环氧树脂固化剂固化条件及配方(DOC)
环氧树脂固化剂固化条件及配方(五)
2005-06-01 00:00:00作者:来源:网络文字:【大】【中】【小】
表1-30 TMA、TMEG、TMTA固化剂性状
-
TMA
TMEG
TMTA
分子质量
192
410
614
分子式
C9H4O5
C20H10O10
C30H14O15
外观
白色固体
白色固体
白色固体
羟酸当量
295.18
-
抗弯强度/MPa
常温
75.51
75.02
89.24
89.24
150℃
31.58
35.01
25.11
-
200℃
26.77
26.09
-
-
洛氏硬度(M)
109
109
-
119
热变形温度/℃
290
255
207
150
线胀系数/(1/k)
5.2×10-5
5.37×10-5
4.5×10-5
2.46×10-5
8
5
5
5
5
-
-
9
5
5
5
5
-
-
10
5
5
5
5
-
-
125℃→75℃
11
5
5
5
5
-
-
12
5
4
4
5
-
-
13
5
1
3
5
-
-
150℃→-75℃
14
5
1
2
5
-
(完整版)环氧树脂固化机理
环氧树脂与酸酥类固化剂在有无催化剂的条件下的固化机理1.酸酊固化环氧树脂体系比胺固化的体系具有更加优异的机械物理性能及高温稳定性能。
所以近年来它的应用十分广泛,但需要较高的固化温度和较长固化时间。
酸酊和环氧树脂的反应机理与其有无促进剂存在而有所不同,具体的情况如下: (1)无促进剂存在时首先由环氧树脂的羟基与酸酊反应生成含酯链的陵酸:Q β-C.√vvw'R <+H/:—CH --------------------------- to .C^O —CHz --CH ------------ √w√v、。
/1CH当然,仲羟基也可与另一个酸醉反应,重更以上步骤,最终引起环氧树脂的固化。
(2)促进剂存在时在有路易斯碱(如叔胺)作为促进剂时,首先是叔胺进攻酸醉生成竣酸盐阴离子:C√wwCH2*~~CH -----0—CHj —CH^—>vvwI OH生成的仲羟基再与另一个环氧基反应:然后按酸和环氧树脂的环氧基开环加成反应生成仲羟基:C-o-RCf、0+R 3N -一C/ O然后峻酸盐阴离子与环氧基反应生成氧阴离子:C-N +R 3 R ∖+HiC —CH --------- 'λλzw -------------)C-O-\/ 0『+C-NRjR∖C —0—CH 2—CH ——√ww、综上所述,不管是无促进剂的加成聚合反应还是有促进剂的阴离子聚合反应,酸酊固化机理可以概括为:开环一酯化一酸化不断反复进行,直到环氧树脂交联固化。
/C —NR 3 -C-O-C一N +R 3C ——0——CH2—CH ——/ww氧阴离子与另一个酸醉反应生成瘦酸盐阴离子:。
环氧树脂胶粘剂的常用配方介绍
环氧树脂胶粘剂的常用配方介绍配方一:618# 100 DTA8DBP 20AL2O3(200目)100固化条件:压力(MPa)/温度℃/时间(h)0.05/20℃/24h τ=18MPa 适用金属玻璃和陶瓷粘接。
配方二:618# 100 二乙基丙胺8DBP20AL2O3 1000.05/20℃/48h τ >20MPa 用途同上。
配方三:HYJ-6#618# 100 DBP 15 AL2O325 2#SiO22-5四乙烯五胺120.05/20℃/48h AL/玻钢>20MPa 适用于金属/玻璃钢粘接。
配方四:618# 100 间苯二胺18600#稀释剂10间苯二酚100.05/20℃/24h τ=17.5MPa τ200℃=5.0MPa 用于耐热接头粘接。
配方五:913#A组:601#环氧600#稀释剂201#聚酯铝粉和石英粉B组:BF3 乙醚四氢呋喃A3PO4 A:B=10:10.05/15℃/6h τ=19MPa 低温快速固化适用于寒冷地区。
配方六:四氢呋喃聚醚环氧5590#固化剂KH-550 0.20.05/30℃/30h τ-196℃=21MPa τ>6.5MPa 适用于超低温金属粘接。
配方七:508#6101#环氧100 647#酸酐60TiO2 50玻璃粉500.05/150℃/3h τ=13.1MPa τ钢=26.7MPa 适用于金属粘接。
配方八:618# 100邻苯二甲酸酐40 聚酯树脂20 AL2O3 500.05/140℃/4h τ>20MPa τ150℃=8-10.0MPa 用途同上。
配方九:618# 100650#聚酰胺0.05/20℃/24h 100-120 τ>15MPa 用于金属塑料陶瓷木材粘接。
配方十:KH-514#A组:618# 2000#环氧树脂B组:651#聚酰胺DMP-30KH-560混胺(间苯二胺:4,4´-二氨基二苯甲烷)A:B=12:70.05/60℃/3h τ≥25MPa 用于金属粘接。
环氧树脂固化剂
固化剂1.脂肪族多元胺1.1 乙二胺(EDA)由1,2-二氯乙烷(EDC)和氨反应制备。
还可由一乙醇胺(MEA)和氨反应制备乙二胺。
对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。
但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。
伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。
1.2 二亚乙基三胺(DETA)在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。
二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。
在其化学计算量的当量点附近有最大的交联密度。
而实际用量为化学计算量的75%即可,有助于减少固化放热。
以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。
二亚乙基三胺的变性物:二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。
生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。
固化放热温度随羟乙基化程度提高而降低。
且改善了固化剂对树脂的溶解性,降低了固化剂的挥发性和毒性。
但其吸湿性变强。
二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。
随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。
二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。
二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。
二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。
环氧树脂固化剂固化条件及配方修订稿
环氧树脂固化剂固化条
件及配方
WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
表1-16 有机酸酰肼固化环氧树脂铁-铁粘接的剪切强度
表1-17 国产的某些改性胺固化剂的质量指标
表1-18 烷基、芳基聚酰胺树脂的典型性能①?
表1-19 日本某些改性胺固化剂的性能指标
表1-20 胺类加合物的固化物性能
表1-21 胺加合物(由环氧乙烷、环氧丙烷制)的固化物性能
表1-22 典型的酸酐固化剂的性质
表1-23 与BA树脂配合的酸酐固化剂的固化条件、特性和用途
表1-24 配方与固化物性能
表1-25 商品甲基四氢苯酐的性能比较
表1-26 商品甲基六氢苯酐的性能比较
表1-27 不同浇铸配方固化物的性能及其比较
表1-28 MHAC与环氧树脂固化物的性能
表1-29 固化物在200℃下长期加热的性能变化①
表中200℃加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-37 各种HET/酸酐混合物的液化温度(℃)
表1-38 酸酐的典型共熔物
表1-39 日本商品化的聚硫醇固化剂
表1-40 有代表性的叔胺的性质
表1-41 几种叔胺固化物的性能
表1-42 促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)
表1-43 有代表性的咪唑化合物的性质
表1-44 咪唑及其衍生物的使用期及固化时间①
① 咪唑类添加量4g;树脂配料100g;0.3g填料,热板法。
环氧树脂漆配方
环氧树脂漆是一种常用于涂装和保护的高性能涂料,其配方可以根据具体应用的需要进行调整。
以下是一个基本的环氧树脂漆配方,供您参考:注意:以下配方仅供参考,实际使用时请根据具体需求和实验条件进行调整。
同时,请遵循化学品的安全操作规范。
材料:1. 环氧树脂(环氧基团含量较高的)2. 聚酰胺胺固化剂(胺固化剂)3. 溶剂(例如丙酮、甲苯等)4. 颜料和填料(根据需要可以选择添加)5. 促进剂(可选,用于调整干燥时间和性能)步骤:1. 混合树脂和固化剂:根据所选的环氧树脂和聚酰胺胺固化剂的配比,将它们混合在一起。
通常,树脂和固化剂的配比是按重量比例来计算的。
搅拌均匀,确保没有固化剂残留。
2. 加入溶剂:逐渐加入适量的溶剂,以调整涂料的粘度和流动性。
溶剂的添加量会影响涂料的施工性能,如涂布厚度和干燥时间。
3. 添加颜料和填料:根据需要,可以添加颜料和填料来调整漆膜的颜色、光泽度和硬度等性能。
填料可以增加涂层的强度和耐磨性。
4. 加入促进剂(可选):如果需要调整涂料的干燥时间或特定性能,可以添加一些促进剂。
不同的促进剂会产生不同的效果,例如加速固化速度或提高耐化学性能。
5. 搅拌和测试:将混合好的涂料搅拌均匀,确保所有成分充分混合。
可以取一小部分涂料进行涂布测试,以评估其性能如何。
6. 存储和使用:混合好的环氧树脂漆可以封存,存放在适当的条件下,避免阳光直射和过高温度。
在使用前,应仔细阅读涂料的技术说明书,确保正确的施工方法和条件。
需要强调的是,不同的应用领域和性能要求可能需要不同的配方和添加剂。
在制备环氧树脂漆时,建议根据具体的应用需求进行实验和调整,以获得最佳的性能和效果。
1/ 1。
环氧树脂的固化机理及其常用固化剂
环氧树脂得固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸〉酚>水>醇固化剂分类反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇与多元酚催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80—90℃▪固化物脆性大▪挥发性及毒性大芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺得活泼氢对α,β不饱与键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺与甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结得快速修复与加固d、硫脲—多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11—亚油酸与9,12—亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好得增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐〉苯酐〉四氢苯酐>甲基四氢苯酐▪六氢苯酐〉甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢与叔胺),适用期长(8—10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化得三个阶段▪液体-操作时间:树脂/固化剂混合物仍然就是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段), 这时它开始凝胶或“突变”成软凝胶物。
环氧树脂固化剂固化条件及配方
环氧树脂固化剂固化条件及配方(一)«仪旺u②室温,样品量100g @C=良好x=差①所用原料树脂:环氧当量=180〜195的双酚A型环氧树脂;凝胶时间在23 C用药1.1L舞料测定。
表1-4二乙烯三胺的质量分数对固化物的硬度及耐化学腐蚀性能的影响①所用树脂为环氧当量为190的双酚A型环氧树脂,室温凝胶后在110 固化4h。
理论计算二乙烯三胺质量分数=10.8%。
①①固化测试条件:100g树脂配料,20 C固化7d后测定强度。
热变形温度为负荷2.5kg 14d 后测定, 低分子聚酰胺胺值为350。
表1-6在24 C下环氧树脂的环氧基残留量表1-9 KH-514 胶粘剂的耐老化性能①V-115 : n(二聚酸):n(DTA)=2 : 3;胺值238②V-125 : m(二聚酸):n(DTA)=1 : 2 ;胺值345③V-140 : m(二聚酸):n(DTA)=1 : 2 ;胺值375实用文案①表1-28 MHAC 与环氧树脂固化物的性能①①表中200 C加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-30 TMA 、TMEG、TMTA 固化剂性状表1-31 TMA 、TMEG、TMTA 固化物性质表1-32 TMA 与B-570固化物性能对比②125〜128 C的可使用时间。
①试片埋在弹性垫片上,在各种温度保持30min。
所士数值为不发生开裂的试片数。
表1-36 用MA-PMDA 、PA-PMDA 固化环氧树脂的性能表1-37各种HET/酸酐混合物的液化温度(C )表1-42促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)①咪唑类添加量4g ;树脂配料100g ; 0.3g填料,热板法表1-45 2E 4MZ用量、固化条件对固化物性能的影响① Epon828 10g+ 络合物0.5g② Epo n828 10g+ 双氰胺2g+络合物0.2g③上述配方中加入2g铝粉填料。
环氧树脂胶水配方
环氧树脂胶水配方一、环氧树脂的基本性质和应用环氧树脂是一种高分子聚合物,其分子结构中含有环氧基团,具有良好的粘附性、耐腐蚀、耐热、绝缘等特性。
广泛应用于建筑、电子、航空航天、汽车、船舶等领域。
二、配方组成及比例1.活性环氧树脂:通常选用双酚A型环氧树脂,如E-44、E-51等。
根据需要选择不同粘度的环氧树脂,以满足不同的应用要求。
2.固化剂:常用的固化剂有胺类、酸酐类等。
胺类固化剂如乙二胺、三乙烯四胺等,酸酐类固化剂如顺丁烯二酸酐等。
根据需要选择合适的固化剂及其用量。
3.增韧剂:为提高环氧树脂胶水的柔韧性,可加入增韧剂,如苯二甲酸酯、丁腈橡胶等。
增韧剂的用量根据需要进行调整。
4.其他添加剂:如稀释剂、促进剂、颜料等,可根据需要适量添加。
三、胶水的制作过程及注意事项1.按照配方比例称取各组分;2.将环氧树脂加热至适当温度,使其充分熔化;3.加入增韧剂、稀释剂等添加剂,搅拌均匀;4.加入固化剂,迅速搅拌,使其混合均匀;5.根据需要加入颜料或其他添加剂;6.将胶水进行脱泡处理;7.将处理后的胶水装入干净的容器中,密封保存。
注意事项:1.在制作过程中,应保持清洁,避免杂质混入;2.注意各组分的添加顺序,并确保搅拌均匀;3.密封保存,防止胶水表面结皮;4.使用前检查胶水的状态,如有异常及时处理。
四、环氧树脂胶水的应用领域和特点1.建筑领域:环氧树脂胶水具有高粘附力、耐久性好、抗腐蚀等优点,适用于钢筋、水泥等材料的粘接。
2.电子领域:环氧树脂胶水具有良好的绝缘性能和电气特性,适用于电子元件的粘接和封装。
环氧树脂固化剂固化条件及配方
环氧树脂固化剂固化条件及配方1. 简介环氧树脂是一种常用的高性能聚合物材料,具有优异的物理、化学性能和加工性能。
然而,环氧树脂在未经固化之前是液态或半固态的,需要通过添加固化剂来完成其硬化过程。
本文将详细介绍环氧树脂固化剂的固化条件及配方。
2. 环氧树脂固化剂的选择环氧树脂的固化剂种类繁多,不同种类的固化剂具有不同的特点和适用范围。
在选择合适的环氧树脂固化剂时,需要考虑以下几个方面:2.1 固化速度根据需要控制产品的硬化时间,在不同应用场景下选择具有合适数值的固化速度。
2.2 固化温度不同类型的环氧树脂固化剂对于环境温度要求不同,一般分为常温固化和热固化两大类。
常温固化可在室温下完成,而热固化需要在一定温度下进行。
2.3 固化性能固化后的环氧树脂要求具有良好的物理性能和化学性能,如强度、硬度、耐腐蚀性等。
2.4 经济性考虑到生产成本,选择相对经济合理的固化剂。
3. 环氧树脂固化剂的固化条件3.1 常温固化条件常温固化的环氧树脂主要通过添加胺类或酸酐类的固化剂来完成。
常见的常温固化条件为室温下24小时。
3.2 热固化条件热固化需要在一定温度下进行,常见的热固化条件为80°C下2小时。
具体的热固化条件需根据所选用的环氧树脂和固化剂来确定。
4. 环氧树脂固化剂配方设计4.1 回流焊接用环氧树脂胶水配方回流焊接是电子制造过程中常用的连接技术之一。
回流焊接用环氧树脂胶水需要具有良好的耐热性和粘接性能。
以下是一种常见的回流焊接用环氧树脂胶水配方:•环氧树脂:100份•固化剂:10-20份•填料(如硅胶):30-50份以上配方中的单位为重量份,具体比例需根据实际情况进行调整。
4.2 高强度结构胶配方高强度结构胶主要用于工程领域中对粘接强度要求较高的部位。
以下是一种常见的高强度结构胶配方:•环氧树脂:100份•固化剂:20-30份•助剂(如改性硅油):5份以上配方中的单位为重量份,具体比例需根据实际情况进行调整。
(完整word版)环氧树脂固化制度的制定方法试验
实验3 环氧树脂热固化制度的制定方法试验一、实验目的进一步了解树脂高温固化的机理,掌握对环氧树脂配方进行固化时制定升温固化制度的方法。
学会使用差热分析仪和示差扫描量热仪,并掌握实验结果分析的基本方法。
二、实验内容1.选定一个较高温度才能固化的环氧树脂配方;2.用差热分析仪(DTA)或示差扫描量热仪(DSC)对选定的树脂配方进行热分析,得到热分析曲线;3.根据热分析曲线进行分析判断,提出该树脂配方比较合理的热固化制度。
三、实验原理欲比较每一种环氧树脂配方的优劣,一定要使它的试样达到一定的固化度,否则就无法进行比较。
如何检测它的固化度和怎样采用较合理的固化制度使树脂真正达到指定固化度一直是复合材料研究中的两个主要问题。
第一个问题在实验11的第6项中训练,第二个问题就是本次实验中的主要训练内容。
环氧树脂在固化时不论是亲核试剂还是亲电子试剂作固化剂其交联反应都发生放热现象,因此采用热分析仪将试样与惰性参比物在加热升温条件进行比较,就可以得到两者之间的差别,从该差别中可以分析出试样树脂在加热条件下交联反应的进程和反应动力学信息,由此制定出该树脂配方热交联固化时加热升温的基本程序。
这个加热升温程序常被称为树脂的热固化制度。
不同固化制度下的树脂固化度不同。
DTA和DSC曲线相似而又有本质差别,但都能指示三个重要的温度,即开始发生明显交联反应的温度T i、交联反应放热(或吸热)的峰值温度T p和反应终止的温度T f。
通常,环氧树脂与固化剂一经混合接触就开始缓慢的发生交联反应,只是常温下反应很慢不易为仪器感知,一旦仪器感知就表示发生了“明显”的交联反应。
“明显”二字具有相对性。
曲线顶峰温度T p是仪器炉散热、加热、反应热效应综合反映的一个量,但可以被认为是交联反应放热最多的那一时刻。
随着时间推移,试样反应热逐渐减少,系统的温度又趋于参比物,T f点则被认定该试样的固化交联完成的标志。
由此我们不难做出如下判断:1.要想使该环氧树脂配方交联固化,其固化温度一定要高于T i,否则它不交联或交联太慢;2.为了不使该树脂系统交联反应很激烈,不好控制,选择的固化温度不宜一开始就高于T p;3.到了T f以后再拖延固化时间已不可能提高该树脂体系的固化程度。
环氧树脂固化剂固化条件及配方.(DOC)
表1-16 有机酸酰肼固化环氧树脂铁-铁粘接的剪切强度表1-17 国产的某些改性胺固化剂的质量指标表1-18 烷基、芳基聚酰胺树脂的典型性能①表1-19 日本某些改性胺固化剂的性能指标表1-20 胺类加合物的固化物性能表1-21 胺加合物(由环氧乙烷、环氧丙烷制)的固化物性能表1-22 典型的酸酐固化剂的性质表1-23 与BA树脂配合的酸酐固化剂的固化条件、特性和用途表1-24 配方与固化物性能表1-25 商品甲基四氢苯酐的性能比较表1-26 商品甲基六氢苯酐的性能比较表1-27 不同浇铸配方固化物的性能及其比较表1-28 MHAC与环氧树脂固化物的性能表1-29 固化物在200℃下长期加热的性能变化①①表中200℃加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-37 各种HET/酸酐混合物的液化温度(℃)表1-38 酸酐的典型共熔物表1-39 日本商品化的聚硫醇固化剂表1-40 有代表性的叔胺的性质表1-41 几种叔胺固化物的性能表1-42 促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)表1-43 有代表性的咪唑化合物的性质表1-44 咪唑及其衍生物的使用期及固化时间①① 咪唑类添加量4g;树脂配料100g;0.3g填料,热板法UV固化胶粘剂是由基础树脂,活性单体,光引发剂等主成分配以稳定剂交联剂、偶连剂等助剂组成。
其在适当波长的Uv光照射下,光引发剂迅速生自由剂或离子,进而引发基础树脂和活性单体聚合交联成网络结构,从而达到粘接材料的粘接。
1.1基础树脂1.1.1不饱和聚醋树脂不饱和聚酯树脂是较早使用的光固化树脂。
它是由不饱和的二元酸(或酸配>混以部分饱和的二元酸(或酸配>与二元醇在引发剂的作用下反应制成线型聚酯。
在其分子结构中有不饱和的乙烯基单体存在,如果用活泼的乙烯基单体与这类不饱和的乙烯基单体共聚,则交连固化而成为体型结构。
由这种树脂制得的胶粘剂由于固化过程中体积收缩较大,胶接接头的内应力很大,胶层内部容易出现微裂而导致胶接力变小;同时由于高分子链中含有酯键,遇酸、碱易水解,因而耐介质性和耐水性较差,在高温多湿的环境下易变形,另外其固化速度较慢,因此综合性能较差。
环氧树脂的固化机理及其常用固化剂
芳香胺的液化
(1)低共熔点混合法。 这是最简单的改性方法。将两种或两种以上不同熔
点的芳香胺按一定比例加热混熔成低共熔点混合物或 液体。通常将60~75%(质量分数)MPD与40~25%的 DDM混合熔融,混合物在常温下为液体; (2)芳族多元胺与单缩水甘油醚反应生成液态加成 物。
如590固化剂,MPD+苯基缩水甘油醚,反应得到棕 黑色粘稠液体。
(4)硫脲-多元胺缩合物
由多元胺和硫脲反应制得,为低温固化剂。 硫脲和脂肪族多元胺在加热到100℃以上,进行 缩合反应放出氨气,生成缩合物:
S
S
H2N C NH2 + NH2(CH2)nNH2 S
H2N
(CH2)n
NH
C
N
H m
S
或
H2N
CNH
(CH2)nNH
CNH
H m
+
NH3
特点:能在极低的温度下(0℃以下)固化EP。
C N R3
C O CH2 CH CH2
O
O
CO
C O— O
也可被路易士酸(如三氟化硼)促进
+
—
R2HN:BF3
H + R2N:BF3
O
+
—
O + H + R2N:BF3
O
O
O
C OH
—
C BF3: NR2
O O
C
OH
—
+ ROH
C BF3: NR2
C OH
—
+
C OR + R2N:BF3 + H
DMP-30用量对多元硫醇/EP 凝胶时间的影响
DMP-30用量(phr) 0
环氧树脂胶配方分析及配制方法
环氧树脂胶配方分析及配制方法一、环氧树脂胶的配方分析:1.主剂(环氧树脂):主剂是环氧树脂胶中的主要成分,它具有良好的粘接性能和化学稳定性。
主剂的选择应根据具体的应用要求,包括胶接材料的种类、环境条件等因素。
常见的主剂有双酚A型环氧树脂、双酚F 型环氧树脂等。
2.固化剂:固化剂是环氧树脂胶中用来与主剂反应形成交联结构的成分。
固化剂的选择应与主剂相配套,以确保能够获得理想的固化效果。
常见的固化剂有胺类、酸酐类、酸酐酰胺类等。
3.增塑剂:增塑剂可以调节环氧树脂胶的固化速度和粘度,提高其可加工性。
常见的增塑剂有酸酐类、脂肪酸酯类等。
4.助剂:助剂可用于调节环氧树脂胶的性能,如增强其耐热、耐候性等。
常见的助剂有防老化剂、稳定剂等。
5.填料:填料可以提高环氧树脂胶的强度、刚度和耐磨性。
常见的填料有玻璃纤维、硅酸盐等。
二、环氧树脂胶的配制方法:1.按照配方确定所需原材料的种类和比例,并进行精确计量。
2.将主剂(环氧树脂)和固化剂充分搅拌均匀,加入适当的溶剂调整粘度。
3.若需要添加增塑剂、助剂和填料,可以先将它们分别与溶剂混合,再加入主剂和固化剂中。
4.搅拌均匀后,将混合后的胶料在搅拌机中进行充分搅拌,以使其各个组分充分混合,消除空气泡。
5.混合胶料宜放置片刻,以使其脱气,然后进行后续加工,如浇注、涂覆等。
6.混合胶料的固化需要一定的时间,具体的固化时间可以通过实验或参考相关技术指标进行确定。
7.在固化过程中,应根据具体要求控制温度和湿度,以确保胶料能够充分固化。
以上是环氧树脂胶的一般配制方法,具体的配制步骤和条件可根据实际需求进行调整。
总结:环氧树脂胶的配方分析及配制方法是胶粘剂生产过程中的重要环节。
合理的配方和精确的配制方法可以保证环氧树脂胶的性能和质量,提高其在各个领域的应用效果。
因此,在配制环氧树脂胶时应仔细选择原材料,并按照规定的配方和配制步骤进行操作,以获得理想的胶粘剂产品。
环氧树脂和固化剂最佳配方
环氧树脂一般和添加物同时使用,以获得应用价值。
添加物可按不同用途加以选择,常用添加物有固化剂、改性剂、填料、稀释剂、其它。
其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。
由于用途性能要求各不相同,对环氧树脂及固化剂等添加物也有不同的要求。
一、环氧树脂的选择1、从用途上选择作粘接剂时最好选用中等环氧值(0.25-0.45)的树脂,作浇注料时最好选用高环氧值(0.40)的树脂;作涂料用的一般选用低环氧值(<0.25)的树脂。
2、从机械强度上选择环氧值过高的树脂强度较大,但较脆;环氧值中等的高低温度时强度均好;环氧值低的则高温时强度差些。
因为强度和交联度的大小有关,环氧值高固化后交联度也高,环氧值低固化后交联度也低,故引起强度上的差异。
3、从操作要求上选择不需耐高温,对强度要求不大,希望环氧树脂能快干,不易流失,可选择环氧值较低的树脂;如希望渗透性好,强度较好的,可选用环氧值较高的树脂。
二、固化剂的选择1、固化剂种类:常用环氧树脂固化剂有脂肪胺、脂环胺、芳香胺、聚酰胺、酸酐、树脂类、叔胺,另外在光引发剂的作用下紫外线或光也能使环氧树脂固化。
常温或低温固化一般选用胺类固化剂,加温固化则常用酸酐、芳香类固化剂。
2、固化剂的用量(1) 胺类作交联剂时按下式计算:胺类用量=mg/hn式中:m=胺分子量hn=含活泼氢数目g=环氧值(每100克环氧树脂中所含的环氧当量数)改变的范围不多于10-20%,若用过量的胺固化时,会使树脂变脆。
若用量过少则固化不完善。
(2) 用酸酐类时按下式计算:酸酐用量=mg(0.6~1)/100式中:m=酸酐分子量g=环氧值(0.6~1)为实验系数万祺新材料主营产品:环氧树脂、氨基类树脂、醇酸类树脂、丙烯酸树脂、饱和聚酯类树脂、PU固化剂、水溶性树脂等。
广泛应用领域有地坪涂料,油漆,胶黏剂,电子电器,建筑加固,磨料磨具,美缝剂,木器家具,工业防腐等。
环氧树脂固化剂固化条件及配方(六)
2005-06-02 00:00:00作者:来源:网络文字:【大】【中】【小】
表1-37各种HET/酸酐混合物的液化温度(℃)
酸酐
80/20
64/40
40/60
20/80
HHPA
114~115
74~75
15
15
DDSA
105~106
66~67
10
10
MNA
115~116
2-甲基咪唑
2MZ
137~145
177~178(40托)
淡黄色粉末
0.28(0.81)
3.5
2-乙基-4-甲基
2E4MZ
-
160~166(20托)
淡黄色粉末
0.70(1.92)
9
2-十一烷基咪唑
C11Z
70~74
217(6托)
白色粉末
1.66(4.41)
120
2-十七烷基咪唑
C17Z
86~91
233~236(3托)
98
220
抗弯强度/MPa
95~110
127~148
880
抗弯模量/MPa
-
3500~3800
2720
冲击韧度(悬梁式)/(kJ/m2)
1.62~2.7
2.11
1.34
介电常数(1MHz,25℃)
3.4
3.45
3.7
介电损耗角正切(1MHz.25℃)
0.025
0.02
0.48
体积电阻率/Ω·cm
-
1016
-
-
-(240)
-
(26)
DBU酸性碳酸盐
环氧树脂胶粘剂的常用配方1
环氧树脂胶粘剂的常用配方玻璃钢常用于环氧玻璃钢的环氧树脂,有普通双酚A型如681#、6101#、634#,酚醛型环氧树脂644#,脂环族环氧6207#和HY-201聚丁二烯环氧树脂。
辅助材料中固化剂常用DTA、间苯二胺、顺丁烯二酸酐、邻苯二甲酸酐、内次甲基四氢邻苯二甲酸酐等,促进剂为三乙醇胺。
配方一:6109#环氧树脂 100 苯乙烯 5 三乙醇胺 6 三乙烯四胺 4室温10天,加上130℃6h τ=13MPa δ=298.5MPa δ抗压=300MPa配方二:644#酚醛环氧化 100 NA酸酐 68 二甲基苄胺 1.8 丙酮 100室温——120℃(40min)——200℃(40分) ——降温——卸模处理150℃/2h+260℃/1天配方三:634#环氧树脂 32 3193#聚酯 28 邻苯二甲酸酐 8 BPO 2 苯乙烯 30100。
C/2h + 180。
C/8h 弯曲强度和反弹能力佳。
配方一:618# 100 DTA 8 DBP 20 AL2O3(200目) 100固化条件:压力(MPa)/温度℃/时间(h)0.05/20℃/24h τ=18MPa 适用金属玻璃和陶瓷粘接。
配方二:618# 100 二乙基丙胺 8 DBP 20 AL2O3 1000.05/20℃/48h τ >20MPa 用途同上。
配方三:HYJ-6#618#100 DBP 15 AL2O3 25 2#SiO22-5 四乙烯五胺 120.05/20℃/48h AL/玻钢>20MPa 适用于金属/玻璃钢粘接。
配方四:618# 100 间苯二胺 18 600#稀释剂10 间苯二酚 100.05/20℃/24h τ=17.5MPa τ200℃=5.0MPa 用于耐热接头粘接。
配方五:913#A组:601#环氧 600#稀释剂201#聚酯铝粉和石英粉B组:BF3乙醚四氢呋喃 A3PO4 A:B=10:10.05/15℃/6h τ=19MPa 低温快速固化适用于寒冷地区。
环氧树脂胶固化条件
环氧树脂胶固化条件
环氧树脂胶的固化条件主要包括温度、湿度、固化剂的种类和用量等。
在相同固化剂的条件下,温度越高,固化时间越短。
通常,环氧树脂胶需要在负50度至150度的温度范围内进行固化。
如果是常温条件,环氧树脂胶会在6小时后开始固化,如果温度为40度,那么3小时就能够固化了。
但请注意,环氧树脂胶想要彻底干透,需要花费大约10天的时间,这样才能保证最好的粘贴效果。
在阴雨潮湿的天气中,需要保持室内温度约20度,才可以使用环氧树脂胶施工。
此外,环氧树脂胶的固化过程还包括固化和硬化两个步骤。
固化是指环氧树脂胶中的固化剂与环氧树脂发生化学反应,形成交联结构,使胶粘剂从液态变为固态。
而硬化则是指固化后的环氧树脂胶逐渐变得坚硬和耐用。
为了确保环氧树脂胶的粘贴效果和使用安全,使用前需要将需要粘接的物品的外层基面清洁干净,可以使用洗洁精进行清理。
另外,配置完毕的树脂胶溶液必须及时使用,因为环氧树脂胶的固化速度很快,一旦固化就无法继续使用。
在涂抹环氧树脂胶后,如果需要粘合直面或倒挂面,可以使用胶带或502胶水将粘贴物固定好,避免出现位移,影响粘合效果。
e51环氧树脂的固化
e51环氧树脂的固化1. 简介e51环氧树脂是一种常用的固化剂,广泛应用于涂料、粘合剂、电子封装材料等领域。
本文将介绍e51环氧树脂的固化过程,包括固化机理、影响固化速率的因素以及固化过程中的注意事项。
2. 固化机理e51环氧树脂的固化是通过与固化剂反应形成三维网络结构来实现的。
固化剂通常是一种胺类化合物,如乙二胺、三乙烯四胺等。
在固化过程中,环氧树脂分子中的环氧基与固化剂中的胺基发生开环反应,形成胺基与环氧基之间的共价键。
这些共价键连接在一起,形成交联结构,使树脂固化。
3. 影响固化速率的因素固化速率是指环氧树脂与固化剂反应的速度。
固化速率受多个因素的影响,包括温度、固化剂用量、催化剂、溶剂等。
•温度:温度是影响固化速率的重要因素。
一般来说,随着温度的升高,固化速率会增加。
这是因为固化反应是一个热力学过程,温度升高会增加反应的活性和分子运动的速度,从而加快固化速率。
•固化剂用量:固化剂的用量对固化速率也有影响。
固化剂的用量增加,会提供更多的反应物,加速固化反应的进行,从而增加固化速率。
•催化剂:催化剂可以加速固化反应的进行,降低固化温度。
常用的催化剂有二苯胺、三乙烯四胺等。
催化剂的选择和用量对固化速率有重要影响。
•溶剂:溶剂的选择和用量也会对固化速率产生影响。
溶剂可以改变环氧树脂和固化剂的相互作用,从而影响固化速率。
4. 固化过程中的注意事项在进行e51环氧树脂的固化过程中,需要注意以下几点:•混合比例:环氧树脂和固化剂的混合比例对固化过程至关重要。
过高或过低的混合比例都会影响固化效果。
一般来说,应按照厂家提供的配方进行混合。
•搅拌均匀:在混合环氧树脂和固化剂之前,需要充分搅拌均匀,确保两者充分混合。
否则,未完全混合的部分可能无法固化。
•温度控制:固化过程中,需要控制好温度。
温度过高可能导致固化速率过快,温度过低可能导致固化速率过慢。
应根据具体情况选择适当的固化温度。
•环境条件:固化过程中的环境条件也会对固化效果产生影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表1-16 有机酸酰肼固化环氧树脂铁-铁粘接的剪切强度表1-17 国产的某些改性胺固化剂的质量指标表1-18 烷基、芳基聚酰胺树脂的典型性能①表1-19 日本某些改性胺固化剂的性能指标表1-20 胺类加合物的固化物性能表1-21 胺加合物(由环氧乙烷、环氧丙烷制)的固化物性能表1-22 典型的酸酐固化剂的性质表1-23 与BA树脂配合的酸酐固化剂的固化条件、特性和用途表1-24 配方与固化物性能表1-25 商品甲基四氢苯酐的性能比较表1-26 商品甲基六氢苯酐的性能比较表1-27 不同浇铸配方固化物的性能及其比较表1-28 MHAC与环氧树脂固化物的性能表1-29 固化物在200℃下长期加热的性能变化①①表中200℃加热10天后的变化有关数据是以图为依据的估算值,并非实测数据。
表1-37 各种HET/酸酐混合物的液化温度(℃)表1-38 酸酐的典型共熔物表1-39 日本商品化的聚硫醇固化剂表1-40 有代表性的叔胺的性质表1-41 几种叔胺固化物的性能表1-42 促进剂效果比较(环氧树脂/DDSA)①:固化时间(分)表1-43 有代表性的咪唑化合物的性质表1-44 咪唑及其衍生物的使用期及固化时间①① 咪唑类添加量4g;树脂配料100g;0.3g填料,热板法UV固化胶粘剂是由基础树脂,活性单体,光引发剂等主成分配以稳定剂交联剂、偶连剂等助剂组成。
其在适当波长的Uv光照射下,光引发剂迅速生自由剂或离子,进而引发基础树脂和活性单体聚合交联成网络结构,从而达到粘接材料的粘接。
1.1基础树脂1.1.1不饱和聚醋树脂不饱和聚酯树脂是较早使用的光固化树脂。
它是由不饱和的二元酸(或酸配>混以部分饱和的二元酸(或酸配>与二元醇在引发剂的作用下反应制成线型聚酯。
在其分子结构中有不饱和的乙烯基单体存在,如果用活泼的乙烯基单体与这类不饱和的乙烯基单体共聚,则交连固化而成为体型结构。
由这种树脂制得的胶粘剂由于固化过程中体积收缩较大,胶接接头的内应力很大,胶层内部容易出现微裂而导致胶接力变小;同时由于高分子链中含有酯键,遇酸、碱易水解,因而耐介质性和耐水性较差,在高温多湿的环境下易变形,另外其固化速度较慢,因此综合性能较差。
多数作为非结构胶使用。
通过降低不饱和键含量,采用聚合收缩率小的单体,加入无机填料和热塑性高分子等,可以改善其的整体性能阳。
其的优势是价格低廉,在木器装饰方面仍有用武之地。
另一方面由于合成的原料种类很多,可以制得从坚硬直至非常柔软的树脂,仅需加入较少的单体就能获得低粘度,操作方便。
因此至今欧洲市场上其用量还占光固化树脂总量的24%。
1.1.2聚酸丙烯酸醋它由醇酸缩合来制备,改变多元醇和多元酸的种类,调节多元醇、多元酸和(甲基)丙烯酸的摩尔比可以制得性能各异的胶粘剂。
一般而言,聚醋丙烯酸醋树脂粘度低,和其他树脂的相容性好,但其固化收缩率较高,因此作为成型物的时候,成型物的尺寸不太稳定,容易因应力而发生歪曲。
有将此种胶用于DVD光盘的报道,粘接性能较好。
1.1.3环氧丙烯酸醋它由环氧化合物和(甲基)丙烯酸或含有一OH的丙烯酸酌化而得到。
其中常用的环氧化合物或环氧树脂有双酚A环氧树脂、六氢邻苯二甲酸环氧树脂、脂肪族环氧树脂等。
它的特点是在丙烯酸基的p位上有一个一OH基,故粘度较高。
分子中含经基、醚基、酯基等极性基,使树脂分子与被粘物分子产生强大的相互作用力,粘接性能优异。
在电性能、耐热性方面比丙烯酸酯树脂优良,而且分子量可以任意调节。
由于其具有环氧树脂的强粘接性和好的光固化活性,使其大受欢迎。
双酚A型环氧树脂丙烯酸酯固化物表面硬度高,耐化学性好,但内应力大,性脆。
近年有不少对其脆性的改善研究报道1401。
使用端竣基聚醚增韧EA树脂得到的端狡基聚醚改性环氧丙烯酸树脂提高了树脂的韧性。
1.1.4聚氨醋丙烯酸醋聚氨酯丙烯酸酯是由多异氰酸酯、多元醇和丙烯酸轻基反应而制得。
通过刚性的多异氰酸酯与柔性的聚醚链段的适当配合,可以获得性能各异的树脂。
其制品可以是非常坚硬的状态也可以是弹性体乃至非常柔软的状态。
聚氨酯丙烯酸酯树脂兼有聚氨醋的柔韧性(尤其是低温韧性)、耐磨性、抗老化性及高撕裂强度改变多烯的C=C键和多元硫醇的-SH的当量比,或多元烯及多元硫醇分子中的官能基的数目,可以得到从弹性体到树脂状的各种形态的固化物。
当应用多元羧酸和烯丙醇反应生成的酯、不饱和羧酸和多元醇生成的酯等多烯和多元硫醇等含有酯键的化合物作为硫醇-多烯体系光固化树脂的主要成分时,在多湿条件下,其固化产物容易发生水解,导致粘接强度降低:而应用三烯丙基异氰脲酸酯作为光固化组成物,固化后可得柔软、、弹性、透明性好及耐湿的固化物。
此体系不受空气中氧的阻聚,且固化收缩率小,多用子通信装置、光学器件组装和光纤的粘接。
1.1.6阳离子固化基础树理论上凡能进行阳离子聚合的单体都可以用于阳离子固化,它是通过烯烃、环氧、缩酮、内醋,硅酮以及其他杂环化合物各种单体的阳离子聚合或共聚合,可得到理化性能较好的材料。
此种机理固化成膜的基础树脂出现在80年代末期,有乙烯基醚系列、环氧系列。
乙烯基醚类树脂可用311基乙烯醚和相应树脂反应得到。
但目前最常用的还是环氧树脂或改性环氧树脂,主要有环氧化双酚A树脂、环氧化硅氧烷树脂、环氧化聚丁二烯、环氧化天然橡胶等,其中最常用的是双酚A环氧树脂,但其粘度较高、聚合速度较慢;脂肪族环氧树脂化合物一般聚合速度较快,其中3, 4-环氧环己基甲酸-3, 4-环氧环己基甲基酯(CY179)是阳离子固化中最常用的脂肪族环氧树脂,它的粘度低、聚合速度快,可与双酚A环氧树脂配合使用。
环氧化合物开环收缩率很小,在此基础上一些多环化合物也被用于光固化组分,它们在聚合时体积可以发生膨胀,如原碳酸醋在开环时体积可膨胀1.5%,乙烯基醚类化合物是富电子的,可进行作为阳离子固化聚合主,也可作为稀释剂。
稀释剂一方面起稀释作用,使胶液具有便于施工的粘度;另一方面又起交联作用,须具有好的反应活性,固化后进入树脂网络,对固化产物的最终性能影响是多方面的。
加入活性稀释剂往往是为了改善粘度、粘接力、柔韧性、硬度和固化速度。
不同稀释剂与基础树脂配伍得到的力学性能可能会相差很大,需要充分比较和选择。
对其的要求主要是低粘度、高稀释性和高度的反应能力,同时还要兼顾挥发性、毒性、刺激性和臭味小,价格低,稳定性高,对树脂的相容性好等。
为调整各种性能往往采用混合稀释剂。
1.2.1自由基活性稀释剂自由基活性稀释剂分为开发较早的第一代丙烯酸多官能单体、近期开发的第二代丙烯酸多官能单体和更优异的第三代丙烯酸单体。
第一代丙烯酸酯多官能单体主要有1, 6-己二醇二丙烯酸酯(HDDA), 1, 4-丁二醇二丙烯酸酯(BDDA),丙二醇二丙烯酸酯(DPGDA)、丙三醇二丙烯酸酯(TPGDA)和三官能团的三羟甲基丙烷三丙烯酸酯(TMPTA)、季戊四醇三丙烯酸酯(PETA),主轻基甲基丙烷三醇三丙烯酸酯(TMPTMA)等。
它们取代了活性小的第一代丙烯酸单官能单体。
但随着UV固化技术的飞速发展,它们对皮肤的刺激性大的缺点显露出来。
因此现在又开发了第二代和第三代丙烯酸单体,它们克服了刺激性大的缺点,而且还具有更高的活性和固化程度。
第二代丙烯酸多官能单体主要是在分子中引入乙氧基或丙氧基,如乙氧基化三轻基甲基丙烷三醇三丙烯酸酯(TMP(EO)TMA)、丙氧基化三轻基甲基丙烷三醇三丙烯酸酯(TMP(PO)TMA).丙氧基化丙三醇三丙烯酸酯G(PO)TA o第三代丙烯酸单体主要为含有甲氧基的丙烯酸酯,它较好的解决了高固化速度与收缩率、低固化程度的矛盾。
这类产品主要有1, 6-己二醇甲氧基单丙烯酸酯(HDOMEMA)、乙氧基化新戊二醇甲氧基单丙烯酸酯(TMP(PO)MEDA)。
分子中引入烷氧基后,可以降低单体的粘度,同时降低单体的刺激性。
另外,烷氧基的引入对稀释剂单体的相容性也有较大提高。
1.2.2阳离子活性稀释剂各种活性环氧树脂稀释剂及各种环醚、环内醋、乙烯基醚单体等都可以作为阳离子光固化树脂的稀释剂。
其中乙烯基醚类化合物和低聚物固化速度快、粘度低、无味、无毒的优点,可以与环氧树脂配合使用。
1.3.1光引发剂的引发机理a.裂解反应机理光引发剂分子吸收紫外光能后被激发,激发态的分子共价键断裂而生成自由基,b.提氢反应机理该机理是引发剂分子吸收光能后被激发,并从单体或齐聚物分子上提取一个氢原子,使这些分子成为自由基。
c.离子反应机理该机理是电子给体和受体通过电子或电荷的转移,可能生成电子转移复合物,也可能生成激发复合物。
电子转移复合物是在基态相互作用下形成的,而激发复合物只是在激发态下相互形成的。
电子转移复合物的机理可表示如下: d.能量转移机理激发态分子的三重态将能量转移给单体或其他分子,获得能量的单体被激变为三重激发态单体:三重激发态单体(MTt*)发生分解生成两个自由基,或因电子转移只生成单个自由基。
噻吨酮的三重态寿命长,是好的能量转移剂,它以能量转移机理产生自由基,引发光聚合。
1.3.2自由基型光引发剂光引发剂的作用是在其吸收紫外光能后,经分解产生自由基,从而引发体系中的不饱和键聚合,交联固化成一整体。
常用的自由基型光引发剂有裂解型和提氢型两大类。
1)裂解型光引发剂裂解型光引发剂主要有苯偶姻醚类(安息香醚类)、苯偶酞缩酮和苯乙酮等。
裂解型光引发剂在吸收紫外光后均裂,产生两个自由基,自由基引发不饱和基团聚合。
最近Ciba等公司开发了一种新的光引发剂:酰基膦氧化物,如BAPO, 819和TIM等也属于裂解型光引发剂。
酰基膦氧化物型光引发剂在近紫外区具有较高的引发活性,良好的热和水稳定性,并且具有光漂白作用,有利于深层固化,固化产品不泛黄,适合于厚层有色光敏涂料,特别是解决了LTV白色涂料体系在紫外光下难固化及涂层易变黄的难题。
BAPO分解后能产生四个自由基,具有较高的引发效率,其机理如下:(2)提氢型引发剂提氢型引发剂主要有二苯甲酮类和硫杂慈酮类等。
其中硫杂慈酮类光引发剂在近紫外光区的最大吸收波长在380-420nm,且吸收能力和夺氢能力强,具有较高的引发效率。
提氢型引发剂必须要有供氢体作为协同成份,否则,引发效率太低,以至不能付诸应用。
三线态毅基游离基从供氢体分子的三级碳上比二级碳上或甲基上更有可能提取氢。
接在氧或氮等杂原子上的氢比碳原子上的氢更易提取。
这类供胺体有胺、醇胺(三乙醇胺、甲基二乙醇胺、三异丙醇胺等)、硫醇和米蚩酮等。
米蚩酮和二苯甲酮配合使用,可得到较便宜和很有效的引发剂体系。
以二苯甲酮为例,其化学反应如下:1.3.3离子型光引发剂1)芳香硫鎓盐和碘鎓盐此类引发剂具有优异的高温稳定性,与环氧树脂配合后也具有稳定性,所以被广泛应用于阳离子固化体系。