风速与风压的对应关系

合集下载

风速与风压的换算关系及各级风速的自然表现

风速与风压的换算关系及各级风速的自然表现

风速与风压的换算关系及各级风速的自然表现P = pV^2/2式中:P——风压,Pa ; p——空气密度,1.205 kg/m^3(20摄氏度时);V——风速,m/s。

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5•ro•v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro•g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5•r•v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限28.4m/s, 得到风压wp=0.5 [kN/m瞉, 相当于每平方米广告牌承受约51千克力。

风力是指风吹到物体上所表现出的力量的大小。

一般根据风吹到地面或水面的物体上所产生的各种现象,把风力的大小分为13个等级,最小是0级,最大为12级。

其口诀:0级静风,风平浪静,烟往上冲。

1级软风,烟示方向,斜指天空。

2级轻风,人有感觉,树叶微动。

3级微风,树叶摇动,旗展风中。

4级和风,灰尘四起,纸片风送。

5级清风,塘水起波,小树摇动。

6级强风,举伞困难,电线嗡嗡。

7级疾风,迎风难行,大树鞠躬。

8级大风,折断树枝,江湖浪猛。

风速与风压的关系

风速与风压的关系

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v2 (1)其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=·r·v2/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r= [kN/m3]。

纬度为45°处的重力加速度g=[m/s2], 我们得到wp=v2/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

“作为一个复杂完整的系统,……除尘系统的性能一般要由多个参数来评定,评定气力除尘系统的参数如下: 风量____指在单位时间内通过气力除尘系统气流管道某一截面上的气体体积(m3/h);风速____指气力吸尘系统气流管道内气流的流动速度(m/s);风压____指气流管道内部与外部环境的压力差以Pa或mm水柱来表示。

风量、风速与风压三个参数,在一个气力除尘系统中是相互联系、相互制约。

风量大小决定了管道内气流的浓度,风量与风速共同决定了气流管道截面的结构尺寸,风压的大小主要由气流管道的长度尺寸所决定。

在风机输出性能许可的范围内,设计中应尽量减少管道长度,以保证足够的压力差和风速,在保证管道内气流混合浓度的条件下,应尽量地减小气流管道截面结构尺寸,以增大风速,进而增大吸料口的吸力。

实际应用中的气力除尘系统往往由于这些参数选择的不尽合理,而造成吸力不足或能耗浪费。

较为典型的不合理现象有系统过于庞大,管道过长;气流混合浓度过低,管道截面过大;各段管道结构尺寸不合理,系统压力不平衡等。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风压与风速是设计建筑物和结构时需要考虑的重要参数。

风压是指风力对建筑物或结构物表面单位面积的作用力,而风速则是指风在单位时间内通过单位面积的空气体积。

风压与风速之间存在一定的关系,下面将介绍风压与风速的计算方法。

1.风压计算方法:风压的计算方法主要包括静风压和动风压。

静风压:静风压是指风作用力与表面正交且单位面积上的总垂直静风压力。

其计算方法如下:P=0.5*ρ*V²*Cp其中,P为静风压力(Pa),ρ为空气密度(kg/m³),V为风速(m/s),Cp为风压系数。

动风压:动风压是指风速引起的压力变化导致的风压力。

对于其中一稳定的风压系数,动风压与表面风速变化成正比。

其计算方法如下:Pd=0.5*ρ*Vd²*Cp其中,Pd为动风压理论值(Pa),ρ为空气密度(kg/m³),Vd为设计风速(m/s),Cp为风压系数。

2.风速计算方法:风速的计算方法主要包括平均风速和顶风速。

平均风速:平均风速是指其中一位置一段时间内风速的平均值。

可以通过气象观测数据统计得出,也可以通过计算模型进行估算。

顶风速:顶风速是指建筑物或结构物顶部其中一高度处的风速。

顶风速通常要考虑地形、建筑物高度、热力效应等因素。

可以通过实地测量、参考相似结构物或使用风洞模型进行估算。

3.风压与风速关系:风压与风速之间的关系并非简单的线性关系,而是受到多种因素的影响,包括空气密度、气象条件、建筑物或结构物的几何形状、地理环境等。

因此,确定准确的风压与风速关系需要进行风洞试验、数值模拟或根据经验公式进行计算。

有一种经验公式被广泛应用于建筑物风压与风速的估计,即弗郎克公式:P=0.5*ρ*V²*Cd*Af其中,P为风压力(Pa),ρ为空气密度(kg/m³),V为风速(m/s),Cd为流体动力学计算系数,Af为面积系数。

总结起来,风压与风速的计算方法需要根据具体情况进行综合考虑。

风压与风速

风压与风速

风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用Cyberspace的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v²(1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。

风速与风压的关系

风速与风压的关系

风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v2 (1)其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v2/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。

纬度为45°处的重力加速度g=9.8[m/s2], 我们得到wp=v2/1600 (3)此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

“作为一个复杂完整的系统,……除尘系统的性能一般要由多个参数来评定,评定气力除尘系统的参数如下: 风量____指在单位时间内通过气力除尘系统气流管道某一截面上的气体体积(m3/h);风速____指气力吸尘系统气流管道内气流的流动速度(m/s);风压____指气流管道内部与外部环境的压力差以Pa或mm水柱来表示。

风量、风速与风压三个参数,在一个气力除尘系统中是相互联系、相互制约。

风量大小决定了管道内气流的浓度,风量与风速共同决定了气流管道截面的结构尺寸,风压的大小主要由气流管道的长度尺寸所决定。

在风机输出性能许可的范围内,设计中应尽量减少管道长度,以保证足够的压力差和风速,在保证管道内气流混合浓度的条件下,应尽量地减小气流管道截面结构尺寸,以增大风速,进而增大吸料口的吸力。

实际应用中的气力除尘系统往往由于这些参数选择的不尽合理,而造成吸力不足或能耗浪费。

较为典型的不合理现象有系统过于庞大,管道过长;气流混合浓度过低,管道截面过大;各段管道结构尺寸不合理,系统压力不平衡等。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v (1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=·r·v/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r= [kN/m]。

纬度为45°处的重力加速度 g=[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v (1) 其中 wp 为风压[kN/m],ro 为空气密度[kg/m],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=·r·v/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r= [kN/m]。

纬度为45°处的重力加速度 g=[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

风速与风压的换算

风速与风压的换算

风速与风压‎的换算风压就是垂‎直于气流方‎向的平面所‎受到的风的‎压力。

根据伯努利‎方程得出的‎风-压关系,风的动压为‎ wp=0.5·ro·v2 (1) wp为风压‎[kN/m2],ro为空气‎密度[kg/m3],v为风速[m/s]。

空气密度(ro)和重度(r)的关系为 r=ro·g, 因此有 ro=r/g。

在(1)中使用这一‎关系,得到 wp=0.5·r·v2/g (2) 此式为标准‎风压公式。

在标准状态‎下(气压为10‎13 hPa, 温度为15‎°C), 空气重度 r=0.01225‎[kN/m3]。

纬度为45‎°处的重力加‎速度g=9.8[m/s2], 我们得到wp=v2/1600 (3)此式为用风‎速估计风压‎的通用公式‎。

应当指出的‎是,空气重度和‎重力加速度‎随纬度和海‎拔高度而变‎。

一般来说,r/g 在高原上要‎比在平原地‎区小,也就是说同‎样的风速在‎相同的温度‎下,其产生的风‎压在高原上‎比在平原地‎区小。

废气排放标‎准值(最高允许排‎放度mg/N立方米)序号污染物一级标准1 二氧化硫8502 硫酸雾353 汞、铅、镉、铍及其化合‎物——4 砷及其化合‎物 1.55 铬及其化合‎物0.056 锰及其化合‎物157 氟及其化合‎物208 氯1009 氯化氢5010 硫化氢5011 二氧化碳10012 苯、甲苯、二甲苯混排‎时以总量计‎10013 硝基苯5014 沥青烟3015 氮氧化物(以二氧化氮‎计)5016 一氧化碳10000‎。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风速与风压的关系我们知道, 风压就是垂直于气流方向的平面所受到的风的压力. 根据伯努利方程得出的风-压关系,风的动压为wp=0。

5·ro·v?(1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g.在(1)中使用这一关系,得到wp=0.5·r·v?/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa, 温度为15° C), 空气重度 r=0。

01225 [kN/m?]。

纬度为45°处的重力加速度 g=9。

8[m/s?],我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是, 空气重度和重力加速度随纬度和海拔高度而变. 一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道, 风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v?(1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到 wp=0。

5·r·v?/g (2)此式为标准风压公式。

在标准状态下(气压为 1013 hPa,温度为15° C),空气重度 r=0.01225 [kN/m?].纬度为45°处的重力加速度 g=9。

8[m/s?],我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)风压与风速的计算方法风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v (1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m]。

纬度为45°处的重力加速度 g=9.8[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v (1) 其中 wp 为风压[kN/m],ro 为空气密度[kg/m],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m]。

纬度为45°处的重力加速度 g=9.8[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。

风速与风压的关系

风速与风压的关系

风与我们的日常生活密不可分。

风荷载对工程建筑也影响巨大。

忽略了风,也就等于放弃了工程。

风压就是垂直于气流方向的平面所受到的风的压力风,是空气从气压大的地方向气压小的地方流动形成的。

从风的形成我们就可以看到风与压力是密不可分的!压力产生风,那么风压是什么呢?当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。

首先给出风压与风速的公式:W=-0.5pv2 +C 其中W:风压p空气质量密度V风速C常数。

当V=0时,W为最大风压,数值等于C。

日常生活中,我们所测得的风压为基本风压。

也就是按规定的地貌,高度,时距等量测量的风速所确定的风压为基本风压。

其中地貌为空旷平坦地貌,高度一般为10米,时距10分钟所测的风压为基本风压,风速即空气流动速度,单位一般为m/s;仅是某一位置的速度数值。

因为风速在不同位置数值可能有较大差异,且平均值难以计算。

摆放位置会影响他的风速,因为外界条件不同,风传播介质的粗糙程度不同。

距离不同距离测量到的风速也不会相同。

如果要全面了解风扇的性能,那么就要了解与风速密不可分的另一个因素风压。

风压即出风口与入风口间产生的压强差,单位一般为mm(cm)water column,即毫米(厘米)水柱(类似于衡量大气压的毫米汞柱,但由于压强差较小,一般以水柱为单位)。

风压是“强劲”程度的重要指标,如果将风量比作一把武器的挥击力量,那么风压就是这把武器的锋利程度。

风压直接的影响到送风距离。

我又想到了现在流行的流线型设计,很多交通工具都被设计成流线型,那么他的原理在哪呢?我查资料所得“流线型原是空气动力学名词,用来描述表面圆滑、线条流畅的物体形状,这种形状能减少物体在高速运动时的风阻。

但在工业设计中,它却成了一种象征速度和时代精神的造型语言而广为流传,冰箱、汽车的设计都受其影响。

这种外形能够符合空气动力学的原理,呈现出一种流线型,在运动中能够得到更大的速度。

流线型设计最早是用在20 世纪交通技术上。

风速与风压的关系

风速与风压的关系

风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

在(1)中使用这一关系,得到wp=0。

5·r·v²/g (2)此式为标准风压公式。

在标准状态下(气压为1013 hPa,温度为15°C),空气重度r=0。

01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式.应当指出的是,空气重度和重力加速度随纬度和海拔高度而变.一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用Cyberspace的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0。

5·ro·v²(1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g,因此有ro=r/g.在(1)中使用这一关系,得到wp=0。

5·r·v²/g (2)此式为标准风压公式.在标准状态下(气压为1013 hPa, 温度为15°C),空气重度r=0.01225 [kN/m³]。

纬度为45°处的重力加速度g=9.8[m/s²],我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式.应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

风速与风压

风速与风压

风压与风速的关系当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。

设速度为v 的一定截面的气流冲击面积较大的结构物时,由于受到阻碍,气流改成向四周外围扩散,形成压力气幕,如下图所示。

如果气流原先的压力强度为b w ,气流冲击结构物后速度逐渐减小,其截面中心一点的速度减小至零时,在该点处产生的最大气流压强,设为m w 。

则结构物受气流冲击的最大压力强度为m b w w -,此即工程上所定义的风压,记为w 。

为求得风压w 与风速v 的关系,设气流每点的物理量不变,略去微小的位势差影响,取流线中任一小段dl,如图所示。

设1w 为作用于小段左端的压力,则作用于小段右端近压力气幕的压力为11w dw +。

以顺流向的压力为正,作用于小段上的合力为1111()w dA w dw dA dw dA -+=-,该合力应等于小段的气流质量M 与顺流向加速度a 的乘积,即1dv dw dA M a dA dl dtρ-==。

由此式可得1dv dw dldtρ-=,注意到d l v d t =,代入前式得1d w v d v ρ=-,而方程的解为2112w v c ρ=-+。

此式称为伯努利方程,其中c 为常数。

从该方程可以看出,气流在运动过程中,其本身压力随流速变化而变化,流速快,则压力小;而流速慢,则压力大。

当v=0时,1m w w =,代入方程的m c w =;而当风速为v 时,1b w w =,则212b m w w v ρ==-,因此,221122m b w w w v v gγρ=-==,此式即为风速与风压的关系公式,其中γ为空气单位体积的重力,g 为重力加速度。

在气压为101.325kPa 、常温15C 和绝对干燥的情况下,γ=0.0120183kN m ,在纬度45 处,海平面上的重力加速度为g=9.82m s ,代入前式得此条件下的风压公式为22220.012018229.81630v w v v k N m g γ===⨯。

风压与风速的关系

风压与风速的关系

风压与风速的关系当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。

设速度为v 的一定截面的气流冲击面积较大的结构物时,由于受到阻碍,气流改成向四周外围扩散,形成压力气幕,如下图所示。

如果气流原先的压力强度为bw ,气流冲击结构物后速度逐渐减小,其截面中心一点的速度减小至零时,在该点处产生的最大气流压强,设为mw 。

则结构物受气流冲击的最大压力强度为m b w w -,此即工程上所定义的风压,记为w 。

为求得风压w 与风速v 的关系,设气流每点的物理量不变,略去微小的位势差影响,取流线中任一小段dl,如图所示。

设1w 为作用于小段左端的压力,则作用于小段右端近压力气幕的压力为11w dw +。

以顺流向的压力为正,作用于小段上的合力为1111()w dA w dw dA dw dA -+=-,该合力应等于小段的气流质量M 与顺流向加速度a 的乘积,即1dvdw dA Ma dAdl dtρ-==。

由此式可得1dvdw dldtρ-=,注意到dl vdt =,代入前式得1dw vdv ρ=-,而方程的解为2112w v c ρ=-+。

此式称为伯努利方程,其中c 为常数。

从该方程可以看出,气流在运动过程中,其本身压力随流速变化而变化,流速快,则压力小;而流速慢,则压力大。

当v=0时,1m w w =,代入方程的m c w =;而当风速为v 时,1b w w =,则212b m w w v ρ==-,因此,221122m b w w w v v gγρ=-==,此式即为风速与风压的关系公式,其中γ为空气单位体积的重力,g 为重力加速度。

在气压为101.325kPa 、常温15C 和绝对干燥的情况下,γ=0.0120183kN m ,在纬度45处,海平面上的重力加速度为g=9.82m s ,代入前式得此条件下的风压公式为22220.012018229.81630v w v v kN m g γ===⨯。

风压与风速的关系

风压与风速的关系

风压与风速的关系风压与风速的关系当风以⼀定的速度向前运动遇到阻塞时,将对阻塞物产⽣压⼒,即风压。

设速度为v 的⼀定截⾯的⽓流冲击⾯积较⼤的结构物时,由于受到阻碍,⽓流改成向四周外围扩散,形成压⼒⽓幕,如下图所⽰。

如果⽓流原先的压⼒强度为b w ,⽓流冲击结构物后速度逐渐减⼩,其截⾯中⼼⼀点的速度减⼩⾄零时,在该点处产⽣的最⼤⽓流压强,设为m w 。

则结构物受⽓流冲击的最⼤压⼒强度为m b w w -,此即⼯程上所定义的风压,记为w 。

为求得风压w 与风速v 的关系,设⽓流每点的物理量不变,略去微⼩的位势差影响,取流线中任⼀⼩段dl,如图所⽰。

设1w 为作⽤于⼩段左端的压⼒,则作⽤于⼩段右端近压⼒⽓幕的压⼒为11w dw +。

以顺流向的压⼒为正,作⽤于⼩段上的合⼒为1111()w dA w dw dA dw dA -+=-,该合⼒应等于⼩段的⽓流质量M 与顺流向加速度a 的乘积,即1dvdw dA Ma dAdl dtρ-==。

由此式可得1dvdw dldtρ-=,注意到dl vdt =,代⼊前式得1dw vdv ρ=-,⽽⽅程的解为2112w v c ρ=-+。

此式称为伯努利⽅程,其中c 为常数。

从该⽅程可以看出,⽓流在运动过程中,其本⾝压⼒随流速变化⽽变化,流速快,则压⼒⼩;⽽流速慢,则压⼒⼤。

当v=0时,1m w w =,代⼊⽅程的m c w =;⽽当风速为v 时,1b w w =,则212b m w w v ρ==-,因此,221122m b w w w v v gγρ=-==,此式即为风速与风压的关系公式,其中γ为空⽓单位体积的重⼒,g 为重⼒加速度。

在⽓压为101.325kPa 、常温15C 和绝对⼲燥的情况下,γ=0.0120183kN m ,在纬度45处,海平⾯上的重⼒加速度为g=9.82m s ,代⼊前式得此条件下的风压公式为22220.012018229.81630v w v v kN m g γ===?。

风压与风速的计算方法

风压与风速的计算方法

风压与风速的计算方法风速与风压的关系我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1)其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。

纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。

一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。

在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。

在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。

纬度为45°处的重力加速度g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B U T L
E R 蒲福氏风级描述风力术语风速
(km/h)(m/s)图标风压(kg/m2)
0 级Calm 无风< 2(0.56)01 级
Light Air 软风 (烟能表示方向,但风向标不动微波)2~6(0.56~1.67)0~0.22 级
Light Breeze 轻风(人面感觉有风,风向标转动小波)7~12 (1.94~3.3)0.2~0.73 级Gentle Breeze 微风
(树叶及微枝摇动不
息,旌旗展开小波)
13~19(3.6~5.23)0.8~1.74 级Moderate Breeze 和
风 (能吹起地面纸张与灰尘轻浪)20~30 (5.5~8.3)
1.9~4.3
B
U T L
E R 蒲福氏风级描述风力术语风速
(km/h)(m/s)图标风压(kg/m2)
5 级Fresh Breeze 清风
(有叶的小树摇摆 中
浪)31~40(8.6~11.1) 4.6~7.76 级
Strong Breeze 强风(小树枝摇动,电线呼呼响 大浪)41~51(11.4~14.2)8.1~12.67 级
Moderate Gale 疾风(全树摇动,迎风步行不便 巨浪)52~62(14.4~17.2)13.0~18.58 级Fresh Gale 大风
(微枝折毁,人向前
行阻力甚大 狂浪)
63~75(17.5~20.8)19.1~27.09 级Strong Gale 烈风
(建筑物有小损 狂
涛)76~87(21.1~24.2)27.8~36.6
B U T L E R 蒲福氏风级描述风力术语风速
(km/h)(m/s)图标风压(kg/m2)
10 级Whole Gale 狂风
(可拔起树来,损坏
建筑物 狂涛)88~103(24.4~28.6)37.2~51.111 级
Storm 暴风 (陆上少见,有则必有广泛破坏 狂涛)104~117(28.8~32.5)51.8~66.012 级
Hurricane 飓风 (陆上极少见,摧毁力极大海浪滔天)>= 118 (32.7)>=66.8Note:
W=V2/16(kg/m2)
E
L
T
U
B。

相关文档
最新文档