七年级一元一次方程解决问题
完整版七年级数学一元一次方程应用题专题练习
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
初一数学上册一元一次方程的应用12种经典题型汇总
初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】
专题17 列一元一次方程解决实际问题知识解读1.行程问题行程问题中的基本关系:路程=速度×时间.顺流、逆流问题中,顺流速度=船在静水中的速度+水速,逆流速度=船在静水中的速度-水速.2.销售问题销售问题中常见的数量关系:标价×折率=售价,售价一进价=利润,进价×利润率=利润。
3.分档问题现实生活中,有许多与费用有关的问题,其费用的计算方法会分成多个不同的档次.解题时要对照档次,认准计算方法,如果不能确定属于哪个档次时,要注意分类讨论.培优学案典例示范1.行程问题例1 甲、乙两列火车从A ,B 两地相向而行,乙车比甲车早出发1小时,甲车比乙车每小时快30千米,甲车发车2小时恰好与乙车相遇.相遇后为了错车,甲车放慢了速度,以它原来速度的倍23行驶,而乙车加快了速度,以它原来速度的倍行驶.结果2小时15分钟后,两车距离又等于A ,B 53两地之间的距离.求两车相遇前的速度及A ,B 两地之间的距离。
【提示】设乙车相遇前的速度为x 千米/小时,则甲车相遇前的速度为(x +30)千米/小时.分别用含x 的式子表示出相遇前两车的总行程和相遇后两车的总行程.【技巧点评】行程问题中基本的关系:路程=速度×时间.当问题较为复杂时,可借助表格来帮助分析:跟踪训练1甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.例2一条汽船在一条河上航行,若从A港到B港顺流航行需要3h,从B港到A港逆流航行需要4h,那么一根木棍从A港到B港顺水漂流需要多长时间?【提示】设汽船在静水中的速度为x千米/小时,水流的速度为y千米/小时.根据顺流汽船的行程和逆流汽船的行程都是A,B两港之间的距离可以列出方程,进而求出x与y的关系,而木棍漂流所用的时间等于A,B两港之间的距离除以水流速度。
七年级数学一元一次方程解决问题应用题全集
七年级数学一元一次方程应用题解答题全集【配套问题】1、某服装厂生产一种运动服,已知每3m长的布料可做上衣2件或裤子3条,一件上衣一条裤子为一套,计划用800m长的布料生产服装,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2、某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱和螺母的工人各多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺母的工人有名.3、某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【工程问题】1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?2、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?3、一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?4、甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?【销售打折问题】1、某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?2、2020年,某商场开展“双十一”促销活动,将M,N两种电器捆绑售卖,M电器降价20%,N电器降价30%,已知M,N两种电器的原销售单价之和为2500元,小明参加活动购买M,N电器各一件,共付1900元.(1)M,N两种电器原销售单价各是多少元?(2)若商场在这次促销活动中M电器盈利25%,N电器亏损20%,你认为商场在这次促销活动中是盈利还是亏损了?M,N两种电器捆绑售卖一件盈利或亏损了多少元?3、某文具店今年1月份购进一批笔记本,共2290本.每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量为2200本,则2月份售价多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)的条件下的售价减少了m%,结果3月份的销量比2月份在(1)的条件下的销售量增加了50%,3月份的销售利润达到6600元,求m的值.【课后作业】1、某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x2、一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天3、超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.84、商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
七年级数学一元一次方程的应用
七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。
本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。
1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。
我们可以通过一元一次方程来计算出折后价格。
设折后价格为y元,则有方程:y = 0.8x。
通过解这个方程,便可以得出折后价格。
这个例子展示了一元一次方程在计算打折后价格问题中的应用。
2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。
假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。
我们可以通过一元一次方程来计算这些参数之间的关系。
设总距离s为y km,则有方程:s = vt。
通过解这个方程,我们可以计算出汽车行驶的总距离。
这个例子展示了一元一次方程在速度问题中的应用。
3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。
假设某家庭每月的总收入是x元,总支出是y元。
我们可以通过一元一次方程来计算每月结余或者透支的情况。
设结余为z元,则有方程:z = x - y。
通过解这个方程,我们可以得到每月的结余或者透支情况。
这个例子展示了一元一次方程在家庭预算问题中的应用。
4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。
通过一元一次方程我们可以找出速度与距离、时间之间的关系。
设平均速度v为y km/h,则有方程:v = d/t。
通过解这个方程,我们可以计算汽车的平均速度。
这个例子展示了一元一次方程在距离、时间和速度问题中的应用。
以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。
掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。
人教版七年级上册数学一元一次方程应用题—配套问题
人教版七年级上册数学一元一次方程应用题—配套问题1.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)列一元一次方程解决问题:现库内存有布料200m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料327m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?2.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?3.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?4.利兴罐头盒厂有18个工人,每人每天可制作盒身25个,或制作盒底40个,一个盒身与2个盒底配成一套罐头盒,那么安排多少人制作盒身、多少人制作盒底才能使一天生产的盒身与盒底刚好配套?(列方程解)5.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?6.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?7.为积极落实“垃圾分类”,环保公司计划派出13名工人外出安放A、B两种型号的专用垃圾箱,其中每人每天可以安放4个A型垃圾箱或者5个B型垃圾箱.按照规范要求,1个A型垃圾箱要配2个B型垃圾箱.为使每天安放的A型垃圾箱和B型垃圾箱刚好配套,公司应分配多少名工人安放A型垃圾箱?8.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?9.一车间加工轴杆和轴承,每名工人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90名工人;(1)应该怎样调配,多少名工人加工轴杆,多少名工人加工轴承,才能使每天生产的轴承和轴杆正好配套?(2)由于急需,又从二车间抽调12名具有相同能力的工人来一车间;问能安排这些新来的工人加工轴杆、轴承,使每天生产的轴承和轴杆正好配套?10.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?11.某丝巾厂家70名工人义务承接了志愿者手上,脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾180条或者脖子上的丝巾120条,一条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成_______套.12.某车间36名工人生产螺母和螺钉,每人每天平均生产螺钉200个或螺母500个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?13.某礼品制造厂接了一批玩具熊的订单,按计划天数生产,若每天生产20个玩具熊,则最终比订单少生产100个;若每天生产23个玩具熊,则最终比订单多生产20个.原计划几天完成订单?14.制作一张桌子,要用一个桌面和4条腿组成,31m木材可制作300条桌腿或可制作15个桌面,现有330m木材,应该用多少立方木材制作桌面,用多少立方木材制作桌腿,才能使桌腿和桌面配套?15.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,求该工厂有多少工人生产A 零件?16.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1)甲,乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2)如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?17.机械厂加工车间有52名工人,平均每人每天加工大齿轮12个或小齿轮8个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?18.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母12个或螺栓22个.若分配多少名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.19.为了增强身体素质,提高班级凝聚力,某校初一年级师生在11月中旬集体乘车去青龙湖参加定向越野活动.学校租来大巴车若干辆,若按照每辆车载40名学生,则还有22名学生没有座位;若按照每辆车载43名学生,则前面的车辆都是载43名学生,只有最后一辆车载23名学生,求参加定向越野的学生共有多少人?20.某工厂车间有28个工人,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.设该工厂有x名工人生产A零件:(1)求车间每天生产A零件和B零件各多少个?(用含x的式子表示)(2)求该工厂有多少工人生产A零件?。
七年级数学上册一元一次方程应用题常用公式
七年级数学上册一元一次方程应用题常用公式
一元一次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。
对于一元一次方程的应用题,我们通常需要使用一些常用的公式来简化计算过程。
下面是一元一次方程应用题中常用的几个公式:
1. 路程=速度×时间
这个公式是解决行程问题的基础,它表示物体在一定时间内移动的距离与速度和时间的关系。
2. 工作量=工作效率×工作时间
这个公式用于解决工作问题,它表示完成一项工作所需的总工作量与工作效率和时间的关系。
3. 利润=售价-进价
这个公式用于解决利润问题,它表示商家在销售商品时所获得的利润与商品的售价和进价的关系。
4. 利息=本金×利率×时间
这个公式用于解决利息问题,它表示在一定时间内,本金产生的利息与本金、利率和时间的关系。
5. 面积=长×宽
这个公式用于解决几何图形面积问题,它表示矩形面积与长和宽的关系。
6. 周长=4×半径
这个公式用于解决圆的周长问题,它表示圆的周长与半径的关系。
7. 体积=底面积×高
这个公式用于解决几何图形体积问题,它表示立方体体积与底面积和高度的关系。
这些公式是一元一次方程应用题中常用的,掌握它们可以帮助我们更快地解决问题。
人教版数学七年级上册第12讲 一元一次方程的实际应用(二)
第12讲一元一次方程的实际应用(二)知识导航1.列一元一次方程解决行程问题;2.列一元一次方程解决工程问题;3.列一元一次方程解决调配与配套问题;4.列一元一次方程解决利润问题.【板块一】行程问题方法技巧1.行程问题有相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运动.2.相遇问题是相向而行,相遇时的总路程=两运动物体的路程和.3.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追.4.顺流(风)、逆流(风)和上坡、下坡问题应注意运动方向和速度不同.题型一一般行程问题【例1】一列匀速前进的火车,从它进入320米长隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,求这列火车的长为多少米?【练1】某人骑自行车由甲地驶向乙地,如果每小时比原来的速度快6公里,便可以早到5分钟;如果每小时比原来的速度慢5公里,便要迟到6分钟.求甲、乙两地的距离为多少公里?题型二相遇问题【例2】小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A,B两地间的路程.【练2】A,B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km,甲车出发25min后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?题型三追及问题【例3】A,B两地相距480km,一列慢车从A地出发,每小时行走50km,一列快车从B地出发,每小时走70km.⑴两车同时出发,相向而行,出发后多少小时相遇?⑵若两车同时出发,同向而行,慢车在快车前面,相遇前经过多少小时两车相距200km?相遇后经过多少小时两车相距200km?【练3】甲、乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.⑴求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)⑵若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?题型四 流水问题与上、下坡问题【例4】某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A ,C 两地之间的路程为10千米,求A ,B 两地之间的路程.【练4】如图所示,折线AC -CB 是一条公路的示意图,AC =8km .甲骑摩托车从A 地沿这条公路到B 地,速度为40km /h ,乙骑自行车从C 地到B 地,速度为10km /h ,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.针对练习11、 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( )A . 0.5小时B . 1小时C . 1.2小时D . 1.5小时2、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x 日追上驽马,那么根据题意,可列方程为 .3、已知A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.若甲车速度为110千米/ 时,乙车速度为90千米/时,经过t 小时两车相距50千米,则t = 小时.4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相 同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内 可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.ACB5、为赴台湾考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟. 7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返同,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶千米,爸爸返回千米(均用含x的代数式表示);(2)小颖的爸爸能否在规定的时间内赶到机场?6.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10km.如果乙船由A地经过B地再到达C地共用了4h,问:乙船从B到到达C地时,甲船距离B地有多远?【板块二】工程问题方法技巧1、基本量之间的关系:工作量=工作效率╳工作时间.2、当总工作量未给出具体数量时,常把总工作量当作整体1.常用的相等关系为:总工作量=各部分工作量的和.题型一有具体数量作为工作量【例5】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【练5】有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及粉刷,同样的时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张师傅现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?题型二没有具体数量作为工作量【例6】检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙合做,但乙中途离开了一段时间,后2天由乙、丙合做完成,问乙中途离开了几天?【练6】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这次货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)题型三牛吃草问题(总工作量发生变化)【例7】有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?【练7】山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则 20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?针对练习21、完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( )A. 2.8B. 3C. 6D. 122、为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 .3、某农民在农贸市场卖鸡,甲先买了总数的一半又半只,然后乙买了剩下的一半又半只,最后丙买了剩下的一半又半只,恰好卖完,则该农民一共卖了只鸡.4、刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成.现在甲先单独绣1天,接着乙又单独绣 4天,剩下的工作由甲、乙两人合绣.再绣多少天可以完成这件作品?5、甲、乙两个施工队在六安(六盘水一安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设 5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,则乙队每天铺设(x—100)米.(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米.6、—棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)—个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值.【板块三】调配及配套问题方法技巧1.调配问题的相等关系往往通过题目中的一句关键的语气呈现.2.产品配套问题的相等关系要抓住成套产品的两个部件之间固有的倍数关系.题型一调配问题【例8】学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.【练8】某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?题型二配套问题【例9】某儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个.要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?【练9】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?针对练习31.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工在厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?2.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件上衣配一条裤子),应怎样分配人数,才能使每天生产的上衣和裤子配套?3.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800无;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B厂各为多少台机器?4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件。
七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)
一、解答题1.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b )元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a ;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b ,∴这7天要付(58a+115b )元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.4【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =. 由题意得,12203a a -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,3方程为1213132y y +-=-, 去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 6.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.9.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键11.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
七年级一元一次方程常见应用题
七年级一元一次方程常见应用题一元一次方程常见应用题一、课本上常用等量关系:常见等量关系有总量=各部分量的和,暗示同一个量的两个不同的式子相等。
1、某人共用142元买了两种水果共20千克。
已知甲种水果每千克8元,乙种水果每千克6元,问这两种水果各有多少千克?2、解放军战士在一次施工中,要运回75吨砂子。
现出动大、小两种汽车17辆,大小汽车每辆各运砂5吨/次、3吨/次。
这些砂子正好一次运完。
问大、小汽车各几辆?3、把一些图书分给某班学生。
如果每人分4本,则剩余12本;如果每人分5本,则还缺30本。
问该班有多少学生?4、一宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住。
那么这宿舍有多少间,人有多少个?二、行船问题:常用等量关系有顺流路程=逆流路程,顺流速度=静水速度+水流速度,逆水速度=静水速度-水流速度。
1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离?2、一架飞机飞舞在两个城市之间,风速为每小时24千米。
顺风飞舞需要2小时50分钟,逆风飞舞需要3小时,求两城市间距离。
3、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
4、轮船在静水中的速度为每小时20千米,水流速度为每小时4千米。
从甲码头顺流航行到一码头,再返回到甲码头,共用5小时。
求甲乙两个码头的距离。
三、工程问题:常用等量关系有工作总量=工作效率×工作时间,一般设工作总量为单位1.1、一件工程,甲独做需15天完成,乙独做需12天完成。
现先由甲、乙合作5天后,甲有其他任务,剩下工程由乙单独完成。
问乙还要几天才能完成全部工程?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管各一根。
初中数学苏科版七年级上册第四章一元一次方程4.3用一元一次方程解决问题(7)
用一元一次方程解决问题(1)一、情境引入数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.二、问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料 m3,做一条桌腿需要木料 m3.用 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?通过问题1的研究,你能概括出用一元一次方程解决问题的一般思路吗?三、思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按元收费;如果超过15立方米,超过部分按每立方米元收费,其余仍按每立方米元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费元,求该户一月份用水量.四、课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了元.已知每封信的邮费为元,每张明信片的邮费为元.他寄了多少张明信片?3.一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?4.某人从甲地到乙地,全程的12 乘车,全程的13乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?用一元一次方程解决问题(2)一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:(1)找出问题中的已知数量,并填入下表;(2)设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.二、议一议:在问题2中,如果设橘子买了x千克,可以列出怎样的方程?三、数学运用例1 学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:等量关系是:.例2 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:课堂巩固1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?3.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的2,求这个课外活动小组的人数.34.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的倍,求这两支蜡烛原来的高度.用一元一次方程解决问题(3)例题讲解:问题3 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?说明:请学生尝试分析问题中的等量关系.思考1:如何把问题中的等量关系的分析过程直观地展示出来?设该小组共有x人.(1)如果每人做5个“中国结”,那么共做了个,比计划个.课堂练习:1、将一堆糖果分给幼儿园某班的小朋友,如果每人分2颗,那么就多8颗,如果每人分3颗,那么就少12颗,这个班共有多少名小朋友?2、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?3、某汽车队运送一批货物,每辆汽车装4t还剩下8t未装,每辆汽车装就恰好装完。
七年级一元一次方程应用题
七年级一元一次方程应用题一、行程问题1. 例题:甲、乙两人从相距240千米的A、B两地同时出发,相向而行,3小时后相遇。
已知甲每小时行45千米,求乙每小时行多少千米?解析:设乙每小时行公式千米。
根据路程 = 速度×时间,甲行驶的路程为公式千米,乙行驶的路程为公式千米。
由于两人是相向而行,总路程为240千米,所以可列方程公式。
解方程:首先对公式进行移项,得到公式。
即公式,解得公式。
答案:乙每小时行35千米。
2. 追及问题例题:甲、乙两人在同一条路上同向而行,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,问甲几小时能追上乙?解析:设甲公式小时能追上乙。
乙先走2小时,则乙先走的路程为公式千米。
公式小时后,甲走的路程为公式千米,乙走的路程为公式千米。
当甲追上乙时,他们所走的路程相等,可列方程公式。
解方程:移项得公式。
即公式,解得公式。
答案:甲5小时能追上乙。
二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要公式天完成。
把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
根据工作量 = 工作效率×工作时间,两人合作的工作效率为公式,可列方程公式。
解方程:先对括号内进行通分,公式。
则方程变为公式,解得公式。
答案:两人合作需要6天完成。
2. 例题:一项工程,甲队单独做20天完成,乙队单独做30天完成。
现在两队合作,其间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。
问乙队休息了几天?解析:设乙队休息了公式天。
甲队单独做20天完成,甲队每天的工作效率为公式;乙队单独做30天完成,乙队每天的工作效率为公式。
甲队工作了公式天,甲队完成的工作量为公式。
乙队工作了公式天,乙队完成的工作量为公式。
两队完成的工作量之和为单位“1”,可列方程公式。
七年级一元一次方程应用题经典例题及解析
七年级一元一次方程应用题经典例题及解析一、问题描述1.小明在超市买了一些苹果,每斤5元,共用了15元,求小明买了多少斤苹果?解析这是一个典型的一元一次方程问题。
设小明买了x斤苹果,则根据题意可得方程5x = 15。
解方程得x = 3,小明买了3斤苹果。
二、问题描述2.一种牛奶每瓶售价为x元,小红买了5瓶牛奶共花了30元,求每瓶牛奶的售价是多少?解析设每瓶牛奶的售价为x元,则根据题意可得方程5x = 30。
解方程得x = 6,每瓶牛奶的售价为6元。
三、问题描述3.某商店进行促销活动,一种商品原价x元,经过7折优惠后售价为21元,求该商品的原价是多少?解析设该商品的原价为x元,根据题意可得方程0.7x = 21。
解方程得x = 30,该商品的原价为30元。
四、问题描述4.小明和小刚一起去电影院看电影,两人共花了36元,小明比小刚多出了4元,求小明和小刚各自花了多少钱?解析设小明花了x元,小刚花了(x-4)元,根据题意可得方程x + (x-4) = 36。
解方程得x = 20,小明花了20元,小刚花了16元。
五、问题描述5.一家服装店进行清仓处理,原价为x元的衣服打折后售价为15元,打折了x的3/5,求原价是多少?设该衣服的原价为x元,根据题意可得方程(1-3/5)x = 15。
解方程得x = 25,该衣服的原价为25元。
六、问题描述6.某公司组织员工团建活动,共花费了240元,如果每人平均花费30元,求这个团队有多少人?解析设团队人数为x人,根据题意可得方程30x = 240。
解方程得x = 8,这个团队有8人。
七、问题描述7.一家餐馆供应两种套餐,A套餐售价x元,B套餐售价为25元,小张买了4份A套餐和2份B套餐共花了130元,求A套餐的售价是多少?解析设A套餐的售价为x元,根据题意可得方程4x + 2*25 = 130。
解方程得x = 20,A套餐的售价为20元。
八、问题描述8.甲乙两人玩猜硬币游戏,甲猜错了4次给了乙16元,每猜错一次需要支付4元,求共猜了多少次?解析设共猜了x次,根据题意可得方程4x = 16。
苏教版七年级上用一元一次方程解决问题
一元一次方程应用题行程问题基本关系式:路程=时间×速度相遇问题:相遇路程=相遇时间×(乙甲V V +)(速度和) 追及问题:路程差=追及时间×(慢快V V -)(速度差)行船/航行问题:()()⎩⎨⎧÷+=÷-=⇒⎭⎬⎫-=+=22逆流顺水静水逆流顺流水流水流静水逆流水流静水顺流V V V V V V V V V V V V 例1、甲乙两人在一条长400m 的环形跑道上跑步,甲的速度为360 m/min ,乙的速度为240m/min(1)两人同时同地同向跑,问第一次相遇时,两人共跑了几圈? (2)两人同时同地反向跑,问多长时间两人第一次相遇?例2、甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?例3、公共汽车原来从甲地到乙地需匀速行驶7小时,开通高速公路后,车速平均提高了30km/h,只需4小时即可到达。
求甲、乙两地间的距离。
例4、一艘船在两个码头之间航行,水流速度是12千米每小时,顺水航行需要4小时,逆水航行需要6小时,求两码头的之间的距离?习题1、五一长假,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现要带给外婆的礼品忘在了家里,刻带上礼品以每小时6千米的速度去追。
如果弟弟和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?习题2、一列火车匀速行驶经过一条长300m隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度。
提高1、某校运动会在400米环形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是多少分钟?工程问题基本关系式:工作总量=工作效率×工作时间题目中未给出工作总量时,设工作总量为单位1如果工作分成几阶段完成,则各阶段的工作总和=1例1、一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合做8天,余下的工程由甲队单独做,还需几天完成?变式、一项工程,甲队独做10小时完成,乙队独做要15小时完成,丙队独做要20小时完成,开始时三队一起做,中途甲队有任务离开,由乙、丙完成,从开始到结束共用了6小时,问甲队实际做了多少小时?例2、整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?例3、有一个蓄水池,装有甲、乙两个进水管和一个排水管,单独开甲管12小时可把空池注满,单独开乙管16小时可把空池注满,单独开排水管15小时可把满池的水放完,现甲乙两管同时开6小时后关闭乙管,打开排水管,问再过几个小时可把水注满呢?利润问题常用公式:利润=售价-进价利润率=进价利润×100%=进价进价售价 ×100%打折销售中的售价=标价×10折数售价=成本+利润=成本×(1+利润率) 利息=本金×利率例1、商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?变式1、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?例2、国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息税4.5元,则小明一年前存入银行的钱为多少元?变式2、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。
七年级一元一次方程应用题所有题型大全
七年级一元一次方程应用题所有题型大全
一、整数应用题
1.小明的妈妈给了他100元,他花了其中的四分之三,然后剩下的钱
还多少?
2.一条绳子长5米,剪成两段,其中一段比另一段多2米,求两段的
长度各是多少米。
3.某商品原价250元,打八五折后的价格是多少?
二、比例应用题
1.小李走了200米,小王走了300米,两人一共走了多少米?
2.一队篮球队员有男生8个,女生5个,男生人数是女生人数的几倍?
3.小华种了一些白菜和胡萝卜,白菜的重量是胡萝卜的3倍,总重量
是12千克,求胡萝卜的重量是多少千克。
三、距离速度时间应用题
1.两点之间的距离为80千米,汽车以每小时60千米的速度开,需要
多长时间到达?
2.小明骑自行车去了一半的路程,速度是10千米每小时,走了2个小
时,求剩下的路程还有多远?
3.水管从一个水塔底部向上喷水,水的喷射速度为10米每秒,水喷到
高度为50米时离水面还有多远?
四、工程应用题
1.甲组工人一天修150米路,乙组工人一天修120米路,如果两组工
人合作修路,一天可以修多少米路?
2.甲组工人修一段路需要7天,乙组工人修同样的路需要10天,如果
两组工人合作修路,完成同等工程需要几天?
3.水库中原有水量是6000立方米,通过排水口每小时流失200立方米,
如果连续5小时不停排水,水库中剩余多少水量?
以上为七年级一元一次方程应用题的一些常见题型,通过解决这些问题,可以
帮助学生更好地理解和应用一元一次方程的知识。
七年级一元一次方程解应用题
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。
- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。
2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。
- 设甲、乙两地的距离为x千米。
- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。
- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。
- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。
- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
七年级数学一元一次方程:配套问题(有答案)
七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。
一套产品需要一只甲种零件和一只乙种零件。
现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。
因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。
2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。
问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。
因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。
3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。
一只螺钉需要配两只螺母。
为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。
因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。
4、一套仪器由一个A部件和三个B部件构成。
现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。
问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。
因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。
因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。
5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级一元一次方程应用
一、行程问题
基本关系式:路程=时间×速度 时间= 速度路程 速度=时间
路程 1)相遇问题:相遇路程=相遇时间×(乙甲V V +)(速度和)
相遇时间=相遇路程÷(乙甲V V +)(速度和)
速度和(乙甲V V +)=相遇路程÷相遇时间
2)追及路程(速度快比速度慢多走的路程)=追及时间×(慢快V V -)(速度差)
追及时间=追及路程÷(慢快V V -)(速度差)
速度差(慢快V V -)=追及路程÷追及时间
3)行船/航行问题:
()()⎩⎨⎧÷+=÷-=⇒⎭⎬⎫-=+=22逆流顺水静水逆流顺流水流水流静水逆流水流静水顺流V V V V V V V V V V V V
4)环形跑道问题
例1、A 、B 两地相距450千米,甲,乙两车分别从A ,B 两地同时出发,相向而行。
已知甲车的速度为120 km/h, 乙车的 速度为80 km/h, 经过x 小时两车相距50km,则x 的值为多少?
例4、甲乙两人在一条长400m 的环形跑道上跑步,甲的速度为360 m/min ,乙的速度为240m/min
(1)两人同时同地同向跑,问第一次相遇时,两人共跑了几圈?
(2)两人同时同地反向跑,问多长时间两人第一次相遇?
行程问题汇总
1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?
13. 一艘船在两个码头之间航行,水流速度是12千米每小时,顺水航行需要4小时,逆水航行需要6小时,求两码头的之间的距离?
二、工程问题
工程问题中的三个量及其关系为:
1) 工作总量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
2) 经常在题目中未给出工作总量时,设工作总量为单位1;如果一件工作分成几个阶段完成,那么各阶段的工作总量的和=工作总量=1
例1、一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合做8天后,余下的工程再由甲队单独做还需几天完成?
(提示:相等关系:甲乙两队合做8天的工作量+甲队又单独做的工作量=1)
变式1:一项工程,甲队独做10小时完成,乙队独做要15小时完成,丙队独做要20小时完成,开始时三队一起做,中途甲队有任务离开,由乙、丙完成,从开始到结束共用了6小时,问甲队实际做了多少小时?
变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?
变式3:某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的6
5?
变式4:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
变式5:甲乙打字员完成一份稿件,甲先工作2小时完成了
101,乙又单独工作了3小时,此时共完成了2
1,
(6)利息=本金×利率
1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?
2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
3.一家商店某种裢子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,试求每条裤子的成本价是多少元?
4.某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组1月份各增长多少万元?
5.某商店对一种商品调价,按原价的八折出售,打折后的利润率是20﹪,已知该商品的原价是63元,求该商品的进价。
6.国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息4.5元,则小明一年前存入银行的钱为多少元?
7、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?
8、某商场将某种DVD 产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD 仍获利208元,则每台DVD 的进价是多少元?
9、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?
10、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
11、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后又降20%,现售价为n 元,那么该电脑的原售价为( )
A 、(45n+m) 元
B 、(54
n+m) 元 C 、(5m+n ) D 、(5n+m ) 12、一件商品的成本是200元,提高30%后标价,然后打9折销售,则这件商品的标价为_________,售价为_____________,利润为_____________ ;
13、某商品的进价为100元,标价为150元,现打8折出售,此时利润为_________元,利润率为___________ ;
14、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
15、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的
光顾,售价为224元,这件商品的成本价是多少元?
三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
19.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
20.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
综合练习
1.小明想从某网店购买计算器,经查询,某品牌A型号计算器的单价比B型号计算器的单价多10元/台,5 台A 型号的计算器与7台B型号的计算器的价钱相同,问A、B 两种型号计算器的单价分别是多少?
2.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶万亩生杜鹃花最为壮观,被誉为“天下第一杜鹃红”。
今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为几点?
3.一车间原有80人,二车间原有372人,现因工作需要,要从三车间调4人到一车间,问还需从二车间调多少人去一车间,才能使二车间的人数是一车间的2倍?
4.下表为深圳市居民每月用水收费标准。
用水量单价
x≤22a
剩余部分a+1.1
(1)某用户用水10立方米,共缴水费23元,求a的值;
理的人员有多少人?
10.某体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?
11.根据图中信息,解答下面的问题:
(1)购买6根跳绳需元,购买12根跳绳需元.
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.
12.一列火车匀速行驶经过一条长300m隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度。
13.某大商场家电部送货人员与销售人员人数之比为1:8。
今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。
结果送货人员与销售人数之比为2:5。
求这个商场家电部原来各有多少名送货人员和销售人员?。