(完整版)导数及其应用高考题精选含答案

合集下载

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

高考数学导数及其应用多选题(讲义及答案)附解析

高考数学导数及其应用多选题(讲义及答案)附解析

高考数学导数及其应用多选题(讲义及答案)附解析一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-<⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.3.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( ) A .若0a ≤,则函数()f x 没有极值 B .若0a >,则函数()f x 有极值C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=, 当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增, ∴当1x a=时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1a e=时,()f x 有且只有一个零点; 当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.4.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e >B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+> ⎪⎝⎭- 【答案】BCD 【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110eF F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭ 1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.5.对于函数2ln ()xf x x=,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .ff f <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x +>+=在()0,∞+上恒成立,令()2ln 1x g x x +=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x=,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln 2ln ,42f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立,设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.6.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.7.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B .3412a b ==2a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<; B 选项,3412a b ==log 12a =4log 12b =1212112(log 3log 4)2a b ab a b+=+=+=;C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.8.若方程()2110x m x -+-=和()120x m ex -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞-D .11x ⎫∈-⎪⎪⎝⎭【答案】ABD 【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x xy e-=-交点的横坐标,再用导数研究函数11y x x =--和12x xy e-=-的单调性与取值情况,作出函数图象,数形结合即可解决问题. 【详解】解:由题,1x ,2x 和3x ,4x 分别是11m x x =--和12x xm e-=-的两个根, 即y m =与11y x x =--和12x xy e-=-交点的横坐标. 对于函数11y x x =--,定义域为{}0x x ≠,21'10y x=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x =时,1y =-;对于函数12x xy e -=-,11'x xy e--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y →+∞→-,0x =时,2y =-,1x =时,1y =-;故作出函数11 y xx=--,12xxye-=-的图像如图所示,注意到:当()0,1x∈时,11122xxx xx e---<-<-,由图可知,3201x x<<<,()2,1m∈--,从而()11112,1xx--∈--,解得115,1x⎛⎫--∈-⎪⎪⎝⎭,所以选项AD正确,选项C错误,又121310x x x x-=<<.故选:ABD.【点睛】本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.。

高考数学导数及其应用专题训练参考答案

高考数学导数及其应用专题训练参考答案

高考数学:导数及其应用专题训练【参考答案】1.A2.A3.D4.A5.C6.C7.A8.A9.C10.⎩⎨⎧⎭⎬⎫x | 12<x<2 ; 11. 4 ; 12. 32; 13.—16 ; 14.y =3x +1 ; 15.3-1【部分习题解析】4.解析:f ′(x)=6x(x -2),∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f(x)=m 最大.∴m =3,f(-2)=-37,f(2)=-5.答案:A5.解析:因为y ′=-x2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 答案:C6.解析:∵f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2<0在(-1,+∞)上恒成立,即b<x(x +2)在(-1,+∞)上恒成立.设g(x)=x(x +2)=(x +1)2-1在(-1,+∞)上单调递增, ∴g(x)>-1. ∴当b ≤-1时,b<x(x +2)在(-1,+∞)上恒成立.即f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数.答案:C7.解析:由函数f(x)可知f(x -1)=⎩⎪⎨⎪⎧x x <1,-x x ≥1.①当x <1时,原不等式等价于x +(x +1)x ≤3,解得-3≤x ≤1,又x <1,所以-3≤x <1;②当x ≥1时,原不等式等价于x +(x+1)(-x)≤3,即x2≥-3恒成立,所以x ≥1,综合①②可知,不等式的解集为{x|x ≥-3}.9.解析:船速度为x(x>0)时,燃料费用为Q 元,则Q =kx3,由6=k ×103可得k =3500,∴Q =3500x3.∴总费用y =⎝⎛⎭⎫3500x3+96·1x =3500x2+96x ,y ′=6500x -96x2.令y ′=0得x =20,当x ∈(0,20)时,y ′<0,此时函数单调递减,当x ∈(20,+∞)时,y ′>0,此时函数单调递增,∴当x =20时,y 取得最小值,∴此轮船以20公里/小时的速度使行驶每公里的费用总和最小.答案:C10.[解析] 由题意可知a>0,且-2,1是方程ax2+bx +c =0的两个根,则⎩⎨⎧-ba=-1,ca =-2,解得⎩⎪⎨⎪⎧b =a ,c =-2a ,所以不等式cx2+bx +a>c(2x -1)+b 可化为-2ax2+ax +a>-2a(2x -1)+a ,整理得2x2-5x +2<0,解得12<x<2.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x | 12<x<2.11.解析:若x =0,则不论a 取何值,f(x)≥0显然成立. 当x >0,即x ∈(0,1]时,f(x)=ax3-3x +1≥0可化为a ≥3x2-1x3.设g(x)=3x2-1x3,则g ′(x)=31-2x x4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4. 当x <0,即x ∈[-1,0]时, 同理,a ≤3x2-1x3. g(x)在区间[-1,0)上单调递增,∴g(x)min =g(-1)=4,从而a ≤4,综上,可知a =4. 答案:412.解析:由题意得f ′(x)=3x2-12,令f ′(x)=0得x =±2,且f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M =24,m =-8,M -m =32. 答案:3215.解析:f ′(x)=x2+a -2x2x2+a 2=a -x2x2+a 2,当x >a 时,f ′(x)<0,f(x)单调递减,当-a <x <a 时,f ′(x)>0,f(x)单调递增,当x =a 时,f(x)=a 2a =33,a =32<1,不合题意. ∴f(x)max =f(1)=11+a =33,a =3-1. 答案:3-116.解:(1)f ′(x)=3x2-9x +6=3(x -1)(x -2),因为x ∈(-∞,+∞),f ′(x)≥m , 即3x2-9x +(6-m)≥0恒成立.所以Δ=81-12(6-m)≤0,得m ≤-34,即m 的最大值为-34.17.解析:(1)∵f(x)=1-x ax +lnx ,∴f ′(x)=ax -1ax2(a>0).∵函数f(x)在[1,+∞)上为增函数,∴f ′(x)=ax -1ax2≥0对x ∈[1,+∞)恒成立.∴ax -1≥0对x ∈[1,+∞)恒成立.即a ≥1x 对x ∈[1,+∞)恒成立. ∴a ≥1.(2)当a =1时,f ′(x)=x -1x2.∴当x ∈⎣⎡⎭⎫12,1时,f ′(x)<0, 故f(x)在x ∈⎣⎡⎭⎫12,1上单调递减;当x ∈(1,2]时,f ′(x)>0,故f(x)在x ∈(1,2]上单调递增. ∴f(x)在区间⎣⎡⎦⎤12,2上有唯一极小值点,故f(x)min =f(x)极小值=f(1)=0. 又f ⎝⎛⎭⎫12=1-ln2,f(2)=-12+ln2,f(12)-f(2)=32-2ln2=lne3-ln162, ∵e3>16,∴f ⎝⎛⎭⎫12-f(2)>0,即f ⎝⎛⎭⎫12>f(2). ∴f(x)在区间⎣⎡⎦⎤12,2上的最大值f(x)max =f ⎝⎛⎭⎫12=1-ln2. 综上可知,函数f(x)在⎣⎡⎦⎤12,2上的最大值是1-ln2,最小值是0.(3)当a =1时,f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =nn -1,则x>1,故f(x)>f(1)=0. ∴f ⎝⎛⎭⎫n n -1=1-n n -1n n -1+ln n n -1=-1n +ln n n -1>0, 即ln n n -1>1n . ∴ln 21>12,ln 32>13,ln 43>14,…,ln n n -1>1n .∴ln 21+ln 32+ln 43+…+ln n n -1>12+13+14+…+1n .∴lnn>12+13+14+ (1).即对大于1的任意正整数n ,都有lnn>12+13+14+…+1n .本题的关键在于f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =n n -1,则x>1,故f(x)>f(1)=0,∴f ⎝⎛⎭⎫n n -1=1-nn -1n n -1+lnnn -1=-1n +ln n n -1>0,即ln n n -1>1n.怎么想到要这么做,主要受前面两小题的强烈提示.通过本题的学习,我们要掌握此类问题一般规律.本题出错在于同学完全没有想到利用前面的结论,而直接讨论函数f(x)=ln x x -1-1x 的单调性求解,可以试试看,肯定行不通.18.解:(1)由f(x)=g(x),得k =lnxx2.令h(x)=lnx x2,所以方程f(x)=g(x)在区间⎣⎡⎦⎤1e ,e 内解的个数即为函数h(x)=lnxx2,x ∈⎣⎡⎦⎤1e ,e 的图象与直线y =k 交点的个数.h ′(x)=1-2lnxx3,当h ′(x)=0时,x = e.当x 在区间⎣⎡⎦⎤1e ,e 内变化时,h ′(x),h(x)变化如下: x ⎣⎡⎭⎫1e ,ee (e ,e] h ′(x) + 0 - h(x)递增12e递减当x =1e 时,y =-e2;当x =e 时,y =12e ;当x =e 时,y =1e2.所以,①当k>12e 或k<-e2时,该方程无解.②当k =12e 或-e2≤k<1e2时,该方程有一个解.③当1e2≤k<12e 时,该方程有两个解.(2)由(1)知lnx x2≤12e ,∴lnx x4≤12e ·1x2.∴ln224+ln334+…+lnn n4≤12e ⎝⎛⎭⎫122+132+…+1n2. ∵122+132+…+1n2<11·2+12·3+…+1n -1·n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n <1.∴ln224+ln334+…+lnn n4<12e. 19.解析:设包装盒的高为h(cm),底面边长为a(cm).由已知得a =2x ,h =60-2x2=2(30-x),0<x <30.(1)S =4ah =8x(30-x)=-8(x -15)2+1 800,所以当x =15时,S 取得最大值.(2)V =a2h =22(-x3+30x2),V ′=62x(20-x). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12. 即包装盒的高与底面边长的比值为12.引入恰当的变量、建立适当的模型是解题的关键.第(1)中侧面积 S是关于 x 的二次函数,可以利用抛物线的性质求最值,也可以利用导数求解;而第(2)题中容积 V 是关于 x 的三次函数,因此只能利用导数求最值.20.解析:(1)f ′(x)=3ax2+2bx +c ,依题意⎩⎪⎨⎪⎧ f ′1=3a +2b +c =0,f ′-1=3a -2b +c =0⇒⎩⎪⎨⎪⎧b =0,3a +c =0. 又f ′(0)=-3,∴c =-3,a =1. ∴f(x)=x3-3x.(2)设切点为(x0,x30-3x0),∵f ′(x)=3x2-3,∴f ′(x0)=3x20-3. ∴切线方程为y -(x30-3x0)=(3x20-3)(x -x0), 又切线过点A(2,m),∴m -(x30-3x0)=(3x20-3)(2-x0). ∴m =-2x30+6x20-6. 令g(x)=-2x3+6x2-6,则g ′(x)=-6x2+12x =-6x(x -2). 由g ′(x)=0得x =0或x =2.g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2. 画出草图知(如图4-3-3),当-6<m <2时,m =-2x3+6x2-6有三解, ∴ m 的取值范围是(-6,2).21.解析:(1)由已知有f ′(x)=x +1x ,当x ∈[1,e]时,f ′(x)>0,f(x)在[1,e]上为增函数,∴f(x)max =f(e)=12e2+1,f(x)min =f(1)=12.(2)证明:设F(x)=12x2+lnx -23x3, 则F ′(x)=x +1x -2x2=1-x 1+x +2x2x当x ∈[1,+∞)时,F ′(x)<0,F(x)在[1,+∞)上为减函数,且F(1)=-16<0故x ∈[1,+∞)时,F(x)<0. ∴12x2+lnx <23x3.∴在[1,+∞)上,函数f(x)的图像在函数g(x)=23x3图像的下方.方法点睛 一般地,在闭区间[a ,b]上的连续函数f(x)必有最大值与最小值,在开区间(a ,b)内的连续函数不一定有最大值与最小值,若函数y =f(x)在闭区间[a ,b]上单调递增,则f(a)是最小值,f(b)是最大值;反之,则f(a)是最大值,f(b)是最小值.22.解析:(1)f ′(x)=3x2+2ax.由已知条件⎩⎪⎨⎪⎧ f 1=0,f ′1=-3,即⎩⎪⎨⎪⎧a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2. (2)由(1)知f(x)=x3-3x2+2,f ′(x)=3x2-6x =3x(x -2),f ′(x)与f(x)随x 变化情况如下:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x)+-+f(x) 2 ↘ -2由f(x)=f(0)解得x =0,或x =3.因此根据f(x)的图像当0<t ≤2时,f(x)的最大值为f(0)=2,最小值为f(t)=t3-3t2+2; 当2<t ≤3时,f(x)的最大值为f(0)=2,最小值为f(2)=-2; 当t >3时,f(x)的最大值为f(t)=t3-3t2+2,最小值为f(2)=-2. 23.解析:(1)函数f(x)的定义域为(-∞,+∞),因为f ′(x)=x +ex -(ex +xex)=x(1-ex), 由f ′(x)=x(1-ex)>0得x <0,f ′(x)<0得x >0,则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)由(1)知,f(x)在[0,2]上单调递减,在[-2,0)上单调递增,又f(-2)=2+3e2,f(2)=2-e2,且2+3e2>2-e2,所以x ∈[-2,2]时,[f(x)]min =2-e2,故m <2-e2时,不等式f(x)>m 恒成立.【方法点睛】 1.不等式恒成立问题一般转化为函数的最值(或值域)来求解.其解题步骤为①分离参数;②构造函数;③求函数的最值(或值域);④由恒成立得出参数的取值范围.2.在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.24.规范解题:(1)f ′(x)=a ⎝⎛⎭⎫x +1x -lnx x +12-bx2.(1分)由于直线x +2y -3=0的斜率为-12,且过点(1,1).故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,(3分) 即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(4分)(2)证明:由(1)知f(x)=lnx x +1+1x ,所以f(x)-lnx x -1=11-x2⎝⎛⎭⎫2lnx -x2-1x .(5分) 考虑函数h(x)=2lnx -x2-1x(x >0),(6分)则h ′(x)=2x -2x2-x2-1x2=-x -12x2.(8分)所以当x ≠1时,h ′(x)<0.而h(1)=0,故 当x ∈(0,1)时,h(x)>0,可得11-x2h(x)>0;(9分)当x ∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.(10分)从而当x >0,且x ≠1时,f(x)-lnxx -1>0,即f(x)>lnxx -1.(12分)【方法点睛】模板构建:利用导数证明不等式的基本步骤: 第一步 作差f(x)-lnxx -1; 第二步 构造新的函数h(x); 第三步 对h(x)求导;第四步 利用h ′(x)判断11-x2h(x)的正负;第五步 结论.。

导数高考题(含答案)

导数高考题(含答案)

导数高考题1.已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(i)f′(x)=3x2+a,设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f (x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.2.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]3.函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤.解:(Ⅰ)函数f(x)的概念域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)>0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n+1=ln(a n+1)>ln(),a n+1=ln(a n+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.4.已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估量ln2的近似值(精准到0.001).解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x知足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,按照(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.5.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.解:(Ⅰ)函数f(x)的概念域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.6.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1),设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].7.已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其概念域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.8.已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为( II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2,所以。

高考函数导数及其应用训练

高考函数导数及其应用训练

函数导数以及应用【2021年】1.(2021年全国高考乙卷数学(文)试题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >2.(2021年全国新高考Ⅰ卷数学试题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<二、填空题3.(2021年全国高考甲卷数学(理)试题)曲线212x y x -=+在点()1,3--处的切线方程为__________. 4.(2021年全国新高考Ⅰ卷数学试题)函数()212ln f x x x =--的最小值为______.三、解答题5.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.6.(2021年全国高考乙卷数学(理)试题)设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.7.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.8.(2021年全国高考甲卷数学(理)试题)已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 9.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+2.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +123.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .124.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-5.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .yx =-C .2y x =D .y x =6.(2018年全国普通高等学校招生统一考试理数(全国卷II ))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .7.(2017年全国普通高等学校招生统一考试理科数学(新课标2)若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为. A .1-B .32e --C .35e -D .18.(2017年全国普通高等学校招生统一考试理科数学)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12-B .13C .12D .19.(2016年全国普通高等学校招生统一考试理科数学)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是 A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎥⎣⎦10.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭11.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞12.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-13.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))函数()f x 在0x x =处导数存在,若p:()000,:f x q x x '==是()f x 的极值点,则 A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件14.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是 A .(],2-∞- B .(],1-∞-C .[)2,+∞D .[)1,+∞15.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= A .0 B .1C .2D .316.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设函数()xf x mπ=.若存在()f x的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞17.(2013年全国普通高等学校招生统一考试理科数学)已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-18.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷带解析))已知函数f(x)=32x ax bx c +++,下列结论中错误的是A .∃0x R ∈, f(0x )=0B .函数y=f(x)的图像是中心对称图形C .若0x 是f(x)的极小值点,则f(x)在区间(-∞, 0x )单调递减D .若0x 是f (x )的极值点,则 f '(0x )=019.(2012年全国普通高等学校招生统一考试理科数学(课标卷带解析))设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为A .1ln 2-B ln 2)-C .1ln 2+D ln 2)+二、填空题20.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. .21.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))曲线23()e x y x x =+在点(0,0)处的切线方程为___________.22.(2018年全国普通高等学校招生统一考试文科数学(新课标1卷))曲线2ln y x =在点()1,0处的切线方程为__________.23.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))曲线21y x x=+在点(1,2)处的切线方程为______________.24.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =_______.25.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))已知()f x 为偶函数,当0x ≤ 时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是_________.26.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是__________.27.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a =________.28.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________.29.(2012年全国普通高等学校招生统一考试文科数学(课标卷)曲线y=x(3lnx+1)在点处的切线方程为________三、解答题30.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.31.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 32.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.33.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .34.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.35.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.36.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.37.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知函数()sin ln(1)f x x x =-+,()'f x 为()f x的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.38.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点; (2)()=0f x 有且仅有两个实根,且两个实根互为倒数. 39.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 40.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围. 41.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.42.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知函数()e 1xf x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 43.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.44.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.45.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知函数()2xe xf x a =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在只有一个零点,求a 的值.46.(2018年全国卷Ⅲ文数高考试题)已知函数()21xax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.47.(2018年全国卷Ⅲ理数高考试题)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .48.(2018年全国卷Ⅲ理数高考试题)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.49.(2017年全国普通高等学校招生统一考试理科数学(新课标1))已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.50.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设函数2()(1)x f x x e =-. (I )讨论函数()f x 的单调性;(II )当0x ≥时,()1f x ax ≤+,求实数a 的取值范围.【答案】(I )函数()f x 在(,1)-∞和1,+)∞上单调递减,在(11)上单调递增. (II )[1,)+∞.51.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202ef x --<<.52.(2017年全国普通高等学校招生统一考试文科数学(新课标3))已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 53.(2017年全国普通高等学校招生统一考试文科数学))已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm +++<,求m 的最小值. 54.(2017年全国普通高等学校招生统一考试理科数学)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.55.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))已知函数2()(2)(1)x f x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是()f x 的两个零点,证明:122x x +<.56.(2016年全国普通高等学校招生统一考试文科数学)已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.57.(2016年全国普通高等学校招生统一考试理科数学)(1)讨论函数()22xx f x e x -=+ 的单调性,并证明当x >0时,()220;xx e x -++>(2)证明:当[)0,1a ∈ 时,函数2x =(0)x e ax ag x x-->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.58.(2016年全国普通高等学校招生统一考试数学)设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.59.(2016年全国普通高等学校招生统一考试理科数学(新课标3卷)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中α>0,记 ()f x 的最大值为A .(Ⅰ)求()'f x ; (Ⅱ)求A ;(Ⅲ)证明()2f x A '≤.60.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设函数()2ln xf x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数; (Ⅱ)证明:当0a >时()22ln f x a a a≥+.61.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知函数31()4f x x ax =++,()ln g x x =-.(1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用min{,}m n 表示,m n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,讨论()h x 零点的个数. 62.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.63.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))设函数2()e mx f x x mx =+-. (1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|1f x f x e -≤-,求m 的取值范围.64.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 求b;若存在01,x ≥使得()01af x a <-,求a 的取值范围。

专题04 导数及其应用(解答题)

专题04  导数及其应用(解答题)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。

高三导数及其应用测试题及答案解析

高三导数及其应用测试题及答案解析

高三数学章末综合测试题导数及其应用一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.232.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .24.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4 B .-14 C .2D .-125.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤36.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4B.π3C.2π3D.3π48.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( )A .y =2x -1B .y =3x -2C .y =x +1D .y =-2x +310.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( ) A .在(-2,1)内f (x )是增函数 B .在(1,3)内f (x )是减函数新 课标 第 一 网 C .在(4,5)内f (x )是增函数 D .在x =2时,f (x )取到极小值11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427 C .-427、0 D .0、-42712.若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.14.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________.15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.16.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________. ①函数f (x )在区间(-3,1)内单调递减;②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值;④当x =7时,函数f (x )有极小值. 三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ).(1)若函数f (x )在x =1处有极值为10,求b 的值; (2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围. 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ). (1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.21.(12分)设函数f (x )=ln x ,g (x )=ax +bx,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线. (1)求a ,b 的值; (2)对任意x >0,试比较f (x )与g (x )的大小.22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值; (2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论; (3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43.一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.23解析:y ′=x 2+1,当x =1时,k =y ′|x =1=2,∴切线方程为y -43=2(x -1).当x =0时,y =-23,当y =0时,x =13.∴三角形的面积S =12×|-23|×13=19.答案:A2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:由y =4x 2+1x ,得y ′=8x -1x 2. 令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增. 答案:B3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2解析:据已知可得f ′(x )=sin x +x cos x ,故f ′⎝⎛⎭⎫π2=1.由两直线的位置关系可得-a2×1=-1,解得a =2. 答案:D4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4B .-14C .2D .-12解析:∵f (x )=g (x )+x 2,∴f ′(x )=g ′(x )+2x ,X k b 1 . c o m f ′(1)=g ′(1)+2=2+2=4. 答案:A5.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤3解析:由f (x )=x 3-ax ,得f ′(x )=3x 2-a , 由3x 2-a ≥0对于一切x ∈(-∞,-1]恒成立, 3x 2≥a ,∴a ≤3.若a <3,则f ′(x )>0对于一切x ∈(-∞,-1]恒成立. 若a =3,x ∈(-∞,-1)时,f ′(x )>0恒成立. x =-1时,f ′(-1)=0,∴a ≤3. 答案:D6.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)解析:由y =xf ′(x )的图像知±2是y =f ′(x )的两个零点,设f ′(x )=a (x -2)(x +2).当x >2时,xf ′(x )=ax (x -2)(x +2)>0,∴a >0.由f ′(x )=a (x -2)(x +2)知,f (-2)是极大值,f (2)是极小值,故选D. 答案:D7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4 B.π3 C.2π3D.3π4解析:由题意,得f ′(x )=x 2+f ′(1)x -f ′(2), 令x =0,得f ′(0)=-f ′(2), 令x =1,得f ′(1)=1+f ′(1)-f ′(2), ∴f ′(2)=1,∴f ′(0)=-1,即f (x )在点(0,f (0))处切线的斜率为-1, ∴倾斜角为3π4.答案:D8.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:由y =f ′(x )的图像知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )图像上任意一点切线的斜率在(0,+∞)也单调递减,故可排除A ,C.又由图像知,y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线斜率相同,故可排除B.故选D. 答案:D9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( ) A .y =2x -1 B .y =3x -2 C .y =x +1D .y =-2x +3解析:令x =0,解得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,令x =0,解得f ′(0)=1,故切线方程为y =x +1. 答案:C10.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( )A .在(-2,1)内f (x )是增函数B .在(1,3)内f (x )是减函数新 课 标 第 一 网C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取到极小值解析:在(-2,1)上,导函数的符号有正有负,所以函数f (x )在这个区间上不是单调函数;同理,函数f (x )在(1,3)上也不是单调函数,在x =2的左侧,函数f (x )在⎝⎛⎭⎫-32,2上是增函数.在x =2的右侧,函数f (x )在(2,4)上是减函数,所以在x =2时,f (x )取到极大值;在(4,5)上导函数的符号为正,所以函数f (x )在这个区间上为增函数. 答案:C11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427C .-427、0D .0、-427解析:f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0,得x =13,或x =1.从而求得当x =13时,f (x )取极大值427;当x =1时,f (x )取极小值0.故选A.答案:A12.如右图,若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4解析:由图像知f (1)=3,f ′(1)=1,故f (1)+f ′(1)= 3+1=4. 答案:D第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 解析:设P (a ,a 2-a +1),y ′|x =a =2a -1∈[]-1,3, ∴0≤a ≤2.从而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34. 当a =12时,g (a )min =34;a =2时,g (a )max =3. 故P 点纵坐标范围是⎣⎡⎦⎤34,3.答案:⎣⎡⎦⎤34,314.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________. 解析:设F (x )=f (x )-g (x ),其定义域为(0,+∞),则F ′(x )=1x +2-2ax -a =-(2x +1)(ax -1)x ,x ∈(0,+∞).当a ≤0时,F ′(x )>0,F (x )单调递增,F (x )≤0不可能恒成立. 当a >0时,令F ′(x )=0,得x =1a ,或x =-12(舍去).当0<x <1a 时,F ′(x )>0;当x >1a 时,F ′(x )<0.故F (x )在(0,+∞)上有最大值F ⎝⎛⎭⎫1a ,由题意F ⎝⎛⎭⎫1a ≤0恒成立,即ln 1a +1a -1≤0.令φ(a )=ln 1a +1a -1,则φ(a )在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a -1≤0成立的充要条件是a ≥1. 答案:[1,+∞)15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.解析:∵f (x )=ax 2+bx +k (k >0),∴f ′(x )=2ax +b .又f (x )在x =0处有极值,故f ′(0)=0,从而b =0.由曲线y =f (x )在(1,f (1))处的切线与直线x +2y +1=0垂直,可知该切线斜率为2,即f ′(1)=2,∴2a =2,得a =1.∴a +b =1+0=1. 答案:116.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________.(填写正确命题的序号) ①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值.解析:由图像可得,在区间(-3,1)内f (x )的导函数数值大于零,所以f (x )单调递增;在区间(1,7)内f (x )的导函数值小于零,所以f (x )单调递减;在x =-3左右的导函数符号不变,所以x =-3不是函数的极大值点;在x =7左右的导函数符号在由负到正,所以函数f (x )在x =7处有极小值.故②④正确. 答案:②④三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析:(1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧ a =4,b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,故函数有极值点; 当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3(x -1)2≥0,故函数无极值点; 故b 的值为-11.(2)方法一:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)上单调递增或为常数函数,∴得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , 又-3x 2+8x =-3⎝⎛⎭⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163,故b 的最小值为163.方法二:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max . 令F (x )=-3x 2-2ax =-3⎝⎛⎭⎫x +a 32+a 23, ①当a ≥0时,F (x )max =0,于是b ≥0; ②当-4≤a <0时,F (x )max =a 23,于是b ≥a 23.又∵⎝⎛⎭⎫a 23max =163,∴b ≥163. 综上,b 的最小值为163.18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.解析:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0, ∴b ≥x -3x 2在(-∞,+∞)恒成立.设g (x )=x -3x 2,当x =16时,g (x )max =112,∴b ≥112.(2)由题意,知f ′(1)=0,即3-1+b =0,∴b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2, 令f ′(x )=0,得x =1,或x =-23.∵f (1)=-32+c ,f (-23)=2227+c ,f (-1)=12+c ,f (2)=2+c ,∴f (x )max =f (2)=2+c ,∴2+c <c 2,解得c >2,或c <-1, 所以c 的取值范围为(-∞,-1)∪(2,+∞). 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ).(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 解析:(1)当m =1时,f (x )=2x x 2+1,f (2)=45,又因为f ′(x )=2(x 2+1)-4x 2(x 2+1)2=2-2x 2(x 2+1)2,则f ′(2)=-625.所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0. (2)f ′(x )=2m (x 2+1)-2x (2mx -m 2+1)(x 2+1)2=-2(x -m )(mx +1)(x 2+1)2.令f ′(x )=0,得到x 1=-1m ,x 2=m .∵m >0,∴-1m<m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫-∞,-1m-1m ⎝⎛⎭⎫-1m ,m m (m ,+∞)f ′(x ) - 0 + 0 - f (x )递减极小值递增极大值递减从而f (x )在区间⎝⎛⎭⎫-∞,-1m ,(m ,+∞)内为减函数,在区间⎝⎛⎭⎫-1m ,m 内为增函数, 故函数f (x )在点x 1=-1m 处取得极小值f ⎝⎛⎭⎫-1m ,且f ⎝⎛⎭⎫-1m =-m 2,函数f (x )在点x 2=m 处取得极大值f (m ),且f (m )=1.20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.解析:(1)当a =1时,f (x )=12x 2+ln x ,f ′(x )=x +1x =x 2+1x.对于x ∈[1,e]有f ′(x )>0, ∴f (x )在区间[1,e]上为增函数, ∴f (x )max =f (e)=1+e 22,f (x )min =f (1)=12.(2)令g (x )=f (x )-2ax =(a -12)x 2-2ax +ln x ,则g (x )的定义域为(0,+∞).在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立. ∵g ′(x )=(2a -1)x -2a +1x=(2a -1)x 2-2ax +1x=(x -1)[(2a -1)x -1]x,①若a >12,令g ′(x )=0,得极值点x 1=1,x 2=12a -1,当x 2>x 1=1,即12<a <1时,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不符合题意; 当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不符合题意; ②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0,从而g (x )在区间(1,+∞)上是减函数.要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12, 由此求得a 的取值范围是⎣⎡⎦⎤-12,12. 综上可知,当a ∈⎣⎡⎦⎤-12,12时,函数f (x )的图像恒在直线y =2ax 下方. 21.(12分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线.(1)求a ,b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.解析:(1)f (x )=ln x 的图像与x 轴的交点坐标是(1,0),依题意,得g (1)=a +b =0.①又f ′(x )=1x ,g ′(x )=a -b x 2, 且f (x )与g (x )在点(1,0)处有公共切线,∴g ′(1)=f ′(1)=1,即a -b =1.②由①②得,a =12,b =-12. (2)令F (x )=f (x )-g (x ),则F (x )=ln x -⎝⎛⎭⎫12x -12x =ln x -12x +12x, ∴F ′(x )=1x -12-12x 2=-12⎝⎛⎭⎫1x-12≤0. ∴F (x )在(0,+∞)上为减函数.当0<x <1时,F (x )>F (1)=0,即f (x )>g (x );当x =1时,F (1)=0,即f (x )=g (x );当x >1时,F (x )<F (1)=0,即f (x )<g (x ).22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值;(2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论;(3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43. 解析:(1)∵函数f (x )的图像关于原点对称,∴对任意实数x 有f (-x )=-f (x ),∴-ax 3-2bx 2-cx +4d =-ax 3+2bx 2-cx -4d , 即bx 2-2d =0恒成立,∴b =0,d =0,∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c ,∵当x =1时,f (x )取极小值-23, ∴3a +c =0,且a +c =-23, 解得a =13,c =-1. (2)当x ∈[-1,1]时,图像上不存在这样的两点使结论成立. 假设图像上存在两点A (x 1,y 1),B (x 2,y 2),使得过此两点处的切线互相垂直,则由f ′(x )=x 2-1知,两点处的切线斜率分别为k 1=x 12-1,k 2=x 22-1, 且(x 12-1)(x 22-1)=-1.(*)∵x 1,x 2∈[-1,1],∴x 12-1≤0,x 22-1≤0. ∴(x 12-1)(x 22-1)≥0.此与(*)相矛盾,故假设不成立.(3)f ′(x )=x 2-1,令f ′(x )=0,得x =±1.当x ∈(-∞,-1)或x ∈(1,+∞)时,f ′(x )>0, 当x ∈(-1,1)时,f ′(x )<0,∴f (x )在[-1,1]上是减函数,且f (x )max =f (-1)=23,f (x )min =f (1)=-23. ∴在[-1,1]上,|f (x )|≤23, 于是x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43.。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

全国五年高考真题导数及其应用 解析版

全国五年高考真题导数及其应用     解析版

专题03 导数及其应用【2020年】1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 【2019年】1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .2.(2019·天津卷)已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.3.(2019浙江卷)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .4.(2019·全国Ⅰ卷)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 5.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得02x =02x =-∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.6.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.7.(2019·北京卷)设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞. 【2018年】1.(2018·全国Ⅰ卷)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以, 所以曲线在点处的切线方程为,化简可得.故选D.2.(2018·全国Ⅱ卷)函数()2 e e xxf xx--=的图像大致为【答案】B【解析】()()()2e e0,,x xx f x f x f xx--≠-==-∴为奇函数,舍去A;()11e e0f-=->,∴舍去D;()()()()()243e e e e22e2e,x x x x x xx x x xf xx x---+---++=='2x∴>时,()0f x'>,()f x单调递增,舍去C.因此选B.3.(2018·全国Ⅲ卷)函数422y x x=-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得22x <-或202x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C.故选D.4.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】【解析】则所求的切线方程为.5.(2018·全国Ⅲ卷)曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________. 【答案】-3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以.6.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】【解析】,所以当时函数单调递减,当时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数取得最小值,此时,所以,故答案是.7.(2018·江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =.从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f =()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为-3. 【2017年】1.(2017·全国Ⅲ卷)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 2.(2017·全国Ⅱ卷)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-, 因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-, 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .3.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .11.(2017·江苏卷)已知函数31()2e e x xf x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅,所以函数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.12.(2017·山东卷)若函数e ()x f x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①ee ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②ee ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x xg x x x x x '=⋅+⋅=+,∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有M 性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.【2016年】1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。

高考数学-导数及其应用(含22年真题讲解)

高考数学-导数及其应用(含22年真题讲解)

高考数学-导数及其应用(含22年真题讲解)1.【2022年全国甲卷】当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( ) A .−1 B .−12C .12D .1【答案】B 【解析】 【分析】根据题意可知f (1)=−2,f ′(1)=0即可解得a,b ,再根据f ′(x )即可解出. 【详解】因为函数f (x )定义域为(0,+∞),所以依题可知,f (1)=−2,f ′(1)=0,而f ′(x )=ax −bx 2,所以b =−2,a −b =0,即a =−2,b =−2,所以f ′(x )=−2x +2x 2,因此函数f (x )在(0,1)上递增,在(1,+∞)上递减,x =1时取最大值,满足题意,即有f ′(2)=−1+12=−12. 故选:B.2.【2022年全国甲卷】已知a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b【答案】A 【解析】 【分析】由cb =4tan 14结合三角函数的性质可得c >b ;构造函数f(x)=cosx +12x 2−1,x ∈(0,+∞),利用导数可得b >a ,即可得解. 【详解】因为cb =4tan 14,因为当x ∈(0,π2),sinx <x <tanx 所以tan 14>14,即cb >1,所以c >b ; 设f(x)=cosx +12x 2−1,x ∈(0,+∞),f ′(x)=−sinx +x >0,所以f(x)在(0,+∞)单调递增, 则f (14)>f(0)=0,所以cos 14−3132>0,所以b >a ,所以c >b >a , 故选:A3.【2022年新高考1卷】设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【答案】C 【解析】 【分析】构造函数f(x)=ln(1+x)−x , 导数判断其单调性,由此确定a,b,c 的大小. 【详解】设f(x)=ln(1+x)−x(x >−1),因为f ′(x)=11+x −1=−x1+x , 当x ∈(−1,0)时,f ′(x)>0,当x ∈(0,+∞)时f ′(x)<0,所以函数f(x)=ln(1+x)−x 在(0,+∞)单调递减,在(−1,0)上单调递增, 所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b >c ,所以f(−110)<f(0)=0,所以ln 910+110<0,故910<e −110,所以110e 110<19,故a <b ,设g(x)=xe x +ln(1−x)(0<x <1),则g ′(x)=(x +1)e x +1x−1=(x 2−1)e x +1x−1,令ℎ(x)=e x (x 2−1)+1,ℎ′(x)=e x (x 2+2x −1),当0<x <√2−1时,ℎ′(x)<0,函数ℎ(x)=e x (x 2−1)+1单调递减, 当√2−1<x <1时,ℎ′(x)>0,函数ℎ(x)=e x (x 2−1)+1单调递增, 又ℎ(0)=0,所以当0<x <√2−1时,ℎ(x)<0,所以当0<x <√2−1时,g ′(x)>0,函数g(x)=xe x +ln(1−x)单调递增, 所以g(0.1)>g(0)=0,即0.1e 0.1>−ln0.9,所以a >c 故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x 3−x +1,则( ) A .f(x)有两个极值点B .f(x)有三个零点C .点(0,1)是曲线y =f(x)的对称中心D .直线y =2x 是曲线y =f(x)的切线【答案】AC【解析】 【分析】利用极值点的定义可判断A ,结合f(x)的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,f ′(x )=3x 2−1,令f ′(x )>0得x >√33或x <−√33,令f ′(x)<0得−√33<x <√33,所以f(x)在(−√33,√33)上单调递减,在(−∞,−√33),(√33,+∞)上单调递增, 所以x =±√33是极值点,故A 正确;因f(−√33)=1+2√39>0,f(√33)=1−2√39>0,f (−2)=−5<0,所以,函数f (x )在(−∞,−√33)上有一个零点,当x ≥√33时,f (x )≥f (√33)>0,即函数f (x )在(√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B 错误;令ℎ(x)=x 3−x ,该函数的定义域为R ,ℎ(−x )=(−x )3−(−x )=−x 3+x =−ℎ(x ), 则ℎ(x)是奇函数,(0,0)是ℎ(x)的对称中心, 将ℎ(x)的图象向上移动一个单位得到f(x)的图象, 所以点(0,1)是曲线y =f(x)的对称中心,故C 正确; 令f ′(x )=3x 2−1=2,可得x =±1,又f(1)=f (−1)=1,当切点为(1,1)时,切线方程为y =2x −1,当切点为(−1,1)时,切线方程为y =2x +3, 故D 错误. 故选:AC.5.【2022年全国乙卷】已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点.若x 1<x 2,则a 的取值范围是____________. 【答案】(1e ,1) 【解析】 【分析】由x 1,x 2分别是函数f (x )=2a x −ex 2的极小值点和极大值点,可得x ∈(−∞,x 1)∪(x 2,+∞)时,f′(x)<0,x∈(x1,x2)时,f′(x)>0,再分a>1和0<a<1两种情况讨论,方程2lna ⋅a x−2ex=0的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,构造函数g(x)=lna⋅a x,利用指数函数的图象和图象变换得到g(x)的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解:f′(x)=2lna⋅a x−2ex,因为x1,x2分别是函数f(x)=2a x−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,若a>1时,当x<0时,2lna⋅a x>0,2ex<0,则此时f′(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅a x−2ex=0的两个根为x1,x2,即方程lna⋅a x=ex的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,∵0<a<1,∴函数y=a x的图象是单调递减的指数函数,又∵ln a<0,∴y=lna⋅a x的图象由指数函数y=a x向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a|倍得到,如图所示:设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅a x0),则切线的斜率为g′(x0)=ln2a⋅a x0,故切线方程为y−lna⋅a x0=ln2a⋅a x0(x−x0),则有−lna⋅a x0=−x0ln2a⋅a x0,解得x0=1lna,则切线的斜率为ln2a⋅a1lna=eln2a,因为函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又0<a<1,所以1e<a<1,综上所述,a的范围为(1e,1).【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.6.【2022年新高考1卷】若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________________.【答案】(−∞,−4)∪(0,+∞)【解析】【分析】设出切点横坐标x0,利用导数的几何意义求得切线方程,根据切线经过原点得到关于x0的方程,根据此方程应有两个不同的实数根,求得a的取值范围.【详解】∵y=(x+a)e x,∴y′=(x+1+a)e x,设切点为(x0,y0),则y0=(x0+a)e x0,切线斜率k=(x0+1+a)e x0,切线方程为:y−(x0+a)e x0=(x0+1+a)e x0(x−x0),∵切线过原点,∴−(x0+a)e x0=(x0+1+a)e x0(−x0),整理得:x02+ax0−a=0,∵切线有两条,∴∆=a2+4a>0,解得a<−4或a>0,∴a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞)7.【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,___ _________.【答案】y=1e x y=−1ex【解析】【分析】分x>0和x<0两种情况,当x>0时设切点为(x0,lnx0),求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出x0,即可求出切线方程,当x <0时同理可得;【详解】解:因为y=ln|x|,当x>0时y=lnx,设切点为(x0,lnx0),由y′=1x ,所以y′|x=x0=1x,所以切线方程为y−lnx0=1x0(x−x0),又切线过坐标原点,所以−lnx0=1x0(−x0),解得x=e,所以切线方程为y−1=1e(x−e),即y=1ex;当x<0时y=ln(−x),设切点为(x1,ln(−x1)),由y′=1x ,所以y′|x=x1=1x1,所以切线方程为y−ln(−x1)=1x1(x−x1),又切线过坐标原点,所以−ln(−x1)=1x1(−x1),解得x1=−e,所以切线方程为y−1=1−e(x+e),即y=−1ex;故答案为:y=1e x;y=−1ex8.【2022年全国甲卷】已知函数f(x)=x3−x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=−1,求a;(2)求a的取值范围.【答案】(1)3(2)[−1,+∞)【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.(1)由题意知,f(−1)=−1−(−1)=0,f′(x)=3x2−1,f′(−1)=3−1=2,则y=f(x)在点(−1,0)处的切线方程为y=2(x+1),即y=2x+2,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2=2,解得x2=1,则g(1)=1+a=2+2,解得a=3;(2)f′(x)=3x2−1,则y=f(x)在点(x1,f(x1))处的切线方程为y−(x13−x1)=(3x12−1)(x−x1),整理得y=(3x12−1)x−2x13,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2,则切线方程为y−(x22+a)=2x2(x−x2),整理得y=2x2x−x22+a,则{3x12−1=2x2−2x13=−x22+a ,整理得a=x22−2x13=(3x122−12)2−2x13=94x14−2x13−32x12+14,令ℎ(x)=94x4−2x3−32x2+14,则ℎ′(x)=9x3−6x2−3x=3x(3x+1)(x−1),令ℎ′(x)>0,解得−13<x<0或x>1,令ℎ′(x)<0,解得x<−13或0<x<1,则x变化时,ℎ′(x),ℎ(x)的变化情况如下表:则ℎ(x)的值域为[−1,+∞),故a的取值范围为[−1,+∞).9.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −x e1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−x e1x−lnx−1x>0,x∈(1,+∞)即证e xx −x e1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −x e1x>0,lnx−12(x−1x)<0设g(x)=e xx−x e1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+x e1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x)=(1−1x)(exx−e1x)=x−1x(exx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2ex>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−x e1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −x e1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握10.【2022年全国乙卷】已知函数f(x)=ax−1x−(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【答案】(1)−1(2)(0,+∞)【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得f′(x)=(ax−1)(x−1)x2,按照a≤0、0<a<1及a>1结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当a=0时,f(x)=−1x −lnx,x>0,则f′(x)=1x2−1x=1−xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=−1;(2)f(x)=ax−1x −(a+1)lnx,x>0,则f′(x)=a+1x2−a+1x=(ax−1)(x−1)x2,当a≤0时,ax−1≤0,所以当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=a−1<0,此时函数无零点,不合题意;当0<a<1时,1a >1,在(0,1),(1a,+∞)上,f′(x)>0,f(x)单调递增;在(1,1a)上,f′(x)<0,f(x)单调递减;又f(1)=a−1<0,当x趋近正无穷大时,f(x)趋近于正无穷大,所以f(x)仅在(1a,+∞)有唯一零点,符合题意;当a=1时,f′(x)=(x−1)2x2≥0,所以f(x)单调递增,又f(1)=a−1=0,所以f(x)有唯一零点,符合题意;当a>1时,1a <1,在(0,1a),(1,+∞)上,f′(x)>0,f(x)单调递增;在(1a,1)上,f′(x)<0,f(x)单调递减;此时f(1)=a−1>0,又f(1a n )=1a n−1−a n+n(a+1)lna,当n趋近正无穷大时,f(1a n)趋近负无穷,所以f(x)在(0,1a )有一个零点,在(1a,+∞)无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.11.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=ex+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.12.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x−lnx−b有两个不同的零点即x−lnx=b的解的个数为2.当b=1,由(1)讨论可得x−lnx=b、e x−x=b仅有一个零点,当b<1时,由(1)讨论可得x−lnx=b、e x−x=b均无零点,故若存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点,则b>1.设ℎ(x)=e x+lnx−2x,其中x>0,故ℎ′(x)=e x+1x−2,设s(x)=e x−x−1,x>0,则s′(x)=e x−1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x>x+1,所以ℎ′(x)>x+1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e−2>0,ℎ(1e3)=e1e3−3−2e3<e−3−2e3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e3<x 0<1且:当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−b x 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 13.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围; (3)设n ∈N ∗,证明:√12+1√22+2⋯√n 2+n>ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=x e ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=x e x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=x e ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +ax e ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a=12,则∀x>0,总有x e12x−e x+1<0成立,令t=e12x,则t>1,t2=e x,x=2lnt,故2tlnt<t2−1即2lnt<t−1t对任意的t>1恒成立.所以对任意的n∈N∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n+1)−lnn<√n2+n,故√12+1√22+2⋯√n2+n>ln2−ln1+ln3−ln2+⋯+ln(n+1)−lnn=ln(n+1),故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.14.【2022年北京】已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).【答案】(1)y=x(2)g(x)在[0,+∞)上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),由第二问结论可知m(x)在[0,+∞)上单调递增,即得证.(1)解:因为f(x)=e x ln(1+x),所以f(0)=0,即切点坐标为(0,0),又f′(x)=e x(ln(1+x)+11+x),∴切线斜率k=f′(0)=1∴切线方程为:y=x(2)解:因为g(x)=f′(x)=e x(ln(1+x)+11+x),所以g′(x)=e x(ln(1+x)+21+x−1(1+x)2),令ℎ(x)=ln(1+x)+21+x−1(1+x)2,则ℎ′(x)=11+x −2(1+x)2+2(1+x)3=x2+1(1+x)3>0,∴ℎ(x)在[0,+∞)上单调递增,∴ℎ(x)≥ℎ(0)=1>0∴g′(x)>0在[0,+∞)上恒成立,∴g(x)在[0,+∞)上单调递增.(3)解:原不等式等价于f(s+t)−f(s)>f(t)−f(0),令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),∵m(x)=f(x+t)−f(x)=e x+t ln(1+x+t)−e x ln(1+x),m′(x)=e x+t ln(1+x+t)+e x+t1+x+t −e x ln(1+x)−e x1+x=g(x+t)−g(x),由(2)知g(x)=f′(x)=e x(ln(1+x)+11+x)在[0,+∞)上单调递增,∴g(x+t)>g(x),∴m′(x)>0∴m(x)在(0,+∞)上单调递增,又因为x,t>0,∴m(x)>m(0),所以命题得证.15.【2022年浙江】设函数f(x)=e2x+lnx(x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1)),(x2,f(x2)),(x3,f(x3))处的切线都经过点(a,b).证明:(ⅰ)若a >e ,则0<b −f(a)<12(ae−1);(ⅱ)若0<a <e ,x 1<x 2<x 3,则2e+e−a 6e2<1x 1+1x 3<2a −e −a 6e2. (注:e =2.71828⋯是自然对数的底数)【答案】(1)f(x)的减区间为(0,e 2),增区间为(e 2,+∞). (2)(ⅰ)见解析;(ⅱ)见解析. 【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) k =x 3x 1,m =a e<1,则题设不等式可转化为t 1+t 3−2−2m<(m−13)(m 2−m+12)36m(t 1+t 3),结合零点满足的方程进一步转化为lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0,利用导数可证该不等式成立. (1)f ′(x)=−e 2x 2+1x=2x−e 2x 2,当0<x <e 2,f ′(x)<0;当x >e2,f ′(x)>0, 故f(x)的减区间为(0,e 2),f(x)的增区间为(e 2,+∞). (2)(ⅰ)因为过(a,b)有三条不同的切线,设切点为(x i ,f(x i )),i =1,2,3, 故f(x i )−b =f ′(x i )(x i −a),故方程f(x)−b =f ′(x)(x −a)有3个不同的根,该方程可整理为(1x −e 2x 2)(x −a)−e 2x −lnx +b =0, 设g(x)=(1x −e 2x 2)(x −a)−e 2x −lnx +b , 则g ′(x)=1x −e 2x 2+(−1x 2+e x 3)(x −a)−1x +e 2x 2 =−1x 3(x −e )(x −a),当0<x <e 或x >a 时,g ′(x)<0;当e <x <a 时,g ′(x)>0, 故g(x)在(0,e ),(a,+∞)上为减函数,在(e ,a)上为增函数,因为g(x)有3个不同的零点,故g(e )<0且g(a)>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b <0且(1a −e 2a 2)(a −a)−e2a −lna +b >0, 整理得到:b <a 2e+1且b >e2a +lna =f(a),此时b −f(a)−12(ae−1)<a2e+1−(e 2a +lna)−a2e+12=32−e 2a −lna , 设u(a)=32−e 2a −lna ,则u ′(a)=e -2a2a 2<0, 故u(a)为(e ,+∞)上的减函数,故u(a)<32−e 2e −ln e =0,故0<b −f(a)<12(ae−1).(ⅱ)当0<a <e 时,同(ⅰ)中讨论可得:故g(x)在(0,a),(e ,+∞)上为减函数,在(a,e )上为增函数, 不妨设x 1<x 2<x 3,则0<x 1<a <x 2<e <x 3, 因为g(x)有3个不同的零点,故g(a)<0且g(e )>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b >0且(1a −e 2a 2)(a −a)−e2a −lna +b <0, 整理得到:a2e+1<b <a 2e+lna ,因为x 1<x 2<x 3,故0<x 1<a <x 2<e <x 3, 又g(x)=1−a+e x+e a2x 2−lnx +b ,设t =ex ,a e=m ∈(0,1),则方程1−a+e x+e a2x 2−lnx +b =0即为: −a+e et +a2et 2+lnt +b =0即为−(m +1)t +m 2t 2+lnt +b =0,记t 1=e x 1,t 2=e x 2,t 3=e x 3, 则t 1,t 1,t 3为−(m +1)t +m 2t 2+lnt +b =0有三个不同的根, 设k =t1t 3=x3x 1>e a >1,m =a e<1,要证:2e+e−a 6e2<1x 1+1x 2<2a −e −a 6e2,即证2+e −a 6e<t 1+t 3<2ea−e −a6e,即证:13−m6<t 1+t 3<2m −1−m6,即证:(t 1+t 3−13−m6)(t 1+t 3−2m +1−m6)<0, 即证:t 1+t 3−2−2m <(m−13)(m 2−m+12)36m(t 1+t 3),而−(m +1)t 1+m 2t 12+lnt 1+b =0且−(m +1)t 3+m 2t 32+lnt 3+b =0,故lnt 1−lnt 3+m 2(t 12−t 32)−(m +1)(t 1−t 3)=0,故t 1+t 3−2−2m =−2m ×lnt 1−lnt 3t 1−t 3,故即证:−2m ×lnt 1−lnt 3t 1−t 3<(m−13)(m 2−m+12)36m(t 1+t 3),即证:(t 1+t 3)ln t 1t 3t 1−t 3+(m−13)(m 2−m+12)72>0即证:(k+1)lnk k−1+(m−13)(m 2−m+12)72>0,记φ(k)=(k+1)lnk k−1,k >1,则φ′(k)=1(k−1)2(k −1k −2lnk)>0,设u(k)=k −1k −2lnk ,则u ′(k)=1+1k 2−2k >2k −2k =0即φ′(k)>0, 故φ(k)在(1,+∞)上为增函数,故φ(k)>φ(m), 所以(k+1)lnk k−1+(m−13)(m 2−m+12)72>(m+1)lnm m−1+(m−13)(m 2−m+12)72,记ω(m)=lnm +(m−1)(m−13)(m 2−m+12)72(m+1),0<m <1,则ω′(m)=(m−1)2(3m 3−20m 2−49m+72)72m(m+1)2>(m−1)2(3m 3+3)72m(m+1)2>0,所以ω(m)在(0,1)为增函数,故ω(m)<ω(1)=0, 故lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0即(m+1)lnm m−1+(m−13)(m 2−m+12)72>0,故原不等式得证: 【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.1.(2022·全国·南京外国语学校模拟预测)设函数()f x 在R 上存在导数()f x ',对于任意的实数x ,有()()22f x f x x +-=,当(],0x ∈-∞时,()42f x x '+<,若()()2422f m f m m m +++≤-,则实数m 的取值范围是( ) A .[)1,2 B .(](),12,-∞+∞ C .[)2,2-D .(](),12,-∞-+∞【解析】 【分析】构造函数()()24g x f x x x =-+,得到()g x 为奇函数,()g x 在R 上单调递减,分20m -<和20m ->两种情况,利用奇偶性和单调性解不等式,求出实数m 的取值范围.【详解】∵()42f x x '+<,∵()420f x x '+-<.令()()24g x f x x x =-+,且()()24g x f x x ''=-+,则()g x 在(],0-∞上单调递减.又∵()()22f x f x x +-=,∵()()()()2244g x g x f x x x f x x x +-=-++---=()()220f x f x x +--=,∵()g x 为奇函数,()g x 在R 上单调递减. ∵()()2422f m f m m m +++≤-,∵()()2242402f m f m m m m +++-+≤-.当20m -<,即2m <时,()()224240f m f m m m +++-+≥,即()()()()2222424f m m m f m m m ⎡⎤+-+++≥--+⎣⎦即()()2g m g m +≥-,由于()g x 在R 上递减,则2m m +≤-, 解得:1m ≤-, ∵1m ≤-.当20m ->,即2m >时,()()224240f m f m m m +++-+≤,即()()2g m g m +≤-.由()g x 在R 上递减,则2m m +≥-, 解得:1m ≥-,所以2m >.综上所述,实数m 的取值范围是(](),12,-∞-+∞.【点睛】构造函数,研究出构造的函数的奇偶性和单调性,进而解不等式,是经常考查的一类题目,结合题干信息,构造出函数是关键.2.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e x g x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e x g x x =+,其中x ∈R ,则()e 10xg x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减,所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D. 【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键就是将所求不等式进行转化,通过不等式的结构构造新函数,结合新函数的单调性来求解.3.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x =≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·福建·三明一中模拟预测)己知e 为自然对数的底数,a ,b 均为大于1的实数,若1e ln a a b b b ++<,则( )A .1e a b +<B .1e a b +>C .e ab <D .e ab >【答案】B 【解析】 【分析】由题意化简得到e ln e ln e e a a b b <,设()ln f x x x =,得到(e )()eab f f <,结合题意和函数()f x 的单调性,即可求解. 【详解】由1e ln a a b b b ++<,可得1eln (ln 1)ln ea b a b b b b b b +<-=-=,即e ln e ln e e a a b b<,设()ln f x x x =,可得(e )()eab f f <,因为0a >,可得e 1a >,又因为(ln 1)0,0b b b ->>,所以ln 1b >,即e b >,所以1eb>, 当1x >时,()ln 10f x x '=+>,可得函数()f x 在(1,)+∞为单调递增函数,所以e eab<,即1e a b +>. 故选:B.5.(2022·河南·开封市东信学校模拟预测(文))已知函数e ()e ln 2xf x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .e 2e 0x y +-= B .e e 02x y +=- C .e 2e 0x y --= D .e 2e 0x y ++=【答案】B 【解析】 【分析】根据导数的几何意义及点斜式方程即可求解. 【详解】 ∵e ()e 2x f x x ='-,∵e e (1)e 22f '=-=. 又1e (1)e ln12e f =-⨯=,切点为(1,e)所以曲线()y f x =在点(1,(1))f 处的切线的斜率为e (1)2k f '==, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 ee (1)2y x -=-,即e e 02x y +=-. 故选:B.6.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-【答案】A 【解析】 【分析】设切点为()3,t t -,根据导数的几何意义写出切线的方程,代入点()(),0m n m <,转化为方程有3个根,构造函数()3223g t t mt n =--,利用导数可知函数的极值,根据题意列出不等式组求解即可. 【详解】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A7.(2022·全国·模拟预测(理))若关于x 的方程22e ln (eln )0()x a x x x a ++=∈R 有两个不相等的实数根,则a 的取值范围是( ) A .(,2)(2,)-∞-+∞ B .(,2][2,)-∞-+∞ C .(2,2)- D .[2,2]-【答案】A 【解析】 【分析】首先判断1x =不是方程的根,再方程两边同除以2(eln )x ,即可得到210eln eln x x a x x ⎛⎫++= ⎪⎝⎭,令()eln xf x x=,利用导数说明函数的单调性,即可得到函数的图象,令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,对∆分类讨论,结合函数图象即可得解;【详解】解:当1x =时等式显然不成立,故1不是方程的根,当1x ≠时,将22e ln (eln )0x a x x x ++=的两边同除以2(eln )x ,可得210eln eln x x a x x ⎛⎫++= ⎪⎝⎭, 令()eln x f x x =,则0x >且1x ≠,所以()2ln 1eln x f x x-'=, 所以当01x <<和1e x <<时()0f x '<,当e x >时()0f x '>,即()f x 在()0,1和()1,e 上单调递减,在()e,+∞上单调递增,且()e 1f =, 函数()f x 的图象如下所示:令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,24a ∆=-, ①当∆<0时,方程无解,舍去;②当0∆=时,2a =±,若2a =,则1t =-,由图可得()1f x =-有且仅有一个解,故舍去, 若2a =-,则1t =,由图可得()1f x =有且仅有一个解,故舍去, ③当0∆>时,2a >或2a <-,若2a >,由120t t a +=-<,1210t t ⋅=>,所以10t <,10t <由图可得()1f x t =与()2f x t =各有一个解,符合题意,若2a <-,由122t t a +=->,1210t t ⋅=>,可设210t t >>,()10,1t ∈,()21,t ∈+∞, 由图可得()1f x t =无解,()2f x t =有两个解,符合题意, 综上可得a 的取值范围为(,2)(2,)-∞-+∞; 故选:A8.(2022·河南安阳·模拟预测(理))已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( )A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立,整理得()213(ln )a x x -≤,当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方,结合图像分析处理.【详解】根据题意得()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立则23(ln )x ax a -+≤,即()213(ln )a x x -≤∵当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方 ()6ln xg x x'=,则()10g '=,则0a ≤ 故选:B .9.(2022·河南开封·模拟预测(理))若关于x 的不等式ln ln 0e x x a a xx+->对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤-∞ ⎥⎝⎦B .1e ,⎡⎫+∞⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】由题设有ln e ln e x x a xa x>,构造ln ()x f x x =,利用导数研究其单调性及值域,将问题转化为e x a x >在0,1上恒成立,再构造()ex xg x =结合导数求参数范围.【详解】由题设可得ln e ln e xx a xa x>,令ln ()x f x x =,则(e )()x f a f x >在0,1上恒成立, 由21ln ()xf x x -'=,在()0,e 上()0f x '>;在()e,+∞上()0f x '<;所以()f x 在()0,e 上递增;在()e,+∞上递减,且(1)0f =, 在0,1上()0f x <,(1,)+∞上()0f x >,而0a >, 所以,只需e x a x >在0,1上恒成立,即e xxa >恒成立, 令()e x x g x =,则1()0e x x g x -'=>,即()g x 在0,1上递增,故1(1)e a g ≥=. 故a 的取值范围为1e ,⎡⎫+∞⎪⎢⎣⎭.故选:B 【点睛】。

导数应用精选50题(含有答案)

导数应用精选50题(含有答案)

C.2
D. 3
2
13.对于三次函数 f (x) ax3 bx2 cx d ( a 0 ),定义:设 f (x) 是函数 y f (x) 的
导数,若方程 f (x) 0 有实数解 x0,则称点(x0,(f x0))为函数 y f (x) 的“拐点”.有
同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’
)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
常数 为方程 f (x) = x 的实数根。 (1) 求证:当 x > 时,总有 x > f (x) 成立; (2) 对任意 x1、x2 若满足| x1- | < 1,| x2- | < 1,求证:| f (x1)-f (x2)| < 2.
25.(本小题满分 12 分)
已知函数 f (x) ax3 bx2 ,当 x 1 时,有极大值 3 ;
f
( ) , f 3
(x ) 为 f(x)的导函数,令 a=
12,b=log32,则下列关系
正确的是( )
A.f(a)>f(b) B.f(a)<f(b)
C.f(a)=f(b)
D.f(|a|)<f(b)
16.设在函数 y x sin x cos x 的图象上的点 x0, y0 处的切线斜率为 k,若 k g x0 ,则

专题03 导数及其应用专项高考真题总汇(带答案与解析)

专题03 导数及其应用专项高考真题总汇(带答案与解析)

专题03导数及其应用(选择题、填空题)1.【2021·全国高考真题】若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【解析】在曲线x y e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.【2021·浙江高考真题】已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C.故选:D.3.【2021·全国高考真题(理)】设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c <<B .b c a<<C .b a c<<D .c a b<<【答案】B【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+-,()()ln 121g x x =+-,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系.【解析】()()2222ln1.01ln1.01ln 10.01ln 120.010.01ln1.02a b ===+=+⨯+>=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+-,则()00f =,()2121xf x x --='=+由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x+-+>,()1x >+,()0f x '>,所以()f x 在[]0,2上单调递增,所以()()0.0100ff >=,即2ln1.011>,即a c >;令()()ln 121g x x =+-,则()00g =,()212212x g x x --==+',由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100gg <=,即ln1.021<,即b <c ;综上,b c a <<,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.4.【2021·全国高考真题(理)】设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】结合对a 进行分类讨论,画出()f x 图象,由此确定正确选项.【解析】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.依题意,x a =为函数()()()2f x a x a x b =--的极大值点,当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.5.【2021·全国高考真题(理)】曲线212x y x -=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【解析】由题,当1x =-时,3y =-,故点在曲线上.求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=.故答案为:520x y -+=.6.【2021·全国高考真题】函数()212ln f x x x =--的最小值为______.【答案】1【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【解析】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.7.【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题.8.【2020年高考全国III 卷理数】若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【解析】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.9.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.10.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤--= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减,则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e].故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0.故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.12.【2020年高考北京】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.【答案】①②③【解析】()()f b f a b a ---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.13.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.14.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线0x y +=的距离的最小值是▲.【答案】4【解析】由4(0)y x x x =+>,得241y x'=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =舍去),∴曲线4(0)y x x x =+>上,点P 到直线0x y +=的距离最小,最小值为4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =,故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.16.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xx f x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.。

导数及应用高考题及解析

导数及应用高考题及解析

导数及应用高考题及解析————————————————————————————————作者:————————————————————————————————日期:1。

(2008山东文21题)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 2。

(2008山东理21)已知函数1()ln(1),(1)nf x a x x =+--其中n ∈N *,a 为常数。

(Ⅰ)当n =2时,求函数f (x )的极值;(Ⅱ)当a =1时,证明:对任意的正整数n , 当x ≥2时,有f (x )≤x —1。

3.(2009山东文21题)已知函数321()33f x ax bx x =+++,其中0a ≠ (1) 当b a ,满足什么条件时,)(x f 取得极值?(2) 已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.4.(2010山东文10题)观察2'()2x x =,4'2()4x x =,(cos )'sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()()g x f x 为的导函数,则()g x -=(A )()f x(B)()f x -(C )()g x(D)()g x -5。

(2010山东文21题)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;,在点(时,求曲线))2(2)(1f x f y a =-= (Ⅱ)当12a ≤时,讨论()f x 的单调性. 6. (2011山东理16题)已知函数()log (0,1)a f x x x b a a =+->≠且, 当234a b <<<<时,函数()f x 的零点*0(,1),x n n n N ∈+∈,则n =__________。

历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , .5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+.(1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()2f x a …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b cf x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc >B .0ab >C .280b ac +>D .0ac <16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点 B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)【过程解析】3(2)2f x - 为偶函数,∴可得33(2)(2)22f x f x -=+,()f x ∴关于32x =对称,令54x =,可得3535(2(2)2424f f -⨯=+⨯,即(1)f f -=(4),故C 正确; (2)g x + 为偶函数,(2)(2)g x g x ∴+=-,()g x 关于2x =对称,故D 不正确; ()f x 关于32x =对称,32x ∴=是函数()f x 的一个极值点, ∴函数()f x 在3(2,)t 处的导数为0,即33()()022g f ='=,又()g x ∴的图象关于2x =对称,53((022g g ∴==,∴函数()f x 在5(2,)t 的导数为0,52x ∴=是函数()f x 的极值点,又()f x 的图象关于32x =对称,5(2∴,)t 关于32x =的对称点为1(2,)t ,由52x =是函数()f x 的极值点可得12x =是函数()f x 的一个极值点,11(()022g f ∴='=, 进而可得17()()022g g ==,故72x =是函数()f x 的极值点,又()f x 的图象关于32x =对称,7(2∴,)t 关于32x =的对称点为1(2-,)t ,11()()022g f ∴-='-=,故B 正确; ()f x 图象位置不确定,可上下移动,即每一个自变量对应的函数值不是确定值,故A 错误. 解法二:构造函数法,令()1sin f x x π=-,则3(2)1cos 22f x x π-=+,则()()cosg x f x x ππ='=-,(2)cos(2)cos g x x x πππππ+=-+=-, 满足题设条件,可得只有选项BC 正确, 故选:BC .考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<【过程解析】法一:函数x y e =是增函数,0x y e '=>恒成立, 函数的图象如图,0y >,即切点坐标在x 轴上方, 如果(,)a b 在x 轴下方,连线的斜率小于0,不成立. 点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线; (,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0a b e <<. 故选:D .法二:设过点(,)a b 的切线横坐标为t ,则切线方程为()t t y e x t e =-+,可得(1)t b e a t =+-,设()(1)f t a t =+-,可得()()t f t e a t '=-,(,)t a ∈-∞,()0f t '>,()f t 是增函数, (,)t a ∈+∞,()0f t '<,()f t 是减函数,因此当且仅当0a b e <<时,上述关于t 的方程有两个实数解,对应两条切线. 故选:D .3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 【过程解析】()x x y e x a e '=++,设切点坐标为0(x ,00())x x a e +, ∴切线的斜率000()x x k e x a e =++,∴切线方程为000000()(())()x x x y x a e e x a e x x -+=++-,又 切线过原点,000000()(())()x x x x a e e x a e x ∴-+=++-, 整理得:2000x ax a +-=,切线存在两条,∴方程有两个不等实根,∴△240a a =+>,解得4a <-或0a >,即a 的取值范围是(-∞,4)(0-⋃,)+∞, 故答案为:(-∞,4)(0-⋃,)+∞.4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , . 【过程解析】当0x >时,y lnx =,设切点坐标为0(x ,0)lnx , 1y x '=,∴切线的斜率01k x =, ∴切线方程为0001()y lnx x x x -=-, 又 切线过原点,01lnx ∴-=-, 0x e ∴=,∴切线方程为11()y x e e-=-,即0x ey -=,当0x <时,()y ln x =-,与y lnx =的图像关于y 轴对称, ∴切线方程也关于y 轴对称, ∴切线方程为0x ey +=,综上所述,曲线||y ln x =经过坐标原点的两条切线方程分别为0x ey -=,0x ey +=,故答案为:0x ey -=,0x ey +=.5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 【过程解析】当0x <时,()1x f x e =-,导数为()x f x e '=-, 可得在点1(A x ,_11)x e -处的斜率为_11x k e =-, 切线AM 的方程为_1_11(1)()x x y e e x x --=--,令0x =,可得_1_111x x y e x e =-+,即_1_11(0,1)x x M e x e -+, 当0x >时,()1x f x e =-,导数为()x f x e '=, 可得在点2(B x ,_21)x e -处的斜率为_22x k e =,令0x =,可得_2_221x x y e x e =--,即_2_22(0,1)x x N e x e --,由()f x 的图象在A ,B 处的切线相互垂直,可得_1_2121x x k k e e =-⋅=-, 即为120x x +=,10x <,20x >,所以2||1(0,1)||x AM BN e ===∈.故答案为:(0,1).考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -【过程解析】对函数()f x 求导可得,1()x f x ae x'=-, 依题意,10x ae x -…在(1,2)上恒成立,即1x a xe…在(1,2)上恒成立,设1(),(1,2)x g x x xe =∈,则22()(1)()()()x x x x x e xe e x g x xe xe -++'==-, 易知当(1,2)x ∈时,()0g x '<, 则函数()g x 在(1,2)上单调递减, 则11()(1)max a g x g e e-===….故选:C . 7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 【过程解析】(1)()()x f x a e a x =+-, 则()1x f x ae '=-,①当0a …时,()0f x '<恒成立,()f x 在R 上单调递减,②当0a >时,令()0f x '=得,1x lna=, 当1(,)x ln a ∈-∞时,()0f x '<,()f x 单调递减;当1(x ln a ∈,)+∞时,()0f x '>,()f x 单调递增,综上所述,当0a …时,()f x 在R 上单调递减;当0a >时,()f x 在1(,)ln a -∞上单调递减,在1(ln a,)+∞上单调递增.证明:(2)由(1)可知,当0a >时,2111()(()1min f x f ln a a ln a lna a a a==+-=++,要证3()22f x lna >+,只需证23122a lna lna ++>+,只需证2102a lna -->, 设g (a )212a lna =--,0a >, 则g '(a )21212a a a a -=-=, 令g '(a )0=得,2a =,当(0,)2a ∈时,g '(a )0<,g (a)单调递减,当(2a ∈,)+∞时,g '(a )0>,g (a )单调递增,所以g (a)11(022222g ln ln =--=->…, 即g (a )0>, 所以2102a lna -->得证, 即3()22f x lna >+得证. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 【过程解析】(Ⅰ) 函数()(0)2ef x lnx x x=+>, ∴2212()22e x ef x x x x -'=-+=,(0)x >, 由22()02x e f x x -'=>,得2ex >,()f x ∴在(2e ,)+∞上单调递增; 由22()02x ef x x -'=<,得02e x <<,()f x ∴在(0,)2e 上单调递减. (Ⅱ)()i 证明: 过(,)a b 有三条不同的切线,设切点分别为1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x ,()()()i i i f x b f x x a ∴-='-,(1i =,2,3),∴方程()()()f x b f x x a -='-有3个不同的根,该方程整理为21()()022e ex a lnx b x x x ----+=,设21()()()22e eg x x a lnx b x x x=----+,则223231111()()()()22e e e g x x a x e x a x x x x x x x'=-+-+--+=---, 当0x e <<或x a >时,()0g x '<;当e x a <<时,()0g x '>, ()g x ∴在(0,)e ,(,)a +∞上为减函数,在(,)e a 上为增函数, ()g x 有3个不同的零点,g ∴(e )0<且g (a )0>,21()()022e e e a lne b e e e ∴----+<,且21()()022e ea a lnab a a a----+>, 整理得到12a b e <+且()2eb lna f a a>+=, 此时,12a b e <+,且()2e b lna f a a >+=,此时,1()(1)1()02222a a e e b f a lna lna b e e a a ---<+-+--+>, 整理得12a b e <+,且()2e b lna f a a>+=, 此时,b f -(a )113(1)1()2222222a a e a elna lna e e a e a--<+-+-+=--,设μ(a )为(,)e +∞上的减函数,μ∴(a )3022elne e<--=, ∴10()(1)2ab f a e<-<-. ()ii 当0a e <<时,同()i 讨论,得:()g x 在(0,)a ,(,)e +∞上为减函数,在(,)a e 上为增函数, 不妨设123x x x <<,则1230x a x e x <<<<<,()g x 有3个不同的零点,g ∴(a )0<,且g (e )0>,21()()022e e e a lne b e e e ∴----+>,且21()022e e a a lna b a a a----+<, 整理得122a ab lna e e+<<+, 123x x x << ,1230x a x e x ∴<<<<<,2()12a e eag x lnx b x x+=-+-+ , 设,(0,1)e a t m x e ==∈,则方程2102a e ealnx b x x+-+-+=即为:202a e a t t lnt b e e +-+++=,即为2(1)02mm t t lnt b -++++=, 记123123,,e e et t t x x x ===, 则1t ,2t ,3t 为2(1)02m m t t lnt b -++++=有三个不同的根, 设31311x t e k t x a ==>>,1am e =<, 要证:2213211266e a e ae e x x a e --+<+<-, 即证132266e a e e at t e a e--+<+<-, 即证:213132(13)(12)236()m m m t t m m t t --++--<+,而2111(1)02m m t t lnt b -++++=,且2333(1)02m m t t lnt b -++++=, ∴22131313()(1)()02m lnt lnt t t m t t -+--+-=, ∴131313222lnt lnt t t m m t t -+--=-⨯-, ∴即证21313132(13)(12)36()lnt lnt m m m m t t m t t ---+-⨯<-+,即证1132313()(13)(12)072t t t lnt m m m t t +--++>-,即证2(1)(13)(12)0172k lnk m m m k +--++>-, 记(1)(),11k lnkk k k ϕ+=>-,则211()(2)0(1)k k lnk k kϕ=-->-, ()k ϕ∴在(1,)+∞为增函数,()()k m ϕϕ∴>,∴22(1)(13)(12)(1)(13)(12)172172k lnk m m m m lnm m m m k m +--++--++>+--, 设2(1)(13)(12)()72(1)m m m m m lnm m ω---+=++,01m <<, 则2322322(1)(3204972)(1)(33)()072(1)72(1)m m m m m m x m m m m ω---+-+'=>>++,()m ω∴在(0,1)上是增函数,()m ωω∴<(1)0=, 2(1)(13)(12)072(1)m m m m lnm m ---+∴+<+,即2(1)(13)(12)0172m lnm m m m m +--++>-, ∴若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.【过程解析】(1)当1a =时,()(1)x x x f x xe e e x =-=-,()(1)x x x f x e x e xe '=-+=,0x e > ,∴当(0,)x ∈+∞时,()0f x '>,()f x 单调递增;当(,0)x ∈-∞时,()0f x '<,()f x 单调递减.(2)令()()11(0)ax x g x f x xe e x =+=-+>, ()1f x <- ,()10f x +<, ()(0)0g x g ∴<=在0x >上恒成立, 又()ax ax x g x e axe e '=+-,令()()h x g x =',则()()(2)ax ax ax x ax ax x h x ae a e axe e a e axe e '=++-=+-, (0)21h a ∴'=-,①当210a ->,即12a >,存在0δ>,使得当(0,)x δ∈时,()0h x '>,即()g x '在(0,)δ上单调递增. 因为()(0)0g x g '>'=,所以()g x 在(0,)δ内递增,所以()1f x >-,这与()1f x <-矛盾,故舍去;②当210a -…,即12a …, ()(1)ax ax x ax x g x e axe e ax e e '=+-=+-,若10ax +…,则()0g x '<,所以()g x 在[0,)+∞上单调递减,()(0)0g x g =…,符合题意. 若10ax +>,则1111(1)(1)2222()0x ln x x x axaxxax ln ax xxx g x e axe e ee eeee +++++'=+-=---=剟,所以()g x 在(0,)+∞上单调递减,()(0)0g x g =…,符合题意. 综上所述,实数a 的取值范围是12a …. 另解:()f x 的导数为()(1)(0)ax x f x ax e e x '=+->,①当1a …时,()(1)0ax x ax x x f x ax e e e ex e e '=+->--=…,所以()f x 在(0,)+∞递增,所以()1f x >-,与题意矛盾;②当0a …时,()10ax x x f x e e e '--<剟, 所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;.③当102a <…时,11122211()(1)[(1)]22x x x x f x x e e e x e '+-=+-….设121()(1)(0)2x G x x e x =+->,1211()022x G x e '=-<,则()G x 在(0,)+∞递减,所以()0G x <,12()()0x f x e G x '=<,所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;④当112a <<时,(1)()[(1)]ax a x f x e ax e -'=+-,令(1)()(1)a x H x ax e -=+-,则()()ax f x e H x '=,(1)()(1)a x H x a a e -'=+-,可得()H x '递减,(0)21H a '=-,所以存在00x >,使得0()0H x '=.当0(0,)x x ∈时,()0H x '>, ()H x 在0(0,)x 递增,此时()0H x >,所以当0(0,)x x ∈时,()()0ax f x e H x '=>,()f x 在0(0,)x 递增,所以()1f x >-,与题意矛盾. 综上可得,a 的取值范围是(-∞,1]2.(3)由(2)可知,当12a =时,12()1(0)x x f x xe e x =-<->,令*1(1)()x ln n N n=+∈得,111(1)(1)21(1)1ln n n ln e e n +++⋅-<-,整理得,11(10ln n n+<,∴11(1ln n >+,∴1()n ln n +>,∴11231((...(1)12n nk k k n ln ln ln n k n ==++>=⨯⨯⨯=+∑,...(1)ln n +>+.另解:运用数学归纳法证明. 当1n =时,左边22ln ==>成立.假设当(1,*)n k k k N =∈…...(1)ln k ++>+.当1n k =+...(2)ln k +>+,只要证(1)(2)ln k ln k ++>+,21(2)(1)(1)11k ln k ln k lnln k k +>+-+==+++. 可令11t k =+,则(0t ∈,1]2(1)ln t >+,再令2x x =∈,则需证明12(2x lnx x x ->∈.构造函数1()2()((1g x lnx x x x =--∈,22211()1(1)0g x x x x'=--=--<,可得()g x 在(1上递减, 则()g x g <(1)0=,所以原不等式成立, 即1n k =+...(2)ln k ++>+成立....(1)ln n +>+成立.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 【过程解析】(Ⅰ)2()(1)x f x x e ax b =--+ ,()(2)x f x x e a '=-,①当0a …时,当0x >时,()0f x '>,当0x <时,()0f x '<,()f x ∴在(,0)-∞上单调递减,在(0,)+∞上单调递增,②当0a >时,令()0f x '=,可得0x =或(2)x ln a =,()i 当102a <<时,当0x >或(2)x ln a <时,()0f x '>,当(2)0ln a x <<时,()0f x '<,()f x ∴在(-∞,(2))ln a ,(0,)+∞上单调递增,在((2)ln a ,0)上单调递减, 1()2ii a =时, ()(1)0x f x x e '=-… 且等号不恒成立,()f x ∴在R 上单调递增,()iii 当12a >时, 当0x <或(2)x ln a >时,()0f x '>,当0(2)x ln a <<时,()0f x '<,()f x 在(,0)-∞,((2)ln a ,)+∞上单调递增,在(0,(2))ln a 上单调递减. 综上所述:当0a … 时,()f x 在(,0)-∞上单调递减;在(0,)+∞上 单调递增;当102a << 时,()f x 在(-∞,(2))ln a 和(0,)+∞上单调递增;在((2)ln a ,0)上单调递减; 当12a = 时,()f x 在R 上单调递增; 当12a >时,()f x 在(,0)-∞和((2)ln a ,)+∞ 上单调递增;在(0,(2))ln a 上单调递减. (Ⅱ)证明:若选①,由 (Ⅰ)知,()f x 在(,0)-∞上单调递增,(0,(2))ln a 单调递减,((2)ln a ,)+∞ 上()f x 单调递增.注意到((1)0,(0)1210f ef b a =-<=->->.()f x ∴ 在( 上有一个零点; 22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a a ln a b aln a a aln a a aln a ln a =-⋅-⋅+>--+=-,由2122e a <… 得0(2)2ln a <…,(2)(2(2))0aln a ln a ∴-…, ((2))0f ln a ∴>,当0x … 时,()((2))0f x f ln a >…,此时()f x 无零点.综上:()f x 在R 上仅有一个零点.另解:当1(2a ∈,22e 时,有(2)(0ln a ∈,2],而(0)1210f b a =->-=,于是2((2))((2)1)2(2)f ln a ln a a aln a b =-⋅-+(2)(2(2))(2)0ln a a ln a b a =-+->,所以()f x 在(0,)+∞没有零点,当0x <时,(0,1)x e ∈,于是2()()0b f x ax b f a <-+⇒-<,所以()f x 在(,0)上存在一个零点,命题得证.若选②,则由(Ⅰ)知:()f x 在(-∞,(2))ln a 上单调递增, 在((2)ln a ,0)上单调递减,在(0,)+∞ 上单调递增.22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a aln a b aln a a aln a a aln a ln a =--+--+=-…,102a <<,(2)0ln a ∴<,(2)(2(2))0aln a ln a ∴-<,((2))0f ln a ∴<, ∴当0x … 时,()((2))0f x f ln a <…,此时()f x 无零点.当0x > 时,()f x 单调递增,注意到(0)1210f b a =--<…,取c =21b a << ,∴1c >>,又易证1c e c >+,∴22221()(1)(1)(1)(1)11111102c f c c e ac b c c ac b a c b c b b b =--+>-+-+=-+->+-=-++-=>,()f x ∴在(0,)c 上有唯一零点,即()f x 在(0,)+∞上有唯一零点.综上:()f x 在R 上有唯一零点. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 【过程解析】(Ⅰ)()x f x a lna b '=-,①当0b …时,由于1a >,则0x a lna >,故()0f x '>,此时()f x 在R 上单调递增;②当0b >时,令()0f x '>,解得b lnlna x lna >,令()0f x '<,解得blnlna x lna <,∴此时()f x 在(,b lnlna lna -∞单调递减,在(,)b lnlna lna+∞单调递增;综上,当0b …时,()f x 的单调递增区间为(,)-∞+∞;当0b >时,()f x 的单调递减区间为(,)blnlna lna-∞,单调递增区间为(,)blnlna lna+∞;(Ⅱ)注意到x →-∞时,()f x →+∞,当x →+∞时,()f x →+∞,由(Ⅰ)知,要使函数()f x 有两个不同的零点,只需()(0min blnlna f x f lna=<即可,∴20b blnlnlna lna a b e lna lna-⋅+<对任意22b e >均成立,令b ln lna t lna =,则20t a bt e -+<,即20tlna e bt e -+<,即20bln lna b ln lna e b e lna-⋅+<,即20bln blna b e lna lna -⋅+<,∴20bb b lne lna lna-⋅+<对任意22b e >均成立, 记22(),2bg b b b lne lna b e lna =-⋅+>,则1()1()()b lna g b ln b ln lna lnb lna b lna'=-+⋅⋅=-, 令g '(b )0=,得b lna =,①当22lnae >,即22e a e >时,易知g (b )在2(2e ,)lna 单调递增,在(,)lna +∞单调递减,此时g (b )22()1(1)0g lna lna lna ln e lna lna e =-⋅+=⋅+>…,不合题意;②当22lna e …,即221e a e <…时,易知g (b )在2(2e ,)+∞单调递减,此时2222222222()(2)2222[(2)()]e g b g e e e ln e lna e e ln e ln lna e lna lna <=-⋅+=--+, 故只需22[22()]0ln ln lna lna -+-+…,即2()222lna ln lna ln ++…,则2lna …,即2a e …; 综上,实数a 的取值范围为(1,2]e ;(Ⅲ)证明:当a e =时,2()x f x e bx e =-+,()x f x e b '=-,令()0f x '=,解得4x lnb =>, 易知22222422()()433(13)0lnb min f x f lnb e b lnb e b blnb e b b e e b e e e e ==-⋅+=-+<-+=-<-=-<,()f x ∴有两个零点,不妨设为1x ,2x ,且12x lnb x <<, 由2222()0x f x e bx e =-+=,可得222x e e x b b=+,∴要证22122blnb e x x e b >+,只需证2122x e blnb x b e >,只需证22122x b lnb e x e >, 而222222222222()20e eb b e e f e e e e e e e b=-+=-<-<,则212e x b <, ∴要证22122x b lnbe x e>,只需证2x e blnb >,只需证2()x ln blnb >, 而()222221(())()()(4)404ln blnb f ln blnb e bln blnb e blnb bln blnb e blnb bln b e b ln e e bln =-+=-+<-+=⋅+=-<,2()x ln blnb ∴>,即得证.12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 【过程解析】(1)解:由函数的过程解析式可得()11f x lnx lnx '=--=-,(0,1)x ∴∈,()0f x '>,()f x 单调递增,(1,)x ∈+∞,()0f x '<,()f x 单调递减, 则()f x 在(0,1)单调递增,在(1,)+∞单调递减.(2)证明:由blna alnb a b -=-,得111111ln ln a a b b b a -+=-,即1111(1)(1)ln ln a a b b-=-, 由(1)()f x 在(0,1)单调递增,在(1,)+∞单调递减, 所以()max f x f =(1)1=,且f (e )0=, 令11x a =,21x b=,则1x ,2x 为()f x k = 的两根,其中(0,1)k ∈. 不妨令1(0,1)x ∈,2(1,)x e ∈,则121x ->,先证122x x <+,即证212x x >-,即证211()()(2)f x f x f x =<-, 令()()(2)h x f x f x =--,则()()(2)(2)[(2)]h x f x f x lnx ln x ln x x '='+'-=---=--在(0,1)单调递减, 所以()h x h '>'(1)0=, 故函数()h x 在(0,1)单调递增,1()h x h ∴<(1)0=.11()(2)f x f x ∴<-,122x x ∴<+,得证.同理,要证12x x e +<, (法一)即证211x e x <<-, 根据(1)中()f x 单调性, 即证211()()()f x f x f e x =>-, 令()()()x f x f e x ϕ=--,(0,1)x ∈, 则()[()]x ln x e x ϕ'=--,令0()0x ϕ'=, 0(0,)x x ∈,()0x ϕ'>,()x ϕ单调递增,0(x x ∈,1),()0x ϕ'<,()x ϕ单调递减,又0x e <<时,()0f x >,且f (e )0=,故0lim ()0x x ϕ+→=, ϕ(1)f =(1)(1)0f e -->,()0x ϕ∴>恒成立, 12x x e +<得证,(法二)12()()f x f x =,1122(1)(1)x lnx x lnx -=-, 又1(0,1)x ∈,故111lnx ->,111(1)x lnx x ->,故12112222(1)(1)x x x lnx x x lnx x +<-+=-+,2(1,)x e ∈, 令()(1)g x x lnx x =-+,()1g x lnx '=-,(1,)x e ∈, 在(1,)e 上,()0g x '>,()g x 单调递增, 所以()g x g <(e )e =,即222(1)x lnx x e -+<,所以12x x e +<,得证, 则112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+. (1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.【过程解析】(1)当a e =时,()1x f x e lnx =-+, 1()x f x e x∴'=-, f ∴'(1)1e =-, f (1)1e =+,∴曲线()y f x =在点(1,f (1))处的切线方程为(1)(1)(1)y e e x -+=--,当0x =时,2y =,当0y =时,21x e -=-, ∴曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积1222211S e e =⨯⨯=--. (2)方法一:由()1f x …,可得11x ae lnx lna --+…,即11x lna e lnx lna -+-+…, 即11x lna lnx e lna x lnx x e lnx -+++-+=+…, 令()t g t e t =+, 则()10t g t e '=+>,()g t ∴在R 上单调递增, (1)()g lna x g lnx +- …1lna x lnx ∴+-…, 即1lna lnx x -+…, 令()1h x lnx x =-+, 11()1xh x x x-∴'=-=, 当01x <<时,()0h x '>,函数()h x 单调递增, 当1x >时,()0h x '<,函数()h x 单调递减,()h x h ∴…(1)0=,0lna ∴…, 1a ∴…,故a 的范围为[1,)+∞.方法二:由()1f x …可得11x ae lnx lna --+…,0x >,0a >, 即11x ae lnx lna ---…,设()1x g x e x =--,()10x g x e ∴'=->恒成立,()g x ∴在(0,)+∞单调递增, ()(0)1010g x g ∴>=--=, 10x e x ∴-->, 即1x e x >+,再设()1h x x lnx =--, 11()1x h x x x-∴'=-=, 当01x <<时,()0h x '<,函数()h x 单调递减, 当1x >时,()0h x '>,函数()h x 单调递增,()h x h ∴…(1)0=,10x lnx ∴--…, 即1x lnx -…1x e x -∴…,则1x ae ax -…,此时只需要证ax x lna -…, 即证(1)x a lna --…,当1a …时, (1)0x a lna ∴->>-恒成立,当01a <<时,(1)0x a lna -<<-,此时(1)x a lna --…不成立, 综上所述a 的取值范围为[1,)+∞.方法三:由题意可得(0,)x ∈+∞,(0,)a ∈+∞, 11()x f x ae x-∴'=-, 易知()f x '在(0,)+∞上为增函数,①当01a <<时,f '(1)10a =-<,11111((1)0aa f ae a a e a--'=-=->,∴存在01(1,x a∈使得0()0f x '=,当0(1,)x x ∈时,()0f x '<,函数()f x 单调递减,()f x f ∴<(1)1a lna a =+<<,不满足题意,②当1a …时,10x e ->,0lna >,1()x f x e lnx -∴-…,令1()x g x e lnx -=-,11()x g x e x-∴'=-, 易知()g x '在(0,)+∞上为增函数, g ' (1)0=,∴当(0,1)x ∈时,()0g x '<,函数()g x 单调递减,当(1,)x ∈+∞时,()0g x '>,函数()g x 单调递增,()g x g ∴…(1)1=, 即()1f x …,综上所述a 的取值范围为[1,)+∞.方法四:1()x f x ae lnx lna -=-+ ,0x >,0a >, 11()x f x ae x-∴'=-,易知()f x '在(0,)+∞上为增函数, 1x y ae -= 在(0,)+∞上为增函数,1y x=在0,)+∞上为减函数, 1x y ae -∴=与1y x=在0,)+∞上有交点, ∴存在0(0,)x ∈+∞,使得01001()0x f x ae x -'=-=, 则0101x ae x -=,则001lna x lnx +-=-,即001lna x lnx =--, 当0(0,)x x ∈时,()0f x '<,函数()f x 单调递减, 当0(x x ∈,)+∞时,()0f x '>,函数()f x 单调递增,0100()()x f x f x ae lnx lna -∴=-+ (000000011)1211lnx x lnx lnx x x x =-+--=-+-… ∴000120lnx x x --… 设1()2g x lnx x x=--,易知函数()g x 在(0,)+∞上单调递减,且g (1)1010=--=,∴当(0x ∈,1]时,()0g x …,0(0x ∴∈,1]时,000120lnx x x --…, 设()1h x x lnx =--,(0x ∈,1],1()10h x x ∴'=--<恒成立, ()h x ∴在(0,1]上单调递减,()h x h ∴…(1)1110ln =--=,当0x →时,()h x →+∞,01lna ln ∴=…,1a ∴….方法五:()1f x …等价于11x ae lnx lna --+…,该不等式恒成立.当1x =时,有1a lna +…,其中0a >. 设g (a )1a lna =+-,则g '(a )110a=+>, 则g (a )单调递增,且g (1)0=. 所以若1a lna +…成立,则必有1a …. ∴下面证明当1a …时,()1f x …成立.设()1x h x e x =--,()1x h x e ∴'=-,()h x ∴在(,0)-∞单调递减,在(0,)+∞单调递增,()(0)1010h x h ∴=--=…,10x e x ∴--…,即1x e x +…,把x 换成1x -得到1x e x -…,1x lnx - …,1x lnx ∴-….11()1x x f x ae lnx lna e lnx x lnx --∴=-+--厖?,当1x =时等号成立.综上,1a …. 14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[x e∈,)+∞均有()f x …a 的取值范围.注: 2.71828e =⋯为自然对数的底数.【过程解析】(1)当34a =-时,3()4f x lnx =-+,0x >,3()4f x x '=-+= ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a …,得04a <…,当0a <…时,()f x …20lnx --…,令1t a=,则t …,设()22g t t lnx =,t …,则2()2g t t lnx=,()i 当1[7x ∈,)+∞,则()2g x g lnx =--…,记()p x lnx =--,17x …,则1()p x x '--==, 列表讨论:()2()2()0g t g p x p x ∴==厖.()ii 当211[,7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,17,则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()(7q x q ∴…,由()i 得11()()7777q p p =-<-(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e ∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e∈,)+∞,均有()f x …综上所述,所求的a 的取值范围是(0.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b c f x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc > B .0ab > C .280b ac +> D .0ac <【过程解析】函数定义域为(0,)+∞, 且223322()a b c ax bx c f x x x x x --'=--=, 由题意,方程()0f x '=即220ax bx c --=有两个正根,设为1x ,2x , 则有120b x x a+=>,1220c x x a -=>,△280b ac =+>, 0ab ∴>,0ac <,20ab ac a bc ∴⋅=<,即0bc <.故选:BCD .16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【过程解析】2()31f x x '=-,令()0f x '>,解得3x <或3x >,令()0f x '<,解得33x <<,()f x ∴在(,)-∞+∞上单调递增,在(上单调递减,且99(0,(03939f f +--=>=>, ()f x ∴有两个极值点,有且仅有一个零点,故选项A 正确,选项B 错误;又33()()112f x f x x x x x +-=-+-++=,则()f x 关于点(0,1)对称,故选项C 正确;假设2y x =是曲线()y f x =的切线,设切点为(,)a b ,则23122a a b⎧-=⎨=⎩,解得12a b =⎧⎨=⎩或12a b =-⎧⎨=-⎩, 显然(1,2)和(1,2)--均不在曲线()y f x =上,故选项D 错误.故选:AC .17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<; (2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.【过程解析】(1)证明:设2()sin g x x x x =--,(0,1)x ∈,则()12cos g x x x '=--,()2sin 0g x x ∴''=-+<,()g x ∴'在(0,1)上单调递减,()(0)0g x g ∴'<'=,()g x ∴在(0,1)上单调递减,()(0)0g x g ∴<=,即2sin 0x x x --<,(0,1)x ∈,2sin x x x ∴-<,(0,1)x ∈,设()sin h x x x =-,(0,1)x ∈,则()1cos 0h x x '=->,()h x ∴在(0,1)上单调递增,()(0)0h x h ∴>=,(0,1)x ∈,即sin 0x x ->,(0,1)x ∈,sin x x ∴<,(0,1)x ∈,综合可得:当01x <<时,2sin x x x x -<<;(2)解:22()sin 1x f x a ax x '=-+- ,222222()cos (1)x f x a ax x +∴''=-+-, 且(0)0f '=,2(0)2f a ''=-+,①若2()20f x a ''=->,即a <<时,易知存在10t >,使得1(0,)x t ∈时,()0f x ''>,()f x ∴'在1(0,)t 上单调递增,()(0)0f x f ∴'>'=,()f x ∴在1(0,)t 上单调递增,这显然与0x =为函数的极大值点相矛盾,故舍去;②若2()20f x a ''=-<,即a <a >存在20t >,使得2(x t ∈-,2)t 时,()0f x ''<,()f x ∴'在2(t -,2)t 上单调递减,又(0)0f '=,∴当20t x -<<时,()0f x '>,()f x 单调递增;当20x t <<时,()0f x '<,()f x 单调递减,满足0x =为()f x 的极大值点,符合题意;③若2()20f x a ''=-=,即a =()f x 为偶函数,∴只考虑a =的情况,此时22())1x f x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x '>-+=->--, ()f x ∴在(0,1)上单调递增,与显然与0x =为函数的极大值点相矛盾,故舍去.综合可得:a 的取值范围为(-∞,⋃,)+∞.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【过程解析】(1)()f x 定义域为R ,()x f x e ax =- ,()x f x e a '∴=-,若0a …,则()0f x '>,()f x 无最小值,故0a >,当()0f x '=时,x lna =,当x lna <时,()0f x '<,函数()f x 在(,)lna -∞上单调递减,当x lna >时,()0f x '>,函数()f x 在(,)lna +∞上单调递增,故()()min f x f lna a alna ==-,()g x 的定义域为(0,)+∞,()g x ax lnx =- ,1()g x a x'∴=-, 令()0g x '=,解得1x a =, 当10x a <<时,()0g x '<,函数()g x 在1(0,)a 上单调递减, 当1x a >时,()0g x '>,函数()g x 在1(a,)+∞上单调递增, 故()1min g x lna =+,函数()x f x e ax =-和()g x ax lnx =-有相同的最小值1a alna lna ∴-=+,0a > ,1a alna lna ∴-=+化为101a lna a --=+, 令1()1x h x lnx x -=-+,0x >, 则222211(1)121()(1)(1)(1)x x x h x x x x x x x +--+'=-=-=+++, 0x > ,221()0(1)x h x x x +'∴=>+恒成立, ()h x ∴在(0,)+∞上单调递增,又h (1)0=,h ∴(a )h =(1),仅有此一解, 1a ∴=.(2)证明:由(1)知1a =,函数()x f x e x =-在(,0)-∞上单调递减,在(0,)+∞上单调递增, 函数()g x x lnx =-在(0,1)上单调递减,在(1,)+∞上单调递增,设()()()2(0)x u x f x g x e x lnx x =-=-+>, 则1()22x x u x e e x'=-+>-,当1x …时,()20u x e '->…, 所以函数()u x 在(1,)+∞上单调递增,因为u (1)20e =->,所以当1x …时,()u x u …(1)0>恒成立,即()()0f x g x ->在1x …时恒成立, 所以1x …时,()()f x g x >,。

一元函数的导数及其应用(解析版)高考数学习题与解析

一元函数的导数及其应用(解析版)高考数学习题与解析

第五章一元函数的导数及其应用一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()sin cos f x x x =+,()π,2πx ∈.若()00f x '=,,则0x =()A .π4B .π2C .3π4D .5π4A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+=【答案】C 【详解】sin e x y x =+的导数为cos x y x e '=+,在点(0,1)处的切线斜率为0cos 0e 2k =+=,即有在点(0,1)处的切线方程为21y x =+,即210x y -+=.故选:C 3.已知函数2()ln 2a f x xb x =+的图象在点(1,(1))f 处的切线方程是210x y --=,则ab 等于()A .2B .1C .0D .﹣24.已知()a f x x x =-,()0,x ∈+∞,对()12,0,x x ∀∈+∞,且12x x <,恒有12210x x -<,则实数a 的取值范围是().A .12,e -⎛⎤-∞ ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .()2,e -∞D .13e ,⎛⎫+∞ ⎪⎝⎭【答案】B 【详解】设()()2e x g x xf x a x ==-,()e 2xg x a x '=-,对()12,0,x x ∀∈+∞,且12x x <,恒有()()12210f x f x x x -<,即()()12g x g x <,()g x 在()0,∞+上单调递增,故()e 20xg x a x '=-≥恒成立,即2e x x a ≥,设()2e x x F x =,()22e xxF x -'=,当()0,1x ∈时,()0F x '>,函数单调递增;当[)1,x ∞∈+时,()0F x '≤,函数单调递减;故()()max 21e F x F ==,即2ea ≥.故选:B5.已知sin1sin11e e a =+,tan 2tan 21ee b =+,cos3cos31ee c =+,则()A .b a c>>B .b c a >>C .a c b>>D .c a b>>【答案】B 【详解】令()e e x xf x -=+,其定义域为R ,且()()f x f x -=,故为偶函数;又()f x 'e e x x -=-,sin112分别满足112212()A .3e B .4e C .5e D .6e7.已知f x '()是函数f x ()的导数,202e '+>=()(),(),f x f x f 则不等式ln f x x<()的解集是()A .∞(2,+)B .2e +∞(,)C .20e (,)D .2(0,)8.定义在0,2⎛⎫⎪⎝⎭上的函数(),()f x f x '是()f x 的导函数,且()tan ()f x x f x '<-⋅成立,2,,3436a f b c πππ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b a c>>B .c b a>>C .c a b>>D .a b c>>二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .直线2y x =是曲线()y f x =的切线C .()f x 有一个零点D .过点()1,0与曲线()y f x =相切的直线有且只有1条的极值点分别为1212,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线对选项A .()0f x ≤恒成立B .()f x 是()0,+∞上的减函数C .()f x 在12e x -=得到极大值12eD .()f x 在区间⎫⎪⎭内只有一个零点,则关于x 的不等式()0f x <的解集可能为()A .()(),10,1-∞-B .()(),e 0,e --∞C .()(),40,4--∞ D .()(),3e 0,3e --∞ 【答案】BC 【详解】因为当0x >时,()()ln 1<+1e 4xx f x x --'<,且()0=0f ,而可以令1ln 2y x x x =-,则1ln 1y x '=-,可以令2e 4x y x x =-,则()2+1e 4x y x -'=,所以()()ln 2e 40x x x x f x x x x --<<>,因为1ln 1y x '=-,所以令1ln 10y x '=->,则e x >,令1ln 10y x '=-<,则e x <,所以1ln 2y x x x =-在(0,e)上递减,在(e,)+∞上递增,且当2e x =时,10y =,所以当)2e ,+x ⎡∈∞⎣时,()ln 20f x x x x ->≥,因为2e 4x y x x =-()0x >,()2+1e 4x y x -'=,故令()+14()e x m x x -=,则()e (2)x m x x '=+,又因为0x >,所以()e (2)0x m x x '=+>,故()m x 在(0,)+∞上递增,设0()0m x =,所以2e 4x y x x =-在0(0,)x 上递减,在0(,)x +∞上递增,且当20y =时,=0x (舍)或ln 4x =,所以当(]0,ln4x ∈时,()e 40xf x x x -<≤,所以当0x >时,()0f x <的解集可能为()0,t ,其中()2ln4,e t ∈,又因为()f x 是奇函数,所以()0f x <的解集可能为()(),0,t t --∞ .而()2ln4,e t ∈,所以()21ln4,e ∉,故A 错误;()2e ln4,e ∈,故B 正确;()24ln4,e ∈,故C正确;()2ln 3e 4,e ∉,故D 错误.故选:BC第II 卷非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.如图,直线l 是曲线()y f x =在点(4,(4))f 处的切线,则(4)(4)f f '+的值等于______.'是函数的导函数,且R 1e f x f x x f <∈=,,则不等式的解集为________.的最小距离为___________.【解析】由已知,设点00(,)Q x y 曲线2ln 1y x x =--上一点,则有0002ln 1y x x =--,因为2ln 1y x x =--,所以12y x x'=-00012|x x y x x ='-=,所以曲线2ln 1y x x =--在00(,)Q x y 处的切线斜率为0012k x x =-,则曲线2ln 1y x x =--在00(,)Q xy 处的切线方程为020000(ln 1)()12y x x x x x x ---=--,即20000()12ln y x x x x x =---.要求得曲线2ln 1y x x =--上任意一点,到直线3y x =-的最小距离即找到曲线上距离直线最近的点,即00121k x x =-=,解得0=1x 或012x =-(舍去),此时,以点(1,0)Q 为切点,曲线的切线方程为:1y x =-,此时,切点(1,0)Q 为曲线上距离直线3y x =-最近的点,即点P 与点Q 重合,最小距离为直线3y x =-与直线1y x =-之间的距离,设最小距离为d ,所以d ==.16.已知函数2()ln f x ax x x =-+有两个不同的极值点1 x ,2x ,则实数a 的取值范围是______;若不等式()()1212+>++f x f x x x t 有解,则实数t 的取值范围是______.17.某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是20.8r π分,其中r (单位:cm )是瓶子的半径.已知每出售1mL 的饮料,制造商可获利0.2分,且制作商能制作的瓶子的最大半径为6cm .(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶饮料的利润最小?(3)假设每瓶饮料的利润不为负值,求瓶子的半径的取值范围.189.已知函数()()1e xx f x a x =++.(1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,其中12x x <,求证:21e e x x a ->-【详解】(1)由()()21e xx f x a x +=++得()1e x x f x a +'=-+,由()f x 单调递增,则()0f x '≥,得1e x a x +≥,设()1ex x g x +=,则()e x xg x '=-,可知0x <时,()0g x '>,()g x 单调递增;0x >时,()0g x '<,()g x 单调递减,则0x =时,()g x 取得极大值()01g =,也为最大值,则1a ≥,所以,a 的取值范围是[)1,+∞(2)由题,函数()f x 有两个极值点,则()0f x '=即1e xx a +=有两个不相等实数根,由(1)可知0x =时,()g x 取得极大值()01g =,(1)0g -=,x 趋向+∞时()g x 趋向于0.故()g x a =有两个不相等实根时,01a <<,且1210x x -<<<,过点()0,1与(),0c 的直线方程为11e y x =-+,构造函数()()11111,(0)e ee x x h x g x x x x +⎛⎫=--+=+-> ⎪⎝⎭,()1e e x x h x '=-+,令()()x1,(0)e ex u x h x x '==-+>,则()()1,0e x x u x x -'=>,则01x <<时,()0u x '<,()u x 即()h x '单调递减;1x >时,()0u x '>,()u x 即()h x '单调递增,所以0x >时,()u x 极小值为()()110u h '==所以0x >时,()()0u x h x '=≥,则()()00h x h >=,即()()110e h x g x x ⎛⎫=--+> ⎪⎝⎭,故当0x >时,()11e g x x >-+,设方程11e x a -+=的根为4x ,则4e e x a =-,构造函数()21,10y x x =--<<,令()()()21,t x g x x =--则()()21111e e e xx x x x t x x x ++⎡⎤=+-=+-⎣⎦,令()()()11e ,10x v x x x =+--<<,则()e 0x v x x '=<,故10x -<<时,()v x 单调递减,则()()00v x v >=,又10x +>,所以,当10x -<<时,()0t x >,故有()21g x x >-,令方程()21,10x a x -=-<<的根为3x ,则3x =,于是有134210x x x x -<<<<<,如图,所以2143e e x x x x a ->-=-+,证毕19.已知函数sin ()e (1)a x f x x =-+,()sin ln(1)g x a x x =-+(1)1a =时,求函数()y g x =在(1,0]-上的单调区间;(2)1a >时,试讨论()y f x =在区间[π,π]-上的零点个数.【详解】(1)1a =时,()sin ln(1)g x x x =-+,∴1()cos 1g x x x '=-+,而()g x '在(1,0]-上单调递增,而(0)0g '=,∴(1,0]x ∈-,()(0)0g x g ''=.∴()g x 在(1,0]-上单调递减,(2)当1a >时:①[π,1]x ∈--时,sin 0a x e >,10x +<∴()0f x >∴()f x 在区间[π,1]--上无零点,②1x >-时,方程()0f x =的解等价于方程()0g x =的解.[1,0]x ∈-时,1()cos 1g x a x x '=-+在[1,0]-单调递增,(0)1g a '=-,而111cos 10g a a a a a a ⎛⎫⎛⎫'-=--<-= ⎪ ⎪⎝⎭⎝⎭,∴∃唯一0[1,0]x ∈-使得()00g x '=且()g x 在(]01,x -单调递减,[]0,0x 单调递增,而111sin 110g a a a ⎛⎫⎛⎫⎛⎫-=-+>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(0)0g =,∴()g x 在(1,0]-上有两个零点,③π0,2x ⎛⎤∈ ⎥⎝⎦时,1()cos 1g x a x x '=-+,(0)10g a '=->,令1()()cos 1t x g x a x x ='=-+,则21()sin (1)t x a x x '=-++在π0,2⎡⎤⎢⎥⎣⎦上单调递减,(0)1t '=,2π102π12t a ⎛⎫'=-< ⎪⎝⎭⎛⎫+ ⎪⎝⎭,∃唯一1π20,x ⎛⎫∈ ⎪⎝⎭使得()10t x '=,∴()g x '在()10,x 单调递增,1π,2x ⎛⎫ ⎪⎝⎭上单调递减,而(0)1g a '=-,π100π212g ⎛⎫'=-< ⎪⎝⎭+,∴∃唯一2π0,2x ⎛⎫∈ ⎪⎝⎭使得()20g x '=,∴()g x 在()20,x 单调递增,1π,2x ⎛⎫ ⎪⎝⎭上单调递减,而(0)0g =,π02g ⎛⎫'> ⎪⎝⎭,∴()g x 在π0,2⎛⎤ ⎥⎝⎦上无零点.④π,π2x ⎛⎤∈ ⎥⎝⎦时()0g x '<,∴()g x 在π,π2⎛⎤ ⎥⎝⎦单调递减,而ππln 1022g a ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,(π)ln(π1)0g =-+<,∴∃唯一3π,π2x ⎛⎫∈ ⎪⎝⎭使得()30g x =,综上所述:1a >时,()f x 在区间[π,π]-有三个零点.20.21.设函数()2ln +f x x x ax =+,=1x 是函数()f x 的极值点.(1)求实数a 的值,并求函数()f x 的单调递减区间;(2)设函数()()23g x f x x x =-+,求证:当2x ≥时,()()2114g x x <-;(3)在(2)的条件下,求证:对*n ∈N ,()()()21213512n k n ng k n n +=+>++∑.【解析】(1)因为()2ln +f x x x ax =+,所以()12f x x a x'=++,依题意()1120f a '=++=,解得=3a -,经检验符合题意,()2=ln +3f x x x x ∴-,()0,+x ∈∞,所以()()()221123+1==x x x x f x xx---',令()0f x '<,解得112x <<,所以原函数的单调递减区间为1,12⎛⎫⎪⎝⎭;(2)证明:因为()()222=+3=ln +3+3=ln g x f x x x x x x x x x ---,要证()()21<14g x x -,[)2,+x ∈∞,即证()21ln <14x x -,[)2,+x ∈∞,构造函数()2=4ln +1h x x x -,[)2,+x ∈∞,只需证()0h x <在[)2,+x ∈∞上恒成立,当2x ≥时,()()222=<0x h x x--',所以函数()2=4ln +1h x x x -在区间[)2,∞+单调递减,故3max ()=4ln23=ln16lne <0h x --,不等式成立,结论得证;(3)证明:由(2)知:当2x ≥时,()21ln <14x x -,所以21411>=2ln 11+1x x x x ---⎛⎫ ⎪⎝⎭,即当2k ≥时,()111>21+1g k x x --⎛⎫ ⎪⎝⎭,当2n ≥时:()()()()2+1=211111113+5=++...+>21+=ln2ln3ln +12+1+2+1+2n k n n g k n n n n n --⎛⎫ ⎪⎝⎭∑,又当=1n 时上式也能成立,原命题得证.21.已知函数()(2)e (ln )x f x x k x x =---.(1)当0k =时,求()f x 的极值;(2)证明:当e,1k x >>时,2()f x k >-..(1)求实数a 的值及函数()f x 的极值;(2)用[]t 表示不超过实数t 的最大整数,如:[0.8]0,[ 1.4]2=-=-,若0x >时,()e 2x t x t -<+恒成立,求[]t 的最大值.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数及其应用高考题精选1.(2010·海南高考·理科T3)曲线2xy x =+在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =--【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22(2)y x '=+,所以,在点()1,1--处的切线斜率1222(12)x k y =-'===-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A.2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值.【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C.3.(2010·山东高考理科·T7)由曲线y=2x ,y=3x 围成的封闭图形面积为() (A )112(B)14 (C)13 (D)712【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积,考查了考生的想象能力、推理论证能力和运算求解能力.【思路点拨】先求出曲线y=2x ,y=3x 的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得:曲线y=2x ,y=3x 的交点坐标为(0,0),(1,1),故所求封闭图形的面积为1230x -x )dx=⎰(1111-1=3412⨯⨯,故选A. 4.(2010·辽宁高考理科·T10)已知点P 在曲线y=41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()(A)[0,4π)(B)[,)42ππ3(,]24ππ(D)3[,)4ππ 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。

【思路点拨】先求导数的值域,即tan α的范围,再根据正切函数的性质求α的范围。

【规范解答】选D.5.(2010·湖南高考理科·T4)421dx x⎰等于() A 、2ln 2-B 、2ln 2C 、ln 2-D 、ln 2【命题立意】考查积分的概念和基本运算. 【思路点拨】记住x1的原函数. 【规范解答】选D.421dx x⎰=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2. 【方法技巧】关键是记住被积函数的原函数.6.(2010·江苏高考·T8)函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k+1,k N *∈其中,若a 1=16,则a 1+a 3+a 5的值是________ 【命题立意】本题考查导数的几何意义、函数的切线方程以及数列的通项等内容。

【思路点拨】先由导数的几何意义求得函数y=x2(x>0)的图像在点(ak,ak2)处的切线的斜率,然后求得切线方程,再由0y =,即可求得切线与x 轴交点的横坐标。

【规范解答】由y=x 2(x>0)得,2y x '=,所以函数y=x2(x>0)在点(ak,ak2)处的切线方程为:22(),k k k y a a x a -=-当0y =时,解得2ka x =, 所以1135,1641212kk a a a a a +=++=++=. 【答案】217.(2010·江苏高考·T14)将边长为1m 正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是________。

【命题立意】本题考查函数中的建模在实际问题中的应用,以及等价转化思想。

【思路点拨】可设剪成的小正三角形的边长为x ,然后用x 分别表示梯形的周长和面积,从而将S 用x 表示,利用函数的观点解决. 【规范解答】设剪成的小正三角形的边长为x ,则:222(3)(01)1x S x x-==<<- 方法一:利用导数的方法求最小值。

22(3)()1x S x x -=-,2222(26)(1)(3)(2)()(1)x x x x S x x -⋅---⋅-'=- 1()0,01,3S x x x '=<<=,当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增; 故当13x =时,S。

方法二:利用函数的方法求最小值令1113,(2,3),(,)32x t t t -=∈∈,则:2224418668331t S t t t t=⋅=⋅-+--+- 故当131,83x t ==时,S 的最小值是3233。

【答案】3233【方法技巧】函数的最值是函数最重要的性质之一,高考不但在填空题中考查,还会在应用题、函数导数的的综合解答题中考察。

高中阶段,常见的求函数的最值的常用方法有:换元法、有界性法、数形结合法、导数法和基本不等式法。

8.(2010·陕西高考理科·T13)从如图所示的长方形区域内任取一个点M (x,y ),则点M 取自阴影部分的概率为;【命题立意】本题考查积分、几何概率的简单运算,属送分题。

【思路点拨】由积分求出阴影部分的面积即可【规范解答】阴影部分的面积为1123003 1.S x dx x ===⎰阴影所以点M 取自阴影部分的概率为11313S P S ===⨯阴影长方形 答案:139.(2010·海南高考·理科T13)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分10()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数1x ,2x …,N x 和1y ,2y …,N y ,由此得到N 个点(,)i i x y (i=1,2,…,N ),在数出其中满足1y ≤1()f x ((i=1,2,…,N ))的点数1N ,那么由随机模拟方法可得积分10()f x dx ⎰的近似值为.【命题立意】本题主要考查了定积分的几何意义以及几何概型的计算公式. 【思路点拨】由随机模拟想到几何概型,然后结合定积分的几何意义进行求解.【规范解答】由题意可知,,x y 所有取值构成的区域是一个边长为1的正方形,而满足i y ≤()i f x 的点(,)i i x y 落在y=f(x)、0y =以及1x =、0x =围成的区域内,由几何概型的计算公式可知1()f x dx ⎰的近似值为1N N. 答案:1N N10.(2010·北京高考理科·T18)已知函数f (x )=In(1+x )-x +22k x ,(k ≥0)。

(Ⅰ)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间。

【命题立意】本题考查了导数的应用,考查利用导数求切线方程及单调区间。

解决本题时一个易错点是忽视定义域。

【思路点拨】(1)求出'(1)f ,再代入点斜式方程即可得到切线方程;(2)由k 讨论'()f x 的正负,从而确定单调区间。

【规范解答】(I )当2k =时,2()ln(1)f x x x x =+-+,1'()121f x x x=-++ 由于(1)ln 2f =,3'(1)2f =, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 即322ln 230x y -+-=(II )1(1)'()111x kx k f x kx x x+-=-+=++,(1,)x ∈-+∞. 当0k =时,'()1xf x x=-+.所以,在区间(1,0)-上,'()0f x >;在区间(0,)+∞上,'()0f x <.故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞.当01k <<时,由1()'()01kkx x k f x x --==+,得10x =,210k x k-=> 所以,在区间(1,0)-和1(,)k k -+∞上,'()0f x >;在区间1(0,)kk-上,'()0f x < 故()f x 的单调递增区间是(1,0)-和1(,)k k -+∞,单调递减区间是1(0,)kk-. 当1k =时,2'()1x f x x=+故()f x 的单调递增区间是(1,)-+∞.当1k >时,1()'()01kkx x k f x x --==+,得11(1,0)k x k-=∈-,20x =. 所以在区间1(1,)k k --和(0,)+∞上,'()0f x >;在区间1(,0)kk-上,'()0f x < 故()f x 得单调递增区间是1(1,)k k --和(0,)+∞,单调递减区间是1(,0)kk- 【方法技巧】(1)()y f x =过00(,())x f x 的切线方程为000()'()()y f x f x x x -=-。

(2)求单调区间时要在定义域内讨论'()f x 内的正负。

11.(2010·安徽高考文科·T20)设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值。

【命题立意】本题主要考查导数的运算,利用导数研究函数的单调性与极值的方法,考查考生运算能力、综合分析问题能力和问题的化归转化能力。

【思路点拨】对函数()f x 求导,分析导数()f x '的符号情况,从而确定()f x 的单调区间和极值。

【规范解答】+ -0 +极大值极小值【方法技巧】利用导数研究函数的单调性和极值是解决函数单调性、极值问题的常用方法,简单易行,具体操作流程如下: (1)求导数'()f x ;(2)求方程'()0f x =的全部实根;(3)列表,检查'()f x 在方程'()0f x =的根左、右的值的符号; (4)判断单调区间和极值。

相关文档
最新文档