人教版数学九年级上册22.1.4.1二次函数教案 (1)

合集下载

人教版数学九年级上册22.1.1二次函数教案

人教版数学九年级上册22.1.1二次函数教案

《二次函数》第一课时教案设计教学目标与要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、交流,归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.教学重点:对二次函数概念的理解。

教学难点:由实际问题确定函数解析式课前准备:导学案,PPT课件教学过程:教师活动学生活动设计意图活动一复习旧知引出课题1.我们已经学习了那些函数?它们的图像是什么?2.出示图片(课件):打篮球,拱桥,喷泉,跳绳等。

3.引出课题:喷水池喷出的水,河上路线都会形成一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?现在我们开始探讨新一章的内容-----二次函数,这节课我们一起研究什么样的函数是二次函数(板书课题:二次1.学生回忆已经学过的知识,并交流2.学生观察图片复习旧知,为类比、探究二次函数的概念做好铺垫创设问题情境,让学生从生活中发现数学问题,激发学生学习数学的兴趣函数)活动二提出问题探索关系1、正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,他们的具体关系怎样表示?2、多边形的对角线数d与边数n有什么关系?3、某工厂一种产品现在的年产量是20件,计划今后两年增加产量。

如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?活动三归纳抽象形成概念1.认真观察以上出现的三个函数解析式,分别说出哪些是常数、自变量和函数.2.这些函数有什么共同点?3.归纳二次函数的概念(板书)4.二次函数概念中的a,b,c有什么要求?已知函数y=ax²+bx+c 1.思考后小组合作讨论出答案(1)y=6x2(2)d= n(n-3)即d= n2- n(3)y=20(1+x)2即y=20x2+40x+202.全班交流意见结合三个函数式,进行分析比较(1)找出各式中的自变量和自变量的函数(2)概括这三个函数式的共同特点。

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。

新人教版九年级上册数学22.1.4《二次函数的图象和性质(1)》教案

新人教版九年级上册数学22.1.4《二次函数的图象和性质(1)》教案

22.1.4二次函数y = ax2+ bx+ c的图象与性质第一课时一、教学目标(一)学习目标1. 会用描点法画二次函数y=ax2+bx+c的图象.2. 会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性及最大或最小值.3•经历探索二次函数y = ax2+ bx + c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y= ax2+ bx+ c的性质.4.能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.(二)学习重点用描点法画出二次函数y= ax2+ bx+ c的图象和通过配方确定抛物线的对称轴、顶点坐标及其性质。

(三)学习难点理解二次函数y = ax2+ bx + c(a^0)的图象和性质,会利用二次函数的图象性质解决简单的实际问题.二、教学设计(一)课前设计11•预习任务(1) 二次函数y=a(x-h)1 2+k 的顶点坐标是(hk),对称轴 是x=h ,当a>0时,开口 向上,此时二次函数有最小值,当 x >h 时,y 随X 的增大而增大,当x <h 时, y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当 x <h时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.(2) 用配方法将y=ax 2+bx+c 化成y=a(x-h)2+k 的形式为 2值,当a>0时,函数y 有最小值,当a<0时,函数y 有最大值. 2.预习自测(1)抛物线y = 2x 2 — 2x -1的开口 __________ ,对称轴是 _________ 【知识点】二次函数的性质.【解题过程】解:抛物线y = 2x 2 — 2x — 1,v 2>0,二开口向上,对称轴为:b -21 — — — ・2a 2 22【思路点拨】掌握二次函数的性质,正确记忆抛物线对称轴公式是解题关键. 【答案】向上,x =丄2(2)抛物线y = x 2 — 2x + 2的顶点坐标是 _________. 【知识点】二次函数的性质.【解题过程】解:将y = x 2— 2x + 2配方得y=(x-1)2,1,顶点坐标是(1,1) 【思路点拨】将抛物线的一般式,用配方法转化为顶点式,根据顶点式的坐标特” 2 2b j 4ac —b 2 y = a lxV 2a 丿 4a4ac * .则二次函数y=ax2+bx+c的图象的顶点坐标是(-—, 2a4a 2a则h=-A,k=4ac_b ),对称轴是x=-—,当x=-A时,二次函数y=ax2+bx+c有最大(最小) 4a 2a2a点,直接写出顶点坐标.【答案】(1,1)(3)________________________________ 二次函数y = -x2+ 2x+ 1的最是.2【知识点】二次函数的最值.【解题过程】解:将y =丄x2+ 2x+ 1配方得y J(x,2)2_1 , v ->0,.••其最2 2 2小值是-1.【思路点拨】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【答案】小,-1(4)二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac v b2;②a+c>b;③2a+b> 0.其中正确的有()A.①② B .①③ C.②③ D .①②③【知识点】二次函数图象与系数的关系.【思路点拨】根据抛物线与x轴有两个交点即可判断①正确,根据x=- 1,y v0, 即可判断②错误,根据对称轴x> 1,即可判断③正确,由此可以作出判断.【解题过程】解:v抛物线与x轴有两个交点,•••△ > 0,b2- 4ac> 0,••• 4ac v b2,故①正确,v x= - 1 时,y v 0,••• a- b+c v0,• a+c v b,故②错误,•••对称轴x> 1, a v 0,• - b v 2a,• 2a+b> 0,故③正确.故选B.【答案】B(二) 课堂设计i. 知识回顾(1)二次函数y = a(x -h)2• k(a严0)的图象性质:(h)左加右减,(k)上加下减2•问题探究探究一从旧知识过渡到新知识•活动①复习配方2 2 2 2填空.(1)x +4x+9=(x+ ) + .(2)X 一5x + 8 = (x- ) +生答:(1) 2, 5; (2)-,-2 4总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方.【设计意图】复习配方,为新课作准备•活动②以旧引新1. 二次函数y = a(x—h)2+ k的图象,可以由函数y= ax2的图象先向 ________ 平移 ________单位,再向___________ 移__________ 单位得到.生答:左或右,|h,上或下,|k2. 二次函数y = a(x—h)2+ k的图象的开口方向 _______ ,对称轴是,顶点坐标是 ________ .生答:a>0,向上;a<0,向下x=h (h,k)3. 二次函数y= 2x2—6x + 21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?1 2点拨:先将y= 2x —6x+ 21配方,再得出它的图象的开口方向、对称轴和顶点坐标,并画出图象,由此引出新课【设计意图】整合旧知,引出新课探究二用配方法求抛物线y=ax2+bx+c的顶点坐标、对称轴★ ▲ •活动①合作探究1 2例1:画函数y=?x -6x 21的图象,并指出它的开口方向、对称轴和顶点坐标.2分析:首先要用配方法将函数写成y=a(x-h) k的形式;然后,确定函数图象的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描点、连线.1 2解:y=2x —6x+ 21=1(x2—12x+ 42)=1(x2—12x+ 36—36+ 42)=1(x2—12x+ 36+ 6)=1(x2—12x+ 36) + 3=*(x —6)2+ 3.画图略,所以它的开口向上,对称轴是x=6,顶点坐标是(6,3)归纳:一般式化为顶点式的思路:(1)二次项系数化为1; (2)加、减一次项系数一半的平方;(3)写成平方的形式.【设计意图】引导学生利用配方法,求抛物线的对称轴和顶点坐标,并由此作抛物线。

第22章 人教版数学九年级上册教案1 二次函数

第22章 人教版数学九年级上册教案1 二次函数

22.1 二次函数的图象和性质22.1.1 二次函数课题22.1.1 二次函数授课人知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,让学生归纳二次函数的概念并能够根据函数特征识别二次函数.数学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.问题解决通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来于生活,又服务于生活的辩证观点.教学目标情感态度通过观察、操作、交流、归纳等数学活动,加深对二次函数概念的理解,发展学生的数学思维,增强学生学好数学的愿望与信心.教学重点对二次函数的理解.教学难点由实际问题确定函数解析式和确定自变量的取值范围.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.我们学习过哪些函数呢?试着举例说明一下.2.下列函数是什么函数?有不认识的吗?能说说你所认识的函数的图象和性质吗?(1)y=2x+1;(2)y=-4x;(3)y=3x2+1.3.学习函数应从哪几个方面进行探究呢?师生活动:教师提出以上问题,引导学生回答,师生共同回顾、交流,适时做好总结.问题解析:1.学习过的函数有一次函数,正比例函数是其特殊形式.2.(2)是正比例函数;(1)(2)是一次函数.3.学习函数一般是从函数的定义、函数的一般形式、函数的图象及其性质、函数的实际应用等方面进行学习.由回顾旧知识入手,通过回顾已经学习过的函数的相关知识对要学习的新知识有明确的方向,通过类比进行延伸,符合学生的认知规律.活动一:创设情境导入新课【课堂引入】图22-1-5问题:如图22-1-5,正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,则y与x以学生熟悉、感兴趣的问题作为课题引入,激发学生学习新知识的兴趣,同时为引入新课奠定基础.之间的函数解析式是什么?它是一次函数吗?有什么特点?学生思考后回答,教师点拨:这是我们今天需要学习和研究的“二次函数”数学模型.活动二:实践探究交流新知1.探究新知(1)n个球队参加比赛,每两个队之间都要进行一场比赛,场数m与球队数n之间有什么关系?每个队要与几个队各比赛一场?(2)某产品今年的年产量是20 t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将由计划所定的x的值而确定,y与x之间的关系应怎样表示?教师提问:(1)以上问题中有哪些变量?其中哪些是自变量?列出问题中的函数解析式;(2)观察上面的函数解析式,分析解析式有什么特点.让学生独立思考完成解答,教师适当地引导与点拨,共同得到问题的结论.教师板书:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.解析新知教师指导学生观察二次函数的定义,交流、讨论二次由现实中的实际问题入手,给学生创设熟悉的问题情境,通过问题的解决为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲,学生通过分析、交流探究二次函数的概念,加深对概念的理解,为解决问题打下基础.函数的特征,并进行总结:①等式左边是函数y,右边是关于自变量的整式;②a,b,c都是常数,a≠0;③等式右边自变量的最高次数为2,一次项和常数项可以为0,但是必须保留二次项;④自变量x的取值范围是任意实数.教师做好归纳:二次函数的一般形式:y=ax2+bx+c(a,b,c是常数,a≠0),ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c是常数项.活动三:开放训练体现应用【应用举例】例1 下列函数中,属于二次函数的是( C )A.y=2x-3B.y=(x+1)2-x2C.y=2x2-7xD.y=-x例2 关于函数y=(500-10x)(40+x),下列说法不正确的是( C )A.y是x的二次函数B.二次项系数是-10C.一次项是100D.常数项是20000例3 若y=(m+1)xm2-6m-5是二次函数,则m的值为 7 .师生活动:学生自主进行解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,应用举例有利于学生对二次函数概念的理解,能起到及时巩固的作用.共同得到正确的结论,并获得解题的经验.【拓展提升】例4 李师傅要在一张长、宽分别为50 cm和30 cm 的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体箱子的底面积为ycm2.求:(1)y与x之间的函数解析式;(2)自变量x的取值范围;(3)当x=5 cm时,长方体箱子的底面积.教师重点关注:学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考、充分讨论,争取让学生自己得到解答方法,并对学习有困难的学生适当引导、点拨.例4中的三个问题层层递进,在复习旧知识的同时获得解决新问题的经验,进一步内化新知、突破难点.活动四:课堂总结反思【达标测评】1.下列函数中是二次函数的是( B )A.y=x+12 B.y=3(x-1)2C.y=(x+1)2-x2D.y=3x-12.若函数y=(a-1)x2+2x+a2-1是关于x的二次函数,则( C )A.a=1B.a=±1C.a≠1D.a≠-13.已知关于x的函数y=(m2-1)xm2-m是二次函数,求m的值.从简单的应用开始,及时巩固新知,让学生获得对二次函数深层次的理解,从多个角度进行检测,达到学有所成的目的.4.已知二次函数y=2x2+x-3.(1)当x=1时,求它所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?请同学们说一说.教师进行总结:二次函数的定义及各部分名称;根据实际问题列二次函数解析式及求函数值.2.布置作业:(1)教材第29页练习第1,2题.(2)教材第41页习题22.1第1,2题.学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在复习回顾环节中,教师引导学生复习一次函数和一反思教学过程和教师表现,进一步优化操作流程和提升自身素质.元二次方程的知识,为学习二次函数做好铺垫;在探究新知过程中,通过类比学习使知识简单化,思路清晰化,学习效果较好;在课堂训练环节中,选用例题典型且有思维深度,学生能够运用所学新知进行解答,能够圆满完成教学任务.②[讲授效果反思]对于二次函数的认识,强调几点:(1)一般形式中各项的名称;(2)二次项系数不能为0;(3)二次函数解析式的多种形式.③[师生互动反思]从课堂氛围和课堂效果分析,学生能够积极投入新知学习中,能够集中精力完成学习任务.④[习题反思]好题题号 错题题号 典案二导学设计学习目标:1、通过观察发现二次函数的特点,得出二次函数的定义,能区分二次函数;2、能够根据实际问题,熟练地列出二次函数关系式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,它不仅巩固了之前学习的函数知识,还为高中阶段的数学学习奠定了基础。

这一节主要介绍二次函数的定义、性质和图象。

教材通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在,进而引导学生去探究、理解二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但是,二次函数相对于一次函数和反比例函数,其性质更为复杂,图象也更为抽象。

因此,学生在学习本节内容时可能会感到困惑。

另外,学生的数学思维能力和探究能力参差不齐,需要教师在教学中进行针对性的引导和帮助。

三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。

2.了解二次函数的性质,包括对称轴、顶点、开口方向等。

3.能够绘制二次函数的图象,从图象中观察和理解二次函数的性质。

4.能够运用二次函数解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次函数的定义和一般形式。

2.二次函数的性质,尤其是对称轴、顶点、开口方向等。

3.二次函数图象的绘制和分析。

4.运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在。

2.探究教学法:引导学生通过小组合作、讨论的方式,探究二次函数的性质。

3.数形结合教学法:利用图象展示二次函数的性质,让学生从图象中观察和理解二次函数。

4.实践教学法:让学生通过解决实际问题,运用二次函数的知识。

六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。

2.实例:准备一些实际问题,用于引入二次函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的概念。

例如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。

让学生思考:这个二次函数是什么样子?它的图象是什么样的?2.呈现(10分钟)利用课件,呈现二次函数的一般形式和图象。

九年级数学上册-22-二次函数教案-新人教版(2021-2022学年)【可修改文字】

九年级数学上册-22-二次函数教案-新人教版(2021-2022学年)【可修改文字】

可编辑修改精选全文完整版第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习"涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120m,室内通道的尺寸如图,设一条边长为x(m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-错误!(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1 (2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题。

最新人教版九年级数学上册《二次函数》教学设计(精品教案)

最新人教版九年级数学上册《二次函数》教学设计(精品教案)

22.1.1二次函数教案一教学目标(一)教学知识点1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.(二)能力训练要求1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.(三)情感与价值观要求1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重点1.经历探索和表示二次函数关系的过程.获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.教学难点经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.教学方法讨论探索法.教具准备投影片两张第一张:(记作22.1.1A)第二张:(记作22.1.1B)教学过程Ⅰ.创设问题情境,引入新课[师]对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?[生]学过正比例函数,一次函数,反比例函数.[师]那函数的定义是什么,大家还记得吗?[生]记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.[师]能把学过的函数回忆一下吗?[生]可以.一次函数y=kx+b (其中k、b是常数,且k≠0) .正比例函数y=kx(k是不为0的常数).k(k是不为0的常数).反比例函数y=x[师]很好.从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.Ⅱ.新课讲解一、由实际问题探索二次函数关系投影片:(22.1.1A)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.[师]请大家互相交流后回答.[生](1)变量有树的数量,每棵树上平均结的橙子数,所有的树上共结的橙子数.其中树的数量是自变量,每棵树上平均结的橙子数以及所有的树上共结的橙子数是因变量.(2)假设果园增种x棵橙子树,那么果园共有(x+100)棵树,平均每棵树就会少结5x个橙子,则平均每棵树结(600-5x)个橙子.(3)如果果园橙子的总产量为y个,则y=(x+100)(600-5x)=-5x2+100x+60000.[师]大家根据刚才的分析,判断一下上式中的y是否是x的函数?若是函数,与原来学过的函数相同吗?[生]因为x是自变量,y是因变量,给x一个值,相应地就确定了一个y的值,因此根据函数的定义,y是x的函数.但是从函数形式上看,它不同于正比例函数、一次函数与反比例函数,自变量的最高次数是2,所以我猜测可能是二次函数.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?[师]请大家发表自己的看法.[生甲]在函数y=-5x2+100x+60000中,因为一次项系数100大于二次项系数-5,因此当x越大时,y的值越大.[生乙]我不同意他的观点.因为x2的增长速度比x的增长速度要快,因此-5x2的绝对值要大于100x的绝对值,因此x应取比较小的数才能使y的值大.[师]大家说的都有道理,究竟是如何呢?我们不妨取一些特殊的数字验证一下.我们可以列表表示橙子的总产量随橙子树的增加而变化的情况.你能根据表格中的数据作出猜测吗?自己试一试.1 2 3 4 5 6 7 8 9 10 11 12 13 14x(棵)y(个)请大家先填表,再猜测.[生]从左到右依次填60095,60180,60255,60320,60375,60420,60455,60480,60495,60500,60495,60480,60455,60420.可以猜测当x逐渐增大时,y也逐渐增大.当x取10时,y 取最大值.x大于10时,y的值反而减小,因此当增种10棵橙子树时,橙子的总产量最多.[师]大家的猜想很有道理,推理能力日渐增长,究竟猜想结果如何,我们将要在后面的学习中专门进行研究.三、做一做投影片:(22.1.1B)银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)与年利率之间的表达式(不考虑利息税).[师]首先我们要回顾一下有关名词:本金、利息、本息和,如何计算利息,在前面的学习中我们已接触过,大家还记得吗?[生]记得.本金是存入银行时的资金,利息是银行根据利率和存的时间付给的“报酬”,本息和就是本金和利息的和.利息=本金×利率×期数(时间).[师]根据利息的公式,大家可以计算出一年后的本息和.[生]一年后的本息和为100+100x·1=100(1+x).[师]再计算出两年后的本息和,这时,一年后的本息和将作为第二年的本金.[生]y=100(1+x)+100(1+x)x×1=100(1+x)+100(1+x)x=100(1+x)(1+x)=100(1+x)2=100x2+200x+100.[师]在这个关系式中,y是x的函数吗?是x的什么函数?请猜想.[生]因为年利率x是一个变量,两年后的本息和y是随着x 的变化而变化的,因此x是自变量,y是x的函数,再从函数的形式来看,y是x的二次函数.四、二次函数的定义[师]从我们刚才推导出的式子y=-5x2+100x+60000和y =100x2+200x+100中,大家能否根据式子的形式,猜想出二次函数的定义及一般形式呢?[生]一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数(quadratic function).[师]很好.上面说的只是一般形式,并不是每个二次函数关系式必须如此.有时没有一次项,有时没有常数项,有时这两项都不存在,只要有二次项存在即为二次函数.如正方形面积A与边长a的关系A=a2,圆面积S和半径r的关系S=πr2也都是二次函数的例子.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课我们学习了如下内容:1.经历探索和表示二次函数关系的过程.猜想并归纳二次函数的定义及一般形式.2.利用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多.Ⅴ.课后作业教材P29练习1、2Ⅵ.活动与探究若y=(m2+m)mmx 2是二次函数,求m的值.分析:根据二次函数的定义,只要满足m 2+m ≠0,且m 2-m =2,y =(m 2+m)m mx -2就是二次函数.解:由题意得⎪⎩⎪⎨⎧=-≠+.,2022m m m m 解得⎩⎨⎧-==-≠≠,或,或1210m m m m∴m =2.故若y =(m 2+m)m mx -2是二次函数,则m 的值等于2.板书设计22.1.1 二次函数一、1.由实际问题探索二次函数关系2.想一想3.做一做4.二次函数的定义二、课堂练习随堂练习三、课时小结四、课后作业。

人教版数学九年级上册教案22.1.1《二次函数》

人教版数学九年级上册教案22.1.1《二次函数》

人教版数学九年级上册教案22.1.1《二次函数》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习。

二次函数是中学数学中的重要内容,也是高考中的热点之一。

本章内容主要包括二次函数的定义、图象与性质,以及二次函数的应用。

在学习本章之前,学生已经掌握了函数、方程等基础知识,为本章的学习打下了基础。

二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于二次函数这一复杂的概念,仍需要通过具体实例和实际操作来理解和掌握。

在学习过程中,学生可能对二次函数的图象与性质产生困惑,需要教师进行引导和解释。

三. 教学目标1.了解二次函数的定义和一般形式;2.掌握二次函数的图象与性质,并能运用其解决实际问题;3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.二次函数的定义和一般形式;2.二次函数的图象与性质;3.二次函数的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的知识;2.使用多媒体辅助教学,展示二次函数的图象与性质;3.学生进行小组讨论和合作交流,提高学生的动手能力和团队协作能力。

六. 教学准备1.多媒体教学设备;2.教学PPT;3.练习题和测试题;4.教学课件。

七. 教学过程导入(5分钟)教师通过一个实际问题引入二次函数的概念,如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。

引导学生思考:这个二次函数是什么样子?它的图象是什么样的?呈现(10分钟)教师通过PPT展示二次函数的一般形式和图象,解释二次函数的定义和性质。

同时,教师可以通过举例来说明二次函数的应用,如:抛物线、顶点坐标的计算等。

操练(10分钟)教师布置一些练习题,让学生动手计算和绘制二次函数的图象。

教师可以学生进行小组讨论,共同解决问题。

巩固(10分钟)教师通过一些实际问题,让学生运用二次函数的知识来解决问题。

教师可以引导学生进行思考和讨论,帮助学生巩固所学知识。

拓展(10分钟)教师可以引导学生思考:二次函数的图象和性质与其他函数有什么不同?如何判断一个函数是否为二次函数?教师可以学生进行小组讨论,引导学生进行拓展思考。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

人教版九年级数学上册教案:22.1《二次函数》参考教案

人教版九年级数学上册教案:22.1《二次函数》参考教案

22.1.1 二次函数一、教学目标1.知识与技能目标:(1).使学生理解并掌握二次例函数的概念(2).能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式(3).能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想2.过程与方法目标;通过“探究----感悟----练习”,采用探究、讨论等方法进行。

3.情感态度与价值观:通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育二、教学重、难点1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式2.难点:理解二次例函数的概念.三、教学过程1、知识回顾(1).一元二次方程的一般形式是什么?(2).回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的2、合作学习,探索新知 :问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,那么y 与x 的关系可表示为?y=6x 2问题2: n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系? m=21122n n 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x的值而定,y 与x 之间的关系怎样表示?y=20x 2+40x+20观察以上三个问题所写出来的三个函数关系式有什么特点?经化简后都具有y=ax²+bx+c 的形式,(a,b,c 是常数, a≠0 ).我们把形如y=ax²+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项.又例:y=x² + 2x – 3满足什么条件时当,是常数其中函数c b,a,)c b,a,c(bx ax y 2++= (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?3、巩固练习:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1;(5)y=x 2-x(1+x); (6)y=x -2+x.2.做一做:(1)正方形边长为x (cm ),它的面积y (cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长增加x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式.4、例题讲解:例1: 关于x 的函数mm x m y -+=2)1(是二次函数, 求m 的值.解: 由题意可得122≠+=-m m m时,函数为二次函数。

人教版数学九年级上册22.1.4二次函数教案

人教版数学九年级上册22.1.4二次函数教案

二次函数一、求解析式例1已知二次函数的图象与轴交于A(-2,0),B(3,0)两点,且函数有最大值2,求二次函数的解析式。

例2 已知二次函数的图像经过(3,0),(2,-3)两点,且以为对称轴,求这个二次函数的解析式。

变式题:1.如图1,直线与抛物线交于x轴上A点和另一点D,抛物线交y轴于C点,且CD∥x轴,求抛物线的解析式。

2.如图,已知二次函数,当取不同的值时,其图像构成一个“抛物线系”,图中的实线型抛物线分别是取三个不同值时二次函数的图像,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是()A、 B、.C、 D、二、图形变换图1例3 将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为例4:抛物线6822-+-=x x y 与x 轴交于点A ,B ,A 点在B 点左边,抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得到2C ,2C 与x 轴交于点B ,D ,若直线m x y +=与1C ,2C 共有3个不同的交点,则m 的取值范围是 。

变式题: 3.函数的图像是由抛物线经过怎样的平移得到的?4.将抛物线绕它的顶点旋转180°,求旋转后的抛物线的解析式.5.如图,抛物线的顶点为P (-2,2),与,若平移该抛物线使其顶点P 沿直线移动到点P’(2,-2)处,点A 的对应点为A’,则抛物线上PA 段扫过的区域(阴影部分)的面积为 。

三、二次函数的最值 例5 在二次函数,当时,的取值范围是 。

变式题:6.(1)在二次函数当,求。

(2)在二次函数中,当时,。

四、二次函数与几何的综合例6 如图,抛物线两点,顶点M关于轴的对称点是M'(1)求抛物线的解析式;(2)若直线MA'与此抛物线的另一个交点为C,求的面积;(3)是否存在过点A、B两点的抛物线,其顶点P关于对称点为Q,使得四边形APBQ 为正方形,若存在,求出此抛物线的解析式;若不存在,请说明理由。

人教版九年级数学上第22章二次函数22.1.1二次函数 教案

人教版九年级数学上第22章二次函数22.1.1二次函数  教案

教案
3、阅读课本P27 章前引言
二、新课讲解:
1、分析幻灯片2,3,4
问题1.正方体的六个面都是全等的正方形,设正方体的棱长为a,表面积为s,请写出s与a的关系为;
问题2.n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系?
问题3.某种产品现在的年产量是20吨,计划今后两年增加产量。

如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划规定的x的值而确定,y与x之间的关系应怎样表示?
2、观察、概括
(1)引导学生观察1,2,3的函数关系式,思考回答;
问题:这些函数关系式有什么共同特点?
(2)结合一次函数的定义你能给二次函数下一个具有代表意义的定义吗?
板书:二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,其中,x是自变量a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)以小组为单位讨论二次函数的特征,并做总结展示。

特征:1. 解析式为整式;
2.自变量的最高指数为2;引言:是全章的灵魂,在全章中起到承前启后的作用
二次函数的定义,要在学生充分理解其结构特征的基础上,让学生充分感知后再用自己的语言说出即可.
2.某建筑物的窗户如图所示,它的上半部是半圆,下半
部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?。

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。

九年级数学上册 22.1.1 二次函数教案 新人教版(1)(2021年整理)

九年级数学上册 22.1.1 二次函数教案 新人教版(1)(2021年整理)

九年级数学上册22.1.1 二次函数教案(新版)新人教版(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册22.1.1 二次函数教案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册22.1.1 二次函数教案(新版)新人教版(1)的全部内容。

22。

1.1 二次函数一、教学目标1.结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系。

二、课时安排1课时三、教学重点体会二次函数的意义,理解二次函数的有关概念.四、教学难点能够表示简单变量之间的二次函数关系。

五、教学过程(一)导入新课情景问题:正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为 y=6x2. (1)(二)讲授新课问题1:n个球队参加比赛,每两队之间进行一场比赛。

比赛的场次数m与球队数n有什么关系?分析:每个队要与其他(n-1)支球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是1(1)2n n (2)问题2:某种产品现在的年常量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?分析: 这种产品的原产量是20 t,一年后的产量是20(1+x) t,再经过一年后的产量是20(1+x )(1+x) t ,即两年后的产量2220(1)204020y x x x =+=++ (3)活动2:探究归纳函数(1)(2)(3)有什么共同点?明确:一般地,形如y=ax 2+bx+c (a ,b,c 是常数,a≠0)的函数,叫做二次函数。

人教版初中数学九年级上册第二十二章 二次函数1二次函数 优秀教案

人教版初中数学九年级上册第二十二章 二次函数1二次函数 优秀教案

22.1 二次函数(1)教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC22.x3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x 的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y=ax^2+bx+c 的图象和性质教学设计
一、教学目标
(一)知识目标
1.使学生会用描点法画出二次函数2y ax bx c =++的图象;
2.使学生会用配方法确定抛物线的顶点和对称轴;
3.使学生进一步理解二次函数与抛物线的有关概念;
4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式.
(二)能力目标
1.培养学生分析问题、解决问题的能力;
2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握;
3.在待定系数法的教学中培养学生的计算能力.
(三)情感目标
1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.
2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间的内在联系的数学美及和谐的数学美.
二、教学方法
教师采用比较法、观察法、归纳总结法
本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系.
三、重点·难点·疑点及解决办法
1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上三点的坐标求二次函数的解析式.因为它们是画出二次函数
的图像的基础.
2.教学难点:配方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有一定的难度.
3.教学疑点:顶点式与一般式如何转化
4.解决办法:(1)知道一般式到顶点式是通过配方得到的;(2)已知三个点坐标,可用待定系数法求得抛物线一般式.
四、教学媒体
三角板 一体机
五、教学设计思路
1.出示三组练习,导入新课.
2.“如何画216212
y x x =-+的图像?”教师提问,让学生去讨论、发现:要写成2()y a x h k =-+的形式,找出对称轴,引入由一般式化成顶点式,推导出顶点坐标公式.
3.学生练习,为了强化巩固. 4.待定系数法求一般式抛物线,学生练习,讲评.
六、教学步骤
(一)明确目标
在前几节课的基础上,我们已经能画出形如2()y a x h k =-+的图像,并能指出它的对称轴和顶点坐标,对于一般形式的二次函数2y ax bx c =++应如何解决这些问题呢?这就是我们这节课的主要任务之一.(板书)
(二)整体感知
本节课的第一个重点是用配方法确定抛物线的顶点和对称轴.为了学生能在较复杂的题中顺利应用配方法,教师首先出示了几个较简单的练习由学生完成,并来讨论做题思路.有了基本思路之后,再来观察给出的这几个练习题的共同特征:二次项系数为1.由此引出: 若二次项的系数不为1怎么办?学生较易想到要使它变为1,跟着就提出:怎样能使二次项的系数变为1呢?用提公因式法.而一旦二次项的系数变为1之后,就可以按照上面的思路来解决了,这样这个重点和难点也就得到了自然地突破. 本节课的第二个重点是用待定系数法由已知图象上三个点的坐标求二次函数的解析式.由于待定系数法已在前面交待过,所以教师可以完全放手由学生自主完成,这样更能体现课堂教学中以学生为主体,教师为主导的精神.
(三)教学过程
练习
提问:说出下列抛物线的开口方向、对称轴与顶点坐标:
(1) 2152()333
y x =-+; (2) 20.7( 1.2) 2.1y x =-+-; (3) 215(10)20y x =++; (4) 2113()424
y x =---; (5) 2()y a x h k =-+. (出示幻灯片)
通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用.这几个问题可找层次较低的学生回答,由其他同学给予评价.
我们已画过二次函数2()y a x h k =-+的图像,画它的图象的第一步是干什么?(列表)列表时我们是怎样取值的呢?(先确定中心值)若我们要画二次函数2y ax bx c =++的图象应怎么办呢?
学生讨论得到:把二次函数2y ax bx c =++转化成2()y a x h k
=-+的形式
再加以研究. 提问:怎样能把二次函数2y ax bx c =++转化成2()y a x h k =-+的形式呢?我们先来看几个练习题:(出示幻灯)
填空:(1)2x bx ++ (x =+ 2
); (2)252x x ++ (x = 2);
(3)249(x x x ++=+ 2)+ ;
(4)258(x x x -+=- 2
)+ ;
先由学生自己填,若在填的时候有问题,可以互相讨论之后再填.然后由学生回答答案,对一下,关键是由学生来总结:这几个空是怎样填上的?
总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方. 提问:当二次项的系数不为1时,应怎么办呢?
答:利用提公因式法,首先把二次项的系数化成1,再用上述方法. 下面,我们就一起来看一个具体的问题:(出示幻灯)
画函数216212
y x x =-+的图像,并指出它的开口方向、对称轴和顶点坐标. 分析:首先要用配方法将函数写成
2()y a x h k =-+的形式;然后,确定函数图像的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描点、连线.
这里的关键步骤是用配方法把函数改写成2()y a x h k =-+的形式,应按怎样
的方式来做呢?(教师边提问、边讲解、边板书) 首先,把等号右边的1
2(即二次项的系数)提出来,使二次项的系数为1,得
21(1242)2y x x =-+;
然后,把括号内的部分配成一个完全平方(即先加,再减一次项系数的一半
的平方),得2211(12363642)[(6)6]22y x x x =-+-+=-+;
最后去掉中括号,得21(6)32y x =-+.
这就与2()y a x h k =-+的形式一样,就可以由学生独立完成余下的部分了.
注意:描点画图时,要参照已知抛物线的特点,一般先找出顶点,并且用虚线画出对称轴,然后再对称描点,最后,用平滑曲线顺次连结各点.
画完图之后,可让学生观察图像,思考:
提问:1.这条抛物线与哪条形如2y ax =的抛物线形状相同?为什么? 答:与抛物线
212y x =的形状相同,因为若两条抛物线形状相同,则。

的值
就相同. 2.它是抛物线212y x =
经过怎样的移动得到的? 这个问题可根据学生的层次决定问还是不问,关于这个问题的回答可以像书上一样,即:将抛物线
2
12y x =平行移动,顶点从原点移动到(6,3)而成的,也可以按照沿轴移动的方式来回答.
上面,我们研究了如何把一个具体的二次函数通过配方的方法来加以研究,
对于一般的二次函数2y ax bx c =++应怎样解决呢?(出示幻灯)
例1 通过配方求抛物线2y ax bx c =++的对称轴和顶点坐标.
可先让学生仿照前面解决216212y x x =
-+的方式来做,找一名同学板书,
然后视情况加以讲解,补充和纠正. 最后,加以总结,形成规律:(板书)
抛物线2y ax bx c =++的对称轴:2b x a =-,顶点坐标是24(,)24b ac b a a --,让
有能力的学生掌握推导过程,层次较差的只要记住公式就可以了。

1.教材2 笔答,2.教材2(1)(3)(5)(7)
我们已经学过用待定系数法确定正比例函数与一次函数的解析式,需要知道图像上的几点才能利用待定系数法来确定函数的解析式呢?
试想,关于一般的二次函数2
y ax bx c =++,已知函数图像上的几点,可以用待定系数法来求出这个函数的解析式呢?
下面,我们就来看今天的第二个例题:(出示幻灯)
例2 已知一个二次函数的图像经过(1,10),(1,4),(2,7)-三点.求这个函数的解析式.
根据此题的程度可由学生自主完成,注意提醒学生先要将函数的一般形式设出来,之后
再用待定系数法求解.
练习二 教材中1、2 5(1)(2)找四名同学上黑板板演,其他同学在练习本上完成,统一答案即可.
(四)总结、扩展
提问:1.本节课我们共学习了几种教学方法?各是什么?
2.用配方法将二次函数2y ax bx c =++变形成2()y a x h k =-+的形式的一般
步骤是什么?
3.经过配方得到:二次函数
2y ax bx c =++的图像的对称轴和顶点坐标各是什么? 4.用待定系数法确定函数的解析式,选用图像上的几点,通常是由什么来决定的?
七、布置作业
1.课后练习;2.配套练习册。

相关文档
最新文档