteed in self refresh mode. To enable a REFRESH operation to a bank, the corresponding bank mask bit must be programmed as “unmasked.” When a bank mask bit is unmasked, the array space being refreshed within that bank is determined by the programmed status of the segment mask bits.Partial-Array Self Refresh – Segment MaskingProgramming segment mask bits is similar to programming bank mask bits. For densi-ties 1Gb and higher, eight segments are used for masking (see the MR17 PASR Segment Mask (MA[7:0] = 011h) and MR17 PASR Segment Mask Definitions tables). A mode reg-ister is used for programming segment mask bits up to eight bits. For densities less than 1Gb, segment masking is not supported.When the mask bit to an address range (represented as a segment) is programmed as “masked,” a REFRESH operation to that segment is blocked. Conversely, when a seg-ment mask bit to an address range is unmasked, refresh to that segment is enabled.A segment masking scheme can be used in place of or in combination with a bank masking scheme. Each segment mask bit setting is applied across all banks. For seg-ment masking bit assignments, see the tables noted above.Table 45: Bank and Segment Masking ExampleNote: 1.This table provides values for an 8-bank device with REFRESH operations masked tobanks 1 and 7, and segments 2 and 7.1Gb: x16, x32 Automotive Mobile LPDDR2 SDRAM SELF REFRESH OperationTable 46: Temperature Sensor Definitions and Operating ConditionsMobile LPDDR2 devices accommodate the temperature margin between the point at which the device temperature enters the extended temperature range and the point at which the controller reconfigures the system accordingly. To determine the required MR4 polling frequency, the system must use the maximum TempGradient and the max-imum response time of the system according to the following equation:TempGradient × (ReadInterval + t TSI + SysResp Delay) ≤ 2°CFor example, if TempGradient is 10˚C/s and the SysRespDelay is 1ms:10°C s× (ReadInterval + 32ms + 1ms) ≤ 2°C In this case, ReadInterval must not exceed 167ms.1Gb: x16, x32 Automotive Mobile LPDDR2 SDRAM MODE REGISTER READ。
MEMORY存储芯片MT28F400B5SG-8TET中文规格书
Programmable Preamble Modes and DQS PostamblesThe device supports programmable WRITE and READ preamble modes, either the nor-mal 1t CK preamble mode or special 2t CK preamble mode. The 2t CK preamble modeplaces special timing constraints on many operational features as well as being suppor-ted for data rates of DDR4-2400 and faster. The WRITE preamble 1t CK or 2t CK modecan be selected independently from READ preamble 1t CK or 2t CK mode.READ preamble training is also supported; this mode can be used by the DRAM con-troller to train or "read level" the DQS receivers.There are t CCD restrictions under some circumstances:•When 2t CK READ preamble mode is enabled, a t CCD_S or t CCD_L of 5 clocks is notallowed.•When 2t CK WRITE preamble mode is enabled and write CRC is not enabled, a t CCD_Sor t CCD_L of 5 clocks is not allowed.•When 2t CK WRITE preamble mode is enabled and write CRC is enabled, a t CCD_S or t CCD_L of 6 clocks is not allowed.WRITE Preamble ModeMR4[12] = 0 selects 1t CK WRITE preamble mode while MR4[12] = 1 selects 2t CK WRITEpreamble mode. Examples are shown in the figures below.Figure 111: 1t CK vs. 2t CK WRITE Preamble Mode2t CK Mode1t CK Mode8Gb: x4, x8, x16 DDR4 SDRAM Programmable Preamble Modes and DQS PostamblesFigure 198: Consecutive WRITE (BC4-Fixed) with 1t CK Preamble and Write CRC in Same or DifferentBank GroupCommand CK_t CK_cDQS_t,DQS_c Don’t CareTransitioning Data Bank Group Address Address DQ x4,BC = 4 (Fixed)DQ x8/X16,BC = 4 (Fixed)Notes: 1.BC4-fixed, AL = 0, CWL = 9, Preamble = 1t CK, t CCD_S/L = 5t CK.2.DI n (or b ) = data-in from column n (or column b ).3.DES commands are shown for ease of illustration; other commands may be valid atthese times.4.BC4 setting activated by MR0[1:0] = 10 during WRITE commands at T0 and T5.5.CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable,DM = Disable.6.The write recovery time (t WR) and write timing parameter (t WTR) are referenced fromthe first rising clock edge after the last write data shown at T16.8Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
索取产品详细信息及样片申请,请联系:
美芯晟科技有限公司 (北京办公室) 北京市海淀区知春路 106 号,皇冠假日酒店写字楼 1006。邮政编码 100086 电话: 传真: 86-10-62662828 86-10-62662951
应用
LED球泡灯、射灯 LED照明驱动 通用恒流源
典型应用电路
LED+ NP:NS
MT7968
3 Vin_ac 8
CBUS CVCC RCS RSET VCC CS OVP GND SW CS DRAIN DRAIN
LED-
4 7 6 5
2 1
MT7968 Rev. 1.40
版权 © 2014 美芯晟科技有限公司
地线
VCC 电容 CVCC 的地一定要与芯片地直接相连, 中 间不要有不干净的地线, 如 SW 电容地, 以及 RCS
第5页
版权 © 2014 美芯晟科技有限公司
MT7968
高精度双绕组原边反馈 LED 恒流驱动
的功率地等。 其它小信号的地线连接到芯片的地, 再与 SW 电容 地分别接到峰值电流采样电阻 RCS 的功率地线, 并 保持峰值电流采样电阻的功率地线尽可能短, 最后 连接到 Bulk 电容 CBUS 的地端。 OVP 引脚 OVP 引脚走线尽可能短,且 RSET 电阻(下图中的 R6)需要尽量靠近 OVP 引脚。OVP 引脚走线不 能靠近 DRAIN 引脚走线以及 SW 引脚走线。要用 地线将 OVP 引脚包围,并对包围的地线进行裸铜 处理。同时由于 MT7968 是 DIP8 的插件封装,必 须在芯片下面进行开槽处理,将漏极进行隔离。参 考下面的 PCB 示意图。
第1页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
极限参数
DRAIN VCC VCC 最大吸收电流 OVP CS PDMAX(最大功耗) 存储温度 结温(Tj) -0.3V ~ 600V -0.3V ~ 40V 5mA -0.3V ~ 6V -0.3V ~ 6V 1.2W -55° C ~ 150° C 150° C
VCC SW
图 3、OVP 引脚示意图
LED 开路保护设置(OVP) MT7968 通过检测次级电感退磁时间来实现 LED 开路保护。图 2 为 MT7968 工作时变压器原级和 次级电流波形: 则 OVP 电压为:
VOVP 5
LS N P (V) RCS R SET N S
式中 LS 单位为 uH,RCS 单位为 Ω, RSET 的单位
旁路电容
VCC 的旁路电容要紧靠芯片的 VCC 引脚。
式中 NP 为变压器原边匝数, NS 为次级端匝数。 LS 为次级电感量,单位为 uH,0.5 为 VCS 检测电压 阈值,单位为 V。 从以上公式可以看到, 次级电感退磁时间即包含了 VOVP 电压的信息,因此,可以通过检测 LED 开路
MT7968 Rev. 1.40
LS VOVP
工作频率 MT7968 工作于电感电流断续模式,无需环路补 偿,最大占空比为 42%。进行系统设计时,建议 最大工作频率小于 100kHz ,最小工作频率大于 20kHz。 工作频率的计算公式为:
2 NP VLED 2 8 N S Lp I LED
0.5 N P RCS N S (V) Tdemag _OV
推荐工作条件
VCC 电源电压 工作温度(外部环境温度) 8V ~ 15V -40° C ~ 105° C
热阻
PN 结到环境 (RθJA) 70° C/W
管脚排列图
芯片标记:
MT7968 YY WW xxxx 生产内部代码 生产周代码 生产年代码
管脚描述
管脚名称 GND OVP VCC SW DRAIN CS 管脚号 1 2 3 4 5 6 7 8 接地脚 LED开路电压设定管脚。参见功能描述中,LED开路保护设置。 芯片电源脚 内部功率管源极 内部功率管漏极 电流采样端,采样电阻接在CS和GND之间 描述
I S _ PK
0.5 N P RCS N S
0.5 RCS
为 kΩ。 由于最小 TOFF 时间为 2us, 因此 RSET 的取
I P _ PK
VOVP LS
值不要小于 20kΩ。 电感的精度对 OVP 的阈值有一定的影响,在系统 设计时,应充分考虑到电感的精度,对 OVP 的阈 值设定保留一定的裕量。 过流保护 一旦 CS(D)脚电压超过 500mV,MT7968 将立即 关断功率 MOS 管。这种每周期过流检测的方式保 护了相关的元器件免于损坏,如功率 MOS 管,变 压器等。
NP 500 N P (mA) N S 4 RCS N S
式中,NP 为变压器原边匝数,NS 为次级端匝数,
版权 © 2014 美芯晟科技有限公司
ห้องสมุดไป่ตู้
MT7968 Rev. 1.40
第4页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
IP_PK 为原边峰值电流。 由公式可知, 输出电流仅由 变压器匝比与峰值检测电阻决定, 与变压器电感量 无关。 时次级电感退磁时间来实现 OVP 保护,即:
MT7968 通过 OVP 引脚的电阻 RSET(见图 3)来 设置 LED 开路时的退磁时间,即:
Tdemag _OV 0.1 RSET (us)
式中 RSET 的单位为 kΩ。
GND RSET OVP
f SW
1
8
CS CS DRAIN DRAIN
MT7968
2 3 4
7 6 5
式中,NP 为变压器原边匝数,NS 为次级端匝数, Lp 为变压器主级侧电感。 合理地设计变压器参数, 使得工作频率 fsw 在 40kHz – 80kHz 之间。
美芯晟科技有限公司 (深圳办公室)
广东省深圳市福田区北环大道 7043 号青海大厦 1115 室 P.C 518000
电话: 传真:
86-755-83021778 86-755-83021336
美芯晟科技有限公司 (苏州办公室) 江苏省苏州市苏州工业园区星湖街 328 号创业产业园 3-B503 单元,邮政编码 215021 电话: 传真: 86-512-62958262 86-512-62958262
功率环路的面积
减小功率环路的面积,如变压器原边,功率管及缓 冲网络(snubber)的环路面积;以及次级二极管、 变压器次级、输出电容的环路面积,以减小 EMI 辐射。 DRAIN 引脚 增加 DRAIN 引脚的铺铜面积以提供芯片的散热能 力。 NC 引脚 NC 脚必须悬空以保证芯片引脚间距满足爬电距 离。
MT7968 Rev. 1.40
版权 © 2014 美芯晟科技有限公司
第3页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
原理框图
VCC DRAIN 内部电源 5V 基准电压 600V 高压MOS
GND 功率开关驱 动控制
欠压保护
UVLO
SW
短路保护
OCP PWM控制 驱动
MT7968 Rev. 1.40
版权 © 2014 美芯晟科技有限公司
第6页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
封装外形尺寸 DIP-8 (8-Lead Dual In-Line)
重要声明:
·美芯晟科技有限公司保留不发布通知而对该产品和服务随时进行更改,补充,改进和其它变动的权利。 用户敬请在购买产品之前获取最新的相关信息并核实该信息是最佳的和完整的。 所有产品在订单确认后 将遵从美芯晟科技有限公司的销售条例进行销售。 ·本资料内容未经美芯晟科技有限公司许可,严禁以其它目的加以转载或复制等。 ·对于未经销售部门咨询使用本产品而发生的损失,美芯晟科技有限公司不承担其责任。
MT7968 Rev. 1.40
版权 © 2014 美芯晟科技有限公司
第2页
MT7968
高精度双绕组原边反馈 LED 恒流驱动
电气参数
(除非特别说明,测试条件为: VCC=12V, TA=25° C) 符号 ISTART UVLO VSTART VCC-CLAMP 电源电流 IQ VCS-TH LEB1 驱动电路 TOFF_MIN TOFF_MAX TON_MIN TON_MAX DUTY_MAX 热保护 OTP 过热保护温度阈值 过热保护释放的迟滞温度 功率管 (DRAIN 脚) RDSON BVDSS IDSS 功率管导通阻抗 功率管击穿电压 功率管漏电流 VGS=10V/IDS=2A VGS=0V/IDS=250uA VGS=0V/VDS=600V 600 10 1.5 Ω V uA 155 20 ℃ ℃ 最小关断时间 最大关断时间 最小导通时间 最大导通时间 最大占空比 2 240 1 24 42 us us us us % 最大工作电流 电流检测阈值 CS 脚的内置前沿消隐时间 485 0.3 500 500 515 mA mV nS 电流检测 (CS 脚) 参数 启动电流 欠压锁定电压 ( VCC 低阀值电压) VCC 脚电压下降 启动电压 VCC 钳位电压 VCC 脚电压上升 IDD=5mA Min Typ 35 7 13 15.5 Max 60 Unit μA V V V 启动与电源电压 (VCC 脚)
15V 13V
如果 VCC 低于 7V, 则 MT7968 将自动关闭 (UVLO 阈值电压) 。 恒流控制与输出电流设置 芯片逐周期检测变压器原边的峰值电流,CS 端连 接到内部的峰值电流比较器的输入端,与内部 500mV 的阈值电平进行比较,当 CS 外部电压达 到该阈值时,功率管关断。 原边峰值电流的表达式为: