2015年海南省中考数学试题及解析

合集下载

2015年海南省中考数学模拟试题(五)-1.doc

2015年海南省中考数学模拟试题(五)-1.doc

2015年海南省中考数学模拟试题(五)参考答案一.选择题(本大题满分42分,每小题3分)BCDBC ACDAB CDBC二.填空题(本大题满分16分,每小题4分)15.(4)(4)a x x +-; 16. 6;; 18.(63,32) 三.解答题(本大题满分62分)19.(1)解:原式=113122+-+ ‥3分 = 4 ‥5分(2)解:原式=()()()()()()32222222x x x x x x x x x --++-⋅+- =223622x x x x x --- ‥3分 =22842x x x x-=- ‥5分20.解:(1)设甲种货车有x 辆,则‥1分解之,得 ‥3分 ∴x 的值是:2或3或4.∴有三种租用货车的方案.设计方案为:①租用甲种货车2辆,乙种货车6辆;②租用甲种货车3辆,乙种货车5辆;③租用甲种货车4辆,乙种货车4辆.6分(2) 由(1)知:方案① 的运输费用是:2×4000+6×3600=29600(元)方案② 的运输费用是:3×4000+5×3600=30000(元)方案③ 的运输费用是:4×4000+4×3600=30400(元)∴ 应选用方案①:租用甲种货车2辆,乙种货车6辆,运输费用最少为29600元 …8分21.(1)50;…2分(2)108;…5分42≤≤x {5030(8)2802030(8)200x x x x +-≥+-≥(3)800 …8分21.解:解:过点B 作BD ⊥AC 于D .由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC ﹣∠ABC=30°, 在Rt △ABD 中,BD=AB •sin ∠BAD=20×=10(海里), 在Rt △BCD 中,BC===20(海里).答:此时船C 与船B 的距离是20海里. …9分23. 解:(1)∵四边形ABCD 是正方形,∴AB =DA ,∠ABE =90°=∠DAH .∴∠HAO +∠OAD =90°.∵AE ⊥DH ,∴∠ADO +∠OAD =90°.∴∠HAO =∠ADO .∴△ABE ≌△DAH (ASA ),∴AE =DH .‥4分(2)EF =GH .将FE平移到AM 处,则AM ∥EF ,AM =EF .将GH 平移到DN 处,则DN ∥GH ,DN =GH .∵EF ⊥GH ,∴AM ⊥DN ,‥8分根据(1)的结论得AM =DN ,所以EF =GH ;(3)∵四边形ABCD 是正方形,∴AB ∥CD∴∠AHO =∠CGO图13∵FH ∥EG∴∠FHO =∠EGO∴∠AHF=∠CGE∴△AHF ∽△CGE∴∵EC =2∴AF =1过F 作FP ⊥BC 于P ,根据勾股定理得EF =,∵FH ∥EG ,∴ 根据(2)①知EF =GH ,∴FO =HO .∴,,∴阴影部分面积为.‥13分24. 解:(1)把(18,0)A ,(0,10)B ,(8,10)C 代入2y ax bx c =++得2201818108810a b c a b c c ⎧=⨯++⎪=⨯++⎨⎪=⎩∴1184910a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩‥2分 于是21410189y x x =-++=2198(4)189x --+ , ∴顶点坐标为984,9() …4分(∥PA.故只要QC=PA 即可,而184,PA t CQ t =-= 故184t t -=得 185t =; …6分 (3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,由于Q C ∥OP 知△QD C ∽△PDO ,故144CD QC t DO OP t === ∵14QC CE CD AF EA DO === ∴44AF QC t OP ===,∴18PF PA AF PA OP =+=+=…8分又点Q 到直线PF 的距离10d =,∴1118109022PQF S PF d ∆==⨯⨯=, 于是△PQF 的面积总为定值90. …9分(4)由(2)得,当四边形PQCA 为平行四边形时,OPD ∆∽OAC ∆,此时185t =. …11分若OPD ∆∽OCA ∆,此时OD OP OA OC =,即有44518OC t OC⨯=,又OC = 解得 8245t = ∴当8245t =或185t =时, OPD ∆与OAC ∆相似 …14分。

海南中考数学试题及答案.doc

海南中考数学试题及答案.doc

2015年海南中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

海南省侨中三亚学校2015届中考数学模拟试卷(五)含答案解析

海南省侨中三亚学校2015届中考数学模拟试卷(五)含答案解析

2015年海南省侨中三亚学校中考数学模拟试卷(5)一、选择题(本题有14个小题,每小题3分,共42分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.2.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为()A.2.56×105B.25.6×105C.2.56×104D.25.6×1043.下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x24.下列所给的几何体中,主视图是三角形的是()A. B. C. D.5.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°6.正方形网格中,∠AOB如图放置,则sin∠AOB=()A .B . C.D.27.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<2 D.m>28.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.9.如图,在△ABC中,DE∥BC,若,DE=4,则BC=()A.9 B.10 C.11 D.1210.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,结果如下表:日用电量(单位:度)5 6 7 8 10户数 2 5 4 3 l则关于这15户家庭的日用电量,下列说法错误的是()A.众数是6度B.平均数是6.8度C.极差是5度D.中位数是6度11.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=312.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4 B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)213.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.414.如图,已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C 是切点,连结AC.若∠CAB=30°,则BD的长为()A.R B.R C.2R D.R二、填空题(本题满分16分,每小题4分)15.若点(4,m)在反比例函数y=(x≠0)的图象上,则m的值是.16.晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是.17.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).18.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.三、解答题(本题满分62分)19.(1)计算:;(2)先化简,再求值:(a﹣2)(a+2)﹣a(a﹣2),其中a=﹣1.20.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.21.学校集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.则大、小车每辆的租车费各是多少元?22.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)23.如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.24.如图,抛物线y=与x轴交于A,B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2015年海南省侨中三亚学校中考数学模拟试卷(5)参考答案与试题解析一、选择题(本题有14个小题,每小题3分,共42分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.【考点】相反数;绝对值.【分析】利用相反数,绝对值的概念及性质进行解题即可.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A.【点评】此题主要考查了相反数,绝对值的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;求出|﹣2|=2,再利用相反数定义是解决问题的关键.2.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为()A.2.56×105B.25.6×105C.2.56×104D.25.6×104【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:256 000这一人数用科学记数法表示为2.56×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据合并同类项,可判断B;根据幂的乘方,可判断C;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同类项不能合并,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.下列所给的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形,得出主视图是三角形的即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项正确;C、主视图为等腰梯形,故本选项错误;D、主视图为正方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63°B.83°C.73°D.53°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】因为AC∥ED,所以∠BED=∠EAC,而∠EAC是△ABC的外角,所以∠BED=∠EAC=∠CBE+∠C.【解答】解:∵在△ABC中,∠C=26°,∠CBE=37°,∴∠CAE=∠C+∠CBE=26°+37°=63°,∵AC∥ED,∴∠BED=∠CAE=63°.故选A.【点评】本题考查的是三角形外角与内角的关系及两直线平行的性质.6.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.2【考点】锐角三角函数的定义.【专题】网格型.【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.【点评】通过构造直角三角形来求解,利用了锐角三角函数的定义.7.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<2 D.m>2【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,∴2﹣m<0,∴m>2.故选D.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.8.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.【解答】解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.故选:D.【点评】在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.9.如图,在△ABC中,DE∥BC,若,DE=4,则BC=()A.9 B.10 C.11 D.12【考点】相似三角形的判定与性质.【分析】由DE∥BC,可求出△ADE∽△ABC,已知了它们的相似比和DE的长,可求出BC的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC∴=∵DE=4∴BC=12故本题选D.【点评】此题考查了相似三角形的判定与性质:三角形一边的平行线截三角形另两边或另两边的延长线所得三角形与原三角形相似;相似三角形对应边的比相等.10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,结果如下表:5 6 7 8 10日用电量(单位:度)户数 2 5 4 3 l则关于这15户家庭的日用电量,下列说法错误的是()A.众数是6度B.平均数是6.8度C.极差是5度D.中位数是6度【考点】中位数;算术平均数;众数;极差.【专题】压轴题;图表型.【分析】众数是指一组数据中出现次数最多的数据;而中位数是指将一组数据按从小(或大)到大(或小)的顺序排列起来,位于最中间的数(或是最中间两个数的平均数);极差是最大数与最小数的差.【解答】解:A、数据6出现了5次,出现次数最多,所以众数是6度,故选项正确;B、平均数=(5×2+6×5+7×4+8×3+10×1)÷15=6.8度,故选项正确;C、极差=10﹣5=5度,故选项正确;D、本题数据共有15个数,故中位数应取按从小到大的顺序排列后的第8个数,所以中位数为7度,故选项错误.故选D.【点评】本题重点考查平均数,中位数,众数及极差的概念及求法.解题的关键是熟记各个概念.11.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=3【考点】解一元二次方程-因式分解法;因式分解-十字相乘法等;解一元一次方程.【专题】计算题.【分析】分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:C.【点评】本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.12.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4 B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)2【考点】因式分解-运用公式法.【分析】这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:x2﹣4x+4=x2﹣2•2x+22=(x﹣2)2.故选C.【点评】应该牢记公式法分解的特点:必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.13.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.14.如图,已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C 是切点,连结AC.若∠CAB=30°,则BD的长为()A.R B.R C.2R D.R【考点】切线的性质.【分析】连接OC,由DC是⊙O的切线,则△DCO是直角三角形;由圆周角定理可得∠DOC=2∠CAB=60°,则OD=2OC=20B,BD的长即可求出.【解答】解:连接OC.∵DC是⊙O的切线,∴OC⊥CD,即∠OCD=90°.又∵∠BOC=2∠A=60°,∴Rt△DOC中,∠D=30°,∴OD=2OC=20B=OB+BD,∴BD=OB=R.故选A.【点评】本题考查了切线的性质及圆周角定理.解答该题的切入点是从切线的性质入手,推知△DOC 为含30度角的直角三角形.二、填空题(本题满分16分,每小题4分)15.若点(4,m)在反比例函数y=(x≠0)的图象上,则m的值是2.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】直接把点(4,m)代入函数解析式,即可求出m的值.【解答】解:∵点(4,m)在反比例函数y=(x≠0)的图象上,∴m=,解得m=2.故答案为:2.【点评】本题主要考查点在函数图象上的含义,点在函数图象上,点的坐标一定满足函数解析式.16.晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是.【考点】几何概率.【专题】压轴题.【分析】让2的个数除以数的总数即可.【解答】解:图中共有8个相等的区域,含2的有4个,转盘停止时指针指向2的概率是=.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是∠APO=∠BPO 等(只写一个即可,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP.【解答】解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO等.【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.18.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为8.【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理可知AM的长,根据勾股定理可将OM的长求出,从而可将DM 的长求出.【解答】解:连接OA,∵AB⊥CD,AB=8,∴根据垂径定理可知AM=AB=4,在Rt△OAM中,OM===3,∴DM=OD+OM=8.故答案为:8.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.三、解答题(本题满分62分)19.(1)计算:;(2)先化简,再求值:(a﹣2)(a+2)﹣a(a﹣2),其中a=﹣1.【考点】特殊角的三角函数值;整式的混合运算—化简求值.【专题】计算题.【分析】(1)根据乘方、二次根式、特殊角的三角函数值及绝对值的性质解答即可;(2)先找到公因式(a﹣2),再提公因式即可.【解答】解:(1)原式=4+2×2﹣8×﹣3=4+4﹣4﹣3=1;(2)原式=(a﹣2)(a+2﹣2)=(a﹣2)a=a2﹣2a=(﹣1)2﹣2×(﹣1)=1+2=3.【点评】此题考查了特殊角的三角函数值和整式的混合运算,熟悉基本的运算法则,记住特殊值是解题的关键.20.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据条形图、扇形图的意义,并灵活综合运用.(1)喜欢篮球的13人,占26%;则13÷26%=50,本次被调查的人数是50;(2)用样本估计总体:∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人;(3)结合实际意义,提出建议.【解答】解:(1)∵13÷26%=50,∴本次被调查的人数是50.补全的条形统计图如图所示;(2)∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人;(3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分)【点评】本题考查的是条形统计图、扇形图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.学校集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.则大、小车每辆的租车费各是多少元?【考点】二元一次方程组的应用.【分析】利用租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,进而分别得出等式求出即可.【解答】解:设租大车每辆x元,小车每辆y元,则,解得:.答:大车每辆的租车费位400元,小车每辆的租车费是300元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.22.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用.【分析】根据AD=xm,得出BD=xm,进而利用解直角三角形的知识解决,注意运算的正确性.【解答】解:假设AD=xm,∵AD=xm,∴BD=xm,∵∠ACD=30°,∠ABD=45°,BC=50m,∴tan30°==,∴=,∴AD=25(+1)≈68.3m.【点评】此题主要考查了解直角三角形的应用,根据已知假设出AD的长度,进而表示出tan30°=是解决问题的关键.23.如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】几何动点问题;证明题.【分析】(1)根据四边形ABCD是正方形,BD是对角线,且GH∥BC,求证△GEB和△HDE都是等腰直角三角形.又利用EF⊥AE,可得∠EFH=∠AEG,然后即可求证△AGE≌△EHF.(2)分两种情况进行讨论:(i)当点E运动到BD的中点时,利用四边形AFHG是矩形,可得S=四边形AFHG(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFHG是直=(FH+AG)角梯形.由(1)知,△AGE≌△EHF,同理,图(2),△AGE≌△EHF可得,S四边形AFHG•GH=,然后即可得出结论.【解答】解:(1)∵四边形ABCD是正方形,BD是对角线,且GH∥BC,∴四边形AGHD和四边形GHCB都是矩形,△GEB和△HDE都是等腰直角三角形.∴∠AGE=∠EHF=90°,GH=BC=AB,EG=BG∴GH﹣EG=AB﹣BG即EH=AG∴∠EFH+∠FEH=90°又∵EF⊥AE,∴∠AEG+∠FEH=90°.∴∠EFH=∠AEG∴△AGE≌△EHF(2)四边形AFHG的面积没有发生变化.(i)当点E运动到BD的中点时,=四边形AFHG是矩形,S四边形AFHG(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFHG是直角梯形.由(1)知,△AGE≌△EHF同理,图(2),△AGE≌△EHF∴FH=EG=BG.∴FH+AG=BG+AG=AB=1=(FH+AG)•GH=这时,S四边形AFHG综合(i)、(ii)可知四边形AFHG的面积没有发生改变,都是.【点评】此题主要考查正方形的性质,全等三角形的判定与性质等知识点的理解和掌握,此题有一定的拔高难度,属于难题.24.如图,抛物线y=与x轴交于A,B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)根据题意可得点A,C的坐标,代入函数解析式即可求得b,c的值;(2)根据题意求的点B的坐标,即可求得△OBC为等腰三角形,可得点E的横纵坐标相等,解方程即可求得点E的坐标;(3)作PE∥OB,根据平行四边形的判定定理,证得PE=OB即可.【解答】解:(1)由图可得A(﹣2,0)、C(0,3),∵A、C在抛物线y=上,∴,解得,∴抛物线的解析式为y=.(2)过O作OD⊥BC垂足为D交抛物线于E,由(1)得抛物线与x轴的交点B(3,0),∴OB=OC即△OBC为等腰直角三角形,∵OD⊥BC,∴∠EOB=45°,又∵E在第一象限内,∴易知E的横坐标与纵坐标相等.设E(x,x),则有x=,解得x1=2,x2=﹣3(不合题意,舍去),∴E(2,2).(3)过E作EP∥OB交抛物线于P,设P(m,n),∵EP∥OB,∴n=2,由于P在抛物线上,∴2=,解得m1=﹣1,m2=2(不合题意,舍去).∴P(﹣1,2),∵PE∥OB且PE=OB,∴四边形OBEP是平行四边形,∴存在一点P(﹣1,2)使得四边形OBEP是平行四边形.【点评】此题考查了二次函数与三角形以及平行四边形的综合知识,解题时要注意认真审题,要注意数形结合思想的应用.。

2015年海南省中考数学模拟试题(二十)-2.doc

2015年海南省中考数学模拟试题(二十)-2.doc

()21213x x x -≥⎧⎪⎨-<+⎪⎩2015年海南省中考数学模拟试题(二十)参考答案一、选择题(本大题满分42分,每小题3分)15、(2)(2)a b b +-, 16、1 17、4、1 三、解答题:19、(120120142-⎛⎫-- ⎪⎝⎭解:原式= …………2分3+4-1= …………4分 6= …………5分(2) 解:解不等式①,得3x ≥ …………2分解不等式②,得5x < …………4分 所以不等式组的解集为35x ≤< …………5分20、解:设一个8W 和16W 的节能灯的单价分别是x 元、y 元,…………1分 根据题意,得41012180y x x y -=⎧⎨+=⎩ …………4分解得610x y =⎧⎨=⎩…………7分答:一个8W 和16W 的节能灯的单价分别是6元、10元。

…………8分21、解:(1)如图所示; …………2分 (2)a =26.4,b =8.6; …………6分 (3)26°. …………8分P∴60AB EC BE AC ==== …………4分 ∴60CD CE DE =+=+ …………8分 答:建筑物CD 的高为(60+米. …………9分 23.解:(1)①证明:∵四边形ABCD 是正方形, ∴AD=AB ,∠DAQ =∠BAQ =45° …………2分 又∵AQ = AQ ,∴△ADQ ≌△ABQ ; …………4分 ②若S △ADQ =16S 正方形ABCD ,S △ADQ =13S △ACD …………5分 ∴AQ :AC =1:3,AQ :CQ =1:2 …………6分 又∵AB ∥CD ∴△APQ ∽△CDQ ∴AP :CD = AQ :CQ =1:2∵CD =1 ∴AP=12∴n=12 …………7分 ∴当n=12时,△ADQ 的面积是正方形ABCD 面积的16. …………8分(2)①当点P 在边AB 上时,∵∠BPQ >90°,要使△BPQ 为等腰三角形,必须PB =PQ ∴∠PBQ =∠PQB ,∴∠APQ =2∠ABQ =2∠ADQ45°30° DEH xy∴2∠ADQ +∠ADQ =90° ∴∠ADQ =30° ∴AP =x =3;…………10分 ②当点P 在BC 边上时,仿①易知CP x=2…………12分综上①②,当x 2-BPQ 为等腰三角形. …………13分24.解:(1)对于直线142y x =-+,令x =0,得y =4;令y =0,得x =8. ∴ 点A 的坐标为(8,0),点C 的坐标为(0,4). …………1分 ∵ 抛物线的对称轴是直线52x =, ∴ 点D 的坐标为(-3,0), …………2分设所求的抛物线函数关系式为y =a (x +3)(x -8)把点C (0,4)代入上式,得()()40308a =+-,解得16a =-. …………4分 ∴ 所求的抛物线函数关系式为()()1386y x x =-+-, 即215466y x x =-++, …………5分 (2)过点B 作BH ⊥x 轴于H ,,由抛物线的对称性知B (5,4), ∴AB=BC=5,∴∠ACB=∠BAC …………6分 又∵CB ∥x 轴∴∠ACB=∠DAC …………7分 ∴∠BAC=∠DAC∴CA 平分∠BAD …………8分 (2)① 过Q 点作QG ⊥x 轴于G ,∵BH ∥QG∴△ABH ∽△AQG ,由AQ=t ,可得QG=45t …………9分 又∵OP=2t ,∴AP =8-2t∴()214416822555S t t t t =⨯-=-+ …………10分②()2241641625555S t t t =-+=--+ …………11分 H xyG∵405-< ∴当2t =时,S 有最大值为165…………12分 ③直线AC 能垂直平分线段PQ . …………13.分 ∵CA 平分∠BAD∴当AQ AP =时,AC 垂直平分线段PQ 即82t t =-,得83t =…………14分。

2015年中考数学试卷及答案

2015年中考数学试卷及答案

海南省 2015 年初中毕业生学业水平考试数 学 科 试 题(考试时间 100 分钟,满分 120 分)一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按.要.求.用 2B 铅笔涂黑. 1.- 2015 的倒数是A .- 1B . 20151 C .- 2015 D .2015 2015 2.下列运算中,正确的是 A .a 2+a 4= a6 B .a 6÷a 3=a 2 C .(- a 4)2= a 6 D .a 2·a 4= a 6 3.已知 x = 1,y = 2,则代数式 x - y 的值为 A .1B .- 1C .2D .- 3 4.有一组数据:1、4、- 3、 3、4,这组数据的中位数为 A .- 3B .1C .3D .4 5.图 1 是由 5 个完全相同的小正方体组成的几何体,则这个几何体的主视图是正面A BC D 图16.据报道,2015 年全国普通高考报考人数约 9 420 000 人,数据 9 420 000 用科学记数法表 示为9.42×10n ,则 n 的值是A .4B .5C .6D .7 7.如图 2,下列条件中,不.能.证明△ABC ≌△DCB 的是 A D A .AB =DC ,AC =DBC .BO =CO ,∠A =∠D 3 2 B .AB =DC ,∠ABC =∠DCB O D .AB =DC ,∠A =∠DB C 8.方程 = x x - 2的解为 图 2 A .x = 2B .x = 6C .x = - 6D .无解 9.某企业今年 1 月份产值为 x 万元,2 月份比 1 月份减少了 10%,3 月份比 2 月份增加了 15% 则 3 月份的产值是A .(1- 10%)(1+15%)x 万元C .(x - 10%)( x +15%)万元 B .(1- 10%+15%)x 万元D .(1+10%- 15%)x 万元AMB M P O A B Q P10.点 A (- 1,1)是反比例函数 y =m + 1 的图象上一点,则 m 的值为 x A .- 1 B .- 2 C .0 D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是A . 1 3B . 4 9C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如 图 3所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑C .比赛到 2 分钟时,甲、乙两人跑过的路程相等B .甲先慢后快,乙先快后慢 D .甲先到达终点 13.如图 4,点 P 是□ABCD 边 A B 上的一点,射线C P 交D A 的延长线于点E ,则图中相 似的三角形有A .0 对 S (米) 1000 700 600 500 02 2.5 图3 B .1 甲 乙3.25 4 对 E t () B C .2 对 A P C 图 4D .3 对 D 图 5 14.如图 5, 将⊙O 沿弦 A B 折叠,圆弧恰好经过圆心 O∠ A PB 的度数为, 点 P 是优弧 ⌒ 上一点,则 A .45°B .30°C .75°D .60° 二、填空题(本大题满分 16 分,每小题 4 分)15.分解因式:x 2- 9 =. 16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1y 2(填“>”或“=”或“<”) 17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点 Q 的坐标为. A DB C图 7 18.如图 7,矩形 A BCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为⎨ x + 天数 48 42 36 30 24 18 12 6 0 24 18 15 9 6 三、解答题(本大题满分 62 分)⎧2x -1≤3 19 (满分 10 分)(1)计算:(- 1)3+ 9 - 12× 2-2; (2)解不等式组: ⎪ 3>1 . ⎛⎪ 2 20 (满分 8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌 A 型号计算器的单 价比B 型号计算器的单价多 10 元,5 台 A 型号的计算器与 7 台 B 型号的计算器的价钱相 同,问 A 、B 两种型号计算器的单价分别是多少?21 (满分 8 分)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表:空气质量指数条形统计图优 良请根据图表中提供的信息,解答下面的问题:轻度 中度 重度 污染 污染 污染 严重级别 污染 (1)空气质量指数统计表中的 a = ,m =;(2)请把空气质量指数条形统计图补充完整; (3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是 度(4)估计该市 2014 年(365 天)中空气质量指数大于 100 的天数约有天.22 (满分 9 分)如图 8,某渔船在小岛 O 南偏东 75°方向的 B 处遇险,在小岛 O 南偏西 45° 方向 A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛 O 相距 8 海里,渔船在中国渔政船的正东方向上.(1)求∠BAO 与∠ABO 的度数(直接写出答案);(2)若中国渔政船以每小时 28 海里的速度沿 A B 方向赶往 B 处救援,能否在 1 小时内赶到?请说明理由 (参考数据: t an 75°˜ 3.73,tan 15°˜ 0.27, 2 ˜ 1.41, 6 ˜ 2.45 北A 图 8 BO东23 (满分 13 分)如图 9-1,菱形 A BCD 中,点 P 是 C D 的中点,∠BCD = 60°,射线 A P 交BC 的延长线于点 E ,射线 B P 交 D E 于点 K ,点 O 是线段 B K 的中点.(1)求证:△ADP ≌△ECP ;(2)若 B P = n ·PK ,试求出 n 的值;(3)作 B M ⊥AE 于点 M ,作 K N ⊥AE 于点 N ,连结 M O 、NO ,如图 9-2 所示. 请证明△MON是等腰三角形,并直接写出∠MON 的度数.A DA D KM KPP O O N B C 图 9-1E B C E 图 9-2 24 (满分 14 分)如图 10-1,二次函数 y = ax 2+bx +3 的图象与 x 轴相交于点 A (- 3,0)、B (1,0) 与 y 轴相交于点 C ,点 G 是二次函数图象的顶点,直线 G C 交 x 轴于点 H (3,0),AD 平 行 G C 交 y 轴于点 D .(1)求该二次函数的表达式;(2)求证:四边形 A CHD 是正方形;(3)如图 10-2,点 M (t ,p )是该二次函数图象上的动点,并且点 M 在第二象限内,过 点 M的直线 y = kx 交二次函数的图象于另一点 N .①若四边形 A DCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围②若△CMN 的面积等于21 ,请求出此时①中 S 的值. 4图 10-1 图 10-2Gy M C A B H O xD NG yC A B H O x D。

海南省2015年中考数学模拟卷(十二)

海南省2015年中考数学模拟卷(十二)

海南省2015年中考数学模拟卷(十二)(全卷满分120分,考试时间100分钟) 一、选择题(本大题满分42分,每小题3分)1.计算)2(21-⨯的结果是A .1B .-1C . -4D . 41-2.下列计算正确的是A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷ 3.图1中几何体的俯视图为4.数据:3,1-,1,5,6,5的众数和中位数分别是A .5和4B .6和4C .5和3D .6和3 5.在函数131y x =-中,自变量x 的取值范围是 A .31>x B .0>x C .31≠x D .0≠x 6.若分式12-x 与13x +的值相等,则x 的值为 A . 7 B . −7 C . 5 D .−57.据中新社北京2012年l2月8日电:2012年中国粮食总产量达到546 400 000吨,用科学记数法表示为A .75.46410⨯吨B .85.46410⨯吨C .95.46410⨯吨D .105.46410⨯吨 8.分解因式2x 2 − 4x + 2的最终..结果是 A .2x (x − 2) B .2(x 2 − 2x + 1) C .2(x − 1)2 D .(2x − 2)29.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为A .2B .4C .12D .16 10.如图2,将三角尺的直角顶点放在直尺的一边上,若∠1 =30°,∠2 =50°,则∠3的度数为 A .50° B .30° C .20° D .15°11.如图3,AB 是⊙O 直径,∠AOC =130°,则∠D 的度数是 A .15 B .25 C .35 D .6512.在正方形网格中,△ABC 位置如图4所示,则cos ∠ABC 的值为图1 A .B .C .D . 图2 2 13 A B C图4D B O A C 图3AB .23 C .22 D .1213.若点)3(1-,x A 、)2(2-,x B 都在函数xy 6-=的图象上,则1x ,2x 的大小关系是 A .21x x > B .21x x < C .21x x = D .无法确定14.一次函数y=-x +2的图象是二、填空题(本大题满分16分,每小题4分)15.若a 2+2a =2,则(a +1)2= .16.如图5,在等边ABC △中,D E 、分别是AB AC 、的中点,3DE =,则ABC △的周长是________.17.如图6,已知矩形ABCD ,将BCD △沿对角线BD 折叠,记点C 的对应点为C ′,若ADC ∠′=20°,则∠C'BD = °.18.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 .三、解答题(本大题满分62分)19.(满分10分,每小题5分)(1)计算:︒+-⨯---+-30sin 4)32(64)7(32 ; (2)化简:)34()12)(12(--+-a a a a .20.(满分8分)第30届奥林匹克运动会在英国伦敦举行.有甲、乙两种价格的奥运会门票,甲种门票价格为4000元人民币/张,乙种门票价格为3000元人民币/张,王老师购买这两种价格的奥运会门票共6张,花了20000元人民币,求甲、乙两种门票各多少张?AB C D E 图5 A .B .D .C .图6D CA图7 C甲 乙 丙 竞选人笔试 面试 图9 图8 21.(满分8分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人,投票结果统计如图8:请你根据以上信息解答下列问题: (1)补全图8和图9;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?22. (本题满分9分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP=74°,∠BEQ=30°;在点F 处测得∠AFP=60°,∠BFQ=60°,EF=1km . (1)判断AB 、AE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)23.(本题满分12分)如图11,在正方形ABCD 中,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF =CE ,连接DF ,交BE 的延长线于点G .(1)求证:△BCE ≌△DCF ; (2)求证:BF=BD ;(3)已知AB=2,O 是BD 的中点,连结OG 交CD 于点M , 求ME 的长.24.(本题满分14分)如图12,直线232+-=x y 与x 轴、y 轴分别交于B 、C 两点,经过B 、C 两点的抛物线与x 轴的另一交点坐标为A (-1,0). (1)求B 、C 两点的坐标及该抛物线所对应的函数关系式;(2)P 是线段BC 上的一个动点(与B 、C 不重合),过点P 作直线a ∥y 轴,交抛物线于点E ,交x 轴于点F ,设点P 的横坐标为m ,△BCE 的面积为S . ①求S 与m 之间的函数关系式,并写出自变量m 的取值范围; ②求S 的最大值,并判断此时△OBE 的形状,说明理由;(3)P 是线段BC 上的一个动点(与B 、C 不重合),过点P 作直线b ∥x 轴(图13),交AC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,请求出点R 的坐标;若不存在,请说明理由.图13图11 A B CD E F O G M 图1222.(本题满分9分)【解析】(1)相等.理由如下:∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=30°,EF=BF.又∵∠AFP=60°,∴∠BFA=60°.在△AEF与△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,∴△AEF≌△ABF,∴AB=AE.(2)方法一:作AH⊥PQ,垂足为H.设AE=x,则AH=xsin74°,HE=xcos74°,HF=xcos74°+1.Rt△AHF中,AH=HF•tan60°,∴xsin74°=(xcos74°+1)•tan60°,即0.96x=(0.28x+1)×1.73,解得x≈3.6,即AB≈3.6.答:两个岛屿A与B之间的距离约为3.6km.方法二:设AF与BE的交点为G.在Rt△EGF中,∵EF=1,∴EG=.在Rt△AEG中,∠AEG=76°,AE=EG÷cos76°=÷0.24≈3.6km,∵AE=AB,∴两个岛屿A和B之间的距离是3.6km,答:两个岛屿A与B之间的距离约为3.6km.海口九中2013年初中毕业生学业模拟考试2——数学科答题卡第1页(共4页)(3)22.(满分9分) (1)(2) (3) 图10。

2015年海南省中考数学模拟试题(一)

2015年海南省中考数学模拟试题(一)

2015年海南省中考数学模拟试题(一)参考答案一、选择题(本大题满分42分,每小题3分)ADCCD CBBDA CACB二、填空题(本大题满分16分,每小题4分)15. 2)1(3-x -2 16. 31 17. 33 18.132 三、解答题(本大题满分62分)19.(1)5 (2)x=23- 20.(1)40%,1440 (2)图略 (3)300人21. 解:设这两种饮料在调价前每瓶各x 元、y 元,根据题意得:解得:答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元.22. 解:过点A 作AD ⊥BC 的延长线于点D ,∵∠CAD=45°,AC=10海里, ∴△ACD 是等腰直角三角形,∴AD=CD===5(海里),在Rt △ABD 中, ∵∠DAB=60°,∴BD=AD•tan60°=5×=5(海里),∴BC=BD ﹣CD=(5﹣5)海里,∵中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行, ∴海监船到达C 点所用的时间t===(小时); 某国军舰到达C 点所用的时间i==≈=0.4(小时), ∵<0.4,∴中国海监船能及时赶到.23. (1)证明:在ΔABC 和ΔAEP 中∵∠ABC=∠AEP ,∠BAC=∠EAP∴ ∠ACB=∠APE在ΔABC 中,AB=BC∴∠ACB=∠BAC∴∠EP A=∠EAP(2)□ APCD是矩形,理由如下:∵四边形APCD是平行四边形∴ AC=2EA, PD=2EP∵由(1)知∠EP A=∠EAP∴ EA=EP则AC=PD∴□APCD是矩形(3)EM=EN证明:∵EA=EP ∴∠EP A=90°-1 2α∴∠EAM=180°-∠EP A=180°-(90°- 12α)=90°+12α由(2)知∠CPB=90°,F是BC的中点,∴ FP=FB ∴∠FPB=∠ABC=α∴∠EPN=∠EP A+∠APN=∠EP A+∠FPB=90°- 12α+α=90°+12α∴∠EAM=∠EPN∵∠AEP绕点E顺时针旋转适当的角度,得到∠MEN∴∠AEP=∠MEN∴∠AEP- ∠AEN=∠MEN-∠AEN 即∠MEA=∠NEP∴ΔEAM≌ΔEPN ∴ EM=EN24.解:(1)由x+1=0,得x=﹣2,∴A(﹣2,0).由x+1=3,得x=4,∴B(4,3).∵y=ax2+bx﹣3经过A、B两点,∴∴a=,b=﹣设直线AB与y轴交于点E,则E(0,1).∵PC∥y轴,∴∠ACP=∠AEO.∴sin∠ACP=sin∠AEO===.(2)①由(1)知,抛物线的新解析式为y=x2﹣x﹣3.则点P(m,m2﹣m﹣3).已知直线AB:y=x+1,则点C(m,m+1).∴PC=m+1﹣(m2﹣m﹣3)=﹣m2+m+4=﹣(m﹣1)2+Rt△PCD中,PD=PC•sin∠ACP=[﹣(m﹣1)2+]•=﹣(m﹣1)2+∴PD长的最大值为:.②如图,分别过点D、B作DF⊥PC,BG⊥PC,垂足分别为F、G.在Rt△PDF中,DF=PD=﹣(m2﹣2m﹣8).又∵BG=4﹣m,∴===.当==时,解得m=;当==时,解得m=.。

2015年海南省中考数学模拟试题(十二)-2.doc

2015年海南省中考数学模拟试题(十二)-2.doc

2015年海南省中考数学模拟试题(十二)(考试时间100分钟,满分120分)欢迎你参加这次测试,祝你成功!一、选择题(本题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答题卷...上表中相应题号的方格内. 1.若5x -=,则x 等于( ) A .-5 B .5 C .15D .5± 2.数据86000000用科学记数法表示为( )A .86×106B .8.6×106C .8.6×107D .8.6×1083.已知1a b -=,则代数式223a b --的值是( ) A .-1 B .1 C .-5 D .54.已知三角形的三边长分别为3、4、x ,则x 不可能是( ) A .2 B .4 C .5 D .8 5.若实数x 、y 满足24x y -=,23x y -=,则x y +的值是( ) A .-1 B .0 C .1 D .2 6.图1是由5个大小相同的小正方体摆成的立体图形,它的俯.视图..是( )7.一服装店新进某种品牌五种尺码的衬衣,试卖一周,各尺码衬衣的销售量列表如下:根据上表,仅就经营该品牌衬衣而言,你认为最能影响服装店经理决策的统计量是( )A .平均数B .众数C .中位数D .方差8.如图2,已知AB ∥CD ,∠D =50°,BC 平分∠ABD ,则∠ABC 等于( ) A .65° B .55° C .50° D .45° 9.如图3,在菱形ABCD 中,AC =8,BD =6,则△ABD 的周长等于( )A .20B .18C .16D .14A .-4B .1C .2D .4O A B 正面图111. 如图5,在□ABCD 中,E 是BC 的延长线上一点,AE 与CD 交于点F .BC =2CE .若AB =6,则DF 的长为( )A .2B .3C .4D .5 12. 如图6,∠ABC =80°,O 为射线BC 上一点,以点O 为圆心,12OB 长为半径作⊙O ,要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( ) A .40°或80° B .50°或100° C .50°或110° D .60°或120°13.小王从A 地前往B 地,到达后立刻返回.他与A 地的距离y (千米)和所用时间x (小时)之间的函数关系如图7所示,则小王出发6小时后距A 地( )千米.A .40B .60C .80D .12014. 在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一...个球..,要使摸出红球的概率为23,应在该盒子中再添加红球( ) A .2个 B .3个 C .4个 D .5个 二、填空题(本大题满分16分,每小题4分) 15.123= . 16.不等式组3221x xx -<⎧⎨+>-⎩的解集为 .18. 如图9,在矩形ABCD 中,AD =9cm ,AB =3cm ,将其折叠,使点D 和点B 重合,则重叠部分(△BEF )的面积为 cm 2. 三、解答题(本大题满分62分)19.(满分10分,每小题5分)(1)计算:()21228-⎛⎫⨯-- ⎪⎝⎭(2)化简:2141122a a a -⎛⎫-÷⎪--⎝⎭B A图5 图6 图7 D图9请你根据以上图表提供的信息,解答下列问题:1)m = ,n = ,x = ,y = ; 2)在扇形图中,C 等级所对应的圆心角是 度;3)若该校九年级共有600名男生参加了立定跳远测试,请你估计成绩等级达到“优秀”、“良好”的男生共有多少人?D 60以下 3 0.06 合计 50 1.00AB 40%CD 图10 观察站最大最全最精的教育资源网 24.(满分15分)如图12,在平面直角坐标系中,抛物线y =a x 2+bx +6经过点A (-3,0)和点B (2,0),与y 轴交于点C .直线y =h (h 为常数,且0<h <6)与BC 交于点D ,与y 轴交于点E ,与AC 交于点F ,与抛物线在第二象限交于点G . (1)求该抛物线所对应的函数关系式;(2)连结BE ,求h 为何值时,△BDE 的面积最大;(3)已知定点M (-2,0),请问是否存在这样的直线y =h ,使△OFM 是等腰三角形?若存在,求出h 的值和点G 的坐标;若不存在,说明理由.g ACB OMF DG xy y=hE 图12图11BCE。

海南省 2015 年初中毕业生学业水平考试

海南省 2015 年初中毕业生学业水平考试

海南省2015 年初中毕业生学业水平考试数学科试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按.要.求.用2B 铅笔涂黑.1.- 2015 的倒数是1 20151 2015A.-B.C.- 2015 D.20152.下列运算中,正确的是A.a2+a4= a6B.a6÷a3=a2C.(- a4)2= a6D.a2·a4= a63.已知x = 1,y = 2,则代数式x - y 的值为A.1 B.- 1 C.2 D.- 34.有一组数据:1、4、- 3、3、4,这组数据的中位数为A.- 3 B.1 C.3 D.45.图1 是由5 个完全相同的小正方体组成的几何体,则这个几何体的主视图是6.据报道,2015 年全国普通高考报考人数约9 420 000 人,数据9 420 000 用科学记数法表示为9.42×10n,则n 的值是A.4 B.5 C.6 D.77.如图2,下列条件中,不.能.证明△ABC≌△DCB 的是 A DA.AB =DC,AC =D B C.BO =CO,∠A =∠D B.AB =DC,∠ABC =∠DCBD.AB =DC,∠A =∠DOB C3 x2 x 28.方程的解为图2 A.x = 2 B.x = 6 C.x = - 6 D.无解9.某企业今年1 月份产值为x 万元,2 月份比1 月份减少了10%,3 月份比2 月份增加了15% 则3 月份的产值是A.(1- 10%)(1+15%)x 万元C.(x- 10%)( x +15%)万元B.(1- 10% +15%)x 万元D.(1+10%- 15%)x 万元=m+ 1 的图象上一点,则 m 的值为 10.点 A (- 1,1)是反比例函数 y= xA .- 1B .- 2C .0D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选两名进行督导,则恰好选中两名男学生的概率是 A . 1 3B . 49C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如图 3 所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑 C .比赛到 2 分钟时,甲、乙两人跑过的路程相等B .甲先慢后快,乙先快后慢D .甲先到达终点13.如图 4,点 P 是□ABCD 边 AB 上的一点,射线 CP 交 D A 的延长线于点 E ,则图中相似的三角形有A .0 对B .1 对C .2 对D .3 对14.如图 5,将⊙O 沿弦 AB 折叠,圆弧恰好经过圆心 O ,点 P 是优弧 ⌒ 上一点,则 AMB∠APB 的度数为A .45°B .30°C .75°D .60°二、填空题(本大题满分 16 分,每小题 4 分)15.分解因式:x 2- 9 =.16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1 y 2(填“>”或“=”或“<”)17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点Q 的坐标为.18.如图 7,矩形 ABCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为三、解答题(本大题满分 62 分)19 (满分 10 分)(1)计算:(- 1)3+ 9 - 12× 2-2;(2)解不等式组: 20 (满分 8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌 A 型号计算器的单 价比 B 型号计算器的单价多 10 元,5 台 A 型号的计算器与 7 台 B 型号的计算器的价钱相同,问 A 、B 两种型号计算器的单价分别是多少?21 (满分 8 分)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表:空 气质 量 指 数 统计 表空气质量指数条形统计图天数4842 36 30 24 18 12 6 024181596轻度 污染 中度 重度 严重 级别 污染 污染 污染优 良请根据图表中提供的信息,解答下面的问题: (1)空气质量指数统计表中的 a = ,m = ;(2)请把空气质量指数条形统计图补充完整; (3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是 度 (4)估计该市 2014 年(365 天)中空气质量指数大于 100 的天数约有天.22 (满分 9 分)如图 8,某渔船在小岛 O 南偏东 75°方向的 B 处遇险,在小岛 O 南偏西 45° 方向 A 处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛 O 相距 8 海里,渔船在中国渔政船的正东方向上. (1)求∠BAO 与∠ABO 的度数(直接写出答案); (2)若中国渔政船以每小时 28 海里的速度沿 AB 方向赶往 B 处救援,能否在 1 小时内赶到?请说明理由 (参考数据: tan 75°~3.73,tan 15°~0.27, 2~1.41, 6 ~2.45北O东A B图 8级 别指 数天数 百分比优 0-50 24 m 良 51-100 a 40% 轻度污染 101-150 18 15% 中度污染 151-200 15 12.5% 重度污染 201-300 9 7.5% 严重污染 大于 300 6 5% 合计———— 120 100%⎪⎩⎪⎨⎧>+≤-123312x x23 (满分13分)如图9-1,菱形ABCD 中,点P 是CD 的中点,∠BC D = 60°,射线AP 交BC 的延长线于点E,射线BP 交D E于点K,点O 是线段BK 的中点.(1)求证:△ADP≌△ECP;(2)若BP = n·P K,试求出n 的值;(3)作BM⊥AE 于点M,作KN⊥AE 于点N,连结MO、NO,如图9-2 所示.请证明△MON 是等腰三角形,并直接写出∠MON 的度数.DD AAMK KP PNO OB BC E C E图9-1 图9-224 (满分14分)如图10-1,二次函数y = ax2+bx+3 的图象与x 轴相交于点A (- 3,0)、B (1,0)与y 轴相交于点C,点G 是二次函数图象的顶点,直线G C 交x 轴于点H (3,0),AD 平行G C 交y 轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD 是正方形;(3)如图1 0-2,点M (t,p)是该二次函数图象上的动点,并且点M 在第二象限内,过点M 的直线y = kx 交二次函数的图象于另一点N.①若四边形A D CM 的面积为S,请求出S 关于t 的函数表达式,并写出t 的取值范围②若△CMN 的面积等于21 ,请求出此时①中S 的值.4yyG G图10-1 图10-2MACB HODxNACB HODx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年海南省中考数学试卷一、选择题(每小题3分,共42分)1.(3分)(2018•海南)﹣2018的倒数是()B.C.﹣2018 D.2018A.﹣2.(3分)(2018•海南)下列运算中,正确的是()A.a2+a4=a6B.a6÷a3=a2C.(﹣a4)2=a6D.a2•a4=a63.(3分)(2018•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1 C.2D.﹣34.(3分)(2018•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1C.3D.45.(3分)(2018•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.6.(3分)(2018•海南)据报道,2018年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4B .5C.6D.77.(3分)(2018•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.A B=DC,AC=DB B.A B=DC,∠ABC=∠DCBC.B O=CO,∠A=∠D D.A B=DC,∠A=∠D8.(3分)(2018•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解9.(3分)(2018•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元10.(3分)(2018•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0D.111.(3分)(2018•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.12.(3分)(2018•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点13.(3分)(2018•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.(3分)(2018•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°二、填空题(每小题4分,共16分)15.(4分)(2018•海南)分解因式:x2﹣9=.16.(4分)(2018•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”)17.(4分)(2018•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为.18.(4分)(2018•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.三、解答题(本题共6小题,共62分)19.(10分)(2018•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.20.(8分)(2018•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?21.(8分)(2018•海南)为了治理大气污染,我国中部某市抽取了该市2018年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣50 24 m良51﹣100 a 40%轻度污染 101﹣150 18 15%中度污染 151﹣200 15 12.5%重度污染 201﹣300 9 7.5%严重污染大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=,m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)估计该市2018年(365天)中空气质量指数大于100的天数约有天.22.(9分)(2018•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)23.(13分)(2018•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON 是等腰三角形,并直接写出∠MON的度数.24.(14分)(2018•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M 的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.2018年海南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)(2018•海南)﹣2018的倒数是()A.B.C.﹣2018 D.2018 ﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2018×(﹣)=1,∴﹣2018的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(3分)(2018•海南)下列运算中,正确的是()A.a2+a4=a6B.a6÷a3=a2C.(﹣a4)2=a6D.a2•a4=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2•a4=a6,故错误;B、a6÷a3=a3,故错误;C、(﹣a4)2=a8,故错误;D、正确;故选:D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3分)(2018•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1 C.2D.﹣3考点:代数式求值.分析:根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.解答:解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.点评:此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(3分)(2018•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1C.3D.4考点:中位数.分析:根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.解答:解:将这组数据从小到大排列为:﹣3,1,3,4,4,中间一个数为3,则中位数为3.故选C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(3分)(2018•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的视图是主视图,可得答案.解答:解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3分)(2018•海南)据报道,2018年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4B.5C.6D.7考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n (1≤|a|<10,n为整数)中n的值,由于9420000有7位,所以可以确定n=7﹣1=6.解答:解:∵9420000=9.42×106,∴n=6.故选C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2018•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.A B=DC,AC=DB B.A B=DC,∠ABC=∠DCBC.B O=CO,∠A=∠D D.A B=DC,∠A=∠D考点:全等三角形的判定.分析:本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.解答:解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(3分)(2018•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,观察可得最简公分母是x(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以x(x﹣2),得3(x﹣2)=2x,解得x=6,将x=6代入x(x﹣2)=24≠0,所以原方程的解为:x=6,故选B.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)(2018•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元考点:列代数式.分析:根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.解答:解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选A点评:本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.10.(3分)(2018•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0D.1考点:反比例函数图象上点的坐标特征.分析:把点A(﹣1,1)代入函数解析式,即可求得m的值.解答:解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.11.(3分)(2018•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中两名男学生的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴恰好选中两名男学生的概率是:=.故选A.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)(2018•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点考点:函数的图象.分析:根据给出的函数图象对每个选项进行分析即可.解答:解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C 说法不正确;甲先到达终点,D说法正确,故选:C.点评:本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.13.(3分)(2018•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对考点:相似三角形的判定;平行四边形的性质.分析:利用相似三角形的判定方法以及平行四边形的性质得出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.点评:此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.14.(3分)(2018•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°考点:圆周角定理;含30度角的直角三角形;翻折变换(折叠问题).专题:计算题.分析:作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.解答:解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,而OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.二、填空题(每小题4分,共16分)15.(4分)(2018•海南)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.16.(4分)(2018•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1<y2(填“>”或“=”或“<”)考点:一次函数图象上点的坐标特征.分析:根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.解答:解:∵k=2>0,y将随x的增大而增大,2>﹣1,∴y1<y2.故y1与y2的大小关系是:y1<y2.故答案为:<点评:本题考查一次函数的图象性质,关键是根据当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.17.(4分)(2018•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为(2,4).考点:坐标与图形变化-旋转.分析:首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.解答:解:作图如右,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(4,2),∴Q点坐标为(2,4),故答案为(2,4).点评:此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.18.(4分)(2018•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为14.考点:矩形的性质.分析:运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.解答:解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(3+4)=14.故答案为:14.点评:本题考查了平移的性质,矩形性质,勾股定理的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三、解答题(本题共6小题,共62分)19.(10分)(2018•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.考点:实数的运算;负整数指数幂;解一元一次不等式组.专题:计算题.分析:(1)原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=﹣1﹣3﹣12×=﹣1﹣3﹣3=﹣7;(2),由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2018•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?考点:一元一次方程的应用.分析:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依据“5台A 型号的计算器与7台B型号的计算器的价钱相同”列出方程并解答.解答:解:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依题意得:5x=7(x﹣10),解得x=35.所以35﹣10=25(元).答:A号计算器的单价为35元,则B型号计算器的单价是25元.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(8分)(2018•海南)为了治理大气污染,我国中部某市抽取了该市2018年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣50 24 m良51﹣100 a 40%轻度污染 101﹣150 18 15%中度污染 151﹣200 15 12.5%重度污染 201﹣300 9 7.5%严重污染大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=48,m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;(4)估计该市2018年(365天)中空气质量指数大于100的天数约有146天.考点:条形统计图;用样本估计总体;统计表;扇形统计图.分析:(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.解答:解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(9分)(2018•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)考点:解直角三角形的应用-方向角问题.分析:(1)作OC⊥AB于C,根据方向角的定义得到∠AOC=45°,∠BOC=75°,由直角三角形两锐角互余得出∠BAO=90°﹣∠AOC=45°,∠ABO=90°﹣∠BOC=15°;(2)先解Rt△OAC,得出AC=OC=OA≈5.64海里,解Rt△OBC,求出BC=OC•tan∠BOC≈21.0372海里,那么AB=AC+BC≈26.6772海里,再根据时间=路程÷速度求出中国渔政船赶往B处救援所需的时间,与1小时比较即可求解.解答:解:(1)如图,作OC⊥AB于C,由题意得,∠AOC=45°,∠BOC=75°,∵∠ACO=∠BCO=90°,∴∠BAO=90°﹣∠AOC=90°﹣45°=45°,∠ABO=90°﹣∠BOC=90°﹣75°=15°;(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.理由如下:∵在Rt△OAC中,∠ACO=90°,∠AOC=45°,OA=8海里,∴AC=OC=OA≈4×1.41=5.64海里.∵在Rt△OBC中,∠BCO=90°,∠BOC=75°,OC=4海里,∴BC=OC•tan∠BOC≈5.64×3.73=21.0372海里,∴AB=AC+BC≈5.64+21.0372=26.6772海里,∵中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,∴中国渔政船所需时间:26.6772÷28≈0.953小时<1小时,故若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.点评:本题考查了解直角三角形的应用﹣方向角问题,直角三角形的性质,锐角三角函数定义,准确作出辅助线构造直角三角形是解题的关键.23.(13分)(2018•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON 是等腰三角形,并直接写出∠MON的度数.考点:四边形综合题.分析:(1)根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理证明结论;(2)作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质证明结论;(3)作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,根据直角三角形的性质和锐角三角函数求出∠MON的度数.解答:(1)证明:∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在△ADP和△ECP中,,∴△ADP≌△ECP;(2)如图1,作PI∥CE交DE于I,则=,又点P是CD的中点,∴=,∵△ADP≌△ECP,∴AD=CE,∴==,∴BP=3PK,∴n=3;(3)如图2,作OG⊥AE于G,∵BM丄AE于,KN丄AE,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,由(2)得,PB=3PO,∴OG=BM=,MG=MP=,tan∠MOG==,∴∠MOG=60°,∴∠MON的度数为120°.点评:本题考查的是菱形的性质和相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意锐角三角函数在解题中的运用.24.(14分)(2018•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M 的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.考点:二次函数综合题.分析:(1)根据二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),应用待定系数法,求出a、b的值,即可求出二次函数的表达式.(2)首先分别求出点C、G、H、D的坐标;然后判断出AO=CO=DO=HO=3,AH⊥CD,判断出四边形ACHD是正方形即可.(3)①作ME⊥x轴于点E,作MF⊥y轴于点F,根据四边形ADCM的面积为S,可得S=S四边形AOCM+S△AOD,再分别求出S四边形AOCM、S△AOD即可.②首先设点N的坐标是(t1,p1),则NI=|t1|,所以S△CMN=S△COM+S△CON=(|t|+|t1|),再根据t<0,t1>0,可得S△CMN=(|t|+|t1|)==,据此求出t1﹣t=;然后求出k1、k2的值是多少,进而求出t1、t2的值是多少,再把它们代入S关于t的函数表达式,求出S的值是多少即可.解答:解:(1)∵二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),∴解得∴二次函数的表达式为y=﹣x2﹣2x+3.(2)如图1,,∵二次函数的表达式为y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴点G的坐标是(﹣1,4),∵点C的坐标为(0,3),∴设CG所在的直线的解析式是y=mx+3,则﹣m+3=4,∴m=﹣1,∴CG所在的直线的解析式是y=﹣x+3,∴点H的坐标是(3,0),设点D的坐标是(0,p),则,∴p=﹣3,∵AO=CO=DO=HO=3,AH⊥CD,∴四边形ACHD是正方形.(3)①如图2,作ME⊥x轴于点E,作MF⊥y轴于点F,,∵四边形ADCM的面积为S,∴S=S四边形AOCM+S△AOD,∵AO=OD=3,∴S△AOD=3×3÷2=4.5,∵点M(t,p)是y=kx与y=﹣x2﹣2x+3在第二象限内的交点,∴点M的坐标是(t,﹣t2﹣2t+3),∵ME=﹣t2﹣2t+3,MF=﹣t,∴S四边形AOCM=×3×(﹣t2﹣2t+3)=﹣t2﹣t+,∴S=﹣t2﹣t++4.5=﹣t2﹣t+9,﹣3<t<0.②如图3,作NI⊥x轴于点I,,设点N的坐标是(t1,p1),则NI=|t1|,∴S△CMN=S△COM+S△CON=(|t|+|t1|),∵t<0,t1>0,∴S△CMN=(|t|+|t1|)==,,联立可得x2﹣(k+2)x﹣3=0,∵t1、t是方程的两个根,∴∴=﹣4t1t=(k+2)2﹣4×(﹣3)==,解得,,a、k=﹣时,由x2+(2﹣)x﹣3=0,解得x1=﹣2,或(舍去).b、k=﹣时,由x2+(2﹣)x﹣3=0,解得x3=﹣,或x4=2(舍去),∴t=﹣2,或t=﹣,t=﹣2时,S=﹣t2﹣t+9=﹣×4﹣×(﹣2)+9=12t=﹣时,S=﹣×﹣×+9=,∴S的值是12或.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合方法的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了待定系数法求函数解析式的方法,以及方程的根与系数的关系,要熟练掌握.(3)此题还考查了三角形的面积的求法,以及正方形的判定和性质的应用,要熟练掌握.。

相关文档
最新文档