概率论期中考试试卷
概率论期中考试
概率论期中考试一、判断题,正确的打√,错误的打×1.事件A 与B 恰有一个发生可表示为A B ⋃;2.任一随机变量的分布函数()F x 一定满足lim ()1x F x →+∞=,lim ()0x F x →-∞=; 3.若()x Φ表示标准正态分布(0,1)N 的分布函数,则()()x x Φ-=Φ;二、选择题1.掷一颗骰子,用A 表示结果为奇数点,B 表示结果不超过3点,则下列选项错误的是( )(A){}1,3,5A = (B){}1,2,3B = (C){}1,2,3,5A B ⋃= (D){}2,5A B -=2.市场供应的灯泡中,甲厂占70%,乙厂占30%,甲厂产品的合格率为95%,乙厂产品的合格率为80%,若事件A 表示甲厂的产品,B 表示产品为合格品,则下列表示错误的是( )(A)()0.7P A = (B)()0.3P A = (C)()0.95P AB = (D)(|)0.8P B A =3.设连续型随机变量ξ的分布函数为)(x F ,密度函数为()x ϕ,则下列选项错误的是( )(A)()()()P a b F b F a ξ≤≤=- (B)()()ba P ab x dx ξϕ≤≤=⎰ (C)()()F x x dx ϕ+∞-∞=⎰ (D)()()F x x ϕ'= 4.设~(,)B n p ξ,且12E ξ=,8D ξ=,则( )(A)36n = 12p = (B)36n = 13p = (C)24n = 12p = (D)24n = 13p = 5. 袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是( )(A) 35 (B) 34 (C) 24 (D) 3106 设两个相互独立随机变量ξ和η的方差分别为4和2,则32ξη-的方差为(A) 8 (B) 16 (C) 28 (D) 447 下面分布中,概率密度是偶函数的是(A)普哇松分布 (B)指数分布 (C)T 分布 (D) N(1,1)三、填空题1.某人独立的掷一均匀的硬币2次,则至少有一次为正面的概率为___________。
概率论与数理统计期中试题(一)
概率论与数理统计期中试题(一)《概率论与数理统计》期中试题(一)姓名班级学号成绩一、填空题(每小题4分,共12分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.二、单项选择题(每小题4分,共16分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立. ()2.设随机变量的分布函数为,则的值为(A). (B). (C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B).(C). (D).4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). (C)(D). ()三、(12分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(12分)设二维随机变量在区域上服从均匀分布. 求关于的边缘概率密度;六、(12分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(12分)设, 求的概率密度.Y X0200.10.2010.30.050.120.1500.1八、(12分)已知离散型随机向量的概率分布为求.。
概率论期中考试试卷及答案
1。
将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球。
解:把4个球随机放入5个盒子中共有45=625种等可能结果。
(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A )=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻.由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω.设A 为“两船不碰面",则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3。
设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4。
最新概率论与数理统计期中考试试题1
概率论与数理统计期中考试试题1一.选择题(每题4分,共20分)1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. AB C D. A B C2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A.12 B. 14 C. 13 D. 153.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P AB =( )A .0.7 B. 0.8 C. 0.6 D. 0.44. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( )A.423e - B. 223e - C. 212e - D. 312e - 5.若连续性随机变量2(,)X N μσ,则X Z μσ-= ( )A .2(,)ZN μσ B. 2(0,)Z N σ C. (0,1)ZN D. (1,0)Z N二. 填空题(每题4分,共20分)6. 已知1()2P A =,且,A B 互不相容,则()P AB =7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则概率密度函数()f x = 9. 设连续型随机变量2(3,2)XN ,则{}2<5P X ≤=(注: (1)=0.8413,(0.5)=0.6915φφ)10. 设离散型随机变量X 的分布律为10120.20.30.10.4X-⎛⎫ ⎪⎝⎭,则2(1)Y X =-的分布律为三.解答题(每题8分,共48分)11. 将9名新生随机地平均分配到两个班级中去,这9名新生中有3名是优秀生。
《概率论与数理统计》期中考试试题汇总,DOC
《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。
概率论期中试卷
第 1 页 共7页班 级(学生填写): 姓名: 学号: 命题: 审题: 审批: ------------------------------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 -----------------------------------------------------------(答题不能超出密封装订线)2010 ~2011 学年第 一 学期 概率统计期中 试卷使用班级(教师填写):一、单项选择题(分) (1) 在某学校学生中任选一名学生,设事件A =“选出的学生是男生”;B =“选出的学生是三年级学生”;C =“选出的学生是篮球运动员”.则ABC 的含义是( B )(A ) 选出的学生是三年级男生 (B ) 选出的学生是三年级男子篮球运动员 (C ) 选出的学生是男子篮球运动员 (D ) 选出的学生是三年级篮球运动员 (2) 掷一颗 的试验,观察其出现的点数,记A =“掷出偶数点”;B =“掷出奇数点”;C =“掷出的点数小于5”;D =“掷出1点”.则下述关系错误的是( C )(A ) B A = (B ) A 与D 互不相容 (C ) C D = (D ) A B Ω=+(3) 某事件的概率为0.2,如果试验5次,则该事件 ( D )(A ) 一定会出现1次 (B ) 一定会出现5次(C ) 至少会出现1次 (D ) 出现的次数不确定(4) 对一个有限总体进行有放回抽样时,各次抽样的结果是 ( A )(A ) 相互独立 (B ) 相容的 (C ) 互为逆事件 (D ) 不相容但非逆事件(5) 某人花钱买了,,A B C 三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为()p A =0.03, ()0.01p B =,()0.02p C =,如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率是 ( B )(A ) 0.05 (B ) 0.06 (C ) 0.07 (D ) 0.08 (6) 三人抽签决定谁可以得到唯一的一张足球票.现制作两张假票与真足球票混在一起,三人依次抽取,则( C )(A ) 第一人获得足球票的机会最大 (B ) 第三人获得足球票的机会最大(C ) 三人获得足球票的机会相同 (D ) 第三人获得足球票的机会最小 (7) 随机变量的取值总是 ( D )(A ) 正的数 (B ) 整数 (C ) 有限个数 (D ) 实数 (8)下面哪一个符合概率分布的要求第 2 页 (共8 页) 2 ( A )(A ) }{(1,2,3)6xp X x x === (B ) }{(1,2,3)4xp X x x === (C ) }{(1,1,3)3x p X x x ===- (D ) }{2(1,1,3)8x p X x x ===-(9) 两人独立破译密码,他们能单独译出的概率分别为11,54则此密码被译出的概率为( C )11()54A + (B )1154⨯ 1111()5454c +-⨯ (10) 设连续型随机变量X 的分布函数是()F x ,密度函数是()f x ,则}{p X x == ( C )(A )()F x (B )()f x (C ) 0 (D ) 以上都不对(11)设 E(X)=μ,Var(X)=2s ,则对任意常数 C , 必有( D )222222222(1) [()]()(2) [()][()](3) [()][()](4) [()][()]μμμ-=--=--<--≥-E X C E X C E X C E X E X C E X E X C E X二 填空题(每小题3分,共18分)1、设 随 机 变 量X 的 分 布 函 数 为()00sin 0212x F x A xx x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩则 A = 1 。
(完整版)概率论与数理统计试卷与答案
《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。
考试不需要计算器。
一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。
概率论与数理统计试题期中考试-答案
概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。
A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。
A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。
从中随机抽取2次,每次抽取一件,做不放回抽取。
则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。
概率统计期中考试试卷
概率论与数理统计期中考试试卷一、填空题(每题3分,共15分)1.3人独立的破译一份密码,他们能单独译出的概率分别为41,31,51,则此密码被破译出的概率为 ___________. 2.已知X 的密度函数为⎩⎨⎧<<=其它,010,2)(x x x f ,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则._________}2{==Y P3. 从五个数1,2,3,4,5中任选3个数,用X 表示这3个数中最大的一个,则________}4{=≥X P .4. 设)4,1(~N X ,,8413.0)1(0=Φ,9986.0)3(0=Φ则._________}31{=≤≤X P5. 已知X 的密度函数为+∞<<-∞=-x Ae x f x ,)(,则._________=A二.计算题(共85分)1.(15分)一种玻璃杯成箱出售,每箱10只,每箱不含次品的概率为0.8,每箱含有1只次品或2只次品的概率都为0.1,一顾客为了决定是否购买该产品,随机的查看箱中的3只,若无次品则买下,否则退回,试求: (1)随机选取一箱玻璃杯,顾客买下该箱玻璃杯的概率。
(2)假设顾客已经买下一箱玻璃杯,问箱中没有次品的概率。
2.(10分)已知1.0)(,6.0)(,4.0)(===B A P B P A P ,求)(),(),(A B P B A P B A P +3.(10分)已知⎩⎨⎧<<++=其它,010,)(~2x c bx ax x f X ,15.0,5.0==DX EX ,求c b a ,,4.(15分)已知]2,2[~-U X ,122+=X Y ,求Y 的密度函数)(y f Y5.(15分)已知离散型随机变量Y X ,相互独立,其联合分布及边缘分布如下表所示:(1)请将表格填写完整 (2)计算DY EY DX EX ,,,6.(20分)设二维随机向量),(Y X 概率密度为⎩⎨⎧<<<<=其它,0x y 0,1x 0,xy )y x,(f A ,(1)求常数A (2)求边缘密度)(),(y f x f Y X (3)判断Y X ,是否相互独立,并说明理由(4)求)1(≤+Y X P。
2023-2024学年第一学期概率统计期中测试卷
2023-2024第一学期概率论与数理统计期中测试题班级:学号:姓名:第一部分:选择题,每小题3分,共10小题,共30分.1.设B A ⊂,且0)(>A P ,则以下错误的是().A.)()(B P B A P =⋃B.)()(A P AB P =C.1)|(=A B PD.)()()(B P A P B A P -=-2.设)2,1(~-N X ,则X 的密度函数为().A.4)1(221--x eπB.2)1(221+-x eπC.2)1(2221+-x e πD.4)1(221+-x eπ3.设连续型随机变量的概率密度函数与分布函数为,与)()(x F x f 则正确的是().A.1)(0≤≤x f B.)(}{x F x X P == C.)(}{x F x X P =≤ D.)(}{x f x X P ==4.设X 是一随机变量,则下列各式中正确的是().A.)(4)25(X D X D =-B.)(25)25(X D X D -=-C.)(25)25(X D X D +=- D.)(4)25(X D X D -=-5.已知(X,Y)的概率密度为),(y x f ,则关于Y 的边缘密度为().A.⎰+∞∞-dyy x f ),( B.⎰+∞∞-dxy x f ),( C.⎰+∞∞-dxy x xf ),( D.⎰+∞∞-dyy x yf ),(6.已知随机变量X 与Y 相互独立,且),2,0(~),1,0(~U Y U X 则=<}{Y X P ().A.41B.83 C.43 D.857.下列式子中成立的是().A.)()()(Y E X E Y X E +=+B.)()()(Y D X D Y X D +=+C.)()()(Y D X D XY D = D.)()()(Y E X E XY E =8.设随机变量X 的概率密度)(x f 满足)1()1(x f x f -=+,且⎰=206.0)(dx x f ,则}0{<X P 为().A.53 B.32 C.51 D.549.)1,1(~N X ,概率密度函数为)(x f ,分布函数为)(x F ,则().A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x F x FC.5.0)2()2(=>=<X P X P D.5.0)1()1(=>=≤X P X P 10.设随机变量12200,,,X X X 相互独立且服从同一分布,()3,()5E X D X ==,令12200Y X X X =+++ ,由中心极限定理知Y 近似服从()(A )(600,25)N (B )(3,5)N (C )(600,1000)N (D )(1000,600)N 第二部分:填空题,每小题6分,共3小题,共18分.1.甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一个目标,则目标被击中的概率为.2.随机变量X 服从参数为1的泊松分布,则==))((X D X P .3.设随机变量X 的分布律为,...2,1,0,!)(2===-k e k c k X P 则=c .4.已知随机变量X 只取-1,0,1,2四个数值,对应的概率为cc c c 162,85,43,21,则c=.5.设二维随机变量) , (Y X 的联合分布律为则(2)E X Y +=6.设随机变量~(0.5)X b 10,,则2(2)E X =第三部分:计算题,每小题7分,共4小题,共28分.1.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他, ,0.10 )(x x A x f 试求:(1)A 的值;(2)X 的分布函数;(3))41161(<<X P .YX -10100.10.20.110.30.10.22.已知二维随机变量(X,Y)的联合概率密度为⎩⎨⎧≤≤≤≤+=其他,0,0,10),(2),(y x y y x y x f 试求:(1)X 与Y 的边缘概率密度,并判定X 与Y 是否独立;(2)}1{≥+Y X P .3.设随机变量X 在区间(1,2)上服从均匀分布,(1)写出X 的概率密度函数;(2)求XeY 3=的概率密度函数)(y f Y .4.设二维随机变量(,)X Y 的概率密度为,0,(,)0,,y xe x y f x y -⎧<<=⎨⎩其它求随机变量Z X Y =+的概率密度.四、综合应用题(共3个小题,每个小题8分,共24分)1.某地区居民的肝癌发病率为0.0004,先用甲胎蛋白法进行普查.医学研究表明,化验结果是存有错误的.已知患有肝癌的人其化验结果99%呈阳性(有病),而没患肝癌的人其化验结果99.9%呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率是多少?2.对于一名学生来说,来参加家长会的家长人数是一个随机变量.设一名学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求有一名家长来参加会议的学生数不多于336的概率.(已知9772.0)2(=Φ)3.一工厂生产的某种设备的寿命X (以年计)服从以14为参数的指数分布,工厂规定,出售的设备若在一年之内损坏可予以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,求该厂出售一台设备净赢利的数学期望。
概率论期中考试试卷及答案
概率论期中考试试卷及答案1、将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球、 解:把4个球随机放入5个盒子中共有45=625种等可能结果、 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其她2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果、 故12572625360)(==B P2、某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时与2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻。
由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。
设A 为“两船不碰面”,则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3、设商场出售的某种商品由三个厂家供货,其供应量之比就是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品就是次品的概率。
(2) 该件次品就是由第一厂家生产的概率。
解:厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013、11、81231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024 =0.5P AB P B P A B P A P A ==4、甲乙丙三台机床独立工作,在同一时间内她们不需要工人照顾的概率分别为0、7,08,0、9,求在这段时间内,最多只有一台机床需人照顾的概率。
《概率论与数理统计》期中考试试题汇总
系数 X ,Y
18.(8 分) 设测量距离时产生的随机误差 X~N(0,102)(单位:m),现作三次独 立测量,记 Y 为三次测量中误差绝对值大于 19.6 的次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值大于 19.6 的概率 p; (2)问 Y 服从何种分布,并写出其分布律;求 E(Y).
fY
( y)
1
2
, 1
y
1 , (X ,Y )
相互独立,且
Z
X
Y
的概率密度函数为
fz (z)
0, others
15. 设 随 机 变 量 X , E(X ) 3, D(X ) 1 , 则 应 用 切 比 雪 夫 不 等 式 估 计 得 3
P{| X 3|1}
三、计算题(本题共 5 小题,共 70 分)
2
D. 2
3
4.若随机变量 X ,Y 不相关,则下列等式中不成立的是
.
A. D(X Y ) DX DY
B. Cov(X ,Y ) 0
C. E(XY ) EX EY
D. D(XY ) DX DY
5.设随机变量 X 与 Y 相互独立,X 服从参数 1 为的泊松分布,Y~B(6,1 ),则 D(X-Y)=( )
pY ( y) , X 与 Y 是否独立;(4) 概率 P{Y X} , (5)求 Z X Y 的概率密度; (6)相关系数 X ,Y
20.(10 分)假定暑假市场上对冰淇淋的需求量是随机变量 X 盒,它服从区间[200, 400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得 1 元,但假如销售不出而 屯积于冰箱,则每盒赔 3 元。问小店应组织多少货源,才能使平均收益最大?
概率统计期中练习
一、选择题1、设C B A ,,为三个随机事件,事件C B A ,,中至少有两个发生为( C ) () A A B C () B A B C () C AB BC AC () D AB BC AC2、某射手向一目标独立地射击5枪,若每次击中靶的概率为0.6,则恰有两枪脱靶的概率是( D ) )(A 324060.. )(B 234060.. )(C 32254060..C )(D 23254060..C3、设事件B A ,互不相容,则下列结论正确的是( B )()()()()A P AB P A P B = ()()()()B P A B P A P B =+()()()()C P A B P A P B -=- ()()1()D P A P B =- 4、设)3,1(~ N X 要使5.0}{=≤c X P ,则=c ( A ) 1)(A 2)(B 3)(C 4)(D5、任何一个连续形随机变量的概率密度()f x 一定满足 ( A ) ()0()1A f x ≤≤ ()B 在定义域内单调不减+-()()1C f x dx ∞∞=⎰()lim ()1x D f x →∞=5、设两个随机变量X 和Y 相互独立且同分布,{}{}2111=-==-=Y P X P ,{}1=X P {}211===Y P ,则下列各式成立的是 ( A ) {}21)(==Y X P A {}1)(==Y X P B{}410)(==+Y X P C {}411)(==XY P D6、设X 与Y 是两个相互独立的随机变量,,且221122~(,),~(,)X N Y μσμσ,则Z X Y =+服从的分布是 ( B )()A 指数分布 ()B 正态分布 ()C 二项分布 ()D 均匀分布7、设,A B 为两个随机事件,且()0,(|)1P B P A B >=,则必有( C ) () ()()A P A B P A > () ()()B P A B P B >() ()(C P A B P A = () ()()D P A B P B =二、 填空题1、假设A B 、是两个随机事件,且AB AB =,则A B Ω ,AB = φ 。
《概率论与数理统计》期中考试试习题汇总
欢迎阅读《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 223.已知A .0 4率为(A .0.25A C 6.A .1- 7.8.将39.从a 10.11.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为51,0()50,0x X e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others ⎧-<<⎪=⎨⎪⎩,(,)X Y相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实17.(20求(1)a (3){P X Y +18.(8为三次(1)(2)19.(24求: (1) ;(4) 概率{P Y 20.(101.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .157 2.下列选项不正确的是( ) A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为2100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩ 任取一只电子元件,则它的使用寿命在150小时以内的概率为( ) A .41 B .31 C .21 D .324.若随机变量,X Y 不相关,则下列等式中不成立的是 . A .DY DX Y X D +=+)( B. 0),(=Y X Cov C. (E 5.A .1-6.则常数x A .7.8. 将29. 10. 11. 已密度p (x 12.13. 二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()30,Y y f y others⎧-<<⎪=⎨⎪⎩,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X,1()1,()3E X D X==,则应用切比雪夫不等式估计得{13}P X-<<≥三、计算题(本大题共5小题,共70分)16.(8分)据市场调查显示,月人均收入低于1万元,1至3万元,以及高于3万元的家庭在今后五年内有购置家用高级小轿车意向的概率分别为 0.1,0.2 和 0.7.假定今后五年内家庭月人均收入X 服从正态分布N (2, 0.82 ).试求:(1) 求今后五年内家庭有购置高级小轿车意向的概率;(2) 若已知某家庭在今后五年内有购置高级小轿车意向,求该家庭月人均收入在1至3万元的概率.17(1),Y)关问X,Y)相关18{X>9}(1)X Y的条件概率密度函数;(5)相关系数,X Yρ20.(10分)设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于[10,20].每出售一万台电视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = 。
概率论与数理统计试卷(含答案)
概率论与数理统计期中考试试卷学号: 姓名: 分数 一、选择题(3*5=15)1、设X ~N (μ,σ2),则概率P (X ≤1+μ)=( D )。
A ) 随μ的增大而增大 ; B ) 随μ的增加而减小; C ) 随σ的增加而增加; D ) 随σ的增加而减小.2、设A B ⊂,则下面正确的等式是( B )。
A) )(1)(A P AB P -=; B) )()()(A P B P A B P -=-; C ))()|(B P A B P =; D ) )()|(A P B A P =3、设A ,B 是事件,P (A )=P (B )=1/3,P (A|B )=1/6,则)|(B A P =( B )。
A) 5/12; B)7/1;C )1/3;D ) 3/4 ;4、甲、乙二人独立向目标射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它只是由乙击中的概率是( C )。
A) 2/5; B)2/9;C )1/4;D ) 1/2 ;5、已知X~N (a ,a ),且Y=aX+b 服从标准正态分布N (0,1),则下面成立的是( B )。
A) a=1,b=1; B) a=1, b=—1; C )a=—1,b=—1; D ) a=—1,b=1 ;二、 填空题(3*5=15)1、设A 、B 、C 是三随机事件,已知P (A )=P (B )=P (C )=1/4,P (AB )=0,P (AC )=(BC )=1/9,则=)(C B A P 17/362、三次独立的试验中,成功的概率相同,已知至少成功一次的概率为6437,则每次试验成功的概率为 。
3、设随机变量X 有分布函数F (X ),Y=3X+2,则Y 有分布函数 F X ((y-2)/3) 。
4、设随机向量(X ,Y )具有如下概率密度⎩⎨⎧≤≤≤=其他0108)(y x xy x F ,问X,Y 是否相互独立? 不独立5、设随机变量X 在[1,4]上服从均匀分布,则概率P(X 2<=3)= (13-)/3 三、计算题(共70分)1、 假设一枚弹道导弹击沉航空母舰的概率为31,击伤的概率为21,击不中的概率为61,并设击伤两次也会导致航空母舰沉没,求发射4枚弹道导弹能击沉航空母舰的概率? 求它的对立事件2、设随机变量X 的概率密度函数为:+∞<<∞-=-x e x f x,21)(求:(1)X 的概率分布函数,(2)X 落在(-5,10)内的概率;(3)求X 的方差。
最新概率论期中考试试卷及答案
精品文档1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.解:把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻。
由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。
设A 为“两船不碰面”,则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4.甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为0.7,08,0.9,求在这段时间内,最多只有一台机床需人照顾的概率。
(完整版)概率期中(理工)
天津工业大学(2017—2018学年第一学期)《概率论与数理统计》(理工类)期中试卷特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。
本试卷共有8页,共七道大题,请核对后做答,若有疑问请与监考教师联系。
一.填空题(28分,每空3分)1.设事件B A ,相互独立,C A ,互不相容,且概率4.0)(=A P ,3.0)(=B P ,4.0)(=C P ,2.0)(=C B P ,则=)(B A C P Y ________.2.一袋中装有5个大小相同的球,编号为1,2,3,4,5,在袋中同时取3只,取出的球的最大号码记为X . 则X 的分布列为3. 设随机变量X 服从指数分布,分布密度为⎪⎩⎪⎨⎧≤>=-0,0,41)(4x x e x f x,则方程0)2(22=++-X Xt t 无实根的概率为___________.4.设随机变量)(~λP X ,且1613)(-==e X P ,则常数λ=_____,概率 -----------------------密封线----------------------------------------密封线---------------------------------------密封线----------------------------------------------学院专业班级学号姓名=≥)1(X P ___________.5.设随机变量),(Y X 的联合分布列为则=Y时的条件分布列为6.设随机变量)2,1(~N X ,)4,3(~N Y ,且Y X ,相互独立,则~432+-Y X7.=))((Y X E E二.(10分)某市发生了一起出租车肇事逃逸案且已排除其他城市出租车作案可能,唯一目击者陈述是绿色车;该市出租车只有蓝绿两种颜色,各占95% 和5%;经警方测试,目击者对蓝绿两色的辨认准确概率均为95%.记事件A 为“该市一辆出租车是绿色”,B 为“该目击者判定一辆出租车是绿色”. (1)写出概率)(A P ,)(A P ;(2)写出条件概率)(A B P ,)(A B P ;(3)求目击者将该市任意一辆出租车判定为绿色的概率;(4)试分析警方可否根据目击者陈述只排查绿色出租车.-----------------------密封线----------------------------------------密封线---------------------------------------密封线----------------------------------------------学院专业班级学号姓名----------------------装订线----------------------------------------装订线----------------------------------------装订线---------------------------------------------三.(10分)设某型号器件的寿命X 的概率密度为⎪⎩⎪⎨⎧≤>=0100,0 1000 ,1000)(2x x x x f现有5只此型号器件,它们损坏与否相互独立,试求这5只中没有寿命大于1500小时的概率.四.(10分)设随机变量X 的概率密度函数为⎩⎨⎧<<+=else x b ax x f X ,010 ,)(且已知85)21(=>X P . (1)求常数b a ,的值;(2)求Xe Y =的概率密度函数)(yf Y .-----------------------密封线----------------------------------------密封线---------------------------------------密封线----------------------------------------------学院专业班级学号姓名----------------------装订线----------------------------------------装订线----------------------------------------装订线---------------------------------------------五.(10分)设随机变量Y ,X 相互独立,下表给出了联合分布列和边缘分布列中的部分数值.(1)请将其余数值填入表中括号里; (2)Y X Z +=1的分布列为(3))(2Y ,X max Z =的分布列为六、(12分)设二维随机变量),(Y X 的联合分布密度为⎪⎩⎪⎨⎧-≤≤=else xy y x f ,0 10,43),(2当(1) 求)(2X Y P >(2) 求边缘分布密度)(x f X ;(3) 求条件密度)(x y f X Y ;-----------------------密封线----------------------------------------密封线---------------------------------------密封线----------------------------------------------学院专业班级学号姓名----------------------装订线----------------------------------------装订线----------------------------------------装订线---------------------------------------------七、(10分)设某商店经销某种商品,每月的销售量是随机变量且相互独立,都服从[0,1]上的均匀分布,即分布密度均为⎩⎨⎧≤≤=它其当 ,0 10,1)(x x f求两个月的总销售量Z 的概率分布密度)(z f Z .八、(10分)一个部件包括20个部分,每部分的长度是一个随机变量,它们是相互独立的,且服从同一分布,其期望为5.1mm ,均方差为05.0mm .规定该部件的总长度为)1.030(±mm 时产品合格,计算产品合格的概率.。
概率统计期中试题及答案
一、填空题1、设A,B 为两个随机事件, P(A)=0.5, P(A ∪B)=0.7,若A 与B 互斥,则P (B)= 0.2 。
2、从5双不同的鞋子中任取4只,则这4只鞋子中至少有两只鞋子配成一双的概率为 13/21 。
3、三个人进行射击,令A i 表示“第i 人击中目标”,则至少有两人击中目标为12132A A A A A A ++。
4、四人独立的破译密码,他们能译出的概率分别为1/5 , 1/4 ,1/3 ,1/6 , 则密码能被译出的概率 2/3 。
5、在相同条件下相互独立地进行 5 次射击,每次射击时击中目标的概率为 0.6 ,求击中目标的次数 X 的分布及最有可能击中次数为 B(5,0.6) ;3 。
6、设(X , Y )的联合概率分布列为则Z=max(X,Y)的分布列为7、某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是 3/64 。
8、已知 (X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E X = 2/3 。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N (-2,25) 。
X 和Y 的分布分别为:则(2)P X Y +==1/6 。
二、市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的两倍,第二、第三厂家相等,且第一、第二、第三厂家的次品率依次为2%,2%,4%。
在市场上随机购买一件商品,问(1)该件商品为正品的概率是多少?(2)若该件商品为次品,则它是第一厂家生产的概率为多少?解:设任购一件商品,它恰好来自第i 家厂生产的事件记为Ai ,i=1、2、3;设该商品恰好是次品事件记为B 。
(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 025.040104.04102.04102.042==⨯+⨯+⨯=()1()0.975P B P B =-=(2)1111()()(|)(|)()()P A B P A P B A P A B P B P B ==2/40.020.40.025⨯==三、已知离散型随机变量X 分布函数为:()⎪⎩⎪⎨⎧≥<≤<≤<=41428.0214.010x x x x x F 。
概率论与统计初步期中考试试题
概率论与统计基础期中考试试题一.(20分)对A,B,C 三个事件,若1()()()4P A P B P C ===, ()()0P AB P BC ==, 1()8P AC =,求概率:(),(),(),(),()P AB P AB P A B C P ABC P ABC . 二.(15分)玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只次品的概率分别为0.8,0.1,0.1,某人欲够一箱玻璃杯,随机取出一箱并从中取4只察看,若无次品则买下该箱,否则退回,求:(1) 顾客买下该箱的概率;(2) 在顾客买下该箱中,确实无次品的概率。
三.(10分)甲乙两人投篮,投中的概率分别为0.6和0.7,今各独立投三次,求两人投中次数相等的概率。
四.(15分)设(,)X Y 的联合概率密度为3,01,0;(,)0,x x y x f x y ≤≤<<⎧=⎨⎩其它,求 |(|)Y X f y x 和 11|84P Y X ⎧⎫≤=⎨⎬⎩⎭。
五.(10分) 设随机变量Z 服从参数为1的指数分布,引入随机变量0102,1112Z Z X Y Z Z ≤≤⎧⎧==⎨⎨>>⎩⎩若若若若 ,求(,)X Y 的联合分布律。
六.(10分)设(,)X Y 的分布函数为21(,)()()2223x y F x y arctg arctg πππ=++ 求:(1) (,)X Y 的联合概率密度(,)f x y ;(2) 边缘概率密度(),()X Y f x f y ;(3) X 与Y 是否独立。
七.(10分)X 与Y 是两个相互独立的随机变量,其概率密度分别为0010(),()10y X Y x e y f x f x other else other else-≤≤⎧>⎧==⎨⎨⎩⎩ ,求随机变量 Z X Y =+ 的概率密度。
八.(10分)设随机变量X 与Y 相互独立,且(0,1)X U , Y 服从参数为12 的指数分布,求关于a 的二次方程220a Xa Y ++=有实根的概率。
蚌埠学院2023-2024学年第一学期《概率论与数理统计》期中考试试题
试卷 共1页 蚌埠学院2023—2024学年第一学期 《概率论与数理统计》期中考试试题注意事项:1、适用班级:2、本试卷共1页。
满分100分。
3、考试时间间:100分钟4、考试方式:闭卷一、单项选择题(每小题3分,共15分)1. 设,A B 为事件,且A B ⊂,则下列式子一定正确的是( ) A. ()()P AB P A =; B. ()()P AB P B =;C. ()()P BA P A =;D. ()()()P A B P A P B -=- 2. 设[2]~,12X U ,则(8)P X >=( )A .0.8B .0.4C .0.6D .0.53.()arctan (),X F x A B x x B =+∞<<+∞=设的分布函数-则系数( ).A .12 B .1 C .1π D .2π4、对于任意随机变量Y X ,,若)()()(Y E X E XY E =,则( ).A .Y X ,不相关 B. Y X ,不独立 C. Y X ,一定独立 D. Y X ,一定相关5、设随机变量X 与Y 相互独立,()()~1,2,~1,1,X N Y N 则随机变量2Z X Y =-的 分布为A. (1,8)NB. (3,5)NC. (1,3)ND. (1,9)N二、填空题(每小题3分,共15分)1.若~(5,4)()(),X N P X C P X C C >=<=若则 .2. 设有10件产品,其中有1件次品,今从中任取出1件为次品的概率是 .3.设X ~),(p n B 为二项分布,且() 1.6E X =,() 1.28D X =,则n =__________. 4.已知()3,21XY D X Y X ρ==-则= . 5.设111(),(|),(|)432P A P B A P A B ===,则=⋃)(B A P .三、计算题(第1、2每小题15分,第3小题20分;共50分) 1.设随机变量X 的分布律为求(1) ()E X ; (2) 2(2)E X X +, (3) ()D X .2.设随机变量X 的概率密度为1,02()0,Ax x f x +≤≤⎧=⎨⎩其他 ,求:(1) A ; (3){}1.5 2.5P X <<; (2)X 的分布函数()F x . 3.设二维随机变量(,)X Y 的联合密度函数为23,0,0(,)0,x y Ce x y f x y --⎧≥≥=⎨⎩其它求(1)常数C ;(2){}01,02P X Y <<<<;(3)边缘密度函数(),()X Y f x f y ; (4)判断X 与Y 的独立性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、计算题(20分)
得分
评阅人
1、设 和 是两个相互独立的随机变量,均在 上服从均匀分布,求 的分布函数.(10分)
2、设随机变量 服从标准正态分布 ,求 的概率密度. (10分)
四、解答题(25分)
得分
评阅人
1、设随机变量 的分布函数为
5.设随机变量 服从参数为1的泊松分布,则 的数学期望为_____.
6.抛掷一枚硬币4次,则正面至少出现1次的概率为_____.
二、求概率(20分)
得分
评阅人
1、从0,1,2,3, ,9共10个数字中任取一个,假定每个数字都以 的概率被取中,取后还原,先后取 次,求数字“5”恰好出现 次的概率( ).(10分)
求:(1)系数 与 ;(2) 落在 内的概率;(3) 的概率密度.(15分)
2、设二维随机变量 的概率密度为
求 的数学期望.(10分)
五、应用题(11分)
得分
评阅人
某保险公司把被保险人分成三类:“安全的”、“一般的”与“危险的”。统计资料表明,对于上述三种人而言,在一年期间内卷入某一次事故的概率依次为0.05,0.15与0.3。如果被保险人中“安全的”占15%,“一般的”占55%,“危险的”占30%,试求任一保险人在固定的一年中出现事故的概率是多少?
南昌大学2011~2012学年第一学期期中考试试卷
试卷编号:(A)卷
课程编号:课程名称:概率论与数理统计考试形式:闭卷
适用班级:理工类姓名:学号:班级:
学院:专业:考试日期:
七
八
九
十
总分
累分人签名
题分
24
20
20
25
11
100
得分
考生注意事项:1、本试卷共5页,请查看试卷中是否有缺页或破损。如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每空4分,共24分)
得分
评阅人
1.设事件 的概率分别为 与 ,且 ,则 _____.
2、设随机变量 服从 上的均匀分布,则 的数学期望为_____.
3、设离散型随机变量 的分布律为 , 则 _____.
4.设 是某个随机变量的概率密度,则 _____.