(完整版)幂的运算(知识总结)
七年级幂的运算知识点
七年级幂的运算知识点幂是数学中的一种基本运算,它的概念较为简单,但是在运用过程中需要掌握一些重要的知识点。
本文将详细介绍七年级幂的运算知识点。
一、幂的概念幂是指将一个数的几次方表示为该数的形式,其中第一个数字称为“底数”,第二个数字称为“指数”。
例如,2³=8中,2是底数,3是指数,8是幂。
二、幂的符号表示在数学中,幂可以用符号来表示。
将底数和指数用括号括起来,放在上标的位置。
例如:2³可以写为2^3,其中^表示“上角”,即“次方”的意思。
三、幂的性质幂有以下几个重要的性质:(1)相同底数的幂相乘:a^m * a^n = a^(m+n),即相同底数的幂相乘,底数不变,指数相加。
(2)幂的乘方:(a^m)^n = a^(m*n),即幂的乘方,指数相乘。
(3)幂的倒数:a^(-m) = 1/a^m,即求幂的倒数,底数不变,指数变为相反数。
(4)幂的减法:a^m / a^n = a^(m-n),即幂的除法,底数不变,指数相减。
四、幂运算的解题技巧在幂运算中,掌握以下技巧有助于解题:(1)化简式子。
将式子中的幂与其它项结合,简化计算步骤。
(2)运用幂的性质。
例如,对于n为正整数且n是奇数的情况,a^n = a*a^(n-1)。
(3)利用幂与根的关系。
求幂的平方根或立方根时,可以将幂与根的关系转化为幂的乘方。
五、幂中的特殊符号在某些情况下,幂运算中会出现特殊符号,需要注意以下几点:(1)分数指数。
当幂的指数为分数时,需要用分数的乘方运算进行计算。
例如,2^(1/2)表示的是2的1/2次方,即根号2。
(2)零次幂。
任何数的0次幂都等于1,即a^0=1。
(3)负数幂。
负数不能直接开根号,但可以进行负数幂运算。
六、七年级幂的应用幂在七年级数学中的应用相对较少,但具体应用还包括以下几个方面:(1)解一元一次方程。
通过幂的乘方和幂的除法等性质,可以将方程式化简,从而求出解的值。
(2)解图形推理题。
(完整版)幂的运算知识点总结
欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。
2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即
把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不。
初一幂的运算知识点总结
初一幂的运算知识点总结幂是指一个数的n次方,其中n是一个正整数,表示把这个数连乘n次。
例如,a的n次方可以写作an,其中a是底数,n是指数。
在数学中,幂是一个非常重要的概念,广泛应用在代数、几何、数论等诸多领域。
幂的运算规则1.相同底数的幂相乘时,底数不变,指数相加。
即,am * an = am+n。
例如,2的3次方乘以2的4次方等于2的(3+4)次方,即23 * 24 = 27。
2.相同底数的幂相除时,底数不变,指数相减。
即,am / an = am-n。
例如,2的5次方除以2的3次方等于2的(5-3)次方,即25 / 23 = 22。
3.幂的乘方运算,底数不变,指数相乘。
即,(am)n = amn。
例如,(2的3次方)的4次方等于2的(3*4)次方,即(23)4 = 212。
4.如果一个幂的指数为0,则该幂等于1。
即,a0 = 1。
这是因为任何非零数的0次方都等于1。
5.如果一个幂的指数为负数,则可以取倒数,即a-n = 1 / an。
例如,2的-3次方等于1 / 23,即2-3 = 1 / 8。
6.幂的连乘:当多个幂连乘时,幂的乘积等于各个底数的幂的连乘。
即,a1 * a2 * ... * an = a1 * a2 * ... * an。
例如,2的3次方乘以2的4次方再乘以2的5次方等于2的(3+4+5)次方,即23 * 24 * 25 = 212。
幂的实际应用1.幂在几何中的应用:在几何中,幂常常用于计算面积和体积。
例如,计算正方形的面积可以用边长的2次方,计算立方体的体积可以用边长的3次方。
2.幂在物理学中的应用:在物理学中,幂常常用于计算功、能等物理量。
例如,功等于力乘以位移,因此可以用力的1次方和位移的1次方相乘。
3.幂在金融学中的应用:在金融学中,幂常常用于计算利息和复利。
例如,计算复利时,可以用本金乘以利率的n次方来计算未来的资金。
4.幂在计算机科学中的应用:在计算机科学中,幂常常用于计算算法的时间复杂度和空间复杂度。
(完整版)幂的运算方法总结
•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。
问题1、已知a7a m=a3a10,求m的值。
思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。
方法思考:只要是符合公式形式的都可套用公式化简试一试。
方法原则:可用公式套一套。
但是,渗入幂的代换时,就有点难度了。
问题2、已知x n=2,y n=3,求(x2y)3n的值。
思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。
因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。
方法原则:整体不同靠一靠。
然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。
思路探索:试逆用公式,变形出与已知同形的幂即可代入了。
简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。
方法原则:逆用公式倒一倒。
当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。
思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。
由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。
简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。
幂的运算方法归纳总结
幂的运算方法归纳总结幂运算是数学中常见的运算方法之一,通过将一个数称为底数,另一个数称为指数,进行计算得到结果。
在实际问题中,幂运算具有广泛的应用。
本文将归纳总结幂的运算方法,帮助读者更好地理解和应用幂运算。
1. 幂数的概念幂数是指幂运算中的底数,可以是任何实数或复数。
幂数对于幂运算结果的大小起着重要作用。
当幂数为正数时,指数增大幂的结果也会增大;当幂数为负数时,指数增大幂的结果会逐渐趋近于零或者变号;当幂数为零时,任何指数的幂都等于1。
2. 指数的概念指数是幂运算中表征幂数重复使用次数的数,可以是正整数、负整数、零或分数。
指数为正时,幂数的幂结果大于幂数本身;指数为负时,幂数的倒数的幂结果大于幂数本身;指数为零时,任何幂数的幂结果都等于1;指数为分数时,幂数的幂运算可以通过开方等方式进行计算。
3. 幂运算的基本性质幂运算具有一些基本性质,便于进行计算和推导。
(1) 幂运算的指数相加,即a^m * a^n = a^(m+n)。
这个性质适用于同一个底数不同指数的乘积运算。
(2) 幂运算的指数相减,即a^m / a^n = a^(m-n)。
这个性质适用于同一个底数不同指数的除法运算。
(3) 幂运算的幂次相乘,即(a^m)^n = a^(m*n)。
这个性质适用于同一个底数取幂后再次取幂的运算。
(4) 幂运算的指数为负时,即a^(-n) = 1 / a^n。
这个性质适用于幂数的倒数的幂运算。
4. 幂运算的特殊情况幂运算的特殊情况包括幂数为0和指数为0的情况。
(1) 幂数为0时,0的任何正整数次幂均等于0,0^0的结果没有定义。
(2) 指数为0时,任何数的0次幂均等于1,即a^0 = 1,其中a≠0。
5. 幂运算的计算方法在实际计算中,幂运算可以通过不同的方法进行计算。
(1) 对于正整数指数,可以使用连乘法进行计算。
例如,3^4 = 3 * 3 * 3 * 3。
(2) 对于负整数指数,可以使用幂数的倒数再进行连乘法计算。
幂的四种运算法则
幂的四种运算法则摘要:一、幂的定义与性质1.幂的定义2.幂的性质二、幂的运算法则1.幂的乘方2.幂的除法3.幂的加法4.幂的减法三、实际应用与例子1.幂在实际生活中的应用2.幂的运算例子四、总结与展望1.总结幂的四种运算法则2.展望幂的进一步研究正文:幂的四种运算法则广泛应用于数学、物理、化学等领域,掌握这些运算法则对于解决实际问题具有重要的意义。
一、幂的定义与性质幂是指将一个数连乘若干次,其中乘方的指数表示连乘的次数。
例如,2的3 次方(2)表示将2 连乘3 次,即2×2×2=8。
幂的性质包括:幂的乘方、幂的除法、幂的加法和幂的减法等。
二、幂的运算法则1.幂的乘方:幂的乘方是指将一个幂与另一个幂相乘,例如,a 的m 次方与a 的n 次方相乘,结果为a 的m+n 次方。
如:2 × 2 = 2。
2.幂的除法:幂的除法是指将一个幂除以另一个幂,例如,a 的m 次方除以a 的n 次方,结果为a 的m-n 次方。
如:2 ÷ 2 = 2。
3.幂的加法:幂的加法是指将两个同底数的幂相加,例如,a 的m 次方与a 的n 次方相加,结果为a 的m+n 次方。
如:2 + 2 = 2。
4.幂的减法:幂的减法是指将两个同底数的幂相减,例如,a 的m 次方与a 的n 次方相减,结果为a 的m-n 次方。
如:2 - 2 = 2。
三、实际应用与例子幂在实际生活中有广泛的应用,如计算机科学中的二进制运算、物理学中的量子力学、化学中的化学反应等。
例如,在计算机科学中,二进制数的幂运算可以用于实现加密和解密算法。
在物理学中,量子力学中的波函数和薛定谔方程都涉及幂运算。
以下是一些幂运算的例子:1.计算2 的5 次方:2 = 2×2×2×2×2 = 32。
2.计算2 的3 次方除以2 的2 次方:2 ÷ 2 = 2×2×2 ÷ 2×2 = 2。
幂的知识点
幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()n mmn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n n abc a b c (n 为正整数).(2)逆用公式:()nn n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.举一反三:【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n ⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()p p p p p p p x x x x x +++++=⋅⋅-=-=-.(3)原式525216222(2)22n n n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】解:由2220x +=得22220x ⋅=.∴ 25x =.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-.【答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25m x =,求6155m x -的值. 【答案与解析】解:∵ 25m x =,∴ 62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a b x +的值.【答案】解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=g g .【变式2】已知84=m ,85=n ,求328+m n 的值.【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+;(2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--.【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=.(3)22412()()m m x x -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=.【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n 的值.【思路点拨】由于已知8,8m n 的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)m n m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8m n 当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三:【变式】已知322,3m m a b ==,则()()()36322m m m m a b a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m a b a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【思路点拨】利用积的乘方的运算性质进行计算.【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.举一反三:【变式】下列等式正确的个数是( ).①()3236926x y x y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()5712135107103510 3.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1n na a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10n a ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10n a -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法.【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号.【答案与解析】解:(1)83835x x x x -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0.【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=-(3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.3、已知32m =,34n =,求129m n +-的值.【答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n 的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式.举一反三:【变式】已知2552m m ⨯=⨯,求m 的值.【答案】解:由2552mm⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =.类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义.举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求n m .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10na -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a3.下列计算正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列计算正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a ba b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________. 8. 若()319xaa a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【答案与解析】一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439xx -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n +==⨯=g .8. 【答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【答案】25;【解析】()2632525n n a a ===. 10.【答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-;12.【答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x x x +⋅=∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b b a b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅= ∴3n =9且3m +3=15∴n =3且m =4。
(完整版)幂的运算总结及方法归纳.docx
(完整版)幂的运算总结及方法归纳.docx幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用 a m ? a n a m n( m 、 n 为正整数), a m a n a m n (a 0, m 、 n 为正整数且 m > n ), (a m ) n a mn( m 、 n 为正整数), (ab) n a n b n( n 为正整数), a 01(a 0) ,a n1( a 0 ,n为正整数)时,要特别注意各式子成a n立的条件。
◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。
换句话说,将底数看作是一个“整体”即可。
◆注意上述各式的逆向应用。
如计算0.252004 4 2005,可先逆用同底数幂的乘法法则将42005 写成42004 4 ,再逆用积的乘方法则计算0.25 200442004(0.25 4) 2004120041,由此不难得到结果为1。
◆通过对式子的变形,进一步领会转化的数学思想方法。
如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。
◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律” 这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。
一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:a m a n a m n m、n为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m a n a p a m m p (m、 n、 p为正整数 )注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数 .(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算 .例题:例 1:计算列下列各题(1)a3 a4;( 2) b b2b324;( 3)cc c简单练习:一、选择题1.下列计算正确的是 ( )A.a2+a3=a5B.a2·a3=a5C.3m+2m=5mD.a2+a2=2a42.下列计算错误的是 ( )A.5 x2- x2=4x2B.am+am=2amC.3m+2m=5mD. x·x2m-1=x 2m3.下列四个算式中①a333②x336325·a=2a+x =x③b·b·b=b④p2+p2+p2=3p2正确的有 ( )A.1个B.2个C.3个D.4个4.下列各题中,计算结果写成底数为10 的幂的形式,其中正确的是 ()A.100 × 102=103B.1000× 1010=103C.100 × 103=105D.100×1000=104二、填空题1.a4·a4=_______;a4+a4=_______。
幂的运算(知识总结)
幂的四则运算(知识总结)一、同底数幂的乘法运算法则:同底数幂相乘,底数不变,指数相加。
用式子表示为: n m n ma a a +=⋅(m 、n 是正整数)二、同底数幂的除法运算法则:同底数幂相除,底数不变,指数相减。
用式子表示为:nm nma a a -=÷。
(0≠a 且m 、n 是正整数,m>n 。
) 补充:零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数)次幂,等于这个数的p 次幂的倒数。
用式子表示为:)0(10≠=a a ,ppa a 1=-(0≠a ,p 是正整数)。
三、幂的乘方运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为:()nm mna a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法 练习: 1、计算:①()()()()2452232222x x x x -⋅-⋅ ②()()()32212mn m a a a a -⋅-⋅补充:同底数幂的乘法与幂的乘方性质比较:幂的运算 指数运算种类同底数幂乘法 乘法 加法 幂的乘方 乘方乘法四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。
用式子表示为:()n n nb a b a ⋅=⋅(n 是正整数)扩展p n m p n m a a a a -+=÷⋅()np mp pn mb a b a= (m 、n 、p 是正整数)提高训练 1.填空(1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 =(5) (-10)2 ×(-10)0 ×10-2 = 2.选择题(1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1B. (-a )n = - a n n 是奇数C. n 是偶数 , (- a n ) 3 = a 3nD. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( )A. x -10B. - x -10C. x -12D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( )A. 1.5B. 6C. 9D. 8 3.计算题(1) (-1/2 ) 2 ÷(-2) 3 ÷(-2) –2 ÷(∏-2005) 0 = = (2) (-2 a ) 3 ÷a -2 = (3) 2×2m+1÷2m =(4) 已知:4m = a , 8n = b , 求: ① 22m+3n 的值.② 24m-6n 的值.。
幂的运算知识点及考点复习总结
55
).
、4
44
、5
33
的大小.
分析:这类问题通常都是将参加比较的两个数转化为底数相同的或指数相同的形式,根据 观察,本体用作商法比较大小。 例题 4: 3
2001
的个位是:
变式练习:求 7
2005
32007 的末位数字.
分析: 逆用同底数幂的乘法及积的乘方的法则解答此题
类型三
跟踪练习: 用简便方法计算: (1) (
5 1999 3 2000 ) .(2 ) ; 13 5
1 2 3 3 (2) ( ) ( 2 ) . 2
3
(3) 8 4
2
1997
(0.25) 2001.
例题 3:已知 M
999 119 , N , 那么 M、 N 的大小关系怎样? 999 990
2
变式练习: 生存的世界中处处有氢原子和氧原子,让 1 亿个氧原子排成一行,它们的总长度只有 lcm 多一点, 1 个氧原子的质量约为 2. 657×10
23
g; -个氢原子的直径大约为 0. 000 000 000
05m,它的质量约为 0. 000 000 000 000 000 000 000 000 001 673kg. (1)试比较氢原子和氧原子谁大谁小?谁重谁轻? (2)利用计算器计算,大约把多少个氢原子紧排在一个平面上时,它们所占的面积相当于 1 枚一元硬币的面积(1 枚一元硬币的直径约为 2. 46cm).
跟踪练习:
(2 x ) ( (1)
3n 2
1 2n 2 x ) ( x 2n ) 3 2
(2) ( 2 a ) (a ) (a ) (a )
5 2 2 2 2 4
七年级幂的运算知识点总结
七年级幂的运算知识点总结幂运算也叫指数运算,是数学运算中的一种,用于表示一个数(底数)被自己乘若干遍(幂次方)的结果。
七年级学生已经学习了幂运算的概念以及一些基础的幂运算的计算,下面来总结一下七年级幂运算的知识点和注意事项。
一、幂运算的定义幂运算是指以一个数(称为底数)为底,以另一个数(称为指数)为幂的运算,经过计算后得到一个数(称为幂),记作a的n次幂,其公式为:a的n次幂 = a^n其中,a为底数,n为指数,^表示幂运算符号。
二、幂运算的性质1. 幂运算的乘法性质:对于所有实数a和b以及任意整数m,n,有以下公式成立:a的m次幂 * a的n次幂 = a的(m+n)次幂2. 幂运算的除法性质:对于所有实数a和b以及任意整数m,n,有以下公式成立:a的m次幂 / a的n次幂 = a的(m-n)次幂3. 幂运算的幂运算性质:对于所有实数a以及任意整数m,n和k,有以下公式成立:(a的m次幂)^n = a的(m x n)次幂(a的n次幂)^k = a的(n x k)次幂4. 幂运算的零次幂和一次幂:a的0次幂 = 1a的1次幂 = a三、幂运算的计算方法1. 指数为正整数的幂运算指数为正整数的幂运算,直接使用乘法计算。
例如,2的3次幂:2^3 = 2 x 2 x 2 = 82. 指数为负整数的幂运算指数为负整数的幂运算可以转化为指数为正整数的分式,然后运用倒数的概念转化为乘法,即:a的–n次幂 = 1/ (a的n次幂)例如:2^(-3) = 1 / (2^3) = 1/83. 指数为分数的幂运算指数为分数的幂运算可以转化为开方运算和整数幂运算:a^(m/n) = (a^m)^(1/n) = n√(a^m)例如:5^(2/3) = (5^2)^(1/3) = 5√25 = 2.924四、幂运算习题中的注意事项1. 注意底数和指数的顺序。
2. 注意运算符号。
3. 注意乘方和开方运算的区别。
4. 注意正指数和负指数的幂运算之间的转换。
数学幂的运算总结
数学幂的运算总结1. 介绍数学幂是一个基本的数学运算符号,表示一个数的多少次方。
它在数学中有广泛的应用,特别是在代数、几何、物理和工程学中。
本文将对数学幂及其运算规则进行总结和讨论。
2. 数学幂的定义数学幂的定义是基于整数幂的,即将一个数自乘多次,其中底数表示要进行幂运算的数,幂指数表示要自乘的次数。
数学幂可用以下形式表示:a^n其中,a为底数,n为幂指数。
在数学中,a称为被乘数或底数,n称为指数或幂。
3. 幂运算的基本性质数学幂的运算具有以下基本性质:•幂的乘法法则:若a为底数,m、n为指数,则a^m * a^n = a^(m + n)。
即,相同底数的幂相乘,底数不变,指数相加。
•幂的除法法则:若a为底数,m、n为指数,则a^m / a^n = a^(m - n)。
即,相同底数的幂相除,底数不变,指数相减。
•幂的乘方法则:若a为底数,m为指数,n为整数,则(a m)n = a^(m * n)。
即,幂的指数乘方,指数相乘。
•幂的指数法则:若a为底数,m为指数,n为整数,则(a m)n = a^(m * n)。
即,幂的指数乘方,指数相乘。
4. 幂运算的特殊情况在幂运算中,有一些特殊情况需要特殊处理:•底数为0的幂:0的任何正数次幂都为0,即0^n = 0,其中n为正整数。
0的0次幂无定义。
•底数为1的幂:1的任何幂次都为1,即1^n = 1,其中n为任意整数。
•任意数的0次幂:任意数的0次幂都为1,即a^0 = 1,其中a为任意非零数。
•底数为负数的幂:负数的幂需要注意正负性和偶数次幂与奇数次幂的区别。
例如,-a^n = -(a n),当n为偶数时,-a n的结果为正数;当n为奇数时,-a^n 的结果为负数。
5. 指数函数和对数函数幂运算与指数函数和对数函数密切相关。
•指数函数:指数函数表示为y = a^x,其中a为常数,x为自变量,y 为因变量。
指数函数具有特殊的增长规律,当指数为正数时,函数值呈指数增长;当指数为负数时,函数值呈指数衰减;当指数为零时,函数值恒为1。
八年级上册数学幂的知识点
八年级上册数学幂的知识点幂的概念幂是指以底数为因数的连乘积。
其中,底数为幂的底,指数为幂的指。
幂通常表示为an,表示n个a的乘积。
其中,a为实数,n为自然数。
幂的性质1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
例如:4的2次方乘以4的3次方等于4的5次方,即4的2次方乘以4的3次方=4的5次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(m>n)。
例如:6的5次方除以6的3次方等于6的2次方,即6的5次方除以6的3次方=6的2次方。
3.幂的乘方法则:(a的m次方的n次方)等于a的m×n次方。
例如:3的4次方的2次方等于3的8次方,即(3的4次方的2次方)=3的8次方。
4.幂的0次方等于1,即a的0次方=1。
例如:2的0次方等于1,即2的0次方=1。
5.幂的负次方等于其倒数的幂,即a的-n次方等于1÷a的n次方(a≠0)。
例如:4的-2次方等于1÷4的2次方,即4的-2次方=1÷4的2次方。
幂的应用在实际生活中,幂的应用很广泛。
以下是几个常见的应用场景。
1.计算长方形面积。
长方形的面积可以看作是长和宽的乘积,即s=a×b。
其中a和b都是实数,也可以是整数或分数。
2.计算立方体的体积。
立方体的体积可以看作是长度、宽度和高度的乘积,即V=a×b×h。
其中a、b和h也都是实数,也可以是整数或分数。
3.计算复利。
复利是利滚利的一种形式,也是幂的一种应用场景。
复利的计算公式为A=P×(1+r/n)的nt。
其中,A是最终的本利和,P是本金,r是年利率,n是年复利次数,t是时间(以年为单位)。
总结在学习数学幂的知识点时,需要掌握幂的概念和性质,以及幂的应用场景。
幂是数学中的重要概念,应用非常广泛。
熟练掌握幂的知识,有助于我们更好地理解和应用数学。
初中幂的知识点总结
初中幂的知识点总结比如,表示为an(也可以写作a^n)表示把a相乘n次,其中a称为底数,n称为指数,a^n称为幂。
比如2^3表示2的3次方,即2*2*2=8。
这里,2就是底数,3就是指数,8就是幂。
初中的幂数学知识主要包括幂数的基本概念、幂的运算、幂的性质、幂数的运算规律等内容。
下面,我们就来逐一总结这些知识点,帮助大家更好地理解和掌握幂的知识。
一、幂的基本概念1. 底数和指数底数和指数是构成幂的两个基本元素。
在an(a的n次方)中,a称为底数,n称为指数。
底数是被乘数,指数是乘数。
指数为整数(包括零、正整数、负整数),底数可以为任意数(正数、负数、零),但底数不能为负数、指数不能为0。
2. 幂的读法幂的读法和计算要点就是,先读出基数,写出基数的n次方。
比如2^3读作“二的三次方”,3^2读作“三的平方”。
二、幂的运算1. 幂的乘法如果底数相同、指数相加,就可以合并成一个幂。
比如,a^m * a^n = a^(m+n)。
2. 幂的除法如果底数相同、指数相减,就可以合并成一个幂。
比如,a^m / a^n = a^(m-n)。
3. 幂的乘方指数的乘法(a^m)^n = a^(m*n)这里要注意,底数不变,指数相乘,结果就是原指数的积。
三、幂的性质1. 0的幂等于10的任何正整数次方都等于1。
比如,0^3 = 0*0*0 = 00^0 = 12. 负指数的幂底数不等于0,负指数的幂等于底数的倒数的正指数次方。
即a^(-n) = 1/(a^n) 3. 幂的乘法运算幂的乘法运算可以合并成一个幂。
比如a^m * a^n = a^(m+n)4. 幂的除法运算幂的除法运算可以合并成一个幂。
比如a^m / a^n = a^(m-n)5. 幂的乘方运算指数的幂运算等于幂的乘法运算。
比如(a^m)^n = a^(m*n)四、幂数的运算规律1. 幂数的指数乘法a^m * a^n = a^(m+n)2. 幂数的指数除法a^m / a^n = a^(m-n)3. 同底数的幂的乘法a^m * b^m = (a*b)^m4. 同底数的幂的除法a^m / b^m = (a/b)^m5. 两个数的乘方(a*b)^n = a^n * b^n6. 指数的乘方(a^m)^n = a^(m*n)以上就是初中幂的知识点总结,幂是数学中的一个基本概念,掌握了这些知识,就可以更好地理解和运用幂的运算规律,在数学学习中更加得心应手。
关于幂的计算归纳总结
关于幂的计算归纳总结
幂运算是数学中常见的一种运算方式,用于表示一个数的多次乘积。
在数学中,通常将幂的计算归纳为:整数指数的幂、零指数的幂、幂
指数为1的幂以及分数指数的幂。
下面将对这四种情况进行总结。
整数指数的幂:
当幂的指数为正整数时,幂的计算可以通过连续乘法实现。
例如,
对于正整数a和正整数n,a的n次幂等于连续n个a相乘的结果。
即
a^n = a * a * ... * a (共n个a相乘)。
例如,2的5次幂可以表示为 2^5 = 2 * 2 * 2 * 2 * 2,计算结果为32。
零指数的幂:
对于任何非零数a,a的零次幂定义为1。
即 a^0 = 1。
例如,5的零次幂为 5^0 = 1。
幂指数为1的幂:
当幂的指数为1时,幂的计算结果为该数本身。
即 a^1 = a。
例如,3的1次幂等于本身,即 3^1 = 3。
分数指数的幂:
当幂的指数为分数时,幂的计算可以通过开方运算实现。
幂的分数
指数可以转换为根式的形式。
例如 a^(n/m),可以转换为n次根号下的
a的m次幂。
即a^(n/m) = (n√(a))^m。
例如,对于 4^(2/3),可以转换为(3√4)^2。
综上所述,幂的计算归纳为整数指数的幂、零指数的幂、幂指数为
1的幂以及分数指数的幂。
根据幂的特性和运算规律,我们可以灵活应
用幂运算进行数值计算,在解决数学问题和实际应用中发挥重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的四则运算(知识总结)
一、同底数幂的乘法
运算法则:同底数幂相乘,底数不变,指数相加。
用式子表示为: n m n m a a a
+=⋅(m 、n 是正整数)
二、同底数幂的除法
运算法则:同底数幂相除,底数不变,指数相减。
用式子表示为:n m n m a a a -=÷。
(0≠a 且m 、n 是正整数,m>n 。
)
补充:
零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数)
次幂,等于这个数的p 次幂的倒数。
用式子表示为:)0(10≠=a a ,p
p a a 1=-(0≠a ,p 是正整数)。
三、幂的乘方
运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为:
()n m mn a a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法
练习:
1、计算:
①()()()()2452232222
x x x x -⋅-⋅ ②()()()32
212m n m a a a a -⋅-⋅ 补充:
同底数幂的乘法与幂的乘方性质比较:
幂的运算 指数运算种类 同底数幂乘法
乘法 加法 幂的乘方 乘方 乘法
四、积的乘方
运算法则:两底数积的乘方等于各自的乘方之积。
用式子表示为:()n n n b a b a ⋅=⋅(n 是正整数) 扩展
p n m p n m a a a a -+=÷⋅ ()np mp p n m b a b a = (m 、n 、p 是正整数)
提高训练
1.填空
(1) (1/10)5 ×(1/10)3 =
(2) (-2 x 2 y 3) 2 =
(3) (-2 x 2 ) 3 =
(4) 0.5 -2 =
(5) (-10)2 ×(-10)0 ×10-2 =
2.选择题
(1) 下列说法错误的是.
A. (a -1)0 = 1 a ≠1
B. (-a )n = - a n n 是奇数
C. n 是偶数 , (- a n ) 3 = a 3n
D. 若a ≠0 ,p 为正整数, 则a p =1/a -p
(2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( )
A. x -10
B. - x -10
C. x -12
D. - x -12
(3) a m = 3 , a n = 2, 则a m-n 的值是( )
A. 1.5
B. 6
C. 9
D. 8
3.计算题
(1) (-1/2) 2÷(-2) 3÷(-2)–2÷(∏-2005) 0= =
(2) (-2 a ) 3÷a -2 =
(3) 2×2m+1÷2m =
(4) 已知:4m = a , 8n = b ,
求: ①22m+3n的值.
②24m-6n的值.。