AM调制与相干解调系统仿真
AM模拟调制系统的设计与仿真
AM模拟调制系统的设计与仿真AM(幅度调制)模拟调制系统是一种将模拟信号调制到载波上的技术。
设计与仿真AM模拟调制系统可以帮助我们理解AM调制原理、调制过程以及系统的性能。
以下是一个关于AM模拟调制系统的设计与仿真的详细介绍。
首先,AM模拟调制系统的设计包括两个主要部分:调制器和解调器。
调制器负责将来自音频源的模拟信号调制到载波信号上,解调器负责从调制后的信号中恢复出原始音频信号。
在设计调制器时,首先需要确定载波频率。
一般情况下,载波频率选择在AM广播频段范围内,例如535kHz至1605kHz。
然后,选择一个适当的载波幅度,这会影响到解调过程中的恢复信号的质量。
接下来,设计一个低通滤波器,该滤波器用于去除调制过程中产生的上、下频谱区域。
最后,通过一个运放电路将调制后的信号放大到合适的水平。
在设计解调器时,需要采用一个带通滤波器来滤除载波信号和上、下频谱区域,使得只剩下原始音频信号。
然后,通过一个恢复电路将解调后的信号放大和恢复正常的幅度。
最后,通过一个扬声器将音频信号转换为可听的声音。
在进行系统的仿真时,可以使用一些仿真软件,例如MATLAB或Simulink,来模拟AM调制系统的性能。
首先,可以创建一个输入信号作为模拟音频信号源,该信号可以是音乐、语音或其他类型的声音。
然后,可以创建一个载波信号,其频率和幅度与设计中选择的相同。
接下来,使用模拟调制技术将输入信号调制到载波信号上,并通过一个示波器观察调制后的信号波形。
然后,使用带通滤波器去除载波和上、下频谱区域,并通过示波器观察解调后的信号波形。
最后,通过扬声器播放解调后的信号,以观察恢复音频信号的质量。
在仿真过程中,还可以改变不同参数的取值,例如载波频率、幅度、带宽等,以观察其对系统性能的影响。
此外,还可以添加噪声、多径传播等干扰信号,以评估系统在复杂环境下的性能。
总结来说,AM模拟调制系统的设计与仿真是一个学习和理解AM调制原理和性能的过程。
自-通信仿真AM调制与解调MATLAB
通信模块设计与仿真报告学院专业班级学号姓名通信原理模拟仿真《通信原理》是通信工程专业的一门极其重要的专业课,内容比较抽象,概念多,是一门难度比较大的课程,通过MATLAB仿真能清晰地理解它的原理和他的过程,信号的调制与解调在通信系统中具有重要的作用,也是通信工程专业必备的知识。
AM 调制与解调是信号调制的最基础的调制方式,本次模拟使用MAT LAB2012进行,包括原始信号,载波信号及其频谱和调制与解调,并显示仿真结果。
根据仿真展示AM 的调制解调过程,并使用数据结果分析系统性能。
一.AM 调制与解调原理幅度调制是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程,即载波的幅度随着调制信号而改变的调制,是一种线性调制。
AM信号的时域表示式:A0为直流分量,m(t)为调制基带信号,基带信号的幅度小于A0,cos (wct)为载波信号。
A M以调信号的波形随调制的基带信号波形呈规律变化。
AM 信号的频域表示式:频域为对AM 信号进行傅里叶变换所得结果,即所说的频谱。
频谱完全是基带信号频谱在频域内的简单搬移,而且搬移也是线性的。
A M调制模型:⊗()m t ()m s t cos c tω⊕A图1.调制器模型AM 的时域波形和频谱如图所示:时域 频域图2. 调制时、频域波形A M信号的频谱由载频分量、上边带、下边带三部分组成。
它的带宽是基带信号带宽的2倍(正负频域)。
在波形上,调幅信号的幅度随基带信号的变化而呈正比地变化,在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
AM 信号的解调:解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号。
AM信号的解调有包络解调(非相干解调)和相干解调,本次模拟仿真使用的是相干解调。
因为相干解调适用于所有线性调制信号的解调,具有典型的代表性。
相干解调(又叫同步检波)是为了从接受的已调信号中不失真地恢复原调制信号,要求本地载波(又称相干载波)和接收信号的载波保证严格相同(同频同相)。
am信号的调制与解调(带仿真图)
少年易学老难成,一寸光阴不可轻- 百度文库题目:AM调制与解调的设计时间:2011/1/4—2011/1/10目录一、题目分析 (2)二、电路的总框图 (2)三、调制 (2)1. AM调制波电路图 (2)2.工作原理 (3)3.调制仿真 (4)四、解调 (6)1.包络检波电路 (6)2.工作原理 (6)3. 解调仿真 (7)五、完整电路图 (8)六、理想条件及参数计算 (8)七、总结 (9)1.设计电路的特点 (9)2. 使用价值 (9)3. 心得体会 (10)4.问题解答 (10)5.元器件清单 (12)八、参考文献 (13)一、题目分析调幅调制和解调在理论上包括了信号处理,模拟电子,高频电子和通信原理等知识,涉及比较广泛。
在实际上包括了各种不同信息传输的最基本原理,是大多数设备发射与接收的基本部分,所以我们做的这个课题是有很大的意义的。
本设计报告总体分为两大问题:信号的解调和调制。
在调制部分省略了载波信号的放大、功放部分,要调制的信号也同样省略了放大部分,所以在调制中保留了调制器中的主要部分—乘法器,在解调部分也只是保留了检波器部分,即二极管检波器。
在确定电路后,利用了EDA 软件Multisim 进行仿真来验证结果。
二、电路的总框图三、调制部分 1、AM 调制波电路图调制信号乘法器载波信号半波整流器低通滤波器已调波R1500ΩR2500ΩR3500ΩQ12N2222Q32N2222Q22N2222Q52N2222Q72N2222Q42N2222Q62N2222Q82N2222Q92N2222R951ΩR46.8kΩR851ΩR1010kΩKey=A 50%W1500kΩKey=A 50%R1110kΩKey=A50%C3100uFC210nF R1451ΩR71kΩR131kΩR121kΩR53.9kΩR63.9kΩC110nFC410nFC510nF Q102N2222R1675kΩR1775kΩR182kΩR192kΩVCC 12VVEE -8VXFG1XFG2XSC2ABExt Trig++__+_V2120 Vrms 60 Hz 0°XSC3A B Ext Trig++__+_V3120 Vrms60 Hz 0°XSC4AB E x t T r i g ++__+_V5120 Vrms 60 Hz 0° V4120 Vrms 60 Hz 0°32313029280272410VEE VCC 01815141716131211987506432133222、工作原理滑动变阻器W1向右滑动到100%电源VEE 产生一个电压加载到信号发生器XFG2产生频率为10kHz 幅值为的22mv 的调制信号,然后与信号发生器XFG1产生的频率为10MHz ,幅值为23mv 的载波信号进入到乘法器形成已调信号,用框图的形式表现如下:乘法器MC1496工作原理:Q1、Q2与Q3、Q4组成双差分放大器,Q5、Q6组成单差分放大器用以激励Q1~Q4。
AM波的调制与解调仿真
AM波的调制与解调仿真1系统框图2工作原理从发送端发送一AM波,通过电容三点式振荡器自激,使原始信号附加在一高频信号产生一个已调幅信号,所谓附加在高频信号上,就是利用信号来控制高频振荡的某一参数,使这个信号隋参数变化。
这里,高频信号就是携带信号的运载工具,即为载波。
之后信号到达接收部分,中频调幅接收机电路是指已调高频信号通过时,在接收端获得所需的中频调制信号的这样一个电路。
将天线上接收的各种频率不同的信号通过选频网络,选出所需的调幅波,再将它进行放大后检波;经过检波器得到的是一个低频调制信号,将它与本地振荡信号进行混频后得到某一所需的中频调制信号,再进行放大和滤波后,便可在接收端观察到一合适的中频调制信号波形。
3 各单元电路设计1)电容三点式振荡器图2 电容三点式振荡器电路2) 模拟乘法器图3 模拟乘法器电路3)MC1496乘积型同步检波电路图4 MC1496乘积型同步检波电路4)低通滤波电路0IO2IO2图5 低通滤波电路4 仿真结果低频调制信号仿真图:低频信号频谱图:低频调制信号的 V=200mv;f=2M;通过观察其频谱,可知中心频率为47.305KHZ.高频载波仿真图:高频载波频谱图:分析可知:高频载波的 V=3.07v;f=10.3MHZ;通过观察其频谱可知:其中心频率为56.650KHZ。
调幅波仿真图形:调幅波频谱图:调幅波的频率f=10.2MHZ,基本等于载波频率;而观察其频谱可知,由于存在其他杂频干扰,图形不为规则的冲击谱,且该调幅波的带宽B=4M。
解调波仿真图:解调波频谱图:经检波后得到的包络波形与低频调制信号波形变化一致,其频谱的中心频率为f=47.798KHZ。
通信系统仿真课程设计--AM、SSB调制与解调的实现与比较
青岛农业大学理学与信息科学学院通信系统仿真课程设计报告论文题目AM、SSB调制与解调的实现与比较学生专业班级通信工程10级2班学生姓名(学号)程显聪(20102743)指导教师谭谈老师完成时间 2013.10.23 实习地点信息楼机房2013年 10月 23日1.课程设计目的和任务本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。
要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。
能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。
对一个实际课题的软件设计有基本了解,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。
2.AM 调制与解调2.1 AM 调制与解调原理幅度调制是由调制信号去控制高频载波的幅度,使正弦载波的幅度随着调制信号而改变的调制方案,属于线性调制。
AM 信号的时域表示式:频谱:调制器模型如图所示: ⊗()m t ()m s t cos c tω⊕图1-1 调制器模型AM 的时域波形和频谱如图所示:时域 频域图1-2 调制时、频域波形AM 信号的频谱由载频分量、上边带、下边带三部分组成。
它的带宽是基带信号带宽的2倍。
在波形上,调幅信号的幅度随基带信号的规律而呈正比地变化,在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
所谓相干解调是为了从接受的已调信号中,不失真地恢复原调制信号,要求本地载波和接收信号的载波保证同频同相。
相干载波的一般模型如下:将已调信号乘上一个与调制器同频同相的载波,得t w t m A t m A tw t m A S c c A M 2cos )]([21)]([21cos )]([t cosw t)(0020c +++=+=•由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出原始的调制信号)]([21)(00T M A T M +=相干解调的关键是必须产生一个与调制器同频同相位的载波。
实验2:am调制与解调仿真
实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
m(t)为取值连续的调制信号,c(t)为正弦载波。
下图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。
对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。
下图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。
③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。
振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。
2、AM解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和product1是对已调信号的频谱进行线性搬移,低通滤波器是滤除信号的高频部分以得到原始信号。
AM调制解调电路的设计仿真与实现
AM调制解调电路的设计仿真与实现一、AM调制原理AM调制(Amplitude Modulation)是一种将调制信号的振幅变化嵌入到载波信号中的调制方式。
调制信号通常是低频信号,而载波信号则是高频信号。
通过调制,把载波信号的振幅按照调制信号的幅度变化,实现信号的传输。
AM调制过程中,调制指数的大小决定了调制信号对载波信号的影响程度。
二、AM调制电路的设计AM调制电路需要实现信号的调制以及解调两个部分。
1.调制部分设计调制部分的主要任务是将调制信号与载波信号相乘,实现调制效果。
设计需要考虑的要点有:(1)调制器:调制器使用运算放大器作为基本构建单元,将调制信号与载波信号相乘,输出调制波形。
(2)输出滤波器:调制后的信号带有高频成分和调制信号的频率分量,通过使用一个带通滤波器,滤除非关注的频率成分。
2.解调部分设计解调部分的主要任务是从调制后的信号中恢复出原始的调制信号。
设计需要考虑的要点有:(1)检波器:解调电路中最重要的组成部分是检波器。
检波器用于从调制信号中提取出被调制信号,通常使用整流器或鉴频器实现。
(2)滤波器:在解调信号之后,需要通过滤波器去除高频噪声和杂散信号,从而得到原始的调制信号。
三、AM调制解调电路的仿真实验为了验证设计的正确性和有效性,可以使用电子电路仿真软件进行AM调制解调电路的仿真实验。
常用的仿真软件有Multisim、PSPICE等。
在设计好AM调制解调电路模型之后,可以进行以下仿真实验:1.调制效果验证:输入一个调制信号和一个载波信号,观察输出调制波形的振幅变化情况。
可以调整调制指数或载波频率,观察调制效果的变化。
2.解调效果验证:输入一个调制信号和一个载波信号的混合信号,通过滤波器和检波器,恢复出原始的调制信号。
观察解调效果的清晰度和准确性。
通过仿真实验,可以对设计的AM调制解调电路进行参数优化和性能评估,进一步提高电路的可靠性和效率。
四、AM调制解调电路的实际实现在进行仿真实验验证通过后,可以将AM调制解调电路进行实际实现,制作出实际的电路板和元件。
AM调制与相干解调系统仿真
AM调制与相干解调系统仿真摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM 调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词Simulink;仿真;AM调制;相干解调1 引言本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。
MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。
Simulink是建立在MATLAB基础上的动态系统仿真工具。
利用MATLAB工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。
通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。
1.1课程设计目的设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能【1】。
1.2课程设计的要求(1)构建调制电路,并用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(2)再以调制信号为输入,构建解调电路,用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
实验2:AM调制与解调仿真
实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
m(t)为取值连续的调制信号,c(t)为正弦载波。
下图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。
对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。
下图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。
③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。
振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。
2、AM解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和 product1是对已调信号的频谱进行线性搬移,低通滤波器是滤除信号的高频部分以得到原始信号。
AM信号的调制与解调(带仿真图)
AM信号的调制与解调(带仿真图)
AM调制(Amplitude Modulation)是指将一个较低频率的信息信号,如语音、音乐等,通过调制将其变成一个载波的振幅随时间变化的信号,使之能够通过远距离传输,同时也可通过解调还原出原始信号。
AM信号的调制过程:
首先,我们需要一个高频载波信号(通常为数十kHz至数百kHz范围内的正弦波信号),用于携带信息信号。
将载波信号的振幅、频率、相位等参数保持不变,称为“未调制”的载波信号。
接着,将需要传输的信息信号(如语音、音乐等)与未调制的载波信号进行线性加和,得到调制信号。
调制信号的振幅随着信息信号的变化而变化,从而实现了信息的传输。
AM信号的解调过程:
当调制信号到达接收端时,需要通过解调还原出原始信号。
解调方法有多种,这里介绍AM信号的一个简单解调方法——幅度解调(AM Detector)。
幅度解调的基本原理是利用二极管的阻抗特性,将入射信号的高频载波部分“切掉”,只保留信息信号的部分,从而实现解调。
具体操作过程为:
首先,将接收到的调制信号通过一个带通滤波器(Bandpass Filter)滤掉不需要的高频信号,保留低频信息信号。
接着,将滤波后的信号通过一个二极管(Detector)进行整流(Rectify),从而将信号全部变为正半波。
最后,将整流后的信号再通过一个低通滤波器(Lowpass Filter)滤掉高频噪声,从而还原出原始信息信号。
AM模拟调制系统的设计与仿真
AM模拟调制系统的设计与仿真摘要调幅,英文是Amplitude Modulation(AM)。
调幅也就是通常说的中波,范围在503---1060KHz。
调幅是用声音的高低变为幅度的变化的电信号。
本课程设计主要研究了AM模拟调制系统的设计和仿真。
在本次通信系统仿真训练中,我主要通过了解模拟幅度调制和解调的原理和其实现方法,然后根据其模拟幅度调制系统的原理给出了调制和解调的框图。
其次弄懂了AM模拟调制的基本原理。
最后利用Matlab软件仿真模拟幅度调制系统,实现AM调制和相干解调,给出了调制信号、载波信号及已调信号及解调信号的波形图和频谱图,并计算了该系统的信噪比。
关键词:调制解调 AM模拟调制信噪比目录前言 (1)一、调制及解调原理 (2)1.1调制原理 (2)1.2 解调原理 (3)二、模拟调制 (4)2.1 模拟调制原理 (4)2.2 AM调制的基本原理 (4)2.3 AM解调原理与抗噪性能 (6)2.4 FIR数字滤波器设计方法 (8)三、 AM调制解调系统的MATLAB仿真及其分析 (10)3.1 AM调制解调分析的MATLAB实现 (10)3.2 MATLAB仿真及其分析 (10)总结 (13)参考文献 (14)附录 (15)前言调制在通信系统中的作用是至关重要的。
所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。
广义的调制分为基带调制和带通调制(也称载波调制)。
在大多数场合,调制一般指载波调制。
载波调制,就是用调制信号去控制载波的参数的过程,使载波的某一个或某几个参数按照调制信号的规律而变化。
调制信号是指来自信源的信息信号(基带信号),这些新号可以是模拟的,也可以是数字的。
未接受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波。
载波调制后称为已调信号,它包含有调制信号的全部特征。
解调则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。
此次设计主要进行模拟调至系统的模拟和仿真,最常用和最重要的模拟调制方式是用正弦波作为载波的幅度调制和角度调制。
2路FDM的AM与SSB调制与相干解调系统仿真
2路FDM的AM与SSB调制与相干解调系统仿真摘要本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计一个2路FDM的AM与SSB调制与相干解调系统,并把运行仿真结果输入到显示器,根据显示结果分析所设计的系统性能。
在课程设计中,首先根据原理构建调制解调电路,再在Simulink中调出所需元件组成相应电路框图,再设置调制解调电路中各个模块的参数值并加以运行,并把运行仿真结果输入显示器,再在信道加入适当方差的噪声,根据显示结果分析所设置的系统性能。
关键词AM;SSB;2路FDM;相干解调;高斯白噪声1 引言通信(Communication)就是信息的传递,是指由一地向另一地进行信息的传输与交换,其目的是传输消息。
然而,随着社会生产力的发展,人们对传递消息的要求也越来越高。
在各种各样的通信方式中,利用“电”来传递消息的通信方法称为电信(Telecommunication),这种通信具有迅速、准确、可靠等特点,且几乎不受时间、地点、空间、距离的限制,因而得到了飞速发展和广泛应用。
与模拟通信相比,数字通信具有以下一些优点:抗干扰能力强,且噪声不积累;传输差错可控;便于用现代数字信号处理技术对数字信息进行处理、变换、存储;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好。
数字通信的缺点是,一般需要较大的带宽。
另外,由于数字通信对同步要求高,因而系统设备复杂。
但是,随着微电子技术、计算机技术的广泛应用以及超大规模集成电路的出现,数字系统的设备复杂程度大大降低。
同时高效的数据压缩技术以及光纤等大容量传输媒质的使用正逐步使带宽问题得到解决。
通信从本质上来讲是实现信息传递功能的一门科学技术,它要将大量有用的信息无失真,高效率地进行传输,同时还要传输过程中将无用信息和有害信息抑制掉,当今的通信不仅要有效地传递信息,而且还有存储、处理、采集及显示等功能,通信已成为信息科学技术的一个重要组成部分。
AM调制与包络(相干)解调系统仿真
2
其调制波形图及频谱图如下:
m t
m t
t
t
M Βιβλιοθήκη M Am m A t t 0 0
H H
t
载波
H
H
t
载波
t
SAM
SAM
t
sAM t
sAM t
t
c
0
c
c
0
c
t
•
AM信号波形的包络与输入基带信号成正比,故用包络 检波的方法很容易恢复原始调制信号。 但为了保证包络 检波时不发生失真,必须满足,否则将出现过调幅现象而 带来失真。AM信号的频谱是由载频分量和上、下两个边带 组成(通常称频谱中画斜线的部分为上边带,不画斜线的 部分为下边带)。上边带的频谱与原调制信号的频谱结构 相同,下边带是上边带的镜像。显然,无论是上边带还是 下边带,都含有原调制信号的完整信息。故AM信号是带有 载波的双边带信号,它的带宽信号带宽的两倍。
相干解调 由AM信号的频谱可知,如果将已调信号的频谱搬回到 原点位置,即可得到原始的调制信号频谱,从而恢复出原 始信号。解调中的频谱搬移同样可用调制时的相乘运算来 实现。相干解调的关键是是必须产生一个与调制器同频同 相位的载波。如果同频同相位的条件得不到满足,则会破 坏原始信号的恢复。
三.Simulink仿真
图2.1 幅度调制模型
在图2-1中,若假设滤波器为全通网络(=1),调制信号 叠加直流后再与载波相乘,则输出的信号就是常规双边带 (AM)调幅 .AM调制器模型如图2-2所示
图2.2 AM调制模型
• 时域表达式: sAM (t ) [ A0 m(t )]cos ct A0 cos ct m(t )cos ct • 频谱表达式: S ( ) A [ ( ) ( )] 1 [ M ( ) M ( )] AM 0 c c c c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AM调制与相干解调系统仿真摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM 调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词Simulink;仿真;AM调制;相干解调1 引言本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。
MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。
Simulink是建立在MATLAB基础上的动态系统仿真工具。
利用MATLAB工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。
通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。
1.1课程设计目的设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能【1】。
1.2课程设计的要求(1)构建调制电路,并用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(2)再以调制信号为输入,构建解调电路,用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号频谱的变化。
(3)在调制与解调电路间加上噪声源,模拟信号在不同信道中的传输:a 用高斯白噪声模拟有线信道,b 用瑞利噪声模拟有直射分量的无线信道,c 用莱斯噪声模拟无直射分量的无线信道。
将三种噪声源的方差均设置为0.1,分析比较通过三种不同信道后的接收信号的性能。
(4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。
1 .3设计平台Simulink是Matlab环境下的一部分,它通过使用框图的方式编辑建模,比较直观。
Simulink是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中【2】。
Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试【3】。
Simulink是一种可视化工具。
构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。
Simulink与MATLAB; 紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。
2 设计原理2.1AM 调制原理幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。
幅度调制器的一般模型如图2.1所示。
图2.1 幅度调制模型在图2-1中,若假设滤波器为全通网络(=1),调制信号()t m 叠加直流0A 后再与载波相乘,则输出的信号就是常规双边带(AM )调幅 .AM 调制器模型如图2-2所示图2.2 AM 调制模型AM 信号波形的包络与输入基带信号()t m 成正比,故用包络检波的方法很容易恢复原始调制信号。
但为了保证包络检波时不发生失真,必须满足()max 0t m A ≥,否则将出现过调幅现象而带来失真。
AM 信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。
上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。
显然,无论是上边带还是下边带,都含有原调制信号的完整信息。
故AM 信号是带有载波的双边带信号,它的带宽信号带宽的两倍。
2.2 相干解调由AM 信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。
解调中的频谱搬移同样可用调制时的相乘运算来实现。
相干解调的关键是是必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
3设计步骤3.1构建AM调制与相干解调框图按照课程设计的各项要求,以及AM信号的调制解调原理,在仿真模型窗口选择合适的器件并在模块中画出AM调制和解调的电路级框图,如图3.1所示,并创建模型文件。
图3.1 AM调制和相干解调电路框图3.2模型文件的参数配置将电路图连好后,依次对各模块和器件进行相应的参数配置。
在进行AM调制时,根据实际要求分别要对基带信号,直流信号,载波信号,基带信号的功率谱密度与调制信号的功率谱密度参数进行设置。
基带信号的的参数设置如图3.2所示。
图3.2基带信号参数设置图载波信号参数设置如图3.3所示图3.3载波信号参数设置图低通滤波器参数设置如图3.4所示图3.4低通滤波器参数设置图3.4 仿真与结果分析接下来就是对构建的系统进行仿真。
运行完后,可以通过示波器和功率谱模块观察调制和解调结果。
在理想信道时的调制波形图如图3.5所示。
图3.5AM调制波形图上图中,第一路为基带信号,第二路为AM调制信号,第三路为AM调制信号。
从图中可以看出,AM波的包络与基带信号的形状完全一致。
调制后的波形符合理论课中描述的波形,调制电路设计成功。
解调后的电路图如图3.6所示。
图3.6AM解调信号图在上图种,第一路为解调后的信号,第二路为基带信号,由图形可以看出调制信号经过包络解波后能恢复成原始输入信号。
第三路为加入了高斯噪声后的解调信号,第四路为加入了莱斯噪声后的解调信号,第五路为加入了瑞利噪声后的解调信号.由上图可以看出,加入噪声后对解调信号有影响,其中高斯噪声对信号的影响最大。
在设计的过程中,还用到了功率谱分析模块,对基带信号,AM调制信号和解调信号进行了分析,AM调制功率密度谱如图3.7,基带信号功率密度谱如图3.8,解调信号功率密度谱如图3.9所示。
图3.7AM调制功率密度谱图3.8 基带信号功率密度谱图3.9解调信号功率密度谱由调制前的的基带信号的波形与频谱图(功率、频率、相位)与解调之后的解调信号的波形与频谱图的比较知基带信号被正常解调出来了,该AM调制与相干解调电路系统通过仿真之后达到了理论的要求,从改波形与频谱图可以得出调制前的波形在通过相干解调之后能够还原到原来的波形。
4出现的问题及解决方法(1)第一次接触Simulink,对软件不熟悉,很多模块找不到,为此花费了大量的时间和精力。
后面,去图书馆借了本专业的书籍进行参考,经过一个下午的学习,终于熟悉了Simulink,现在已能迅速找到相关模块了。
(2)对于参数的设置不能正确的把握,结果有时导致图像很粗糙或者不完整,特别是低通滤波器的参数影响着最后的结果。
在老师的帮助下,在老师的帮助下,我明白了各种参数设置的原理,然后设置好了各个参数。
(3)在加完噪声后,检测噪声对信号的影响,在示波器上观察,没有看到明显的变化,最后加上一个误差分析仪,测试误差。
5结束语经过两个星期的课程设计学习,我有了很大的感受。
不同于平时的学习,做作业,课程设计每个人都有一个自己的题目,完全得靠自己,不能有依赖心理。
刚开始做设计之前,心里有点忐忑不安,不知道这课程设计是什么样子的。
拿到题目后,我一看,是“AM的调制与相干解调系统仿真”,心里觉得还好,内容都是上课学过的,只是对于应用软件一窍不通,心里有点怕,老师就安慰我们,说这的个基本上还是比较容易,只要用心做。
我去图书馆借了书,熟悉了软件后,就开始设计了。
我先找出了相应的模块,再连好线,设好参数,就仿真出来了。
只是开始不知道参数应该怎么设置冲的,在那里折腾了蛮久,后面还是请教了下老师才轻松的解决了。
后面我才发现,其实我们这个设计真的不难,只要稍微看些资料,然后有不懂的积极问老师就行了。
这几年学习里,学了几门专业课,虽然都是属于我们专业的学科,但是总觉得它们之间联系不是很大。
但是通过这课程设计,我才发现,各科知识的联系平时是没那么容易感受出来,只有真正应用的时候才能发现是联系的多么紧密。
所以,以后一定要认真学好各科专业,一门都不能懈怠。
通过这一次课程设计,我了解很多关于专业的知识,以前每次学这些知识时,总是不知道这些东西具体拿来有什么用,现在才知道,几个短短输入信号,在有了一个简单的电路流程后,就能仿真成我们生活中很多常见的东西。
总的来说,这次课程设计过程还是比较愉快轻松的,虽然中间有过一些困难,但是在老师与同学的指点下我还是渡过了,在这里我要谢谢帮助我的老师和同学。
而经过人生中的第一次课程设计,我相信我以后会越做越好的。