粉末冶金原理重点
粉末冶金原理
粉末冶金原理1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。
2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量g/cm3。
4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。
5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线,分布曲线对应50%处称为中位径弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象6.合批:将成分相同而粒度不同的粉末进行混合,称为合批7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。
8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。
9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法。
10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。
11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。
12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。
13.混合:将两种或两种以上不同成分的粉末混合均匀。
分为机械法和化学法。
14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象。
15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。
16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。
粉末冶金原理重点.
装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。
粉末冶金基础知识(三篇)
粉末冶金基础知识(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(m)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
粉末冶金原理-中文
粉末冶金原理粉末冶金是一种特殊的金属加工方法,它利用金属和非金属粉末的物理特性和化学特性,通过粉末成型、烧结和后处理等工艺制备出各类金属材料和相关制品。
在这种加工方法中,粉末被视为材料的原子和晶粒的集合体。
本文将介绍粉末冶金的基本原理以及其在工业上的应用。
粉末冶金的基本原理1.原料选择:粉末冶金的首要任务是选择适当的原料。
原料可以是金属、合金或陶瓷等材料的粉末。
原料的选择应该考虑材料的化学成分、晶体结构、粒子形状和尺寸分布等因素。
2.粉末的制备:粉末的制备是粉末冶金的关键步骤之一。
常见的粉末制备方法包括研磨、机械合金化、溶液沉淀和气相反应等。
不同的制备方法可以获得不同尺寸和形状的粉末。
3.粉末的成型:成型是将粉末转变为所需形状的工艺。
常用的成型方法包括压制、挤出、注射成型和3D打印等。
通过成型,粉末可以被固化成具有一定强度和形状的零件。
4.烧结:烧结是粉末冶金过程中的关键步骤之一。
经过成型的粉末件放入高温环境中,粉末颗粒与颗粒之间发生扩散和结合,形成致密的材料。
烧结温度和时间会影响材料的致密性和力学性能。
5.后处理:烧结后的材料可能需要进行后处理。
常用的后处理方法包括热处理、表面处理和加工等。
通过后处理,可以改善材料的性能和功能。
粉末冶金的应用领域粉末冶金广泛应用于各个领域,包括汽车、航空航天、电子、能源、医疗和军工等。
1.汽车行业:粉末冶金技术在汽车行业中得到广泛应用。
例如,通过粉末冶金可以制备高强度和轻质的发动机零件和齿轮等关键部件,提高汽车的燃油效率和排放性能。
2.航空航天:航空航天行业对材料的要求非常高。
粉末冶金可以制备出具有优异的高温强度和耐腐蚀性能的钛合金和镍基合金等材料,用于制造航空发动机和航天器件。
3.电子:在电子行业中,粉末冶金可以制备具有高导电性和磁导率的材料,例如铜粉末用于制造电子线路板和电磁元件。
4.能源:粉末冶金在能源领域的应用主要集中在制备高温抗氧化和热电材料。
例如,通过粉末冶金可以制备铁素体不锈钢和铬基合金等材料,用于制造高温炉和热交换器等设备。
粉末冶金的原理
粉末冶金的原理粉末冶金是一种利用金属及其合金的可塑性和高活性的特点,通过粉末的制备、成型和烧结等工艺,制造出具有特定形状和性能的金属制品的方法。
粉末冶金的基本原理是将金属原料熔化后急速凝固形成细小的颗粒,再经过后续的粉末处理工艺,最终使颗粒状金属粉末具有特定的物理、化学和结构性能。
具体的工艺流程包括原料的选择和处理、粉末的制备、成型和烧结。
原料的选择和处理是粉末冶金的关键步骤之一。
适当选择合适的金属粉末原料是保证成品性能的关键。
通常,金属原料的选择要考虑其物理性质、化学性质及可塑性等因素。
为提高冶金反应的活性和金属粉末的可塑性,常常需要对原料进行预处理,如氧化还原处理、合金化处理等。
粉末的制备是将金属原料加工成颗粒状金属粉末的过程。
目前常用的粉末制备方法主要有气雾化法、溶剂法、机械研磨法等。
其中,气雾化法是一种常见的制备方法,它通过高压气流将金属熔化后迅速喷雾成粉末。
这样可以得到细小均匀的金属颗粒。
成型是将金属粉末按照所需形状装入一定模具中,并施加一定压力,使金属粉末紧密结合成形状固定的坯体。
常用的成型方法包括压制成型、注塑成型、挤压成型等。
通过成型,可以得到具有所需形状的零部件或半成品。
最后,经过成型的金属粉末坯体还需要进行烧结,即在一定温度下对金属粉末进行加热处理,使其颗粒之间发生结晶和扩散,相互融合并形成坚固的金属材料。
烧结可以通过自发热烧结、辅助烧结等方法来实现。
烧结过程中,金属粉末之间的氧化物和杂质也会在高温下被还原和挥发。
通过以上的处理工艺,粉末冶金可以制备出具有复杂形状、高强度、良好磨损性能和耐磨性能的金属制品。
由于粉末冶金具有成本低、能耗少、无需后加工等优势,因此在汽车、航空航天、工具等领域得到广泛应用。
粉末冶金知识大全
粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。
本文将介绍粉末冶金的基本原理、工艺流程和应用领域。
1. 粉末制备粉末冶金的第一步是制备粉末。
常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。
•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。
•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。
常见的物理气相制备方法有气体凝聚法、物理溅射法等。
2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。
2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。
常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。
•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。
2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。
常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。
•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。
2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。
常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。
•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。
3. 应用领域粉末冶金在许多领域都有着广泛的应用。
3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。
由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。
3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。
粉末冶金手册
粉末冶金手册粉末冶金是一种将金属或非金属粉末通过压制、烧结等工艺加工成成型品的制造工艺。
粉末冶金具有高效、低成本、可成型性好、材料利用率高等优势,因此在航空航天、汽车工业、电子行业等领域得到广泛应用。
本手册将介绍粉末冶金的基本原理、工艺流程、材料选择、设备介绍等内容。
一、粉末冶金的基本原理粉末冶金的基本原理是将金属或非金属物质经过粉碎或原料特殊制备得到的粉末,经过压制成型或注射成型,再经过高温烧结得到所需产品。
这种工艺利用了粉末颗粒之间的相互扭曲和扩散,从而实现了物质的成型。
同时,由于粉末冶金是一种非液态冶金工艺,不需要溶解和凝固过程,避免了材料在液态下的气体、夹杂物等问题,因此可以获得更高的材料纯度和均匀性。
二、粉末冶金的工艺流程粉末冶金的一般工艺流程分为原料制备、混合、成型、烧结和后处理等步骤。
1.原料制备:原料制备阶段主要包括选料和粉末制备。
选料是指根据成品的要求选择合适的原料,如金属、合金、陶瓷或复合材料等。
粉末制备可以通过粉碎、化学方法、电化学方法等得到所需粉末。
2.混合:将所选的原料粉末按照一定比例进行混合。
混合的目的是使各种材料的粒子均匀分散,以获得更高的均匀性。
3.成型:将混合好的粉末通过压制成型,可以使用冷压、热压或注射成型等方法。
成型一般可以分为干压成型和液相成型两种方式。
4.烧结:成型件通过高温烧结,使粉末颗粒之间发生结合,形成致密的材料。
烧结温度和时间根据材料种类、成型件形状等因素确定。
5.后处理:烧结后的材料可以进行表面处理、热处理、加工等工艺。
目的是使产品达到所需的性能和尺寸要求。
三、粉末冶金的材料选择粉末冶金可以应用于各种金属和非金属材料的制备,包括纯金属、合金、陶瓷、塑料等。
在选择材料时需要考虑材料的物理性质、化学性质、应用环境等因素。
例如,对于需要高强度和耐磨性的零件可以选择使用金属粉末冶金制备的合金材料;对于需要绝缘性能和耐高温的零件可以选择使用陶瓷粉末冶金制备的材料。
黄培云粉末冶金原理
黄培云粉末冶金原理主要是指通过将金属粉末或者合金粉末在一定的温度、压力和气氛条件下进行烧结或者热塑性加工,从而制备出具有一定形状和性能的金属零部件的工艺过程。
黄培云粉末冶金原理的核心包括以下几个方面:
1. 粉末制备:首先需要将金属或者合金的块状材料通过机械方法加工成粉末,这通常包括粉碎、球磨等过程,以获得所需颗粒大小和形状的金属粉末。
2. 模具成型:将金属粉末放入模具中,在一定的温度和压力下对粉末进行成型,使其具备一定的初步形状。
3. 烧结或热塑性加工:经过成型的粉末零件通常会进行烧结或者热塑性加工,以提高其密度和机械性能。
烧结过程中,粉末颗粒之间通过扩散结合形成致密的结构,同时可以进行热处理来调整材料的性能。
4. 后续加工:经过烧结或者热塑性加工后的零件可能需要进行后续的加工,例如机加工、表面处理等,以满足最终产品的要求。
粉末冶金技术由于不需要传统的熔炼工艺,可节约能源和原材料,还能够制备具有特殊形状和性能的零部件,因此在航空航天、汽车、医疗器械等领域有着广泛的应用。
粉末冶金知识点总结
粉末冶金知识点总结一、粉末冶金基础知识1. 粉末冶金的概念粉末冶金是一种利用金属或非金属粉末作为原料,通过压实和烧结等方式制备零部件的工艺。
它充分发挥了粉末的特性,即可压性、可成形性、可烧结性和可溶性等,使得粉末冶金工艺具有高效率、低成本、无废料和生产精度高等优点。
2. 粉末材料的选择在粉末冶金过程中,选择合适的粉末材料对于制备高质量的产品至关重要。
一般来说,粉末材料应具有以下特点:细小的颗粒大小、均匀的颗粒分布、高的纯度和良好的流动性。
3. 粉末冶金的工艺粉末冶金工艺通常包括原料的混合、成型、烧结和后处理等步骤。
在这个过程中,需要注意粉末的混合比例、成型方式、烧结温度和时间等参数的控制,以确保制备出符合要求的成品。
4. 粉末冶金的应用粉末冶金技术已广泛应用于汽车、航空航天、医疗器械、电子设备等领域,制备出的产品具有优异的性能和精密的形状,可以满足各种特殊需求。
二、粉末材料的制备方法1. 机械合金化机械合金化是一种通过机械设备将原料混合并形成均匀的粉末混合物的方法。
常见的机械合金化设备包括球磨机、混合机和搅拌机等。
这种方法对原料的颗粒大小和形状要求不高,适用于制备一些普通的粉末材料。
2. 化学还原法化学还原法是一种利用化学反应生成的气体来分解金属或合金化合物,产生金属粉末的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
3. 气相沉积法气相沉积法是一种通过将金属原子或分子从气体中沉积到基底上形成薄膜或粉末的方法。
这种方法可以制备出极细的金属粉末,适用于制备一些用于电子器件等特殊应用场合的粉末材料。
4. 电化学法电化学法是一种利用电化学反应来制备金属粉末的方法。
这种方法制备的金属粉末质量较高,但工艺复杂,适用于制备一些对粉末质量要求较高的粉末材料。
5. 液态金属雾化法液态金属雾化法是一种通过气流将液态金属喷雾成细小颗粒的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
16年粉末冶金原理考试重点
一、名词解释1、粉末流动性:50g粉末流经标准漏斗所需要的时间成为粉末流动性。
2、合批:具有相同化学成分,不同批次生产过程得到的粉末混合工序。
3、弹性后效:粉末经模压推出模腔后,由于压坯内应力弛豫,压坯尺寸增大的现象。
4、活化烧结:能降低烧结活化能,使体系烧结在较低温度下以较快的速度进行,烧结体性能得以提高的烧结方法(采用化学或物理的措施,使烧结温度降低,烧结过程加快,或使烧结体的密度和其他性能得以提高的方法称为活化烧结)5、气氛的碳势(又称可控碳势气氛):该气氛与含碳量一定的烧结材料在某温度下维持平衡(不渗碳、也不脱碳)时,该材料的含碳量。
6、松装密度:粉末在松散状态下自然填充容器时,单位体积内的粉末质量7、粒度分布:具有不同粒径的颗粒占全部粉末的百分含量8、净压力:使粉末产生位移、变形和克服粉末内摩擦的力。
或减掉粉末与模具模壁摩擦力的那部分力。
9、单元系烧结:纯金属或化合物在其熔点以下的温度进行的固相烧结过程。
二、判断题1、机械法是依靠机械力进行破碎,化学成为有变化,物理化学法往往借助物理和化学的作用,其原材料的化学成分不变。
(×)2、形状和粒度相同的雾化铜粉和雾化青铜粉,其压缩性相同。
(×)3、W、Cu、Fe、Ta、Nb主要是通过氢气还原法制备。
(×)4、空气透过法反映粉末的外比表面积,代表单颗粒或二次颗粒的粒度。
而BET法反映全比表面积及一次颗粒的粒度。
(√)5、粉末压坯强度与坯体中的残留应力大小有关。
(√)6、无压成型不属于粉末冶金技术中的特殊成型。
(×)7、粉末烧结一般是多种烧结机构共同起作用的结果。
(√)8、粒度、颗粒形状和颗粒表面粗糙度对粉末压制性能的影响规律是:有利于提高粉末压缩性的因素,一般都会造成粉末成形性能降低(√)9、液相烧结余姚满足的润湿条件是润湿角θ>90,如果θ<90,烧结开始时液相即使生成,也会很快跑出烧结体外,成为渗出。
粉末冶金原理复习总结
临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度。
离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。
电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每96500库仑应该有一克当量的物质经电解析出。
气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程。
相对密度:粉末或压坯密度与对应材料理论密度的比值百分数。
压坯密度:压坯质量与压坯体积的比值。
相对体积:粉末体的相对密度(d=ρ/ρ理)的倒数称为相对体积,用β=1/d表示。
粉末加工硬化:金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化。
快速冷凝:将金属或合金的熔液快速冷却(冷却速度>105℃/s),保持高温相、获得性能奇异性能的粉末和合金(如非晶、准晶、微晶)的技术,是传统雾化技术的重要发展。
假合金:两种或两种以上金属元素因不是根据相图规律、不经形成固溶体或化合物而构成的合金体系,假合金实际是混合物。
保护气氛:为防止粉末或压坯在高温处理过程发生氧化而向体系加入还原性气体或真空条件称为保护气氛。
粉末粒度:一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度。
粉末流动性:50克粉末流经标准漏斗所需要的时间称为粉末流性。
孔隙度:粉体或压坯中孔隙体积与粉体表观体积或压坯体积之比。
标准筛:用筛分析法测量粉末粒度时采用的一套按一定模数(根号2)制备的金属网筛。
单轴压制:在模压时,包括单向压制和双向压制,压力存在压制各向异性。
密度等高线:粉末压坯中具有相同密度的空间连线称为等高线,等高线将压坯分成具有不同密度的区域。
雾化介质:雾化制粉时,用来冲击破碎金属流柱的高压液体或高压气体称为雾化介质。
活化能:发生物理或化学反应时,形成中间络合物所需要的能量称为活化能。
第三章 粉末冶金原理粉末概念微观结构性能(合)总结
制粉工艺中带入的杂质。如水溶液电解粉末中的氢、气体还
原粉末中溶解的碳、氮等
原材料或生产过程中带入机械夹杂,如SiO2、 Al2O3、硅酸盐、难熔金属等 机械夹杂物一般提高颗粒硬度,降低粉末压制性 能,对材料韧性,特别是冲击韧性影响显著。
活性。
TB5 钛合金beta相热加 工后淬火的金相图片
(2)颗粒表面状态 :
一般来说凹凸不平
外表面:包括颗粒表面所有宏观的凸起和凹进的 部分及宽度大于深度的裂纹。 内表面:包括深度超过宽度的裂纹、微缝及颗粒 外表面连通的孔隙等,但不包括封闭在颗粒内的 闭孔。 多孔性颗粒内表面远比外表面复杂、丰富。 粉末发达的表面积储藏着高的表面能 故在加热时一定要保护气氛。
总孔隙体积、颗粒间的孔隙体积、孔隙数量、分布、形状等 d、粉末体的性质
颗粒性质、平均粒度、颗粒组成、比表面积、松装密度、振实密 度、流动性、颗粒间摩擦状态等
4、化学性能
原材料成分与组成,纯度标准,粉末国家及部级标准GB 、 ISO、BB(包装)
形成合金的加入元素-形成固溶体,化合物合金的生成元素,
S=fD2
V=kD3
f:表面形状因子, k体积形状因子, 二者之比
m=f/k
比形状因子
如规则的球形体: S=D2, V=(1/6)D3 因此,规则球形颗粒的 表面形状因子为π,
体积形状因子等于π/6,
比形状因子等于6. m=6; 边长为a的规则正方体,表面积等于6a2,体积等 于a3,f=6,k=1,m=6;
粉末冶金重点整理
粉末冶金重点整理名词解释:1,熔解析出:溶解和析出阶段。
如果固相在液相中可以溶解,那么在液相出现后,特别是细小的粉末和粗大的颗粒的凸起及棱角局部会在液相中溶解消失。
由于细小的粉末颗粒在液相中的溶解度要比粗颗粒大,因此在细小颗粒溶解的同时,也会在粗颗粒外表上有析出的颗粒。
2,蒸发凝聚:外表层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。
3,密度等高线:密度一样的区域连在一起形成的类似等高线的线分布4,比外表:粉末比外表定义为1g 质量的粉末所具有的总外表积,用m2/g 表示;致密固体的比外表用m2/cm3 为单位,称容积比外表。
粉末比外表是粉末的平均粒度、颗粒形状和颗粒密度的函数。
5,二流雾化:借助高压水流或气流的冲击来破碎液流,称为水雾化或气雾化.也称二流雾化。
6,临界转速:当转速达一定的速度时,球体受离心力的作用,一直紧贴在圆筒壁上,以致不能跌落,物料就不能被粉碎。
这种情况下的转速称为临界转速。
7,松装密度:松装密度是粉末试样自然地充满规定的容器时,单位容积的粉末质量。
8,标准筛:标准筛,采用SUS304〔0Cr18ni9〕不锈钢拉伸抛光而成,壁厚0.6毫米,外表光可鉴人,整体成型巩固耐用,没有磁性,筛网与筛框通过锡焊固定,不会松弛。
9,粒度分布:由于组成粉末的无数颗粒一般粒径不同,故又用具有不同粒径的颗粒占全部粉末的百分含量表示粉末的粒度组成,又称粒度分布.10,二次颗粒:单颗粒如果以某种形式聚集11,真密度:粉末质量与除去开孔和闭孔体积的粉末体积的比值,是材料的理论密度12,相对密度: 压坯密度与真密度的比。
13, 压坯密度:压坯密度是压坯单位体积实际质量的平均值,用g/cm3表示。
14,团粒:由单颗粒或二次颗粒依靠范德华的作用下结合而成的粉末颗粒,易于分散.15,粉末压制性: 压制性是压缩性和成形性的总称。
压缩性就是金属粉末在规定的压制条件下被压紧的能力。
成形性是指粉末压制后,压坯保持既定形状的能力。
粉末冶金重点整理
10. 制备超细合金加V、Cr为什么阻碍碳化物长大??? 原因:1、降低共晶温度 2、在WC和Cr界面析出阻碍长大(形核,长大) 具体:超细 WC&Co 合金晶粒长大的驱动力是来自于表面积的减少。它是由于具有较高 溶解度的细碳化物溶解于富钴相中而发生,继而再析出在较大碳化物上,从而引起 WC 晶粒 长大。在超细 WC&Co 合金中添加一定量的抑制剂就可以抑制这种 WC 晶粒的长大。 晶粒长大主要发生在 WC 的溶解沉淀过程中,WC 溶解在液相里并沉淀在较大的 WC 晶粒 上。WC 晶粒疯长现象也符合溶解沉淀机理。抑制剂改变了 WC&Co 的界面自由能,从而抑 制了溶解-沉淀过程,降低了溶解-沉淀速度。速度降低的原因是 WC&Co 不同界面间的 各向异性减少。抑制剂的渗透过程主要通过在粘结相里和在 WC&Co 界面上的扩散。有效
粉末冶金知识讲义
粉末冶金知识讲义简介粉末冶金是一种通过将金属或陶瓷的粉末加工成所需的产品的方法。
它在各种工业领域中都有广泛的应用,包括汽车制造、航空航天、电子设备等。
本篇讲义将介绍粉末冶金的基本原理、工艺流程以及应用领域。
希望通过本讲义的学习,读者能够对粉末冶金有更深入的了解。
粉末冶金的基本原理粉末冶金是利用金属或陶瓷的粉末制备材料的一种冶金方法。
它的基本原理是通过将粉末状的金属或陶瓷原料压制成形,在高温下进行烧结或热处理,使其形成致密的材料。
粉末冶金的主要原理包括:1.粉末制备:金属或陶瓷原料首先需要经过研磨和筛分等工艺步骤,制备成具有一定粒径和形状的粉末。
2.粉末成形:粉末通过压制工艺成形,常见的成形方法包括压制成型、注射成型和挤压成型等。
3.烧结或热处理:压制成形的粉末被置于高温下,经过烧结或热处理,使其形成致密的材料。
4.后续加工:经过烧结或热处理后的材料需要进行后续加工,例如机加工、表面处理等,以满足产品的具体要求。
粉末冶金的工艺流程粉末冶金的工艺流程包括粉末制备、成形、烧结或热处理以及后续加工等步骤。
具体工艺流程如下:粉末制备粉末制备是粉末冶金的第一步,它决定了最终材料的粒度和形状。
常见的粉末制备方法包括:•研磨:将金属块或陶瓷块通过研磨设备研磨成粉末状。
•气相沉积:通过将金属或陶瓷元素在高温下蒸发,然后在室温下与气体反应产生粉末。
•溶液法:通过将金属或陶瓷溶解在溶剂中,然后通过蒸发溶剂得到粉末。
成形成形是粉末冶金的第二步,它将粉末状的原料转化为所需的形状。
常见的成形方法包括:•压制成型:将粉末状原料放入模具中,通过压力将其固化成形。
•注射成型:将粉末与粘结剂混合后注射到模具中,通过固化将其成形。
•挤压成型:在高温下将粉末状原料通过挤压工艺转化为所需的形状。
烧结或热处理烧结或热处理是粉末冶金的关键步骤,它将成形后的粉末进行高温处理,使其结合成致密的材料。
常见的烧结或热处理方法包括:•烧结:将成形后的粉末置于高温下,使其颗粒之间发生结合,形成致密的材料。
粉末冶金原理
一、名词解释1、比表面积:比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g2、离解压:它是在一定的温度下,某化合物的生成-离解反应达到平衡时产生的气体所具有的压力3、一次颗粒:粉末中能分开并独立存在的最小实体4、电化当量:指在电镀过程中电极上通过单位电量时,电极反应形成产物之理论重量5、侧压力:压制过程中由垂直压力引起的模壁施加于压柸的侧面压力6、弹性后效:在压制过程中,当除去压制压力并把压柸压出压模之后,由于内应力的作用,压柸发生弹性膨胀的现象7、注射成型:将粉末与热塑性材料均匀混合使成为具有良好流动性能(在一定温度下)的流态物质,而后把这种流态物质在注射机上经一定的温度压力,注入模具内成型的工艺。
8、烧结:粉末或粉末压柸.在适当的温度和气氛条件下加热所发生的现象或过程9、液相烧结:在烧结温度下,低熔组元融化或形成低熔共晶物,有液相英气的物质迁移现象或过程10、烧结机构:研究烧结过程中各种可能的物质迁移方式及速率11、硬质合金:由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料12、涂层硬质合金:在强度和韧性较好的硬质合金基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物而获得的13、粒度分布:具有不同粒径的颗粒占全部粉末的百分含量二、问答题1. 碳还原法制取铁粉的过程机理是什么?影响铁粉还原过程和铁粉质量的因素有哪些?铁氧化物的还原过程是分段进行的,即从高价氧化物到低价氧化物最后转变成金属。
铁氧化物的直接还原,从热力学观点看,可认为是间接还原反应与碳的气化反应的加和反应,这就是碳还原的实质。
因素:⑴原料:原料中杂质、原料粒度⑵固体碳还原剂:固体碳还原剂类型、用量⑶还原工艺条件:还原温度与时间、料层厚度、还原罐密封程度⑷添加剂:加入一定固体碳的影响、返回料、引入气体还原剂、碱金属盐、海绵铁的处理4、还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些? 氢还原。
粉末冶金重点总结
C. 行星式球磨:增加球撞击次数,自转+公转,纳米非晶粉末 4.氧化还原制粉方法 1) 定义:用还原气体(固体)或活泼金属将氧化物还原制备粉末的过程. 2) 制取铁粉高于或者低于 570 度的情况,反应特点 碳还原法制取铁粉 P38
气体还原法制取铁粉 P40 3) 氢还原法制取钨粉: W 粉及氧化钨的形态: WO3(α相)黄色,WO2.90(β相)兰色,WO2.72 紫色 , WO2 金属 W 粉的基本用途:硬质合金工业、tools、W alloys、电工合金及 defiance 高比重
且有可能制取高纯度的材料而不给材料带来污染。 3. 粉末成本较高,制品的大小形状受一定限制,烧结件韧性较差。 1.粉末制备方法的几点知识: ① 从过程的实质来看,大体上可以归纳为两大类,即物理机械法和物理化学法 ② 从工业规模而言,应用最广泛的是还原法、雾化法和电解法,而气相沉淀法和液相沉淀法在特殊应用时亦很重要。 ③ 从材质范围来看,不仅使用金属粉末、 也使用合金粉末、金属化合物粉末; ④ 从粉末外形来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末; ⑤ 从粉末粒度来看,要求各种粒度的粉末,从粒度为 500~1000um 的粗粉末到粒度小于 0.1um 的超细粉末。 2.制粉方法: ① 固态下制取粉末的方法包括:(1)从固态金属与合金制取金属与合金粉末的 有机械粉碎法和电化腐蚀法(2)从 固态金属氧化物及盐类制取金属与合金粉末的有还原法;从金属和非金属粉末、金属氧化物和非金属粉末制取金属化合物 粉末的有还原-化合法。. ② 在气态制备粉末的方法包括:(1)从金属蒸气冷凝制取金属粉末的蒸气(2)从气态金属羟基物离解制取金属、合 金以及包覆粉末的羟基物热离解法; 冷凝法; ③ 在液态下制备粉末的方法包括:(1)从液态金属与合金制备金属与合金粉末的雾化法;(2)从金属盐溶液置换和 还原金属、合金以及包覆粉末的置换法、溶液氢还原法;(3)从金属盐溶液电解制金属与合金粉末的水溶液电解法;从金 属熔盐电解制金属和金属化合物粉末的熔盐电解法。 3.球磨法制粉:P10 ① 概念:机械研磨是利用机械力将金属或其它材料破碎制取粉末的方法 ② 四种力:冲击、磨耗、剪切、压缩。P9 ③ 球在滚筒中的状态:(1)转速慢,泻落状态,摩擦效果,球体不滚动(2)转速快,抛落状态,球体滚动,摩擦效 果和撞击效果(3)转速快,抛落状态,冲击作用 ④ 应力公式:
粉末冶金基本知识重要
装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。
粉末冶金原理知识要点
1粉末冶金的特点:粉末冶金在技术上和经济上具有一系列的特点。
从制取材料方面来看,粉末冶金方法能生产具有特殊性能的结构材料、功能材料和复合材料。
(1)粉末冶金方法能生产普通熔炼法无法生产的具有特殊性能的材料:1)能控制制品的孔隙度;2)能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料;3)能生产各种复合材料;(2)粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:1)高合金粉末冶金材料的性能比熔铸法生产的好;2)生产难熔金属材料和制品,一般要依靠粉末冶金法;从制造机械零件方面来看,粉末冶金法制造的机械零件时一种少切削、无切削的新工艺,可以大量减少机加工量,节约金属材料,提高劳动生产率。
总之,粉末冶金法既是一种能生产具有特殊性能材料的技术,又是一种制造廉价优质机械零件的工艺。
2粉末冶金的工艺过程(1)生产粉末。
粉末的生产过程包括粉末的制取、粉料的混合等步骤。
为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。
(2)压制成型。
粉末在500~600MPa压力下,压成所需形状。
(3)烧结。
在保护气氛的高温炉或真空炉中进行。
烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。
烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。
(4)后处理。
一般情况下,烧结好的制件可直接使用。
但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。
后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。
现代粉末冶金的主要工艺过程生产粉末制坯烧结3、粉末冶金发展中的三个重要标志:第一是克服了难熔金属(如钨、钼等)熔铸过程中产生的困难第二是本世纪30年代用粉末冶金方法制取多孔含油轴承取得成功第三是向更高级的新材料新工艺发展。
4、怎样理解“粉末冶金技术既古老又年轻”?粉末冶金是一项新兴技术,但也是一项古老技术。
根据考古学资料,远在纪元前3000年左右,埃及人就在一种风箱中用碳还原氧化铁得到海绵铁,经高温锻造制成致密块,再锤打成铁的器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为n i=M/ (qlt)x 100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1 、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1 还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co 及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)-SHS自蔓延高温合成。
1.2还原-化合法:适合于金属碳化物、硼化物、硅化物、氮化物粉末1.3化学气相沉积CVD1.4物理气相沉积PVD或PCVD (复合粉)1.5电解法:水溶液电解(Cu,Fe,Ni,Ag粉);熔盐电解(Ta,Nb,Ti,Zr,Th等活泼金属粉末)1.6 羰基物热离解法:Fe,Ni,Co 粉末2 机械法2.1机械研磨:铬粉,铁铝合金,硅铁合金,钼铁合金,铬铁合金等脆性金属或合金粉末。
2.2雾化法:包括气体雾化(空气和惰性气体)和水、油雾化以及旋转电极雾化等。
.气体雾化:铁、铜、铝、锡、铅及其合金粉末(如青铜粉末、不锈钢粉末);.水雾化:铁、铜及合金钢粉末;.旋转电极雾化:难熔金属,铝合金、钛合金、超合金粉末,工具钢粉末。
.其它形式的雾化;2、氧化还原法的过程原理?了解PH2/PH2O 和PCO/PCO 2 线的图解?定义:用还原气体(固体)或活泼金属将金属氧化物还原制备粉末的过程。
还原剂分类a、气体还原剂:H2, COb、固体还原剂:Cc、金属还原剂:碱土金属用作还原剂的必要条件:1•离解压(P o2)XO V(P O2)MeO,还原剂对氧的亲和力大于对被还原物质的亲和力,24 G MeO>△ G XO,必须满足热力学必要条件,反应才能进行,3•还原剂的氧化产物和还原剂本身的组份不污染被还原金属或易被分离还原反应:MeO+X=Me+XO ,可看成下述两个基本反应组成,即:Me+0.5O2=MeO (1)X+0.5O2=XO ( 2)将( 2) -( 1)得到上述总反应。
由热力学可知,还原反应的标准等压位变化为△G° =-RT InKp△G° 2=-RTInKp1=0.5RTIn(P O2)XO△G° 1=-RTInKp2=0.5RTIn(P O2)MeO△G° = △ G° ?-△ G° i=0.5RT(In(P O2)XO-I n(P O2)MeO)=0.5RTIn((P O2)XO/(P O2)MeO)<0即金属氧化物的离解压(PO2)Meo大于还原物的离解压(PO2)XO。
换句话说,氧与还原剂X 的亲和力与金属元素的亲和力。
3、还原法制取钨粉过程中钨粉颗粒长大的机理是什么?影响钨粉的粒度的因素有哪些?A 挥发—沉积机理:氢中水分子与钨氧化物反应生成挥发性的水合物,WOX+H2O —WOX. nH 2O(g) T气相中的钨氧化物被氢还原沉积在钨颗粒上,导致W颗粒长大。
钨氧化物的水合物的挥发性随钨氧化物中的含氧量、 气氛中含水量的增加和还原温度的升高而增大钨粉颗粒长大的趋势又随还原气氛中水合物浓度的提高而加强B 氧化一还原机理:当氢中水含量较高时已还原的细钨颗粒优先被氢中水氧化生成钨氧化物再按照挥发一沉积机理导致W 颗粒的长大 利用这一现象可制备粗颗粒钨粉原料:A 粒度:当采用W03时,其粒度与还原钨粉粒度间的依赖性不太明显,而主 要取决于W02的粒度。
目前,采用蓝钨(蓝色氧化钨)作原料。
该原料具有粒 度细、表面活性大,W 粉一次颗粒细和便于粒度控制的特点。
B 杂质元素:影响透气性或生成难还原化合物。
K 、Na 等促使钨粉颗粒粗化;Ca 、Mg 、Si 等元素无明显影响:少量Mo 、P 等杂质元素可阻碍W 粉颗粒长大(2) 还原方式:二阶段还原/分段还原(3) 氢气:降低氢的露点,流量不宜过高,顺流通氢。
(4) 还原工艺条件:•还原温度T :降低T ,高的温度会提高钨氧化物的水合物在气相中的浓度,颗 粒粗化;.推舟速度V :降低V ,推舟速度打导致氧气增加,高氧指数的氧化物具有更大 的挥发性,提高浓度,颗粒粗化;.料层厚度t :降低t ,料层厚度过高不利于氢向底层物料的扩散,钨氧化物的含 氧量咼,颗粒粗化。
(5) 添加剂:少量的添加剂如 Cr 、V 、Ta 、Nb 等的盐可抑制钨粉颗粒的粗化。
4、( 1) Fe — O — C 系图与温度的关系,CO 对氧化铁还原的过程怎样? 碳直接还原氧化铁制备铁粉时热力学条件如图所示,说明图中各条曲线的含义, 表明各相稳定存在区域并讨论氧化亚铁还原成铁粉的条件。
3Fe 2O 3 CO 2Fe 3O 4Fe 3O 4 CO 3 FeO CO 2FeO CO Fe CO^Fe3Q :4 B :Fe344C O 。
D :F ?Fe 4CO 2b 曲线:Fe3O4被还原成FeO 的反应平衡曲线;c 曲线:FeO 被还原成Fe 的反应平衡曲线;d 曲线:Fe3O4被还原成Fe 的反应平衡曲线。
与b 、c 相交的曲线为碳氧化反应的平衡曲线在do, oc线以上Fe稳定存在;do, ob线以下部分Fe3O4稳定存在,在ob、oc线之间FeO稳定存在;只有当温度高于碳的氧化反应平衡曲线与FeO被还原成Fe的反应平衡曲线的焦点温度时气相中的CO百分含量(浓度)才能使FeO被还原成Fe;即温度高于680 o C,CO的百分含量超过61%(2)影响还原过程和铁粉质量中的因素(1)原料的影响包括原料中杂质的影响(SiO2)和原料粒度(原料越细,界面越大,促进反应进行)的影响。
(2)还原工艺条件包括还原温度、时间和料层厚度的影响(3 )添加剂:固体碳,返回料,气体还原剂,碱金属盐(4)海绵铁的处理(退火)(5)固体碳还原剂的影响:类型:木炭,焦炭,无烟煤;用量:由氧化铁含氧量决定12、固体碳还原铁粉时,气体平衡条件如图所示,分析图中各区域的含义,个线段含义和1、2、3、4、5、6点的含义。
答:固体碳还原平衡气相图有两部分叠加而成:固体碳气化反应和氧化铁还原-氧化平衡反应。
固体碳气化反应在表示固体碳氧化形成CC和CO2的气相组成随温度变化的情况,氧化铁还原-氧化平衡反应指各种温度下反应平衡条件、对气氛组成的要求。
图中的曲线对应的平衡状态,改变气体组成,或保持气体组成。
改变温度,都会破坏平衡条件,结果是或氧化,或还原。
球在滚筒中的基本状态:(a)低转速,泻落,摩擦效果撞(b)适宜转速,抛落摩擦, 击破碎(c)高转速,临界转速球磨粉碎物料的作用主要取决于球和物料的运动状态球和物料的运动取决于球磨桶的转速5、影响球磨的因素有哪些?1、球筒的转速:n工=(0.70~0.75)n临界时,发生抛落;n工=0.6n临界时,球体以滚动为主;n工<0.6n临界时,球体以滑动为主。
2、装球量:过大或过小都会使研磨效率下率降低。
3、球料比:料太少,球的磨损太大,量过多,则磨削面积不够,不能很好的研磨细粉。
4、球的大小:若球的直径小,质量轻,则对物料的冲击力弱;但球的直径太大,则球个数太少,磨削面积减少,效率降低。
5、研磨介质:分为干磨和湿磨,后者多采用水、酒精、丙酮等,可以减少氧化,物料偏析,冷焊、团聚等问题,还可以改善劳动环境。
&被研磨物料的性质:物料存在着极限研磨的大小。
公式:由颗粒尺寸变化与总能关系I琢=只(巧—D广*牛硏馳度;0躺破g:常数a:经验系数,在1至U 2之间&机械合金化的过程怎么样?列举2~3个应用过程1、初始激活,①延性粉末颗粒扁平化;②脆性颗粒破碎形成原子化表面;2、活性化合粉末焊接后合金化,①各颗粒间距接近原子级水平;②产生大量缺陷(主要为位错);③加速固相扩散反应,实现合金化;3、合金化结束,①合金化过程基本完成或极其缓慢;②整个原子体系处于平衡化(存在大量缺陷或非晶结构);4、微颗粒化和晶粒颗粒细化,非晶晶化,部分结构发生回复。
应用:面心立方金属Al —Cu,Cu—Ag等延性/延性粉末球磨体系。
7、气体雾化制粉可分为哪里几个区域?每个区域的特点是什么?气体雾化制粉过程可分解为金属液流负压紊流区,原始液滴形成区,有效雾化区和冷却凝固区等四个区域。
其特点如下:金属液流紊流区:金属液流在雾化气体的回流作用下,金属流柱流动受到阻碍,破坏了层流状态,产生紊流;原始液滴形成区:由于下端雾化气体的冲刷,对紊流金属液流产生牵张作用,金属流柱被拉断,形成带状-管状原始液滴;有效雾化区:因高速运动雾化气体携带大量动能对形成带状-管状原始液滴的冲击,使之破碎,成为微小金属液滴;冷却区凝固区:此时,微小液滴离开有效雾化区,冷却,并由于表面张力作用逐渐球化。
PS:雾化法:直接击碎液体金属或合金而制得粉末的方法。